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'-·'-'-: urc: notes of a seminar on multiple grid methods 

by 

P.W. Hemker 

ABSTRACT 

These are lecture notes of a seminar given by the author in the spring 

of 1981 as an extension of a Capita Selecta course of Prof. P.J. van der 

Houwen at the University of Amsterdam. In these notes some material has been 

collected that is basic to the theory of multiple grid and related iteration 

methods. 

In this report the notes are in a preliminary form; neither do they con

tain all the material that should be included in a multiple grid course, 

nor are they in their final shape. Therefore, the report is intended for 

limited distribution only and the author will appreciate comments by readers. 

In the first two sections a short introduction to boundary value prob

lems and their discretization is given. Here we find the definitions of re

lative consistency and convergence in a sequence of related discretizations. 

The third and the fourth section are devoted to the Defect Correction 

Principle. First the basic principle is explained and examples are given. 

Further different generalizations are treated. In the fifth section the 

multigrid algorithm is explained in terms of the defect correction principle. 

A sketch of a convergence theorem is given. 

I(Ey WORDS & PHRASES: Defect correction, multiple grid methods 
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I. BOUNDARY VALUE PROBLEMS 

In this first section we describe boundary value problems. We give ex

amples and we mention a number of properties that we shall need in these

quel. 

Before we make some remarks about boundary-value problems for differen

tial equations, we consider first integral equations of the 2nd kind because 

of their resemblance with the differential problems in several respects. 

Besides the description of the problems, we give a short description 

of the discretization methods that are used to find their numerical solu

tions. The Multi-Grid Methods that will be treated in the following sections 

are efficient means to solve the large systems of equations that arise from 

these discretizations. 

I.I. Integral equations 

Let n c E.n be a bounded domain, then the equation 

(I.I.I) u(x) = f k(x,y,u(y))dy 

n 
where k: n x n x Ck+ tk is a given function and 

k u:n+a: 

is the unknown function, is called the Urysohn integral equation; k is 

called the ke1"nel function of the equation. 

If the kernel-function is linear (or, more precisely, affine), then 

the equation is a Fr-edholm integral equation of the 2nd kind and can be 

written as 
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(l.l.2) 

where 

u(x) = j k(x,y)u(y)dy + f(x) 

n 

u 

is the unknown function and 

k 

f 

are given. 

kxk 
Q X Q + ~ 

Although many properties of the integral equations (1.1.1) and (l .1 .2) 

can be treated for the vector-equation (k>l) and for a more-dimensional 

domain (n>I), we shall restrict ourselves mainly to scalar equations (k=l) 

on a one-dimensional domain n = [O,l]. Solution methods fork> 1 and 

n > I are generally analogous to those fork= I and n = I but the general 

treatment would complicate the notation. 

Often we consider only integral operators over the field JR instead of 

over the field t. 

Equation (l.l.2) can be symbolically written as 

(l.l.3) u =Ku+ f, 

where K denotes the linear integral operator defined by the function k. 

If the function k(x,y) is bounded in y and is differentiable in x, 

then the operator K transforms any integrable function u on Q into a dif

ferentiable fi.mction Ku on n. We say that the operator K has a smoothing 

. property. This smoothing property is an essential feature for many integral 

operators and we shall exploit it in the use of our multigrid methods. 

In order to formulate this smoothing property in better mathematical 

terms, we recall a number of theorems and definitions from functional 

analysis. (cf. Triebel, Smithies) 

DEFINITION. A precompact set is a set from which each enumerable infinite 

sequence contains a convergent subsequence. 
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DEFINITION. A compact operator from a Banach space into a Banach space is 

an operator which maps any bounded set into a precompact set. 

THEOREM [Triebel thm. 7.4]. 

Let Q C Rn be a bounded domain and Zet k(x,y) E c(nxn) (i.e. k is a con-
- -tinuaus funotion on the c"losure of nxn), then the operator K: c (n) + C(n) is 

a compact operator. 

DEFINITION. A linear integral equation has an 1 2-kernel if k(s,t): n x n + t 

satisfies 

If lk(s,t)l 2 dsdt = 
2 II Kff < oo , 

f 

J 

lk(s,t)lds < 00 Vt, 

lk(s,t)ldt < 00 Vs. 

THEOREM [Triebel thm. 7.5]. 

:.,et rt c Rn be a bounded domain and Zet k(x,y) E L 2 (nxn) (i.e. k is a square 

integrable funotion over n x ft!) then K: 12(n) + 1 2(n) is a compact operator. 

DEFINITION. The adjoint K* of a linear integral operator K is the operator 

with the kernelfunction k*(s,t) = k(t,s), 

K is called Hermitian if K * = K 

* * K is called normal if KK = K K 

cj> E 1 2 (rt) is called an eigenfunction and A Et is an eigenjalue of Kif 

Acj> = Kcj> <I> 'f O. 

THEOREM [Trjebel thm. 11.2]. 

A compact operator in a Hilbert space has at most an enumerable infinite set 

of eigenvalues which may be dense only at A= 0. Each non-zero eigenvalue 

has a finite multiplicity. 

THEOREM [Smithies, thms. 7.3.1-7.3.3] 

For Hermitian operators with 1 2-kernels 

- eigenvalues are real, 

- eigenfunotions belonging to distinct eigenvalues are orthogonal to each 

other, 
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- for eaoh non-sero eigenvalue thel'e is a finite orthogonal. base of eigen

functions: the dimension of the base is the rrrul.tipl.icity of the eigenvalue 

- eigewaZues form an enumerable sequence \ and, counting mul.tipl.icity, IJ~ 

'have 

(1. 1.4) 
00 

I 
i=I 

>.~ = I Kl 2 < 00 • 

l 

Usually eigenvalues A. and corresponding eigenfunctions$. are ordered 
l l. 

such that 

The set {(X.,~.) I A. j O, 1$.1 = 1} is called a full orthonormal system of 
1. l l l 

K. 

REMARK. A full orthonormal system is not necessarily complete. It may even 

be finite. e.g. with k(x,y) = p(x).p(y) any function Ku must be a scalar 

multiple of p. Thus the~e is only one non-zero eigenvalue and the full or

thonormal system is (lp1 2 ,p/HpR). 

REMARK. If the eigenfunctions {$i I Ai/ 0} do not span the entire (separ

able Hilbert-) space, then we can find - orthogonal to the span{$.} - a 
l. 

system of orthonormal functions {$.} such 
J 

space. We notice that K$. = 0 for all W·• 
J J 

THEOREM [Smithies, thm. 7.4.3]. 

that{$.} u {$.} span the entire 
i J 

Any Hermitian L 2-kerineZ. can be decomposed as 

(1.1.5) 
ex, 

(Kx,y) = l An(x,$n)($n,y) 
n=l 

where {A,$} is its (full orthonormal.) eigensystem and(·,·) denotes the 
2 n n 

L -inner produat. 

2 
REMARK. For an arbitrary L -kernel K both the operators KK* and K*K are 
H . • 2 
ermitian L -kernels. These Hermitian operators have the same set of non-

• . 2 * negative eigenvalues. Thus we may denote by {cr.,$.} the eigensystem of KK 
2 . * i1. 

and by {cri'*i} the eigensystem of K K. The system {cr.,$.,$.}, with o. > O, 
l. i l. l. 

is called the singulari system of K. 
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THEOREM [Smithies, thm. 8.3.2]. 

Let K be a L 2-kerne'l and x and y L 2-funations then (Kx,y) can be decomposed 

as 

0) 

(1.1.6) (Kx,y) = I an (x,<j>n) (iµn,y) . 
n=l 

Further 

0) 

I 2 0 KB 2 a. s; 

i=l l. 

and 

00 

I 2 DKll 2 a. = 
i=I l. 

iff K is normal. 

REMARK. The set {x} =O I 2 . nn ,,, .•• = {I, sin(nx),cos(nx),sin(2~x),cos(2~x), ••• } 

is a complete orthonormal system in the Hilbert 2 space L [0,1]. I.e. any 

function x € 1 2[0,1] can be expressed as 

with 

0) 

X = I (x,xn)xn, 
n=O 

0) 

Hxll 2 = l 
m=O 

(Parseval equality). 

Hence any orthonormal set of (eigen-) functions {qi.} or {iµ.} can be ex-
J J 

pressed as 

0) 

2 
cp • = I a. X with I la. I = I. 

J n=O JU n n Jll 

00 

lb. 12 1/1 • = I b. X I = 
J n=O Jll n n Jn 

and from (1.1.6) we derive 

(Kx,y) = i (x,cp.)a.(iµ.,y) = I (x,xn) a. a.b. (~,y). 
J J J J jnm Jn J Jm 

The bound }:a~ s; DKD 2 implies lim. a.= O. From this it follows I) that 
J J+·co J 

high enough frequency components in u (i.e. I:=k (~,u)~ with m large 

enough) will have an arbitrarily small effect in Ku and 2) that high enough 

frequency components in Ku will be arbitrarily small. 
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1.2. Discretization of integral equations 

In order to discretize the problem (l.l.2) with n = k = l, n = [0,1], 

we consider the finite set of points 

To discretize u n -+ JR, we consider 

and we replace 

by 

l 

Ku(x) = J k(x,y)u(y)dy 

0 

\~ (x) = 

The discretized equation (i.1.2) now reads 

N 

um= lio wl k(xm,xl)ul + f(xm), 

which is a simple (N+J)x(N+l) matrix problem: 

m=0,1, ... ,N; 

This discretized equation we denote symbolically by 

How well the values {u,} approximate the values {u(x.)} depends on 
l l 

I. the number of intervals N, 

2. the choice of {w,e}, 

3. the functions k(x,y) and f(x). 

Typical error estimates are of the form 
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max lu.-u(x.)I ~ CN-p. 
• 1. 1. 
1. 

Thus, the difficulty we encounter when we want to approximate (accurately) 

the solution of the integral equation is the large (non-sparse) system of 

equations to solve. 

1.3. Differential equations 

n Let Q c 1R , then a differential boundary value problem consists of 

(1) a partial differential equation for an unknown u : Q -+ JR.k, 

(2) boundary conditions. 

Examples of the differential equation are: 

I. The Helmholtz equation 

(1.3.1) -6u(x) + cu(x) = g(x) X E Q 

where 6 = ,7:1 1 (~/ is the Laplacian operator. 
l1.= oXi 

E.g. with n = 2 the equation reads 

(1.3.2) -u - u + cu xx yy g. 

2. The general linear elliptic differential equation of 2nd order. 

Au= 

a2u n 
~+ (1.3.3) I a .. (x) + I a. (x) a(x)u = g, 

i, j=l 1.J clx.ax. i=l l. ax. 
1. 1. 1. 

where the functions a .. ,a.,a: Q-+ JR are the coefficients of the equa-
1.J 1. 

tion. The ellipticity condition is 

I 
i, j=l 

a .. (x) I;. I;. > 0, 
1.J 1. J 

Vx E Q, 

3. The biharmonic equation 

(I.3.4) 
2 

6 u(x) = g(x) X E Q • 

n 
V(I; ,I; , .•. ,I;) E lR. 

1 2 n 

REMARK. The order (i.e. the highest derivative available in the equation) 

of an elliptic equation is always even. Usually it is denoted by 2m. 
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For an elliptic equation to have a unique solution, m (boundary) conditions 

must be given on the boundary an of n. 

Examples of boundary conditions are 

!) Dirichlet boundary conditions 

(l.3.5) (.l_)j u(x) = g. (x) 
an J 

J = I , 2 , ••• , m- 1 , x E an, 

a ➔ ➔ + 
where an= n. vu= n. grad(u) is the outward normal derivative; n is the 

outer normal direction. 

2) Neumann boundary conditions, rn = I. 

(l.3.6) 
au 
-= 
an 

h(x), XE aQ. 

3) Boundary conditions "of the third kind", m = l. 

(1.3.7) au(&+ a.(x)u(x) = y(x), 
an 

4) Mixed boundary conditions, m = 1 

(1.3.8) 

u(x) = g(x) 

au(x) + a.(x)u(x) 
an y(x), 

REMARK. In contrast with the integral operators, differential operators 

transform smooth (differentiable) functions into less smooth functions. 

Usually we shall have for s ~ 0 
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1.4. The weak formulation of a differential equation 

Boundary value problems for differential equations often can be given 

in a variational formulation. 

EXAMPLE. Helmholtz equation with Neumann boundary conditions can be for

mulated as 

(l.4.1) B(u,v) = f(v) I 
for all v EH (0), 

where 

f(v) = f g(x)v(x)dx + f h(x)v(x)dx 

l is a linear functional in v; f : H (Q) + R. 

B(u,v) = j Vu(x).Vv(x) + cu(x)v(x) dx 

Q 

is a bilinear form on u and v; B : H 1 (rl)xH 1 (11) + :R • 

H 1 (Q) is the linear space of all functions u of which u and Vu are square 

integrable. 

k DEFINITION. The Sobolev space H (n), k = O,l,2, ... , is the normed linear 

space of all (generalized) functions with finite norm UuiHk(n), 

!al=~~ 1 a.; a. are non-negative integers. 
li= i l. 

REMARK. Hk(Q) is a Hilbert-space with inner product 

(1.4.2) (u,v) k 
H (rt) 

REMARK. If B is symmetric: 

B(u,v) = B(v,u) 
1 

Vu, V E H (11), 
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and B is positive definite: 

B(u,v) > 0 

then the solution of 

1 Vu€ H (n) u 1' O, 

B(u,v) = f(v) 1 
'vv € H (Q) 

minimizes the functional 

(1.4.3) J(u) = B(u,u) - 2f(u). 

EXAMPLE. The Helmholtz equation with c ~ 0 and homogeneous Dirichlet bound

ary conditions is syrmnetric and positive definite. 

REMARK. A function u e: H1(n) 

(1) can satisfy the condition 

(1.4.4) B(u,v) = f(v) 

(2) and is not necessarily a c2(n) function. 

By partial integration we easily see that any solution of Helmholtz 

equation (1.3.1) with the Neumann boundary conditions (1.3.6) satisfies the 

equation (1.4.1). However it is possible that a solution u e: H1(n) of (1.4.1) 

exists, which is not a solution u e: c2 (n) of (1.3.1) and (t.3.6). The varia

tional or weak formulation (1.4.1) of the boundary value problem is a 

gene:rialization of the classical formulation of the same problem. 

