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A note on defect correction processes with an approximate inverse of 

deficient rank 

by 

P.W. Hemker 

ABSTRACT 

In view of the analysis of multiple grid methods, in this note we con

sider Defect Correction Processes of deficient rank. Both for the error and 

for the residual, the convergence of the defect correction iterative process 

is studied in terms of the range and the kernel of the approximate inverse. 

Since the coarse grid correction in the multiple grid algorithm can be seen 

as a step in such an iterative process, the present study can be used in the 

convergence analysis of these algorithms. In this sense, the present paper 

is a generalization of previous work by S.F. McCormick. 

KEY WORDS & PHRASES: defect correction, nruZti-grid methods 



THE DEFECT CORRECTION 

In order to solve the operator equation 

(1) Fx = y, 

F: B1 -+ B2, B1, B2 Banach spaces, we consider the defect correction iterative 

process 

(2) 
Gy, 

= x. 
1 

- GFx. + Gy. 
l. 

The process is determined by the operator G: B2 ➔ B1, which is called 

the approximate inverse of F. 

In this paper we consider only linear operators F and G. We notice that 

the process (2) converges to the solution x* of (1) if G is injective and 

u I - GFll B ➔B < ] • 
I l 

The value ei = xi - x* is called the error of xi; the operator 

M = I - GF 

plays an important part in our considerations and is called the conplifieation 

operator of the error, since 

= Me .• 
l. 

We notice also that, due to the linearity of G, the process (2) is equivalent 

with 

(3) 

when x. is identified with 
l. 

x. 
l. 



The process (3) converges to the solut of (l) if 

the valuer.= y -
1. 

M = I - FG 

is called the residual of x. and the operator 
l. 

is called the amplification operator of residual since ri+l = Mri. 
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In particular we shall here consider the processes (2) and (3) where F 
~ n n and G are operators IR -+ lR , where F is a full rank matrix, such that the 

original problem (1) has a unique solution, and G is of deficient rank, i.e. 

G is neither injective nor surjective. 

Because rank(G) = k < n, we know that N = Range(G) is a k-dimensional 
n ~ n subspace of lR and Z = Kernel(G) is a (n-k)-dimensional subspace of JR. 

In order to define orthonormal bases in N and Z, we can decompose the 
~ n*n matrix G into its singular value decomposition (cf. Lawson & Hanson): 

where U, E and V are n*n matrices, U and V are orthonormal and r is a non

negative diagonal matrix. Except for the ordering of the elements of I, this 

decomposition is uniquely determined. The diagonal elements of rare the 

singular values and normally they are ordered such that 

~ 

ca c 0. 
n 

Because rank(G) = k, we know that cr 1,cr 2, .•. ,ok are non-zero and aj = 0, 

J =k+l, ••. ,n. 

Since G is not surjective, 

that all approximate solutions 

a stationary point x, xis not 

know 

c(y-Fx) = o, 

possibly x* l N; however, from (2) we see 

{x.} are in 
l. 

N. Hence, if {x.}. 0 1 l. 1.= ••••• 
attains 

necessarily the solution of (1). However, we 
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i.e. th . d 1 .... F.... Z Th . h • · VT h · · lR.n + zl.. e res1. ua r = y- x E • us, wit o = v1 1 t e pr0Ject1.on , 

instead of the sequence {.t.} in (3) we may consider the sequence{)..}, with 1. l. 

)..=ti£..: 
l. 1. 

A 

which has a unique stationary point)., satisfying 

,..,,.., 
LiFG).. = tiy. 

Clearly, N = Span(U 1), 

Span(u2), the last n-k 

Span(V 1). 

where u 1 are the first k column vectors of U and~= 
l. columns of U. Analogously, Z = Span(V2) and Z = 

From the singular value decomposition we easily see that for an arbi-
k -+]Rn and n k trary P: lR R: JR -+ JR , with range(P) = N and Kernel(R) = Z, 

we may write 

G = PSR, 

where S: lR.k -+ IRk is the nonsingular k*k matrix for which 

The operators P and Rare called prolongation and restriction respectively. 

Because P and Rare full rank matrices, rank(P) = rank(R) = k, P has 
.... T -1 T .... -1 

the left-inverse R = (U 1 P) u1 and R has the right-inverse P = v1(RV 1) • 

Moreover, we know that 

PR= P(UT P)-JUT 
l l 

JR.n-+ N, 

and 
.... -1 JR.n -+ ZJ. PR = VI (RV l) R ' 

are projection operators. 

Now we can consider what happens to the error to the solution or to the 

residual after one iteration step of the defect correction process. 
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I. To study the effect on the error of the solution, we consider (2), of 

which the transition matrix is 

M = I - GF = I - PSRF. 

We decompose the error e into two parts: e =es+ eu, with es EN and 
l. e EN. Analogously, we write u 

Me= (Me) + (Me) , 
s u 

with (Me) EN and (Me) 
s u 

l. 
E N . 

From the relation 

Me = MPRe = (PR - PSRFPR)e = P(I - SRFP)Re , s s s s 

that Me EN. Moreover, "We notice that in the special case when 
s 

we see 
-1 s = RFP, we have Me = O. 

s 
In the general case, with S-l = RFP +Ewe have 

= PSERe = GPERe s s 

-1 In practice, where (for good convergence) G = PSR should approximate F , 

it is often possible to choose S-I equal or close to RFP, the Galerkin ap

proximation of F. 

The contribution from eu to Me is given by 

Me = e 
u u 

~ GFe, 
u 

with GFe EN and e E Nl.. 
u u 

We conclude that 

(Me) = GPER.e 
s s 

(Me) = u 

~ GFe , 
u 

e • 
u 
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Note: In the context of multigrid methods, the components in N are those 

grid functions in the fine grid that can be obtained by prolongation from a 

coarse grid function; therefore they are called the smooth components of the 
Th • L h h error. ose in N are the unsmoot components oft e error. 

II. For the residual, the transition matrix is 

A ~ 
M = I - FG = I - FPSR. 

Now we decompose the residual r into two parts r = 

r E Z • Analogously we write 
s 

Mr= (Mr) + (Mr) . s u 

Again, a simple computation shows 

(Mr) 
s 

A A~ 

= PERGr, 
s 

(Mr) = -(I-PR)FGr + r. u s u 

r + r, with r E Zand s u u 

Note: In the context of multi-grid methods, the components in Z are those 

grid functions on the fine grid that vanish by restriction to the coarse 

grid and therefore they are called the unsmooth components of the residual, 

those in zL are the smooth components of the residua.t. 

III. In the special case that R = PT we see that 

In this case the subspace of the smooth (resp. unsmooth) components of the 

residual is the same as the subspace of the smooth (unsmooth) components in 

the error. 



SUMMARY 

The effect of one iteration step in a defect correction process with 

an approximate inverse of deficient rank can be summarized as follows: 

(1) For the error in the solution: 

~ A A 

Smooth components = Range(P) N 
G PER 

N = 

1/ Kernel(R) N.L. Unsmooth components = = N.L 
I 

(2) For the residual: 

A A~ 

Smooth components = Range(P) 

Unsmooth components= Kernel(R) 

= z.L PER G z.L 

~R-I)FG 

= Z I Z. 

(3) In the special case R =PT-we have 

Range(P) = Range(P) = N = Z.L, 

and 

Kernel(R) = Kernel(R) = Z = N.L. 
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