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A ?urvey of multi-grid methods for nonlinear problems 

by 

E.J. van Asselt 

ABSTRACT 

In this report different approaches to solve nonlinear problems by 

multi-grid methods are described. In its elementary form a multi-grid method 

is a recursive application of the two level algorithm which itself consists 

of the iterative use of two procedures: 

a. a smoothing procedure on the fine gr~d 

b. a coarse grid correction. 

These procedures can all be cast into the form of a defect correction pro­

cess. 

Attention is payed to th,e determination of an initial approximation 

for the iterative process: by an imbedding method, by the full multi-grid' 

method or by a combination of both. 

Two well known variants of the full multi-grid method are described. 

Finally a method for the determination of the coarsest and the finest grid 

size is given. 

KEY WORDS & PHRASES: Defect correction process, multi-level algorithm, im­

bedding method, full multi-grid method 
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1, A DEFECT CORRECTION PROCESS FOR NONLINEAR EQUATIONS 

Let A,B be normed linear spaces, and M be a linear or non-linear map­

ping from A to B. Consider the equation 

(1. 1) Mu= g. 

Assume that g E Y and that for X c A and Y c B the mapping M: X + Y is sur­

jective. 

Assume that for some subset Y c Y with g E Ya continuous mapping G: Y + X 

exists such that Gg is an approximation to a solution of (1.1). 

G is called an approximate inverse of M. If G is injective, then M: GY + Y 

exists, such that MG= I~, with I~y the identity operator on Y; i.e. Mis 
~y 

the left inverse of G. Mis called an approximation to M. Thus an apprqxima-

tion of (1.1) is given by 

( 1. 2) Mu= g; g E Y. c Y. 

Many iterative methods to solve (1.1) can be cast into the form of the fol­

lowing defect correction process (DCP): 

( 1. 3) uO = GOg 

ui+l = ui + µGi+l (g+(g-Mui)/µ)-µGi+lg, i = 0, ..• 

G. is an approximate inverse of M, andµ and g are free to choose (HEMKER 
l. 

[6]). If G, = G for all i, we have a stationary DCP, otherwise the process 
1.· 

is called non-stationary. 

REMARK. In case of linear operators G., (1.3) reduces to 
l. 

( 1.4) 

~ 
ui+l = ui + Gi+1 (g-Mui) 

M still may be nonlinear. 



2 

In case o:E injective G., we can introduce the approximate operators 
1. 

M. and write (1.4) as a sequence o:E equations: 
1. 

(1.5) 

EXAMPLE 

( 1.6) Newton iteration 

-1 
u. + (M' (u.)) (g-Mu.). 

1. 1. 1. 

Here we have a non-stationary DCP with G. 1 1.+ 

the Frechet-derivative of M at the point u .. 
1. 

2. MULTIGRID METHODS FOR NONLINEAR PROBLEMS 

2.0. Introduction 

-1 = {M' (u.)} , where M' (u.) is 
1. 1. 

All G. are linear operators. 
1. 

Discretization of (1.1) on a given uniform grid Gh with mesh size h 

yields the discrete form 

(2.0.1) where~:¾+ Yh is surjective by assumption. 

The (non)linear multigrid method (MGM) solves (2.0.1), using discretizations 

on coarser grids G8 , denoted by 

(2.0.2) 

In its elementary form, the MGM is a recursive application of the two level 

algorithm (TLA) which itself consists of the iterative use of two procedures: 

a. A smoothinq- procedure on the fine grid 

b. A coarse grid correction. 

In section 2.1 we treat the smoothing process and we give 4 examples of it. 

In section 2.2 we introduce restrictions and prolongations and consider 



coarse grid corrections. 

In section 2.3 we describe the two level algorithm TLA in an Algol-like 

program. 
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In section 2.4 we give the recursive application of the TLA in a multilevel 

algorithm MLA. 

2.1. The Smoothing Process 

The smoothing process is a DCP or a combination of defect correction 

processes (see (2.1.1)). It is a step in the iterative solution of (2.0.1) 

which damps out the rapid fluctuations in the residulas so that they can 

be represented on a coarser grid. 