REMARK. The equation: findµ e: H1(n) such that 

B(u,v) = f(v) 1 Vv e: H (n) 

can be seen as an infinite-dimensional linear system. We can denote this 

equation as 

Au = f, 



I where A is a linear operator A: H ,DUAL Th B h J • e anac space 
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[H1 ]DUAL is also denoted by H-l of all bounded linear functionals on 

H1(n). We easily see that 

if we identify functions f € 1 2 with the linear functionals 

f(v) = (f,v)1 2(Q)" Clearly 1 2 and H- 1(n) contain functions that are not 

in H1(n); these functions we can call less smooth function than those in 

H 1 (Q). Generalized functions such as the Dirac-delta function, defined by 

f cx(y)$(y)dy = $(x), 

n 

are bounded linear functionals on H 1 (G). They can be considered as func

tions that are contained in H- 1(n) but not in L2(n). 

Under sufficient conditions for B (e.g. Bis symmetric and positive 
-1 

definite), for any bounded linear functional f EH (Q) we can find a solu-

tion u € H1(n) which satisfies (1.4.4). Then A is invertible: 

exists. 

The problem (1.4.4) is called regular if A-l is a bounded operator 

s > o. 

Typically A-I maps less smooth functions into more smooth functions. With a 

sufficient degree of regularity (i.e. for sufficient larges) we find 

or 

1.5. Discretization of differential equations 

In order to discretize a differential boundary value problem, we can 

start either from the classical formulation or from the variational 
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formulation of the differential equation. The former leads to the Finite 

Difference Method (FDM) for the discretization, the latter to the Finite 

Element Method (FEM). In a number of cases both discretization methods end 

up with the same discretization of a given problem. In order not to obscure 

the notation we restrict ourselves to 2-dimensional scalar problems (n=2,k=l). 

The finite difference method 

Instead of the original domain of definition Q, here we consider a 

finite, discrete, set of points inn 

To discretize the fooction u S1 ➔ JR , we consider '\i ~ + R 

u. = {u .. }. 
n iJ 

The differentials in the original differential equation are replaced by 

difference approximations. 

EXAMPLE. With x .. = (ih,jh) e.g. we set 
l.J 

and 

u. l .-u. l . 1.+ ,J 1.- ,J 
2h for u 

X 

for u yy etc •• 

EXAMPLE. [The Helmholtz-equation with Dirichlet boundary conditions]. 

For each x .. En.. we find an equation 
1.J h 

2 
4u .. - u. I • - u. l . - u. . l - u. . I + ch u .. = l.J 1.+ ,J 1.- ,J l.,J+ 1.,J- l.J 

2 
h f (x .. ) 

l.J 

and for each x .. E an.. 
l.J -h 

(I.5.2) u .. = g(x .. ) • 
l.J l.J 

In the case that 3Q contains all the "neighbours" of points x .. in rr , 
l.J -11 



the system (1.5.l) - (l.5.2) determines 

as many equations as unknowns u ..• They form a linear system of equations 
l.J 

which we denote by 

From this equation u. = {u .. } can be computed. Under suitable conditions 
n l.J 

the values u .. approximate the values u(x .. ). 
l.J l.J 

The finite element method 

In this case our starting point is the variational formulation: 
l find u EH (n) such that 

( L 5. 3) B(u,v) = f(v) 

13 

Now we select from the space H1(n) a finite dimensional subspace Sh c H1(n) 

and we replace (l.5.3) by: 

find~ E Sh such that 

EXAMPLE. We assume that Q allows a triangulation. 

As Sh we consider the space of all functions that are continuous on Q and 

linear over all small triangles into which Q is partitioned. A basis of Sh 

is formed by the set of "hat-functions" qi •• ; ~-. is a function which takes 
l.J l.J 

the value I at x .. and takes the value Oat all other vertices of triangles. 
l.J 

Further$ .. is piecewise 
l.J 

triangles that share the 

se~ of functions 

linear. We see that~-. is nonzero only on those 
l.J 

vertex xij and the (finite) basis in Sh is the 
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{~.. I x •• € n u an}. 
J.J l.J 

We can write any function~€ Sh as 

u. (x) = l u .. $ •. (x) 
n . . J.J l.J 

l., J 

and the discretized problem reads 

l B(~ .. ,$,_ 0 )u .. = f($,_ 0 ) 
• . l.J M- l.J M-
l.' J 

This linear system we denote also by 

for all $k,l € B. 

Under suitable conditions the function~ approximates the solution u of 

(1,5.3) and we can find error estimates which are typically of the form 
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2. DISCRETIZATION AND APPROXIMATION 

2.J. Discretization of operators and spaces 

Let us be given a problem 

(P) Fx = y, 

where F : X ➔ Y and y E Y are given and X and Y are vector spaces. At first 

we may think of X and Y as being infinite dimensional function spaces, but 

- as we shall see later in this section - this is not necessary. 

DEFINITION. (The discretization of a problem). 

The discretization of the problem (P) is an associated problem 

where Fh: ¾ ➔ Yh and yh E Yh are given and¾ and Yh are (finite dimen

sional) vector spaces with dim(¾)= dim(Yh). D 

- By selecting h EH, Han ind.ex set, different discretizations of the same 

problem are possible. 

- The relation between the problem and its discretization is obtained by 

introducing SUI'jections ¾: X ➔ ¾and¾: Y ➔ Yh. 

- In order to interpret the solution of the discretized problem as an 

approximation to the solution of the original problem we have to define an 

injection Ph:¾ ➔ X. 

- The relation between the different spaces and mappings in a discretization 

is sunnnarized in the following diagram: 
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X 
F 

F 
h 

'h EH. 

REMARK. Without reference to a particular operator F, we may consider the 

discretization of the spaces X and Y by considering a set of quintuples 

(~,Ph,¾'Yh,\), h EH, where 

dim(Xh) = dim(Yh), 

Ph ~ -+ X an injection, 

¾ X ➔ ¾a surjection, and 

¾ y ➔ yh a surjection. 

DEFINITION. (The discretization of a space/an operator) 

The space¾ is also called the discretization of X; Yh is the discretiza

tion of Y and Fh is the discretization of F. 

REMARK. (The index set H; mesh.width) 

Usually, when Xis a function space over a domain in lR.n, the index his 

related to a mesh spacing. Generally, all kinds of mesh spacings are possible 

and any particular discretization of X can be denoted by an¾• for some 

h EH. In particular, if only regular rectangular mesh spacings are con

sidered, H can be identified with (a subset of) a neighbourhood of O in JR:. 
In that case, with h. being the distance between the gridpoints in the i-th 

]. 

direction, Isis n. h = (h 1,h2 , .•. ,hn) characterizes such a discretization. 

To each h EH we relate a meshwidth !hi, such that Jhl > 0. E.g., in 

the above example we define !hi=. max (h.). Usually, we consider families 
3=1. •• • n J 

of discretizations where xis such that 

Ve> 0 3h EH 9 !hi < E. 

We shall often consider properties of tripels C¾,Ph,¾)hEH' operators 

(Fh)hEH etc.' 

sequence {h.} 
J 

generally, if 

that hold for lh.\- 0, independently of the choice of 
u h J i-+oo • • 

c n, T ese ~ properties we shall denote by lim 

no confusion is possible, we denote !hi simply by h.h-+O 

the 

and, 
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NOTE: The index set His not only the collection of admissible meshes 

(mesh-spacings), for - in general - mesh spacings do not determine the dis

cretizations uniquely. It is possible to define different discretizations 

on the same mesh. It is also possible to define different discretizations 

with the same spaces¾ and Yh. E.g. we can construct discretizations with 

different orders of accuracy on the space of gridfunctions defined on the 

nodal points of the same regular mesh. A prescription which, given a mesh

spacing (which should satisfy certain conditions), determines the discretiza

tions of a problem (resp. operator or space) is called a discretization 

method. 

Discretization errors ---------------------
Discretization methods are used to approximate the solution of problem (P) 

by computation of problems (Ph). The difference between the solution x of 

(P) and the solution¾ of (Ph) can be called the error caused by the dis

cretization. However, also some measure of the fact that the solution~ 

only satisfies approximately the problem (P) can be called discretization error. 

error. Thus, different kinds of "discretization errors" can be introduced. 

DEFINITION. (Local descretization error) 

Let x EX, then the local discretization error of x, with respect to a 

discretization (Ph) is defined by 

DEFINITION. (Global discretization error) 

If x denotes the solution of a problem (P) and¾ denotes the solution of 

its discretization (Ph)' then the global discretization error of x EX is 

defined by 

DEFINITION. (True discretization error) 
If xis the solution of (P) and xh the solution of (Ph), then we define the 

true discretization error by 
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REMARK. Clearly the global and the true discretization errors can be split 

into two parts 

Hence, if we consider discretizations of the type 

then we have 

and 

REMARK. We see that the different kinds of discretization errors are 

mappings 

LDEh X + Yh' 

GDEh X + ~• 

TDEh Y + X. 

Se1uences_of_discretizations 

DEFINITION. (A sequence of discretizations) 

A problem (P) has a sequence of discretizations 

h E H, 

'if H = {h} or H = {h} such that lh I ~ !h 1 1 and lim lh I = 0. p pE7l p pElN p p- p 

REMARK. In a sequence of discretizations we denote 

N = dim(Xh) 
p p 

= dim(Yh ). 
p 

Of course we have lim N = ~. 
p-+oo p 

p-+oo 



DEFINITION. A sequence of discretizations satisfies the regular relative 
mesh property if 

I < h /h l < C p p+ 

with C independent of p. 

for all p, 
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REMARK. Our definition of the discretization of a problem leaves the possi

bility that the problem to be discretized is a finite dimensional problem 

itself (i.e. X and Y are finite dimensional). Hence we can discretize the 

problem 

h EH, 

to get a discretization 

HEH, 

with dim(¾)= dim(YH) ~dim(¾)= dim(Yh). 

It is clear that, with (Ph) a discretization of (P) and (PH) a discret

ization of (Ph)' also (PH) is a discretization of (P). With ¾h' the surjec

tion related with (PH) as a discretization of (Ph),~:¾+~• we con

struct 1)r =~¾•which is the surjection related with (PH) as a discret

ization of (P). Analogously we construct 1)r = ¾h¾ and PH= PhPhH" 

DEFINITION. Given two discretizations of the spaces X and Y by (¾,Yh,Ph•¾•f\i) 

and (~,YH,PH,1)r•¾), h,H E H, these are called related discretizations if 

surjections ¾h and ¾h and an injection PhH exist such that 

¾h ¾ 
+ ~· ¾h¾ = ¾· 

1\Jh yh + YR, ¾h¾ = ¾· 

phH ~ + ¾· phphH = PH. 

REMARK. We see that, if two discretizations (with h,H EH) of the spaces 

X and Y are related, then the coarse discretization (with HEH) can be con

sidered as a discretization of the fine discretization (with h EH). 
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DEFINITION. (A nested sequence of discretizations) 

A sequence of discretizations is called nested iff each problem (Ph) is 
p 

a discretization of a problem 

REMARK. 

(Ph ) • 
---p+ I 

All discretizations in a nested sequence can be discretizations of an 

original problem (P). 

In a nested sequence each problem (Ph) is a discretization of (Ph) iff 
q p 

q $; p. 

- Also without reference to a problem (P) we may consider a sequence or 

nested sequence of discretizations of the spaces X and Y. 

- Obviously, all discretizations in a nested sequence are related by 

... ¾ h ¾ h¾' 
p-2 p-1 p-1 p p 

¾ h ¾ 
p-1 p p 

2.2. Approximation of space~ 

DEFINITION. The crpproximation of a (normed) linear space Xis a set of 

triples {¾,Ph,¾}hEH' where 

¾ is a finite dimensional (normed) linear space, 

Ph ¾ ➔ X is a linear injection, and 

¾ 
X ➔ ¾ is a linear surjection. 

Ph and¾ are called prolongations and restrictions respectively. 

REMARK. (Supplying X and Xh uJith norms) 

?sually, the spaces X and¾• h EH, are normed linear spaces. However, we 

emphasize that the definition of the approximation is independent of these 

norms. In fact, the same linear spaces will often be supplied with various 

different norms, and hence properties of the approximations that are ex

pressed in terms of these norms depend on this particular choice. As soon 

as a particular choice of norms has been made for X and¾ we denote these 

by II , II X and II • II Xh. 

DEFINITION. For a given h EH, u EX, uh E ¾ we define: 



i) llu - Ph~IIX the difference between u and~• 

ii) lluh - ¾nUxh the discrete difference between u and~' 

iii) llu - Ph¾ullx the approximation error of u, 

iv) III - Ph¾IIZ-+X the approximation error of C¾,Ph,¾)· 
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Here Zand X denote the same linear space, which is supplied with different 

norms II • II Z and II • II X. 

DEFINITION. A discrete approximation of Xis the set {¾,¾}hEH' where¾ are 

normed linear spaces such that for all u EX 

lim ll¾ullx._ = llullX. 
h-+O -n 

DEFINITION. A sequence {uh 

iff 

uh E ¾• h EH} converges discretely to u EX 

DEFINITION. (A convergent approximation) 

An approximation {¾,Ph,¾}hEH of Xis called convergent iff 

Vu EX. 

The largest positive number p for which 

Vu E X 

is called the order of approximation (or the order of convergence of the 

approximation). 

,REMARK. Clearly, the constant C in the inequality 

depends on u. Generally, estimates are derived in which C depends on some 

(semi-)norm of u. Then we obtain estimates 

and the convergence property can be expressed as 
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with C independent of u. 

Notice here the es sent difference between D ·IX and II • ; z • Namely, let 

Z ~ X and let N = Kernel(~) c X, N f {O}; then, with O / u EN we have 

lu - Ph¾uHX-= M X and hence II - Ph¾RX+X ~ l. 

EXAMPLE l. a:pproxi~,ation in Soboiev spaees) 

A "finite element" is denoted by (K,P, I), where K is a closed subset of Rn 

K is a closed subset of ]Rn with non-empty interior and a Lipschitz con

tinuous boundary (K c ]Rn is also called 'finite element 1 • '); 

Pis a set of linearly independent functions defined on K, (P = {p.} is 
l. 

the set of 'basis functions' of the finite element); 

Eis a finite set of linearly independent linear forms defined over P, 

(E = {tj.i.} is the set of degrees of freedom of the finite element); by 
1. 

definition we assume that Lis P-unisolvent, i.e. dim(E) = dim(P) = N 
N and for any set of real scalars {a.}. 1 there exists a unique 

]. 1= 

PE Span(P) which satisfies tj.i.(p)= a., i= l, •.• ,N. [CIARLET, Sect. 2.3]. 
1 ]. 

Let (K,P,E) be a (master) finite element, for which s denotes the 

greatest order of partial derivatives occurring in the definition of E. If, 

for some integers m ~ 0 and k ~ 0 and for some real numbers p,q E [1, 00 ], 

the following inclusions hold: 

(i) 

(ii) 

(iii) 

J<+l,p(K) c:_.;. Cs(K), 

wk+J,p(K) ~ w1°• 4 (K), 

Pk(K) c Pc 111,q(K). 

Then, there exists a constant C(K,P,i) such tha.t for all affine-equivalent 

'finite elements (K,P,E) and all functions v E Wk+l ,p(K) 

where ITK denotes the PK-interpolant of the function and 

meas(K) 

~ 

the dx-measure of K, 

the diameter of K, 

the diameter of the largest ball contained 1.n K. 

[CIARLET, Thm. 3.1.5]. 



REMARK. (definition of a quas·i-u:nifoPm partition) 

A finite element partition is called quasi-uniform if a C > 0 exists such 

that, for all K from the finite element partition, we have 
e 

Ch $ p $ h <:: h. 
e e 

EXAMPLE 2. (The Lagrange finite element approximation for ck-fu:nations) 

Let Ee= {x:}:~I be a k-unisolvent set of nodal points of a finite element 

K c Rn ; K being star-shaped with respect to each nodal point from the 
e e 

set re. Let u(x) be any function with the properties 

(i) u € Ck (K ) , 
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k+I e 
(ii) V u(x) exists for all x € K; i.e. the k+l-th order Frechet-derivative 

e 
exists for all x in the finite element. 

Let U (x) be the unique interpolating polynomial of degree$ k of u(x) at 
e 

E. Then there exists a positive constant C = C(n,k,m,~ ), independent of 
e e 

u,h,r such that for each integer m, 0 s ms k, we have 

sup liflu(x) - 1f1u (x)D 
xEK e 

e 

= {x:}:~l is k-unisolvent 

at the point xN from E 
e e 

p(x) uniquely. [ODEN & REDDY, Thm. 

k I hk+l 
= C sup IV + u(x)I 

XEK 
e 

m 
p 

iff specification of the values of 

determines the k-th degree polynomial 

6.6]. 

2 EXAMPLE 3. Let n c lR be star-shaped with respect to the points (x.,y.); 
l. J 

are the nodal points of IT and IT; TI and Ily: being Lagrange 
X y X (k+I p+l) 

and p respectively. Let u(x,y) € C ' (n). 

{x.} and {y.} 
l. J 

projectors of degree k 

Then, for O $ms k, 0 

where U = IT IT u(x,y) € Pk (G). 
e X Y ,p 

Clearly, the order of conv~rgence of this approximation is min(k-m.+1,p-l+I). 

[ODEN & REDDY, Th, 6.7]. 
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Bounded_and_stable_E_rolo~ations_and_restrictions 

DEFINITION. 01" 

Restrictions and prolongations are called bounded(*) if 

D \ U X➔Xh s; C uniformly Ul h, 

or 

lphl¾➔X :$; C uniformly in h, 

respectively. 

(*) NOTE: In French literature this property is often called "stability". 

approximation) 

An approximation is called bounded iff its restrictions and prolongations 

are bounded. 

DEFINITION. (The optimal rest1"iation related to a prolongation) 
" Since Ph : Xh -+ X is an injection, a left invePse operator Rh : X ➔ ¾ exists 

such that ~Ph= Ih; Ih being the identity operator on¾· This¾ is called 

the optimal Pestriction related to Ph. 

DEFINITION. (Stab le px'O longatio'/'18) 

Prolongations {Ph}hEH are called stable if {Ph}hEH are bounded and 

uniformly in h EH. 

~MARK. Since\: X ➔ ¾is~ surjection, :ight-inverse operators 

Ph:~+ X exist such that \Ph= Ih. Such Ph are called prolongations re

_lated to¾· 

DEFINITION. (The optimal prolongation r,elated to Rh) 

The (a) right-inverse Ph, related to the restriction¾• is called the (an) 

optimal prolongation related to\ if the norm. 

is minimal. 
-(Notice that the optimal Ph depends on the choice of this norm!) 



-
A.~alogously an optimal prolongation Ph related to Rh is defined. 

DEFINITION. ) 
A 

Restrictions {¾}hEX are called stable if {1\}hEX are bounded and {~h}hEH 

exist such that 

uniformly in h EH. 

DEFINITION. (A stable approximation) 

An approximation {¾,Ph,¾}hEH is called stable if all Ph and 1\ from the 

approximation are stable. 

DEFINITION. (.4 prolongation bounded from below) 

A prolongation Ph:¾ ➔ Xis called boUY1.ded from belo-w if 

REMARK. The above definition is equivalent with any one of the following 

statements: 

i) 3C > 0 Vv ,f, 0 
HPvll 

~ C; r;ir 

ii) 3C > 0 inf IIPvD 
2: C; r;-u 

V'f-0 

iii) . f HPvfl 
> 0. in rvT 

V'f-0 V 
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LEMMA. If a prolongation P: ¾ ➔ Xis bounded from below, A Zh +¾and 

B =PA: zh + X then 3C > 0 such that cDAil :;; HBn. 

PROOF. 

II Bll = ~ PAIi 
II PAwll II PAwU ll Awll II Awll 

= sup --,---ir- = sup ,-;---ir- 7l1r > sup C l!w"rw wl-O "W" w uAw 11 11w11 - w 

C sup 1\tu" = C RAIi 
w 

THEOREM. Let R be the left inverse of a prolongation P, then 

i) if R is bounded, U RH ,I 0, then P is bounded from below; 
A 

ii) if P ~s bowided from below, then R: P¾ c K + Xh is bounded 

(possibly R : X + ¾ is not bounded) . 

□ 
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PROOF. 

i) By assumption RP= I, lliU s C, C > O, 

II vR = U RPvll s II RII II Pvll s C II Pvll • 

Therefore Pis bounded from below. 

ii) Since Pis bounded from below 

3C > 0 Vv E ¾. IIPvll :?!: C llvll; 

Vv E ~ IIPvll :?!: C llvU = C IIRPvll 

-1 IIRPvll 
Vv E ¾ C :?!: IIPvll 

-1 IIRwll 
II RIIPXli+¾_. C :?!: sup llwll"""" = 

wEP¾_ 

DEFINITION. (A restriction bounded from beZow) 

A restriction R: V +Wis called bounded from beiow if 

3C > 0 VO j w ERV 3v EV IIRvH 
Rv = w, 71vr :?!: C. 

REMARK. The above definition is equivalent with 

inf 
WERV 
w-f.O 

IIRvll 
sup "l!vlr = C > O. 
v~Rv=w 

D 

LEMMA. If a restriation R : X + ¾_ is bounded from beiow, A ¾ + zh and 

AR= B with Range(R) = Domain(A), then 

3C > 0 suah that II BIi :?!: ell All • 

PROOF. Let X = Domain(R), Zh = Range(R) = Domain(A), then 

IIBII = IIARII II ARvll ll ARvll II Rvll 
= sup llvll = sup IIRvh Tvr ~ 

VEX VEX 

sup 
v*EX 
Rv*=Rv=wERX 
II Rv*II :?!:CII v*II 

U ARv*II II Rv*II 
IIRv*H llv*II 

IIAwll 
:?!: sup nwJr. C = 

WERX 

C II A II. □ 
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THEOREM. Let P be the right inverse of a restriction R, then 
A 

i) if Pis bounded then R is bounded from below; 

ii) if R is bounded from below and Domain(P) = Range(R) then Pis bounded. 

PROOF. 

i) By assumption 

Hence 

ii) Since 

3C > 0 

A 

Domain(P) 

IIPwll 
= sup 7rwr 

w 
=> inf 

w 

Vw E W 3v* E 'J 

= Range(R) = RV 

A 

.llwll 

IIPwll 

IIRPwll 
= inf ---

w IIPwll 

* (v = Pw) 

2:: C. 

IIPwll IIPwll = [ inf llpll 
I IIPwll = sup llwtt - sup ~= sup 

w WERV WERV IIRPwll WERV 

IIRPwll 
-- = inf 
II Pli wERV II Pwll 

IIRvll = inf sup lfvll = C. 
wERV v➔RV=w 

IIRPwll 
A 

IIPwll 

2.3. Consistency, convergence and stability of a discretization 

DEFINITION. (Consis~ency of an operator) 

r1 
J 

A sequence of discretizations of an operator F ~s consistent on a set 

AC X if 

(2.3.1) 

its orde1" of consistency is p if p E JR 1.s the largest real number p for 

which 

(2.3.2) Ill F u R_ F 111 = 0 (hp) for h ➔ 0. h"'h - ~11 ' AcX+Y 
h 

REMARK. These definitions can also be written as 

lim sup ll'rh(u)II = 0 
h+O UEA yh 

and 

□ 
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l!I 

respect 

REMARK. If F and are linear operators and {Fh}hEH is consistent in A, 

then it is consistent in the whole of X. Hence, for a linear operator the 

addition "on the set A" is unnecessary. In fact, for non-linear operators we 

should always be aware that (some) properties only hold "in some neighbour

hood". 

REMARK. of a problem) 

Let u -1 
= F y be the solution of a problem (P), then a sequence of discretiza-

tions of (P) is called consi'.stent (of order p) with the p'l'obZem (P) if 

REMARK. Notice that, a priori, the consistency depends on the choice of the 

norms 1-Hx and U,By . This is similar to the definition of the order of 
h h 

approximation in section 2.2 and it holds as well for the definitions of 

stability, discrete convergence and convergence which follow below in this 

section. 

DEFINITION. A sequence of discretizations of an operator Fis stable in a 

set Bh = \B with B c Y, if for all h EH there exists an F~1 with 

(2.3.3) 
-1 

l!IFh Ill B cY ➔X.' 
h h -11 

uniformly in h. 

A sequence of discretizations of a problem (P) is stable if the discrete 

operators are stable in a neighbourhood of the right-hand side function y. 

REMARK. Notice that the definition of stability depends on the neighbourhood 

B, and the norms I. I¾ and U, Ryh• 

DEFINITION. A sequence of discretizations of an operato'l' Fis convergent 

(of order p) on a set B c Y if p is the largest real number p E lR for 

which 

!!I P F-I -I Ill O(hP) for h + O. h h ¾ - F BcY+X = 
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-1 
REMARK. We assume that the problem (P) has a solution F y. The sequence of 

discretizations of the problem (P) is convergent if 

its order of convergence is p if pis the largest real number for which 

DEFINITION. A sequence of discretizations of an operator Fis discrete con

vergent in a set B c Y if 

z -

Its discrete order of convergence is the largest number p E JR for which 

Ill ¾F-l - F~1¾111 BcY+~ = O(hp) for h + O. 

-) 
REMARK. Let u = F y be a solution of problem (P), then a sequence of dis-

cretizations of (P) is called discrete convergent (of order p) iff {Fh}hEH 

is discrete convergent (of order p) in a neighbourhood B of y. I.e. if the 

operators are discrete convergent in a neighbourhood of the solution. 

REMARK. Like a vanishing LDEh for h + 0 is related to consistency of a prob

lem or operator, the discrete convergence and the convergence are related 

to the global and the true discretization error respectively. To see this, 

for linear operators F and Fh we consider discretizations of (P) of the 

type 

Then: 

1) A sequence of discretizations of the operator Fis discrete convergent 

of order p iff 

because 

sup II GDEh ( u) II X__ 

UEX -n 
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= suplF-l R. Fu - R. ufl = 
u1;,X h -n -11 ¾ 

= iF~J \ F - 1).fiX➔¾ 

and hence 

and 

- l - . - l n u F-1 m M II 
Fh R. - R. F nv X s i n sup cGDEh(u) ¾• -11 n 1 ➔, h Y+X 

· uEX 

2) A sequence of discretizations (P~) of Fis convergent of order p iff 

because 

THEOREM. (Consistency and stability imply discrete convergence) 

If a sequenae of discretizations of a problem (P) is stable and consistent 

(of order p) t~ien it is discrete convergent (of order p). 

PROOF. 

D 
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THEOREM. (With a bounded and con7Jei•gent approximation, consistency and 

Let{x11 ,Ph,¾\.::H be a bounced and e]orzve1:'gent approximation (of orde1° q) of 

the space X. If a seq';r£nee {Fh}h,::H of diser>etizations of the operator F is 

stabl-e and consistent (of order p), tr.en the sequence is convergent 

(of ordn• min(p,q)). 

PROOF. 
-l 

F rn s 
RcY➔X 

llP11il~tx Ill F~ 1 Ill Yh➔¾III Fh¾ - \Fill Z➔Yhlll F-I Ill BcY➔Z 

II I - Ph¾nz+xlll F-l Ill BcY+Z 

+ 

As;ym.Etotic_exeansions_of_the_local_and_global_discretization_error 

D 

DEFINITION. The local discretization error admits an asymptotic expansion 

in h if 

D: X ➔ Y, 

with 

k = 0,1, ... ,j. 

The global discretization error admits an asymptotic expansion in h if 

E: X + X, 

with 

k = 0,1, ..• ,j. 

(Clearly both discretization errors are of order p: the first discretization 

is consistent of order p, the second is discrete convergent of order p.) 
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2.4. Galerkin discretization, relative consistency and convergence 

DEFINITION. Given{¾, ,1\i,Yh,¾ 

we associate with the problem 

(P) F X = Y, 

a discretization of the spaces X and Y, 

the or tization 

Fh ¾ = yh 

by taking 

Fh = ¾ F Ph 
and 

yh = ¾ y. 