The effect of the usual relaxation methods for the solution of differ­

ence equations as smoothing process can be analysed with discrete fourier 

analysis cf. BRANDT [1], DAHLQUIST & BJORCK [2], HEMKER [5]. 

EXAMPLES 

(2.1.1) The nonlinear Gauss-Seidel proce?s 

Consider a system of n nonlinear equations. f(x) 0 with f = (f 1 , ... ,fn); 

( ) Lt -(O) b · ·t· 1 . t· t th 1 t' F x = x 1 , ... ,x . e x e an ini ia approxima ion o e sou ion. or 
. n . (k+l) 

the nonlinear Gauss-Seidel process x. is obtained by solving for x. the 
l l 

i-th equation: 

(k+l) (k+l) (k) (k) 
f.(x 1 , ... ,x. 1 , x.,x. 1 , ... ,x ) = 0. 

l 1- l 1+ n 

Generally, this is a nonlinear equation in x., and we can find an approxi-
1 

. ~ 'th N 't t' F' 11 t (k+l) ~ mation x. to x., e.g. wi ewton 1 era ion. ina y we se x. = x. 
l l l l 

(RBEINBOLDT [8]). 

Thus the nonlinear Gauss-Seidel process with Newton iteration for a 

system of n nonlinear equations is an iterative process in which each ite­

ration step consists of n non-stationary defect correction processes 

(Newton iteration) 
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-(i+k/n) 
x. = 

J 

-(i+k/n) 
X. 1 J-

( 0 0 G(i+k/n)f (-(i+k/n)) 
1,k•···• k-1,k' j-1 k xj-1 ' 

j = 1, ... ,N. k/ 1+ n 

-(i+k/n) 
XO 

-(i+(k-1)/n) = X 

Ni+(k-1)/n 

k = 1, ••. ,n i = 0, •.. 

o.,. is the Kronecker delta, o .. 
G~i+k/n) = (d f x~i+k/n))-1, ~~ 

= 0 for i # j , o . . = 1 for i = j • 
1,J 

J-1 . k k J-1 -(i+k/n) 
inverse of the Frechet-derivative to the 

k-th variable of fk at xj-l . 

In general the number of steps: N. k/ of each non-stationary defect 1+ n 
correction process can be determined during the actual computation by, ter-

minating the iterations depending on the speed of convergence. We can also 

devise a nonlinear Gauss-Seidel process where (2.1.1.1) is applied with 

only a fixed number of steps (N. k/ is a constant for each i, k, e.g. 
1+ n 

N = 1). 
i+k/n 

(2.1.2) The linear Gauss-Seidel process 

For a system of n linear equations Au= f (A a square n x n matrix) the 

linear Gauss-Seidel process is ~iven by 

-1 
U, l = u. + L (f-Au,). 

1+ 1 1 
(See (1.4)). 

Here we have a stationary DCP with linear G = L 
-1 

where A= L + U, L lower 

triangular matrix and U strict upper triangular. 

(2.1.3) Newton iteration and linear Gauss-Seidel 

For a system of n nonlinear equations we can apply Newton iteration. In 

each iteration step we have a linear equation on which we can apply linear 

Gauss-Seidel iteration. 

Newton: 

u -
i 

(df(u.) )-1 f cu:.) 
1 1 

where df (u.) 
1 
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i_s the Jacobian matrix. This can be considered as a linear system (cf. (1.5)) 

with unknown u. 1 : 
1.+ 

( df ( u . ) ) u . l = ( df ( u . )) u 
1. 1.+ 1. i 

f(u. >, 
1. 

on which linear Gauss-Seidel can be applied. 

(2.1.4) Smoothing by application of an integral operator 

Consider the following (possibly nonlinear) equation in operator notation: 

(2.1.4.1) u - Ku= f. 

If K: A+ B = A is sufficiently smooth, an efficient smoothing process is 

the DCP: 

(2.1.4.2) u :=Ku+ f. 