DEFINITION. (A nested sequence of Ga lerkin di sere tizations) 

If {~,Yh,Ph•¾•\}hEH is a nested sequence of discretizations of X and Y; 

if (Ph) is a Galerkin discretization of (P) and (PH) is a Galerkin discretiz

ation of (Ph) then (PH) is a Galerkin discretization of (P): 

Thus, a nested sequence of discretizations of X and Y uniquely determines a 

nested sequence of Galerkin discretizations of a problem (P). 

REMARK. If {~,Yh,Ph,¾•¾}hEH is a nested sequence of discretizations of X 

·and Y and if (Ph)hEH are the corresponding Galerkin discretizations of (P), 

then the coarse-grid problem (PH) is a Galerkin discretization of the fine

grid (Ph). They are also called relative Galerkin (or canonical) discretiza

tions. The relation between the different spaces is summarized in the 

following diagram. 
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X 
F 

REMARK. The canonical discretization is a discretization of the kind (P:) 

as considered in a remark in section 2.3. 

Relative_order_of_~Eroximation,_consisten£l_and_conveE_gence 

Analogous to the definitions of the orders of approximation, consistency 

and convergence of a sequence of discretizations of an operator (in the 

previous section), for related discretizations in a nested sequence of dis

cretizations we can define the corresponding relative properties (possibly 

without reference to the original problem). 

Let a coarse and a fine related discretization (in a nested sequence) 

be characterized by H > h > O, then we define 

1) the spaces Zh and¾ have a reZative order of approximation p: 

2) the operators Fh and FH have a reiative order of aonsistenay p: 

3) the operators Fh and FH have a reZative order of aonvergenae p: 
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4) the operators Fh and FH have a order of disorete convergence p: 

THEOREM. Let two r1e of the same problem be consistent 

of orders p 1 p 2 l'espectively, :t>estriction ¾ be bounded from 

beZO'lJ and let restricUon Rm1 be bounded; then the discretizations are 

relative consistent of order min(p 1,p2). 

PROOF. 

+ 
= 

The first inequality holds by lemma (on p.2.2.23). 0 

THEOREM. Let (~,Yh,Ph,¾•¾) and (¾,YH,PH,¾•¾), h,H EH, be two related 

discretizations of the spaces X and Y, 'With a relative order of approximation 

(with respect to the norms 1-K 2h and u. U¾) or order p: 

fiih - phH~hlZh + ¾ ~ C HP. 

Let FH and Fh be two relative Galerkin discretizations and let ~h: Yh + YH 

and Fh: A c ~ + Yh be bounded. Then FH and Fh are relatively consistent 

of order p. 

C • C D 
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REMARK. In a nested sequence we may consider the coarse discretizations of 

the problem (P) also as discretizations of the fine discretizations. Thus, 

e.g. relative convergence of two related discretizations is derived from 

relative consistency, stability and relative approximation order in the 

same way as convergence was derived from consistency, stability and approxi

mation order: 

REMARK. When we consider related discretizations, the following is a useful 

identity 

REMARK. Let Fh~ = yh and FH~ = yH~be two related canonical discretizations 

of the same problem, then, for any ¾h: ~ ➔ ~we have 

~ and, for any PhH ~➔ ~we have 
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3. THE DEFECT CORRECTION PRINCIPLE 

3.0. Heuristic introduction to the defect correction principle 

Often the numerical analyst is faced with the problem of solving an 

equation 

Fx = y, 

where y E Yanda mapping F : X + Y are given; X and Y are linear spaces. An 

element x EX has to be found such that the equation Fx = y is satisfied. 

Often we cannot or we will not solve the equation directly because this 

would exceed our computational capacities. On the other hand we can solve 

simpler equations that are all similar to the previous equation: 

Fx = y, 

for some arbitrary y E Y c Y. Sometimes this yields the possibility to solve 

the original equation by means of an iterative process. 

2 EXAMPLE. Solve the equation x = 3. In other words: compute 13. We assume 

that we cannot find the answer immediately, but we can (1.) square the value 

of a real number (i.e. we can apply the operator Fin the equation), and 

(2.) we can add and (scalar) multiply the real numbers (i.e. we use the fact 

that X = Y = JR is a linear space). In this example the linear spaces are 

X = Y = R • The operator F lR + JR is defined by F x = x2 and y is defined 

by y = 3.0. We notice that Fis neither surjective nor injective; Fis de

fined on the whole of X, which (in the general case) is not necessary. 

If we look for the positive solution of x2 = 3, then we can apply the follow

ing iterative process 
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XO E [1,2], B =j: 0, 

2 = x. + S(3 - (x.) ). 
1. 1. 

* If the iterands x. would converge to a value x E JR, then we know that it 
1. 

would satisfy 

i.e. we would have found a solution to the original equation. When does the 

iterative process converge? 

This implies that 

* lxi+l - x I 

* Ix. - x I 1. 

2 
B[(3- (x.)) 

1. 

* * (x. - x )(1 - B(x.+x )). 
1. 1. 

= j 1 - S (x. + x *) I ; 
1. 

therefore, the condition for convergence 1.s 

* 0 < B(x. + x) < 2. 
1. 

* * We know: 1 < x < 2. hence we take x0 such that 1 :s; x0 :s; 2. Now 2 < xi+x < 4 

holds and consequently the process will converge with O < B < 1/2. 

As a numerical ex.ample we take B = 1/4, x0 = 1.5. Now we find 

i 2 2 
x. x. 3- x. 

1. 1. 1. 

0 1.5 2.25 0.75 

1 1. 6875 2.84766 0.15234 

2 1. 72559 2.97765 0.02235 

3 1.73117 2. 99696 0.00304 

4 1.73193 2.99959 0.00041 

5 1.73204 2.99995 0.00005 

6 1.73205 2.99999 0.00001 

7 1.73205 3.00000 0.00000 
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The convergence factor is 1 - S(x.+ x*) Rj l - l/4.2. ✓3 F::l l - 0.866 = 0.134 Rl 
l. 

RS 1/7. In many problems we are real pleased by such a convergence factor. 

Analysing the above process, we write it in the abstract form 

= x. + S(y - F 
l 

= (I - SF)x. + Sy, 
]. 

where x. EX, y E Y, F 
l 

Y ➔ X, X = Y = R. The convergence is 

derived from 

* - X * $ m 1 - sF 111 1 x. - x 1 , 
l. 

from which it is clear that we have a convergent process if Ill I - SF Ill < 1, 
-1 

i.e. if the operator 8 is close enough to F • In other words S should be a 
-I 

sufficiently close approximation to the solution operator F • 

3.1. The basic principle 

In principle, a defect correction process is an iterative process to 

solve an equation that we cannot or we do not want to solve directly: 

(P) Fx = y, 

where F : A c X + Y. This short notation means that F : A + Y is a mapping, 

A is a subset of X and X and Y are normed linear spaces. In general Fis 

not linear, Fis not defined on the whole of X and Fis neither injective 

nor surjective. We assume that there exist subsets Ac X and B c Y such 

that F is defined on the whole of A, and Vy E B 3x E A such that F x = y 

(i.e. the mapping F: A ➔ Bis surjective). In addition we often require 

that there exists a unique x E A such that F x = y (i.e. in addition the 

mapping F: A ➔ Bis injective and hence it is bijective). 

As an introduction to a more formal approach in the following paragraph, 

we first proceed informally to introduce the notion of "approximate in-
~ verse". We assume that we ca::n solve some approximations (P) of the problem 

(P), i.e. for ally E Y c B we can solve the equation 

CP) Fx = y, XE X, 

~ where F X ➔ Y is some "approximation" of the operator F. 



Formally we describe this as follows: we assume that for some subset 

Y c B, with y E Y, there exists a mapping 

G Y + A, 

~ 
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which we shall call the approximate inverse of F. The meaning of G is, that 
~ for any y E Y an approximation to the solution of the equation F x = y is 

given by Gy EA. The mapping G needs not to be linear and is neither neces

sarily injective nor surjective. 

~ 
REMARK. If G is not surjective, then possibly x / GY, with x the solution 

of Fx = y. 

REMARK. If G is injective, then an F: GY + Y exists such that. FG = I~ 
~ ~ y 

where I~ is the identity operator on Y. Then Fis "an approximation to F". 

Here weynotice that Fis only defined on GY and not on A! 

In a Defeat Correction Process the solution of the original problem (P) is 

found (or approximated) by the iterative application of one (or more) ap

proximate inverse(s) G. 

In its most elementary form we have two versions of the defect correction 

process for the solution of (P): 

The first defeat aorreation process (DCPA) 

(DCPA) 
f XO E A, 

l X = ( I - GF) X. + Gy ' 
i+l i 

with the standard starting value 

X = Gy· 
0 ' 

and the second (or dual) defeat aorreation process (DCPB) 

{ l 0 E Y, xi = Gli, 

l. I = (I - FG)l. + y, 
i+ i 

(DCPB) 

with the standard starting value 
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REMARK. OCPA is completely described by F,G,y and x0 ; (DCPB) is completely 

F,G,y and to. 

REMARK. In order that the above defect correction processes make sense (are 

well defined) a number of conditions should be satisfied, such as: 

for DCPA 

for OCPB 

{x.} c A and {Fx.} c Y; 
l 1 

~ .} CY. 
l 

Note that y E Y follows from the definition of G, which was defined on Y 
~ with y E Y. 

REMARK. With DCPA we use the fact that Xis a linear space and not the 

fact that Y is. With DCPB we use the fact that Y is a linear space and not 
~ the fact that Xis. (Note that both F and G may be non-linear!) 

* DEFINITION. A value x EX is called a stationary point (or a fixed point) 

of an iterative process 

=P(x .. ,x~ 1, ... ) 
i 1-

if x* satisfies 

* * * x = P(x ,x , ... ). 

DEFINITION. The convergence factor of an iterative process to a stationary 
. * . point x is defined by 

* fix. 1- X ff 
1+ 

sup-----
i;;:O h. - x*fi 

i 

3.2. The first Defect Correction Process 

The first thing we notice when we consider DCPA is that the solution 

x of (P) is a fixed point of DCPA; moreover, for any stationary point x* of 

DCPA, we have 

(3. 2. 0 ~ * ~ GF X = G y = GF X • 

* * (Notice that x E A and F x E Y are natural assumptions that go with the 
. * assumptions of x to be a stationary point of DCPA.) 
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As a direct consequence of (3.2.l) we find the following 

THEOREM. If DCPA has a stationary point x* E X with Fx* E Y and if G is in

jeative., then Fx* = y (i.e. then x* is a solution of (P)). 

REMARK. Even, if G is not injective, the solution x of (P) and the fixed 
- * ,_ "'"' point x of DCPA are mapped by GF onto the same element of GY (although we 

. * ) . have not necessan.ly F x = y = F x • In other words: G defines subsets of 

Y. (viz. the sets of points that are mapped to the same point of X) and Fx* 

and Fx now are elements of the same subset. 

DEFINITION. The carrp'lifiaation operator of .DCPA is defined as 

M=I-GF. 

* * ~ THEOREM. The convergence factor of DCPA to a fixed point x EA, Fx E Y, 

is bounded by Ill I - GFIII AcX➔x· 

PROOF. Let x. be an arbitrary iterand of DCPA, then 
1. 

Hence, 

and 

~ ~ * = ( I - GF) x. - ( I - GF) x . 
l. 

* - ~ * Dx. l - x H = ll(I-GF)x. - (I-GF)x H 
1.+ i 

~ RI I- GFIII llx. - x*n 
i 

~ Ill I - GF Ill AcX➔X • D 

If Ill I- GF Ill < 1, the sequence of iterands of DCPA converges and it might 

make some sense to call Gan approximate inverse of F indeed. If Fis in

jective, we can give the following definition. 

~ DEFINITION. The crpproxima.tion error of G for the solution of (P) is 

Approx. error(G;F,x) ~ sup {h-FJ jGFx = GF!;}. 
!;EA 

~ As a direct consequence of this definition we have for any injective G 

Approx. error(G;F,x) = O. 
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~ REMARK. In the special case that G is an affine mapping, i.e. if we can 

write Gy as 

~ Gy = ~G 1 y + GO 
' 

Vy E Y, 

where G' is a linear operator, then we may write DCPA as 

X. - GI (F X -y) • 
1 

3.3. The second Defect Correction Process 

If t* E Y is a stationary point of DCPB, then we clearly have 

~ * FGl. = y. 

Hence, we immediately have the following 

* ~ * THEOREM. If DCPB ha.s a stationary point l E Y, then G l x is a so Zution 

of (P) in GY c X. 

REMARK. If F A+ B is injective, then G ,e__* 1.s the unique solution of (P). 

~ ~ REMARK. If G Y + A is not surjective, then possibly xi GY and hence no 
* ~ ~ * * t E Y exists such that G l = x. In that case no fixed point l E Y can exist. 

DEFINITION. The amplification operator of DCPB is defined as 

~ M = I - FG. 

THEOREM. The convergence factor of DCPB to a fixed point l* E Y 1.s bounded 

by Ill I - FGIII YcY-+Y" 

PROOF. 

u . - l * B $ Ill I - FG Ill H f . - .e. * u • 
i+I i D 

THEOREM. If G is injective, we can define its left-inverse F and DCPB ca:n 

be written as 



PROOF. 

F x. = 
1. 

and 
~ 
F xi+l 

Fcl. = l.' 1. 1. 

~ 
FGl. = F x. - + 

1. 1. 

= (F - F)x. + y. 
1. 
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~ y = F x. - F x. + y 
1. 1. 

D 

~ REMARK. In many problems the operator (F - F) can be much simpler to compute 

than either For F. 

~ THEOREl1. If G is injective~ then the convergence factor of DCPB is bounded 

by 

Ill F - F 111 ~~ Ill GIii ~ 
GYcX➔Y YcY➔X' 

~ ~ where Fis the left-inverse of G. 

PROOF. 

Ill I - FG Ill = Ill F G - F G Ill = 

= sup ll(FG-FG)x - (F G- FG)yll /II x-yll 

IIFG X -
~ FGyll /II x-yll = sup FGx - FGy + 

= sup II (F-F)Gx - (F-F)Gyll/llx-yll 

II (F-F) Gx - (F-F)Gyll IIGx - Gyll = sup 
IIGx - Gyll llx - yll 

111 F - Fill IIIGIII D 

REMARK. Clearly, the above bound of the convergence factor can also be ex-
~ pressed, in terms of relative error of F and the condition of F, by 

Ill. I - l*II 
1.+ 

11 l. - l*II 
1. 