This means g = g = f; M = I - K, µ = -1 and Gi+l = I in (1.3). 

As example of the smoothing effect consider: 

'JI" 

(2.1.4.3) u(y) - j K(x,y)u(x)dx = 1 

-11" 

with 

00 

K(x,y) = l 
k=l 

cos k(x-y) 
4k 

Let u0 be an approximation to the exact solution u - 1 on [-n,n]. 

Assume that 

a. u0 is continuously differentiable on [-n,n] except possibly in a finite 

number of points p. 

b. in each such point p, the lower and upper limit of u0 and u0 exists, 

and u0 (p) = ~[lim u0 (x) + lim u0 (x)], 
xtp x,l,p 

then on [-n,n], u0 can be written as: 

00 

(2.1.4.4) (a sin nx + b cos nx). 
n n 
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Suppose u0 is chosen such that a 0 = 1. 

One smoothing step yields: 

TI 

u 1 = f K(x,y)u0 (x)dx + 1 = 

-TI 

00 

1 + L (4~ ¾ sin ky + 4Tik bk cos ky). 
k=l 

The residual R0 corresponding to u0 is given by 

00 

Ro= uo - Ku - 1 = L (a sin nx + o cos IlXf, with 
0 n=l n n 

a n 
TI 

= (l- 4n a 
n 

and b 
n 

TI 
= (l- 4n 

The residual R1 corresponding to u 1 is given by 

b • n 

I 
n=l 

..2:.... a sin nx + 4TI b cos nx). 
4n n n n 

So a and S are reduced by a factor TI 
n n 4n 

Thus all frequency components are damped. The high frequency components are 

damped more than the low frequency components. 

Equation (2.1.4.1) can also be obtained by reformulation of a dif­

ferential equation. E.g. consider the nonlinear problem: 

P1 : Lu= f(u,x), with La linear second order elliptic differential 

operator. Replacing u by some known v we obtain a linear problem: 

Lw = f(v,x). 

The mapping v + w defines a nonlinear integral operator K: A+ A; K(v) = 
-1 = L f(v,x). 

With this operator K, the integral-form of P 1 reads: 

The discretization of P 2 yields the discrete operator KV.and we have to 

solve 



(I-K )u = f . 
. \)\) \) 

The smoothing process is here 

2.2. Coarse grid corrections 

( 2. 2 .1) Restrictions and prolongations 

Let Q c Rk , k E N • 

DEFINITIONS. 

a. A grid G is a set {xJxEQ,x isolated}. 

b. Leth= (h 1 , ... ,hk), hi E R>O' i = 1, ... ,k. 

A uniform grid Gh with mesh size his a set 

i = 1, ... ,k} 

c. A gr id-function u is a mapping u: G -+ lR . 

d. Let G8 c Gh and let v8 , Vh be the linear spaces of grid-functions de­

fined on G8 , Gh. 

A restriction ~,his a surjective linear mapping RH,h: Vh-+ v8 . 

A prolonqation Ph,H is an injective linear mapping Ph,H:V8 -+ Vh. 

If we identify the spaces Vh with the normed spaces¾ or Yh (see eq. 

(2.0.1)) then the corresponding restrictions and prolongations are de­

noted by RHh and PhH (or RHh and PhH respectively). 

If no confusion is possible we simply denote the restrictions and pro­

longations by R, R and P, P. 

EXAMPLES 

(2.2.1.1) Natural restriction 

Let G8 c Gh then the natural restriction R: Vh-+ v8 is defined by R~ = v8 

wnere v8 (x) = ~(x) Vx E G8 • 

(2.2.1.2) Weighted restriction 

Assume GH c Gh with uniform grids G8 , Gh, Q = lRk 

7 
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n:ie stencil Bh is a finite subset,of Gh with OE Bh together with a set of 

real values {ay E JR I y E Bh}. 