Ill F - FIii 

ml FIii 
cond(F). 
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THEOREM. If G is an affine ma:pping, then the sequences {x.} in (DCPA), and 
]. 

~ {xi} in (DCPB), &fined with their standard starting values x0 = Gy and 

l 0 = y, are idEnticaZ. 

PROOF. Let {l.}.=O l 2 and {x.}.=O l 2 be defined as 1.n DCPB, then 
1.1 ,,, ••• 11 ,,, •.• 

i) XO = G lo = Gy , and 

ii) xi+l = G li+l = G(li - FG li + y) 

=GO+ G1l. - GO - G1 FG l. +GO+ G1 y 
]. 1. 

= G l. - G FG l. + Gy 
1. ]. 

~ ~ ~ = x. - GF x. + Gy = (I - GF)xl.. + Gy. 
1. ]. 

I.e. the values from the sequence {x.} satisfy exactly the generation rules 
]. 

for the sequence {x.} from DCPA. Hence, both sequences are identical. O 
1. 

REMARK. It is clear from the proof of the last theorem that for general G 

both processes DCPA and DCPB yield different sequences {x.}. 
]. 

3.4. Further remarks on DCPB 

If Gin DCPB is not surjective (i.e. possibly xi GY, with x the solu

tion of Fx = y, and hence possibly there exists no fixed point for DCPB), 

then sometimes we still can. write 

~ ~ (3.4.1) G=fli, 

~ where Li: Y + Li Y ie a linear projection (Li Y c B), and r Li Y +Xis 

surjective. 

N 

Fig. 3.4.1. The mappings G, Li and r. 
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The iterands {l.} in the iterative pro~ess DCPB are all in Y. If, instead 
~ l. 

of li E Y, we consider their projections 6 li E 6 Y, we get the following 

iterative process of which all iterands are in 6 Y: 

= 6. l. - !::::. Fr t:,. l. + fl y. 
l. l. 

With the definitions A. = 6 l. and~- = r A. we get 
l. l. l. l. 

(3.4.2) 
= A. - t:,. Fr A. + 8 y, 

l. l. 

This is exactly the DCPB for the problem: 

(6 P) 

where r takes the part of the approximating inverse of 6F. Since, by hypo

thesis, r is surjective, this new DCP has a fixed point A* and the solution 

(AP) is found as~*= r A* 

REMARK. Notice that~* Er~ Y = GY. The problem (6P) can now be considered 

as: find ~ E (;Y such that 

A(F~- Y) = 0. 

By application of a projection A to the residual of the problem (P), more 

solutions in X are generated which satisfy the equation. The projection 6 

has to become so strong that even a solution becomes in GY. If we find a 6 

such that the problem has a solution for ally E Y, we have found a decom

position G = f6 that satisfies the hypotheses. 

In the case that the operator r in the decomposition G = r A is not 

only surjective but also injective, we can formulate the following 

~ THEOREM. If the approximate inverse Gin DCPB oan be decomposed as G = r A, 

where A is a linear projection and r : A y ➔ GY a bijective ma,pping, then 

a 4> = (r)-l : GY ➔ 6 Y exists, and a DCPB in 6 Y oan be formulated: 



46 

~N { :o € r A Y • G Y , 

tF;i+l • (t - AF)F;i + Ay, 

* ~~ * zdhich 'has a fi:r:ed point F; € G Y such that A (F F; - y) = 0. 

PROOF. Follows immediately from (3.4.2) and Theorem 3.3. 

3.5. Another Defect Correction Process for non-linear G 

In this section we give a generalization of DCPA. In the linear case 

we can write a defect correction step DCPA 

(3.5.1) 

as 

(3.5.2) 

~ For general - nonlinear - G, the solution of Fx = y is not a fixed point of 

the latter iteration. In (3.5.2) the 

of zero, whereas in (3.5.1) they are 

approximation (linearization) of the 

operands of Gare in the neightbourhood 

in the neightbourhood of y and Fx .• An 
l. 

non-linear DCPA (3.5.1) can be given by 

where G'(y) denotes the Frechet derivative of G at y, where y is thought 

to be in the neightbourhood of bothy and Fx .• The Frechet derivative not 
l. 

being available for computation, we may approximate further 

G' (y) o by G (y + o) - G (y). 

~lso noting that 

G'(y)o = µ G'(y)(o/µ), 

we may write down a new Defect Correction Process 

(DCPC) 

~ In this iteration step the parametersµ and y are still free to choose. 



RE.MARKS. With respect to this new Defect Correction Process we notice: 

~ 1. Near a solution of Fx = y the operator G is applied only in the neigh-

bourhood of y. 
~ 2. In the general case (i.e. for any value 

Fx = y is a fixed point of DCPC 

ofµ and y), the solution of 

3. With µ = -1 and y = y, DCPC is identical with DCPA . 
4. For arbitraryµ and Y, with G affine, DCPC is identical with DCPA 

hence, by Theorem 3.3. also equivalent with DCPB . 
5. The amplification factor of DCPC is given by 

II x. - xii 
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and 

1+1 
llx. - xii 

1 

::;; III - G'F'II + nc;,11111 p*111 + 111c*111 IIF'II + 111 c*111 111 p*111. 

~* where G' and G are defined by 

ccy+o) - ccy) * = G'o +Go, 

~ ~* with G' linear and G such that 

~* II G· oil 
0 0 0, II oil 

➔ as ➔ 

1. e. Ill G* Ill is arbitrarily small in a sufficiently small neighbourhood 

~ * * of y. F' and F are defined analogously as F(x+s) - F(x) =F's+ F s. 

We note that, for Frechet differentiable F and G, by this definition the 

Lipschitz. constants III F* Ill and 111 G* Ill- can be taken arbitrarily small if 

we restrict {x.} to a sufficiently small neighbourhood of x. 
1 

Note: by the above definition is G' the Frechet-derivative of G at y and 

is F' the Frechet-derivative of Fat x. 

3.6. Examples of defect correction processes 

Example 1. The iterative refinement of linear systems. 

In this case the problem (P) is the solution of the finite dimensional 

linear system 

(3.6.1) F X. = y' 

where F ]Rn xJR.n. . d ]Rn t is a square matrix an x,y E are n-vec ors. 
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The approximate inverse G represents the numerical solution by means of 

(an approximation of) a LU-decomposition, which had been obtained by numer

ical means and for which we may write 

(3.6. l) LU = F + E; 

Eis the error in the LU-decomposition. 

The process of iterative refinement now reads 

Lu XO = y. 

ri+I = y - Fx., ) 
(3.6.2) l. 

l 
LUdi+l = r i+ l' i = 0,1,2, •.. . 

xi+l = x. + d. l • 
l. 1+ 

Clearly, this is DCPA with G = (F+ E)- 1, and because of the linearity of G, 

the process is equivalent to a DCPB. As a result of Theorem 3.3 we know the 

upperboud of the convergence factor: 

B E D 
IF+ El cond(F+ E). 

We can also obtain the following convergence result in terms of cond(F). 

THEOREM. The sequence of iterands in (3.6.2) converges if 

cond(F) HER /ff Fl < 1/2. 

PROOF. 
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From 1/2 > cond(F) IIEII/IIFU = IIFII IIF-.111 UEH/IIFII ~ RF-IEII the convergence of 

the DCPA follows immediately. 0 

EXAMPLE 2. Iterative methods for the solution of linear systems. 

Many of the well-known iterative methods for the solution of linear systems 

can easily be recognized as Defect Correction Processes. For all these meth-
~ ods G is linear and, hence, DCPA and DCPB are equivalent. Here we shall 

identify a number of these methods for the solution of the square linear 

system Ax = b as Defect Correction Processes. 

EXAMPLE 2.1. The Jacobi-method. 

The Jacobi-method: 

diag(A)xi+l = b + (diag(A) - A)xi 

can be written as 

~ (I-GA)x. + Gb, 
1. 

~ -1 with G = (diag(A)) • 

EXAMPLE 2 . 2. The Gauss-Seidel method. 

Let A be decomposed as A= L + U, where U is strict upper-triangular and L 

is lower triangular; then the Gauss-Seidel process reads 

Lx. l =b-Ux., 
1.+ l. 

~ -1 i.e. a defect correction process with G = L 

EXAMPLE 2.3. The relaxation methods JOR, SOR, RF and GRF. 

i11 "stationary fully consistent iterative methods of degree one" for the 

solution of Ax = b can be written as 

x.+l = x. - P(Ax. - b), 
1. l. 1. 

where Pis a non-singular matrix (cf. YOUNG [1971]). With P = pl, pa scalar 

and I the identity matrix, it is called a Stationary Richardson method (RF); 

with Pa non-singular diagonal matrix it is a Generalized Stationary 

Richardson method (GRF); with P = wG, Gas in example 2.1 it is a Jacobi 
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over-/under-relaxation method (JOR) and with P = wG, Gas in example 2.2 it 1.s 

is a SOR-method. 

EXAMPLE 3. 

In this case the problem (P) is the solution of a non-linear equation 

F X = y, 

with a Frechet-differentiahle operator F. The Frechet derivative is the 

linear operator F 1 such that IFx- FE;- F'(x-~)D = o(h-;I). The relation 

Fx - Fx. = F'(x-x.) + o(fix-x.ff) 
1 1. 1. 

or, equivalently 

X - X. 
l 

suggests the modified Newton iteration: 

where the non-singular linear operator Eis an approximation to F'. 
~ -1 -I Clearly, this is a DCPA with G = E and, s1.nce E is linear, the process 

can also be written as a DCPB. Here we notice that in a proper Newton

process (not the modified Newton iteration) the approximate Frechet deriva

tive Eis updated during the iteration process. This kind of generalization 

of the elementary DCP will be treated in section 4.1. 

EXAMPLE 4. An analytic examples, (cf. STETTER, 1978). 

We consider the two-point boundary-value problem 

{ x" - ex• 0 

x(-1) = x(+l) = 0. 

on (-1, + l), 
(3.6.3) 

This defines the problem 

"Fx = 0 

where 



F 

We construct an approximate problem, replacing ex by 0.99 + 0.81x (i.e. a 

reasonable approximation if -0.4 ~ x ~ 0.0). Thus we get the approximate 

problem Fx = y, viz. 

{ x" - 0.8Ix - 0.99 

x(-1) = x(+l) = O. 

y on (-1, +I), 

This is a linear two-point boundary value problem and we can write its 

solution as 

+I 

x(t) = J K(t,z) (y(z) + 0.99)dz, 

-1 

for some suitable kernel-function K(t,z). This integral operator defines 
~ an approximate inverse G for the problem (3.6.3). With this G we can con-

struct a DCPA or DCPB to find the solution of (3.6.3). Both processes are 

equivalent since G is an affine operator. 

EXAMPLE 5. A D.efect Correction Process for a singular linear system. 

We consider the finite-dimensional linear system 

Ax - b, 

where A is singular; A is approximated by a nonsingular A and we consider 

the DCPB 

= Ax. 
]_ 

- Ax. 
]_ 

+ b 

or, equivalently, the DCPA 

where B 

= Bb, 

= (I-BA)x.+b, 
]_ 

~-I = A . Generally, x. can be written as 
]_ 

x. = 
]_ 

i-1 
I (I- BA)jBb. 

i=O 

51 
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If we take e.g. 

A "' 

we have 

B = / I 01 , and I - BA = / 1 0) 
,-1/E lj \-1 0, 

also 

(I - BA)J = ( 1 ~) \-1 
and hence 

i- l ( I 0\ ( l ~) l. (_! ~) b. x. = I -l o) - I h b = 
l j=O £ 

Clearly, the sequence {x.} is not converging. We also see that the sequence 
]. 

{l.} in the DCPB will not vanish: 
l. 

Now we take a slightly more general A and a general B: 

A= (0 0) 
a I ' 

q). 
s ' 

I 

The amplification operator I - BA reads 

and has the eigenvalues A 1 = l and A2 = I - s - aq. Because of the eigenvalue 

] in the amplification operator, it is clear that no B can be found such 

that the process will converge. More generally, for arbitrary matrices F 

or G we know that RI - FGI 2 1 and Ur - GFff 2 l. 

EXAMPLE 6. The non-existence of a fixed point i., whereas x exists. 

Our original problem Fx = y is to find the solution of the initial value 

problem 

{ x' + Ax = 0 

x(O) = I, 

The approximate problem Fx 

such that 

on [ 0, 1 J 

>. { -1. 

= y is to find a linear function x on [0,1] 



{ x'(l) + \x(l) = y (l), 

x(O) = l; 

(i.e. we try to find an approximate solution by one single backward Euler 

step.) The sets and spaces we consider are: 

1 
X = C [0,1], 

A 
I { X IX E x(O) 1 } , = CiO, I] = X, = 
0 y = C [0,1], 

B = y = Y, 

GY = {(l+Mt) IM E 1R}, 

FGY = F{(l+Mt)} = {M +)._+\Mt IM E 1R}. 

First we apply the DCPB with 10 = y = 0, to get 

By induction we easily show that, for n = 1,2, ... , 

l 
)._ 2 

l n (1) 0, = }+)._ n(t-1), = 
n 

l (1) - ),_ 
)._ 

l 
n 

I t X = G = l + . t = . 
n n 1 + )._ ' 1 +),_ 

Now we apply the DCPA to get 

~ H 
X = Gy = 1 - , 

0 }+)._ 

Fx0 
),_ 2 

(1-t) 
}+)._ 

~ At 
GFx0 = = XO' l+t 

X -
0 

Thus we get xn = x0 for n 0,1,2, •... 

53 
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REMARK. Because G is affine, we knew beforehand that the sequences {x} for 
~ n 

DCPA and DCPB are equal. Clearly, G is not injective in this example. The 

fixed point x of the DCPA is not the solution of the original problem, but 

we know 

GFx = ~ GFx = Gy. 

G can be written as G = l' I:. 
0 where I:. is a projection,~ : C [0,1] + lR 

(viz. the restriction to the function value at the point t=l) and the problem 

solved reads 

which has a solution that belongs to GY. 

3.7. Defect Correction Processes with an approximate inverse of 

deficient rank 

In this section we consider the linear defect correction process, where 

both F and G are linear operators lRn + JR.0 ; F is bijective (rank(F) = n) 
~ and G is of deficient rank (rank(G) = m < n). This is a special case of a DCP 
~ with G neither surjective nor injective. We can decompose then x n matrix 

~ G into its singular value decomposition (cf. LAWSON & HANSON [1974 l) 

(3.7.1) 

where U, E and V are n x n matrices, U and V are orthonormal and Lis a non

negative diagonal matrix. Except for the ordering of the elements of L (and 

the corresponding ordering of the columns of U and V), this decomposition is 

uniquely determined. The diagonal elements of Lare the singular values and 

~ormally they are ordered such that 

~ (j ~ 0. 
n 

Because rank(G) = m, we know that o 1,o2, ••. ,crm are non-zero and crj = 0, 

J = m+l, ... ,n. 

More generally, for them-rank matrix G we can write 

(3.7.2) G =PS R, 



where R : IR n -+ ~ , s : ]Rm -+ ]Rm , p 

= rank(R) = m. Here we can take e.g.: 

]Rm ➔ lR.n and rank(P) = rank(S) 

p = Ul the orthonomral set of the first m columns of U; 
s = :El a diagonal matrix with elements cr 1 ,cr2 , ••• ,crm; 

R = VT the orthonormal set of the first m rows of vT 
1 
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or we can take arbitrary m-rank matrices P and R, with Range(P) = Range(G) 

= Span(U 1) and Kernel(R) = 
singular full m x m matrix 

which case Sis a non-

In order to see the relation with section 3.4 we remark that, in the 

finite-dimensional linear case considered here, we can construct a decomposi

tion (3.4.1) by taking 

where I is a diagonal matrix with the first m diagonal elements cr 1 ,cr2 , ••• ,crm; 

for the last n-m elements arbitrary non-zero values can be taken. For these 

rand~ we know that r is a full rank matrix and~ is a projector of rank m. 

In the decomposition (3.7.2) Pis called the prolongation and R is the 

restriction. Because P and Rare full rank matrices: P has a left-inverse 

R = (U~P)-l U~ and R has a right-inverse P= v 1(RV 1)-l. Moreover, we know 

that 

p R = PR= 
0 

0 

is a projection operator of rank m. 

Now we can consider what happens to the error to the solution or to 

the residual after one iteration step of the DCP. 

I. In order to study this effect on the error of the solution, we consider 

the defect correction process in the form DCPA. Here the amplification 

operator is 

~ (3.7.3) M = I - GF = I - PSRF. 

We decompose the error e into two parts: e + e withe E Range(P) and s u s 
eu E Range(P)~ = Kernel(R) = Span(U2). Analogously we write Me= (Me)s+ (Me)u. 
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Thus, we have 

e = PR e s s 
and 

A 

e = (I - PR)e . u u 

Now a simple computation shows 

(3.7.4) M e 
s 

A 

= M PR e 
s 

A 

= (PR- PSRFPR) e = P(I - SRFP)R e . 
s s 

We see that the result is again in Range(P). Moreover, we notice that in 
-] 

the special case that S = RFP we have Me = 0. More generally, with 
s 

S-l = RFP + E, we have 

Me = PSER e = GPER e . s s s 

-1 
In practice, where G = PSR should be a reasonable approximation to F , it 

-1 
is often possible to choose S equal to or close to RFP. The contribution 

from e to Me is given by 
u 

Me = e - GF e • 
u u u 

We see that the second term is again in Range(P), whereas the first term lies 
1. A 

in Range(P) = Kernel(R). We conclude that 

(3.7.5) 
I" (Me)s 

l (Me) 
u 

= GPER e - GF 
s 

e . 
u 

REMARK. In the context of multi-grid methods (cf. Section 5.), the com

ponents in Range(P) are called the smooth components, those in Kernel(R) the 

7.,/Y/,Bmooth components of the error. 

II. For the residual, the amplification operator is 

(3.7.6) M= I - FG = I - FPSR. 

Now we decompose the residual r into two parts r = r + r with r E Range(P) 
s u s 

- 1. = Span(V1) and ru E Kernel(R) = Range(P) = Span(V2). Analogously we write 
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- (Mr) + (Mr) • Again, a simple computation Mr• shows s u 

(Mr) = ... -~ 
{ 

PERG rs, 
(3.7.7) s 

~ (Mr) = -(I- PR) FG r + r . u s u 

REMARK. In the context of multi-grid methods, the components in Range(P) 

are called the smooth components, those in Kernel(R) are called the unsmooth 

components of the ~esiduaZ. 

T REMARK. In the special case that R = P, we see that 

Range(P) = Range(P) = Span(U1) = Span(V 1), 

Kernel(R) = Kernel(R) = Span(U2) = Span(V2). 

In this case the subspace of the smooth (resp. unsmooth) components of the 

residual is the same as the subspace of the smooth (resp. unsmooth) compo

nents of the error. 

SUMMARY. 

1. The error in the solution 
~ ... -G PER ~ 

Smooth components = Range(P) ~· Range(P) = Range(G), 

... 
Kernel (R) 

~ .l 
Unsmooth components = Kernel(R) • = Range(G) • 

I 

2. The error in the r>esiduaZ 
... - ~ PER G 

Range(P) ~ ... JI ,_Range (P) 
~ l. 

Smooth components = = Kernel(G) , 

Kernel(R) 
~I)FG 

Kernel (G). Unsmooth components = ► Kernel(R) = 
I 

3. In the T have case R = P we ... 
Range(P) = Range(P), 

Kernel (R) = Kernel(R). 
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INTERMEZZO 

Before we shall treat extensions of the Defect Correction Principle and 

introduce multigrid algorithms, we first give a very simple example of a 

two-grid algorithm. This is a preversion of a multigrid algorithm. This ex

ample, which we borrow from HACKBUSCH [1976, 1981], shows a simple two-point 

boundary value problem and a simple iterative solution method for which the 

behaviour of the iterative process can be analyzed exactly. In this example 

the main features of a multigrid algorithm are already visible. 

We consider the two-point boundary-value problem 

- u" (x) = f(x), X €fl= (0,1), 
(I) 

u(O) = u(l) = O. 

Both with the Finite Difference Method and with the Finite Element Method 

with piecewise linear test-functions, we find on a uniform mesh 

nh = {x. I x. = i/N; i = 0, .•• ,N} the discretized problem 
l. l. 

(2) 

with the discrete operator 

(3) 

a square (N-1) x (N-1) matrix, and 

(N-1 )-vectors. 

First we consider the damped Jacobi-method for the iterative solution 

of (2). One iteration step in this process reads 

(4) (i+l) (i) 0-I (L (i) f ) 
~ = '½i - w h h '½i - h 
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whe~e Dh is the main diagonal of¾ and w E lR is the damping parameter. 

By~ we denote the solution of (2); then the error in the i-th iterand is 

Further we have 

(5) ( i + 1 ) = M.REL 
eh -n 

REL where~ is the amplification-operator of the error for this relaxation 

method: 

(6) 

The eigensysteem of 1s {A ¢} with 
m' m m = 1 , 2, •.. , N-1 

eigenvalues 

(7) A 
m 

2 - 2cos(m1Th) = 4sin2 (m1Th/2) 

and eigenfunctions 

sin(m1Th) 

(8) sin(2m1Th) \ 
sin; (N-1 )msh) 

The eigenvalues of ~L are 

(9) '(M.REL)m = 1 w 4 . 2( h/2) /\ __ h - 2 . s1.n m1T 

The index m takes the values 1 ::;; m::;; N-1 and hence the arguments 

1Th 0 < 2 ::;; mTih/2 
(N-1)1Th 1T 

::;; 2 < 2 . 
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In order to get monotonous decreasing \(~REL)m for increasing m, we select 

w = 1/2; then we find 

2 REL 2 . 2 cos (~h/2) ~ (~ )m ~ cos ((N-l)~h/2) = sin (nh/2) 

or 

We see that slowly varying eigenfunctions (small m) are damped slowly by 

~L, whereas rapidly varying eigenfunctions (large m) are damped efficiently 

by ~L. After a few iterations with the damped Jacobi relaxation (w = 1/2), 

the rapidly varying component in the error will almost vanish, however the 

slowly varying components will hardly be affected: the error has not become 

much smaller, but it became much smoother. Application of one step in the 

(damped Jacobi) relaxation process is therefore also called a smoothing step. 

Let~ be an approximation of~ with a smooth error 

Then eh satisfies the equation 

-
(JO) Lheh = Lhuh - Lhuh = Lh~ - fh = dh = -rh' 

rh: is the residual of uh; -¾ : is the defect of¾· 

Because eh is a smooth function, we are able to represent it well on a 

coarser grid. 

for this we have to solve e.g. 

(11) , H = 2h, 

where (11) is a discretization of (10). For this we need 



(i) a restriction ~h' 

(ii) a coarse-grid operator L 8 , 

(iii) a prolongation PhH. 
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For~ we take an operator similar to (3), only with an mesh H = 2h instead 

of h. Thus, ~ is a (~- I) x <¥- l) matrix. (We assume that N is an even 

integer.) 

A simple prolongation, PhH' is found by linear interpolation. This oper

ator PhH is defined by t~ = PhH~ 

for all xi = Oh. 

if xi E S"ZH, 

if xi f. S"ZH' 

A simple restriction, ¾h' is found by injection. This ¾n is defined by 

fH = ~hfh, with fh E Yh and fH E YH such that 

Another possible restriction ¾h* could be a weighed restriction, defined by 
- * fH = ¾h fh, with fh E Yh and fH E YH such that 

for all xi E OH. 

* The operators~• PhH' ¾hand ¾h can be described explicitly by their 

matrices 

(12a) 

, an (~ - l) x 
N (2- 1) matrix, 
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(12b) phH = 

(12c) ¾h = 

and 

(12d) 

1/2 
I 

1/2 1/2 
l 

1/2 1/2 
I 

I/2. 

0 1 0 
0 0 

0 1 0 

1/2 I 1/2 
1/2 1/2 

1/2 

·112 
I 

1/2 

·o 1 o 

1/2 

The vectors~ and~ are of the form 

and 

N 
, an (N- 1) x (- - 1) matrix, 2 

N (N- 1) matrix , an (-- 1) X 
2 

'1/1 1 1/2 

N , an (2- 1) x (N- 1) matrix. 

The coarse discretization (11) is used to improve the error in the approxi

mate solution ~has follows: 

1) first we compute eh from 

~ 
1H eH = dH = ~h dh 

2) then we subtract the error from the approximate solution 
A 

~ := ~ - phH ;H. 
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This correction of the approximate solution is called a coarse grid correc

tion step and it can be written as 

(I 3) 

The amplification operator of the error in a coarse grid correction step is 

clearly 

( 14) 

The Two Level Algorithm (TLA), which is a preversion of the Multi Level 

Algorithm, is an iterative process for the solution of (2), in which each 

step consists of 

(i) a number of p smoothing steps, 

(ii) a coarse grid correction step, 

(iii) a number of q smoothing steps. 

In order to see what the effect is of a TLA step on the error in an 

approximate solution, we decompose the error into eigenfunction components 

and we consider the effect on a single eigenfunction. Hence for¢ , as given 
m 

in (8), we shall compute 

To this end we first compute 

sin( mnh) 
sin (2mnh) 
sin(3mnn 

sin((N-1)1Tmh 

sin(21Tmh) 
sin(41Tmh) 
sin(61Tmh) 

sin( (N-2)Timh) 

= 
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H2 

sin( 1rmH) 
sin(21TlllH) 
sin(3mnH) 

=------
4sin2(m1TH/2) 

H2 1 ==--::----- . -
4sin2(m1TH/2) 

H2 
=------

4sin2(m1TH/2) 

i 
= -----

4sin2(1Tmh) 

H2 (a<j) + b<j) ) m N-m 

2 

1 
2 

a 

=-------
4 s i1,2 ( 1Tmh) 

sin( (N/2-1 )mnh) / 

sin(O) + sin(1TmH) 
2. sin ( 1TmH) 

sin(1rmH) + sin(2TimH) 
2. sin (21TinH) 

sin(2mnH) + sin(31Tmli) 

2.sin((N/2-1),rmH) 
sin((N/2-1),rmH) + sin(N/2.1rmh) 

2.sin(,rmh) cos(Timh) 
2.sin(2irmh) 
2.sin(3nmh) cos(1rmh) 
2.sin(4irmh) 
2.sin(Snmh) cos(mnh) 

2.sin((N-2)Timh) J 
2.sin((N-l)Timh) cos(Timh) 

sin(Timh) 
sin (21Tmh) 
sin(3mnh) 

sin ((N-1) 1Tmh) 

+ b 

+ sin(Timh) \ 
- sin(21Tmh) 

+ sin(3Timh) ! 
\: sin((N-1 )irmh) 

with a+ b = cos(mnh) and a - b = 1. Hence, a= cos 2 (1Tmh/2) and 

b = -sin2 (1Tmh/2). Briefly we write C := cos(,rmh/2) and S := sin(1Tmh/2). m m 
Thus we get 

and 

(16) 

h2(C2 <P - S2 <P ) 
m m m N-m 

2 2 
4. S C m m 

CGC 1 2 2 
~ <Pm = <Pm - -~2 (Cm <Pm - 8m <PN-m) 

m 
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This results in 

(l 7) 

Because CN = S and SN = C we have -m m -m m 

= 82q+2 c2p-2 <I> 

rn rn N-rn 
and 

M_TLA ¢ = c2q+2 s2p-2 cp • 
-n N-rn m m m 

We see that low frequencies are converted 1.n high frequencies, v.v .• 

- * -If we apply the TLA with ~h instead of ~h we get 

sin(mrrh) +. 2sin(2m1rh) + sin(3mnh) 
sin (3m1rh) + 2s in ( 4m1rh) + sin) Sm1rh) 

sin((k-l)m-rrh) + 2sin(2km1rh) + sin((2k+l)m1rh) 

sin ( (N-3 )m1rh) + 2s in ( (N-2 )mnh)+ sin ( (N- J)rrrnh) 

-1 1 2 = PhH LR 4 4cos (m,rh/2) sin(2km1rh) 

sin(m1rH) 
2 _ 1 sin(2m1rH) 