The weighted restriction R: Vh + VH is defined by R'\i = vH with 

vH(x) = ( L a '\i(x+y))/( l a). 
yEB y yEB y 

h h 

(2.2.1.3) Prolongation by linear interpolation 
1 Consider Q = [ 0 , 1 ] c R , h = 2n , n E :N 

Gh {xix 
k 

k QI • • • I 2n} = = - I = 2n 

G2h = {xix=~, k = QI • • • In} • n 

The prolongation by linear interpolation is the mapping P: v2h + Vh defined 

by P'\i = v 2h, with 

k k 
V (-) = Q (-) 

2h n h n 

(2k+1) = 
v2h 2n 

k=0, ••• ,n 

(2.2.2) The coarse grid correction as DCP 

k = O, ••• ,n-1. 

The coarse grid correction in a two level algorithm is a DCP given by: 

with 

where uH depends on the method used (see examples in paragraph 2.4). 
~ -1- ~ -~ ~ 

Here Gi+l = PMH R, and g is such that Rg = ~~-

2.3. The nonlinear two level algorithm (TLA) 

One step of the two level algorithm TLA consists of p smoothing steps, 

followed by a coarse-grid correction step and another q smoothing steps. 

This TLA-step can be described in the following Algol-like program: 



proc tla = (ref gridf u, gridf g) void: 

# one TLA iteration step in the solution of ~u = g # 

begin 

top 

do smooth (u.g) od; 

d := MHuH + R(g-~u)/µ; 

V := UH; 

# uH is some approximation to the solution on level H # 

solve (v,d); 

# i.e. find the solution of MHv = d with initial approxi-

mation uH # 

u := u + µP(v-uH); 

to q 

do smooth (u,g) od 

2.4. The nonlinear multi-level algorithm (MLA) 

The multi-level algorithm (MLA) is much similar to the TLA: 

only the exact solution on the coarser grid is replaced by a finite number 

of MLA iteration steps on this coarser grid. 

9 

In this way a recursive procedure is obtained. One step of the MLA is given 

in the following Algol-like program: 

(2.4.1) proc mla=(ref gridf u, gridf g) void: 

# one MLA iteration step in the solution of ~u = g # 

begin 
top 

do smooth (u,g) od; 

d := ~HuH + R(g-~u)/µ; 

V := UH; 

if level of u = 0 

then solve (u,g) # on the coarsest grid# 

else to cr 

do mla (v,d) od 
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fi; 

u := u + µP(v-uH); 

to q 

do smooth (u,g) od 

This algorithm has a fixed strategy, i.e. the numbers p,cr and q are 

fixed and independent of the course of the computation. If we introduce con­

ditions in the algorithm depending on the actual course of the computation, 

e.g. iterations are terminated depending on the speed of convergence, the 

algorithm has an adaptive strategy. 

EXAMPLES 

(2.4.2) The FAS-algorithm 

We obtain the FAS(= Full approximation storage) algorithm of Brandt [i"J 

by selecting uH = R~ andµ= 1 in (2.4.1). 

(2.4.3) A nonlinear multilevel algorithm for integral equations 

In [4] Hackbusch describes a multilevel algorithm which solves the nonlinear 

integral equation (I-K)u = 0. (See example (2.1.4)). 

Discretization on a given grid Gh with meshsize h yields the discrete form: 

Hackbusch's algorithm is a special case of (2.4.1) in which MH = I - KH and 

3i = I - ¾'a= p = 1; q = 0 andµ= -1. 

uH is an approximate solution of (I-KH)uH = 0 and the smoothing step reads: 

uh:=¾~+ gh (gh = 0 on the finest grid). 

3. THE LINEAR MULTIGRID ALGORITHM 

If the (nonlinear) multi-level algorithm is applied to a linear equa­

tion it reduces to a simpler form. For any choice of uH the algorithms are 

mathematically equivalent (see (3.3)). 

Two formulations of the linear multigrid algorithm are known in the litera­

ture. 
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One, where in the coarse grid correction the correction is found as the 

solution of the linear system (correction storage (CS) - algorithm), and 

the other where the corrected approximation is found as the solution of the 

linear system (Full approximation storage (FAS)-algorithm). 