= Cm phH LR 

sin((~- 1)m1TH 
2 

C2H2(C2 ¢ - S2 cp ) 
m m m m N-m 

h 2 (C2 ,i- - S2 ,i- ) 
m 't'm m 't'N-m 

= 
4 sin2 (1Tlnh) 4 s2 

m 
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M_CGC* ¢m = 82 ¢ + 82 ~ 
-11 m m m N-m 

and 

M_CGC ~ _ c2 ¢ + c2 ~ 
-11 o/N-m - m m m N-m· 

From the last two equalities we conclude 

We denote this in matrix notation by 

( :: ) . ( s; 
s2 

m 

m = 1,2, •.• ,N/2. 

a denotes the contribution from the low-frequency component~ and~ the 
m 

contribution from the high-frequency component ¢N • 
-m 

Similarly we find for the amplification operator of the residual 

( :: ) a 

The effect of the complete TLA-algorithm on the low- and high-frequency 

components of the residual is now described by 

c2 0 q s2 2 c2 0 )p 
-TLA ( m 

~2) ( 
m Sm\ ( m 

(19) mMh = \ c2 c2 ) \. 0 s2 0 .:> I 

m m m m 

( 
82c2p+2q c2q82p+2 

) mm m m 

= 82qc2p+2 c2 82p+2q 
m m mm 

The eigenvalues of this matrix are O and 

82c2p+2q + c282p+2q. 
mm mm 
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Therefore, the spectral radius of Mh is 

max 
m 

max 
m 

1s2c2p+2q + c2 s2p+2ql 
mm m m 

with c2 = 
m 

cos 2 (nmh/2) and s 2 = 
m 

l -c2 m l 2 /2 m' = • , ••• ,N • 

We find 
P (1\TLA) if p+q = 0 

(20a) l if = p+q 
2 
l if 2 = p+q = 
4 

To compute p(~LA) for large p+q we first see 

s2 c2n (1-t2) t2n 
= C!n) C:n)n s max = m m Ostsl 

for n ➔ 00 • 

This shows that 

(20b) 

for (p+q) + co, 

l ( )n+l 1- _1_ ~ 
4 l+n 
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l -I - e 
n 

which describes the convergence rate of the two-level algorithm for large p+q. 

In order to see what is the effect of a single TLA iteration step we 

have to study ll~LAII, the spectral norm of the amplification operator 

= max / max I A ( ( M.TLA ) T (mM.TLA ) ) I 
m l , 2 1,2 m-h .-n 

m= l , 2 , • • • , N / 2 

= max 
m 
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Hence, 

-TLA 
lim sup II~ II ~ max 

h+oo Q:;;;t:;;;½ 

If p = 0 and q = 0 we find 

If q = 

If p = 

ll~LA II = max 
m 

0, p :j: 0 

= max lt2 + (1-t) 2 '/41-t) 24 + t 2q. lim ll~LA I! 
h+O Q:;;;t:;;;½ 

0, q =l= 0 

lim 11~LA11 = ✓2 max /t2(1-t)2q + (1-t/t2q 
h+O Q:;;;t:;;;! 

1 
q = => 2 , 

q+ 00 => R1 ri /t2(1-t)2q I 12 max R1 

Q:;;;t:;;;1 qe 

= I. 

, 

If p ,q > 0 

IIM_TLA II r:::1 max / s4c4q c4P 
1 = max s2c2P+ 2q 

-11 mm m mm ' 
m m 

lim ll°M_TLA II = max t(t-t)p+q = -- p+q ---• --=-1-,--
1 ( )

p+q+l p+q-+<><> 

h+O -n Q:;;;t:;;;½ p+q _p+q+l e (p+q) 

Summarizing we see 

p (~LA ) = p (~LA ) + if 

1 
+ 2 if 

1 
+ 4 if 

I 
+-....--,-

e(p+q) 

p+q = o, for h + O, 

p+q = 1 , 

p+q = 2, 

for (p+q) -+ oo. 
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ll~LAII ➔ ✓ 2 if p = 0, q = 0 for h ➔ 0 

➔ if p + O, q = 0 

I if O, ➔ 2 p = q = 
✓ 2 if o, ➔ p = q -+ ()0 

qe 
I if + 0 (p+q) ➔ 

e(p+q) p ➔ 00 

ll~LAII yields the same values; with p and q interchanged. 

We conclude that relaxations after coarse grid corrections are of use 

for a small norm of the amplification operator of the residual, whereas 

relaxations before yield a small norm of the operator of the error. 
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4. EXTENSION OF THE DCP PRINCIPLE 

Since a defect correction process is an iterative technique to solve 

"hard" problems by means of "simpler" ones, we can apply this principle 

iteratively or recursively again. The "simple" problem Fx = y may be approxi

mated again by an even simpler one, etc .. On the other hand, if we are able to 

solve a problem, we can try to solve nearby harder problems. In this way we 

can try e.g. to solve a high-order discretization of a problem by means of a 

low-order discretization of it. Or we may solve a discretization on a fine 

grid with the aid of the discretization on a coarser one. Also, starting 

with a coarse discretization of a continuous problem, we can try to find 

more and more accurate approximations on finer and finer grids. 

In this section we extend the idea of the defect correction process in 

several ways. First we allow different approximate inverses to serve in one 

iteration process and we consider the process obtained when a fixed combina

tion of approximate inverses is used all over in a defect correction process. 

Then we describe the iterative and the recursive application of the DCP and 

in the last subsection we describe how more discretizations of a problem can 

be applied alternately in order to get a stable and accurate approximation. 

4.1. Non-stationary defect correction processes 

In order to find a solution to the problem (P) it is not necessary to 

use one fixed approximate inverse in an iteration process as described in the 

the preceding section. As we anticipated in the example with Newton's method, 

it is possible to use different approximate inverses in each iteration step. 

Then the iteration steps of DCPA and DCPB read respectively 

(4.l.l) x1.+l = x. - G. 1Fx. + G. 1y, 
1 1+ 1 1.+ 
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and 

(4. 1.2) l. 1 = L - FG. L + y. 1+ 1 1 1 

A similar modification of DCPC can be given. 

In this way we are able to adapt the approximate inverse during the 

iteration and we can try to find sequences {G.} in order to accellerate the 
1 

convergence of the iteration. 

REMARK. We see that for general affine operators {G.} we have no longer the 
1 

equivalence DCPA and DCPB. Instead we see DCPA to be equivalent with the 

iteration. 

(4. 1.3) l. I= F. IG.l. - F G.l. + y, 1+ 1+ 1 1 1 1 

or DCPB to be equivalent with 

(4.1.4) Fi+lxi+l = F.x. - F x. + y 
1 1 1 

or 
~ y. 

(4. I.5) xi+l = G.+ 1F.x. - G. 1F x. + Gi+l 
1 1 l. 1+ 1 

Various methods are known to find a proper sequence {G.}. Here we mention 
1 

a few. 

~ 
EXAMPLE 1. Gi+l = ~ G(x.). 

1 

The approximate inverse depends on the last iterand computed. This is the 

case e.g. in Newton's method for the solution of non-linear equations, where 

G(x) = F' (x))- 1, with F' (x) the Frechet derivative of the operator Fin the 

problem (P). 

EXAMPLE 2. G. = G(w.). 
1 1 

The approximate inverse depends on a single real parameter. This is the case 

e.g. in non-stationary relaxation processes for the solution of linear sys

tems. The value w. can be taken from a fixed sequence of values or it can be 
1 

computed adaptively during the iteration process. 

In each iteration step the approximate inverse is chosen from a set of two 

(or more) fixed approximate inverses. This is the case e.g. in Brakhage's 

and Atkinson's methods for the solution of Fredholm integral equations of the 



72 

2nd kind. (See ATKINSON [1976] and BRAKHAGE [1960].) It is also the case in 

the two level algorithm in the intermezzo. 

REMARK. From the pratical point of view (4.1 .2) seems to be the more attrac

tive of the two processes (4.1.1) and (4.1.2) because in (4.1.2) G. appears 
i 

only once in an iteration step. This implies that only one approximate prob-

lem has to be solved, whereas G. 1 appears twice in (4.1.1). i+ 

4.2. A fixed combination of approximate inverses 

In this section we assume that the operator Fin (P) and the approximate 
~ 

inverses G and Gare linear operators. We consider two iteration steps in the 

non-stationary DCPA in which, in turn, one or the other of two approximate 

inverses is used. Then the iteration steps 

X. I = (I - GF)x. + Gy 
1. +2 l. 

and 
~ RI 

xi+l = (I - GF)x. 1 + Gy 
l.+2 

combine into a single iteration step of the form 

~ 

xi+l = (I - GF)(l 
~ Rl ~ 

GF)x. + (G - GFG + G)y. 
i 

This is easily recognized as a new iteration step of the type DCPA, now with 

the approximate inverse 

~ Rl ~ 
G = G - GFG + G. 

We conclude that a fixed combination of DCPA-steps can be considered as a 

new DCPA-step with a more complex approximate inverse. 

The amplification operator of the new DCPA process is the product of the 

amplification operators of the elementary processes. 

o_aE£lications_of_the_same_aEEroximate_inverse 

We can describe the DCPA in matrix notation by 



= ( I-GF 

1/J 

a times an application of the same iteration step yields 

a-! 
I-·GF G 

a ((I-GF) 0 I (I-GF)mG\ ( ( X ( \ ( xi) i+c\ 
• I = \ } = \ m=O J \ \ 0 y I \ y I ' 0 I · \ 

Thus, we see that one iteration step which consists of a applications of 

DCPA-steps results in a DCPA with the amplification operator 

and the approximate inverse 

a-1 
G = l (I-GF)m G 

m=O 
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Since the operators F and Gare linear, we may look at the combined process 

as a DCPB as well; its approximate inverse being the same as for the DCPA, 

of course, and with the amplification operator 

4.3. Iterative application of DCP 

It is possible not only to change the approximate inverse G during the 

iteration process, often it makes sense also to substitute different oper

ators Fk for F during iteration. In general, the operators {F} 
k k= 1 , 2, •.. 

will be simple to evaluate in the beginning of the iteration and they will 

converge in some sense to the "target" operator F, the operator of the orig

inal problem, as the iteration proceeeds. 

If we apply this technique, we solve (approximatively) a sequence of 

problems (P) of the fonn 
k k= l , 2, .•• 

where we use the approximate solution of (Pk_ 1) as a starting value for the 
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iteration of (Pk). This way of looking at the changing Fk yields a criterion 

for the number of iterations that has to be spent to approximate the solution 

of (Pk); viz. the iterand x.. . in the DCP for the solution of (Pk) should not 
* K,J. 

approximate~• the solution of (Pk), better than the solution of (Pk) is 

itself an approximation to the solution of (Pk+]); i.e. we should not iterate 

the DCP for (Pk) further than until 

EXAMPLES la and lb. One example of the iterative application of a DCP is the 

IUDeC (Iteratively Updated Defect Correction) process described by STETTER 

[1978]. Here {Fk} are discrete approximations of higher and higher order to 
~ -1 an analytic operator F. The approximate inverse G = FO is kept constant 

during the process. 

Another example is the Full Multigrid Method (BRANDT [1979]), in which 

{Fk} are discretizations on finer and finer nets of an analytic operator F. 

One way to create a sequence of problems (Pk) is Galerkin approxima

tions of a "target" problem (P): 

Then the different discretizations are determined by {~,Pk}. 

EXAMPLE 2. Global interpolation. 

Here~=\ is independent of k, 

is the restriction of a continuous function to its values on a set of nodal 

points ~h- The prolongation Pk is global piecewise polynomial 

of order k: the set of nodal values is interpolated to a continuous piecewise 

polynomial function defined on n. (Finite element interpolation.) 

EXAMPLE 3. Local interpolation. 

We take~=\ as in example 2. Now Pk is local interpolation in the neigh

bourhood of nodal points. I.e. Pk uh is a function which is (only) defined 
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1n (small) neighbourhoods of nodal points from nh. The value of Pkuh and its 

derivatives at ~h E r.lh are determined from the values of u11 at ~h E nh and 

a number of neighbouring nodal points by taking (divided) difference quo

tients around ~h. In this case Pkuh is not necessarily a function defined on 

the whole of r.l [and the operator Fis only applied on (open) neighbourhoods 

of points in r.lh]. 

The_acc~raci_of_successive_aEEroximations_in_a_DCP_iteration with_different 

discretizations_of_the_same_Eroblem 

Let us consider (different) discretizations of the problem Fx = y, viz. 

~ + Yh for all i = 0,1,2, ... , 

and let X,¾,Y and Yh be related by 

Let the order of consistency of the discretizations be p., and let the first 
l 

discretization be stable. We will study the iterative application of DCPA, 

with the equations F! ih = yh = 1\.: to solve in the i-th iteration step and 

with the same approximate inverse Gh = (F~)-l in all iteration steps. Then 

the DCPA reads 

We are going to estimate the relative error of approximation for a finite number of 

number of iteration steps: 

k. = II u. - R__ x II / II xii • 
1. 1. -11 

THEOREM. For the relative error of approximation in the i-th iteration step 

of the iterative DCPA process: 

ki = II ui - ¾ x II / II xii, 
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we have 

min (pJ•+(i-j)po) 
O<"<" = O(h -J-i ), i=J,2, .•• 

PROOF. 
,_ - ~ - 0 

u - R. x = G R y - R x = G (R. F - F R. ) x 0 -11 11-11 -11 h -11 h -11 • 

The given estimate now follows from the stability of F~ (i.e. Gh is uniformly 
0 bounded) and the consistency of Fh. 

Hence, for i = 0,1,2, •.• , 

Here again, the estimate follows from the stability of F~ and the consistency 
i 

of Fh. 0 

COROLLARY. If 

then 

{ pi : (i+l )pO 

pi - pn 

(i < n) 

(i ~ n) 

k. = O(hmin(pu,(i+l)po)). 
l. 
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4.4. Recursive application of DCP 

Generally, the evaluation of the approximate inverse operator G. implies 
i 

the solution of an equation which is (essentially) of a simpler type than the 

original equation. However, also this simpler equation may be of a kind that 

we want to solve by means of a DCP. For this we need an even simpler equation 

to solve, etc .. Thus, the execution of a single iteration step may activate 

new (simpler to solve) DCP. In this way we can construct a recursive construc

tion of DCPs in which only on the lowest level of recursion a very simple 

equation is to be solved. 