3.1. The CS-algorithm (BRANDT [1]) 

Mis linear and so are MH and~­

Here one takes uH = 0, µ = 1. 

3.2. The FAS-algorithm (BRANDT [1]). 

This algorithm is the linear version of the algorithm (2.4.2), i.e. 

uH = R~, µ = 1. 

3.3. Comparision of the CS- and FAS algorithm 

Mathematically the CS-algorithm (3.1) and the FAS-algorithm (3.2) are 

equivalent. For CS the coarse grid equation reads: 

(3.3.1) 

with initial approximation vH = 0, and for the approximation to the fine 

grid solution we have 

(3.3.2) 

For the FAS-algorithm the coarse grid equation reads: 

(3.3.3) 

with initial approximation uH = R~. The approximation to the fine grid so­

lution is given by 

(3.3.4) 

The equivalence of the cs- and FAS-algorithm is clear: Since MH is linear, 
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(3.3.3) can be written as: 

with initial approximation 

With vH = uH - Ruh we obtain equation (3.3.1) with initial approximation 

v = 0 and the fine grid approximation (3.3.2). 
H 

The only difference of the CS- and the FAS-formulation for linear prob­

lems lies in the implementation of the algorithms. We see that the CS-formu­

lation is not applicable to nonlinear problems. 

4. METHODS FOR THE DETERMINATION OF INITIAL APPROXIMATIONS 

4.0. Introduction 

Let M(u) = 0 be a nonlinear equation in a Banach space A. If we want 

to solve this equation with an iterative method, we need an initial approxi­

mation u0 in a sufficiently small neighbourhood of the solution u. To over­

come the disadvantage of a direct guess of such an initial approximation we 

could apply an imbedding method (paragraph (4.1)), a full multigrid method 

(paragraph (4.2)) or a combination of both (paragraph (4.3)). 

4.1. The imbedding method 

Consider a family of problems H(u,t) = 0 t E [0,1] which is defined 

by a one-parameter imbedding function or homotopy H: Ax [0,1] + A such that 

for a certain known u0 EA 

H(u,1) =M(u) for all u EA. 
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Assuming that the solution u(t) of H(u(t) ,t) = 0 is continuously dependent 

on t, u(t) is probably a sufficiently close approximation to u(t+t.t), with 

tit small. Thus the solution u (1) = u is obtained from u (0) = u 0 by continuous 

transition. 

In numerical applications a finite sequence of problems M(u,t) = 0 
n 

0 = t 0 < t 1 < •.• < t = 1 is considered. The transition u(t) ➔ u(t 1) 
n n n+ 

can be done by the iterative solution of M(u,t 1) = 0 with initial approxi­
n+ 

mation u(t). An imbedding method is also called a homotopy method, or a 
n 

continuation method. (cf. WACKER [ 9 J) • 

EXAMPLES 

(4.1.1) Defect reducing homotopy (WACKER [9]) 

H(u,t) = M(u) - (1-t)M(u0). 

(4.1. 2) Regularizising homotopy (WACKER [9 ]) 

H (u, t) tM (u) + (1-t) (u-u0) • 

(4.1.3) Parameter continuation (POLAK, WACHTERS, BEELEN, HEMKER [7]) 

Consider the nonlinear (discrete) equation M(u;E) = 0 with some parameter 

EE JR. Choose M(u,t;E) = M(u,E(t)) such that M(u,E(1)) = M(u,E) and 

M(u,E(O)) is easy to solve. 

4.2. The full multigrid method (FMGM) 

In order to solve the discretization of a nonlinear problem Mu= 0 on 

a (fine) grid GN, in the FMGM a coarse to fine sequence of grids is used: 

G0 ,G1 , ..• ,GN, On each grid Gk with mesh size hk we have the discrete non­

linear problem 

(e.g. a differential or an integral form). 

PO is solved first on the coarsest grid G0 , where only a small system 
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~f equations has to be solved. Subsequently the problem is discretized on 

finer grids, where the prolongation of the coarse grid solution {of Pk) 

yields the initial approximation to the finer grid solution (of Pk+l). 

Each Pk is solved by an iterative method. (any method, e.g. Newton, a MLA, 

a combination of both) • 

NOTE. If the FMGM is used in combination with a MLA, (see 2.4.1), an approxi­

mation uH to the solution on level H, is already available from the previous 

step in the FMGM. (see also 2.4.3). 

4.3. A combination of imbedding and FMGM 

Consider the equation MhN uhN = 0 on the finest grid GN. We can com­

bine imbedding and FMGM in the following way by considering the sequence of 

problems: 

Pk . 
j 

0 j = 0,1, ••• ,jk '(uhk'~) = 
,J 

to 0 ~ tl ~ ~ 
jo 

~ to 1 
~ ~ = to ~ ~ tk 0 0 k 

jk 
~ ~ 

jN 
1. ~ tk tN = 

(This means that on one grid more parameter-values oft are possible, and 

for one parameter-value oft, more grids can be used) such that 

is easy to solve, and 

Each Pk . is solved with some iterative method with as the initial ap­
,J 

proximation either the solution of Pk,j-l (if j~1) or (if j=O) the prolonga-

tion of the solution of P 
k-1,jk-1 



5. LINEARIZATION OF NONLINEAR PROBLEMS 

Two well known variants of the FMGM for nonlinear problems are: 

(5.1) Linearization of the nonlinear equation on each grid Gk, 

(e.g. with Newton) and application of a linear MLA to the linearized equa­

tion (HACKBUSCH [3]) (i.e. in Newton iteration on the grid Gk, each itera­

tion step means the solution of a linear equation which is done by one or 

more steps of the MLA) • 

(5.2) Application of a nonlinear MLA on each grid Gk. 

Of course in the application of MLA linearization is not necessary. 

However there are many applications in which linearization occurs in the 

smoothing process: 

EXAMPLES 

(5.2.1) In the nonlinear Gauss-Seidel process Newton iteration can be ap­

plied (2.1.1). 

(5.2.2) In examples (2.4.2) smoothing can be done by first Newton lineari­

zation and then Gauss-Seidel iteration. 

(5.2.3) The assignment~ := 1\i~ + gh (example 2.4.3) means the solution 

of a linear equation. 

6. THE COARSEST AND THE FINEST GRID IN A FMGM 

15 

In this section we point out how the coarsest grid-size and the finest 

grid-size can be found. For a combination of both in one automatic program 

see HACKBUSCH [4]. 
6.1. The coarsest grid-size 

The coarsest grid-size h0 in a FMGM must be small enough, so that the 

corresponding discretization yields a sufficiently accurate approximation 

to the solution, and the iterative method to solve the problem on the grid 

with this grid-size converges to the required solution. 

on the other hand, if we want to find an initial approximation for the full 

multigrid method as cheap as possible, the coarsest grid-size h0 must be as 
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coarse as possible. 

The optimal course grid-size can be found in the following way: 

a) Choose the coarse grid G0 with mesh size h 0 • 

b) Investigate the convergence of the iterative process on the next grid G1• 

c) In case of divergence start the full multigrid process again on a coarse 

grid G0 with mesh size h0 < h0 , and apply the same procedure. 

6.2. The finest grid-size 

6.2.1. DEFINITION. Let~~= 0 a discretization of the nonlinear equation 

Mu= 0. 

Let II •II be a suitable norm, then the discretization error is defined by 

llu-~11. 

The discretization of a continuous equation on a finer grid makes sense 

only as long as an approximation of the same accuracy cannot be obtained by 

a simple interpolation of a coarser grid solution. 

So if we estimate the discretization error by Duhk - Puhk_1D, with Pa suf­

ficiently accurate interpolation operator, and this error is small enough, 

we need not to continue the full muitigrid method on smaller grids. 
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