Independently, this is probably not a real meaningful constuction, but 

in combination with non-stationary processes, where also other (non-recur

sive) approximate inverses are available, it describes the essentials of the 

multigrid algorithm. 

Such a combination of a non-stationary process with some recursive ap

proximate inverses can be described by the following sequence of DCPs. 

DCP l: 

DCP 2 : 

DCP 
n 

x: = x - GI (Fl x-f I) 

x: = x - G2,i(F2x-f 2) 

~ x: x - G .(F x-f) 
n, i n n 

G. 
J 

G .• 
J , i 

-1 
E {G., F. 1 }, 

J J-

j = 1,2, .•. ,n, 

J = 2,3, ... ,n. 

A full use of the sequence of DCPs is made by combining also the iterative 

application: first DCP 1 is solved and its solution is used as a starting 

value for DCP2 etc .. In a multigrid context 

are processes to solve operator equations, discretized on finer and finer 

grids. The complete iterative process is called: Full Multigrid Algorithm 

(BRANDT [1979]). 

4.5. Mixed Defect Correction Processes 

Up to now we have considered DCPs where each time one final target 

problem 
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(4.5.l)(P) Fx = y, F X -+ Y 

was solved. In this section we treat the possibility of two (or more) differ

ent target problems: 

(4.5.2)(Pl) F1x1 = y 1, 

(P2) F2x2 = y2, 

Fl XI -+Y2' 

F2 XI-+ Y2, 

to be used in one iteration process. Behind the screen both procedures (Pl) 

and (P2) probably are two approximations of an original problem (P), but the 

operator Fis not used in the algorithmic procedure. 

~ We introduce first the approximate inverses G1 and G2 of the operators 

F1 and F2 respectively. We assume that F1, F2 , G1 and G2 are linear. Then we 

introduce the Mixed Defeat Correction Pl>oaess 

(MDCP) 

Thus, the complete iteration step reads 

(4.5.3) 

We find for MDCP the "amplification operator of the error" 

(4.5.4) 

A stationary point u of (MDCP) satisfies 

(4.5.5) 

In the case that y 1 and y 2 can be written as y 1 = R1y and y2 = R2y, 

R1 : Y-+ Y1, R2 : Y-+ Y2, equation (4.5.5) is equivalent with 

(4.5.6) 
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If equation (4.5.5) has a unique solution u, this u is the stationary point 

of (MDCP) and with the error defined by 

e. = 
]. 

the operator M has again the property 

e. 1 =Me .• 
l.+ ]. 

For an arbitrary w we know 

(4.5.7) 

and by (4.5.5) we find 

(4.5.8) 

THEOREM 

(i) Let (P 1) and (P2) be two discretizations of (P) with 

(ii) 

(iii) 

R 

and such that y 1 = R1y and Yz = R2y; 

Let the local discretization error of the discretizations (P 1) and 

(P2 ) of the problem (P) be respectively of order p 1 and p2 ; 
~ ~-I Let the approximate operators Fk = Gk , Fk : x1 + Yk, k = I ,2, be 

stable discretizations of F and let Fk be consistent with Fk, k = 1,2, 

of or>der qk > O; 

Let~ EX be the solution of (P) and let~ be a stationary point of 

(MDCP) , then 

PROOF. From (iii) it follows that, with k = 1,2, 
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Hence, fork= 1,2 we have 

Thus, 

for h small enough, and 

II I- M) -I II < C 

for h small enough. 

q 
:5 C. C h .k 

h ➔ 0 
-o. 

From (ii) it follows that the truncation errors of the discretization with 
~ respect to the solution u are of order p 1 and p2 respectively: 

'k = yh - FkR~ = ¾Fu - FkR~ = (J\F- FkR)~ 

p 
5: Ch k 

From (4.5.8) we derive 

Hence 

IIR~- ;.11 :5 11 er- M)- 11111c211 {IIF2 - F21111c 11111-r 111 + 11-r 211} 

:5 C c { C hq2 . C. hpl + hp 2} 

min(p 1+q2,p 2) 
< C h 

REMARK. The theorem can easily be generalized for more different target 

problems 

k = 1,2, •.• ,l. 

□ 



,...,, t"V ,...._,_] ~ 

With Gk an approximate inverse of Fh, Fk = Gk and~= (I- GkFk) we get 

for the multiple MDCP 

(MDCP) 
{ ui+k/l = ui+(k-1)/l - Gk(Fkui+(k-1 )/l- Gk)' 

k = 1,2, •.. ,l. 

The amplification operator of the error is 

We find 

and hence 

. * with p 

C 

l 
min (pk+ I 

k=l, ••• ,l k+l 

II G 1111 Fk - Fk 11111 Gkll i!Tkll k+I +l + 

q.). 
J 
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5. THE PRINCIPLE OF THE MULTIPLE GRID ALGORITHM 

5.1. The two-level algorithm TLA 

The two-level algorithm is a non-stationary defect correction process 

in which only two different approximate inverses are used: 

(1) some relaxation method (e.g. Jacobi, Gauss-Seidel, the incomplete 

LU-decomposition iteration, etc.) on the fine grid, and 

(2) a coarse grid correction. 

The approximate inverse in the coarse grid correction for the solution 
-1 -

of Lhxh = fh is given by Gh = PhH LH ¾h· Thus a coarse grid correction 

step in the two-level algorithm reads 

(5.l.l) 

One step in the two-level algorithm consists of p relaxation sweeps of the 

relaxation method chosen, a coarse-grid correction step and again q relaxa

tion sweeps of the relaxation method. Such a step of the linear two-level 

algorithm for the solution of Lhuh = fh is described on the following ALGOL

like program. 

proc TLA = (ref gridf uh, gridf fh) void: 

begin 

top do relax (uh,fh) od; 

d : = restrict (Lh * uh - fh); 

solve (LH,v,d); # solves L * v = d # 
H 

uh := uh- prolongate v ; 

to q do relax (uh,fh) od 
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To this procedure the right-hand side fh and an approximate solution 'i1 are 

given; by the procedure the given u. (i.e. u.) is updated and changed into - n l 

the new iterand ui+I· Clearly, the amplification operator of one step of this 

linear two-level algorithm is given by 

(5.1.2) 

where Bh is the approximate inverse of the relaxation process. The subscript 

h denotes that the operator is related to the solution of the discrete prob

lem Lhxh = fh. The superscripts p and q, denoting the number of pre- and 

post-rela::.:ations, are omitted in ~-t'fLA if no confusion is possible. 
h 

In equation (5. I. 2) we recogn_ize the amplificatim~ operators of the relaxa-

tion process: 

(S.1.3) 

and we may write 

(5. l. 4) ~LA,p,q 

or 

(5. l.5) ~LA,p,q 

We notice that the operator 

determines the relative convergence between the operators Lh and LH. 

The_Erinci2le of_a_convergence_Eroof_for_the_TLA 

Following the convergence proof for the multi-grid method as given by 

HACKBUSCH [1980] and references therein] we unravel here first the convergence 

of the TLA. Sufficient conditions for this convergence are formulated. 

In a later stage. it will be shown that these conditons are satisfied when 

particular multigrid methods are applied to certain ~iscretized (e.g. 

elliptic) boundary value problems. 
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In this section we assume that Lh: ~-+ Yh and LR:¾-+ YH are related 

discretizations of an operator L: X-+ Y. Lh is the fine and LH is the coarse 

discretization, with meshwidths hand H respectively. 

DEFINITION. If Bh is the approximate inverse related to some relaxation 

process for the solution of the equation Lhyh = fh, then the relaxation 

process has a proper smoothing property of order a if 

(5.I.6) 

with c0 (v) independent of h 

c0 (v)-+ 0 as V + 00 • 

Possibly \) E [O, v (h) J, and v (h) -+ 00 as h -+ O. max max 

REMARK. The proper smoothing property can also be written 

(5. I. 7) 

REL where~ is the error-amplification operator of the relaxation. We can 

write the property in terms of the residual-amplification operator as well: 

(5. I • 8) 

EXAMPLE. In the intermezzo we saw for the operator ¾ in equation (2) to-

gether with damped Jacobi relaxation 

2 
0 

2 
0 

\) 

II :2 ( 
s ) ( C 

) II 11~(1- BhLh) vii 
m m = sup 

2 2 m 0 C 0 s m m 

4 V max 2 t(I-t) 
tdO, I J h 

ve 
for v-+ 00. 

Hence, for this operator¾• damped Jacobi has the proper smoothing property 

of order 2. 

REMARK. The addition v E [0,v (h)], with v (h)-+ 00 ash-+ 0, means max max 
that it is not necessary that the inequality (5.1.6) holds uniformly in h 

and v. 



h ➔ 0 

\) 
max 

Figure 5. 1. The region in the h-v-plane where the inequality 

(5. 1.6) should be satisfied is the shadowed area. 
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The convergence 
or IIM.TLAII 

-n yh + yh 

of the TLA algorithm is proved by showing that ll~LAII¾ + ¾ 
is less than one. 

THEOREM 5.1. I. If 

(i) the operators Lh and LH are 1>e'lative convergent of order a., 

(ii) the reZa.xation process for Lh satisfies a proper smoothing property 

of order a., and 

(iii) the disoretizations Lh and LH satisfy the regular relative mesh 

property. 

Then the error-ampZification operator of the corresponding TLA satisfies 

IIMTLA,p,O II < f' C ( ) 
~➔ ¾- ... 0P, 

where C is independent of hand c0 (v) + 0 as v + 00 • PossibZy VE [0,v (h)] max 
with vmax(h) + 00 ash+ 0. 

PROOF. 
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p, 

□ 

Analogously we find a theorem for the residual amplification operator. 

THEOREM 5.1.2. If conditions (i), (ii) and (iii) of theorem 5. l. 1 a1•e 

satisfied, then the residual awplification operator of the corresponding 

TLA satisfies 

where C is independent of hand c0 (v) ➔ 0 as v ➔ 00 • Possibly v 

vmax(h) ➔ 00 os h -+ 0. 

E [ 0, \) (h) J 
max 

PROOF. 

s 

REMARK. If, in addition to the conditions of theorem 5.1. I, we have 

flM.RELn s C uniformly in h, we find 
-11 ~ ➔¾ 

and analogously with D~RELII y ➔ s C uniformly in h, we find 
h yh 

g~LA,p,qlly ➔Y s C. C(q). 
h h 

□ 
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5.2. The_linear multi-level_algorithm MLA 

Whereas in the two-level algorithm we have to solve a coarse-grid prob

lem in each iteration step, in the multi-level algorithm we solve this prob

lem approximately by the application of a few iteration steps of the same 

multi-level algorithm on the coarse level. 

As was explained in section 4.4, by recursion we now have to solve a dis

cretized problem directly only on the very coarsest grid. When a iteration 

steps of the multi-level algorithm are used to approximate 1;1, this multi

level algorithm is described in the following ALGOL-like program 

proc MLA = (ref grid uh, gridf fh) void: 

begin 

end; 

top while ... do relax(uh,fh) od; 

d := restrict (fh - Lh * uh); 

if level of uh= 1 

then solve (LH,v,d) 

else v := O; 

to sigma while ... 

do MLA (v,d) od 

fi; 

uh:= uh - prolongate v; 

to q while ... do relax (uh,fh) od 

By while ... we denote in the program that some iterations may be termin

ated sooner, depending on the speed of convergence or other conditions that 

can be checked during the computation. Multigrid algorithms that make use 

of this possibility are said to have an adaptive strategy; algorithms where 

the iterations are controled only by the fixed numbers p, a and q are said 

to have a fixed strategy. Although the adaptive strategy may be very effi

cient (cf. BRANDT [1979]), the fixed strategy is better accessible for a 

theoretical analysis. 

For some fixed strategies, we show in figure 5.2 how is switched be

tween the different levels of di.scretization. We see that - essentially -

most relaxation sweeps are performed on the lower levels. 



88 

One iteration step in the multi-grid process (i.e. one call of the procedure 

MLA) 1s also called one of the multi-grid process. Iterative applica-

tion 1s also refe.red to as cycling. One multi-grid cycle is called a V-cycZe 

if cr = i; if o = 2 it is called a W-eyele. 

level 

3 

2 

0 

3 

2 

0 

1-++7 rh 
WI. H 

3 

2 

0 

7JJ 

~ 

fig. 2a 

fig. 2b 

h 

H fig. 2d 

tu 
3 

2 

0 

fig. 2c 

Figure 5.2. The recursive structure of multi-grid 

algorithms with a fixed strategy. 

In all diagrams the number of levels is 4, the very coarsest level is de

noted by 0. In each diagram la, lb, le or Id, the basic structure on the 

two levels hand His given as well as the recursive structure on one cycle 

at level 3. Segments between tick-marks on a level> 0 denote the execution 

of a relaxation step on this level; a segment on level O denotes the direct 

solution on the coarsest level. 
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The different structures shown are: 

la. A general structure with p = 3, o = 3 and q 2. 

lb. A structure with o 1 (NICOLAIDES U 979] p = 3, q = 2. 

le. A structure with 0 = l • p = 0 (FREDERICKSON [1975] q = 3. 

Jd. A structure with q = 0 (HACKBUSCH [1979] p = 3, 0 = 2. 

We denote the amplification operator of a multi-level iteration step 

on the h-level of discretization by {LA, or - if we want to specify the 

number of relaxation sweeps and the number of coarse grid correction steps -

we denote it by 

MLA,p,q 

~ 
MLA,p ,q, 0 

or ~ 

The same amplification operator on the next coarser level we denote by {LA_ 

In the multi-grid cycle the approximate inverse of the coarse grid correction 
. . -1 - . . -] 
is not given by PhH 18 ¾h' because in the algorithm LH is approximated by 

application of o steps of a defect correction process. The amplification oper

ator of this DCP is given by ~LA_ Hence, as was shown in section 4.2, the 

approximate inverse of the 0 iteration steps together is given by 

Consequently, the amplification operator of the coarse grid correction in 

MLA is 

and we have 

{1A = ~A,p,q,0 

(5 • 2. 1 ) 

and 
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(5. 2. 2) 

The_E,Einci£1e_of_a_convergence Eroof_for_the Ml.A 

THEOREM 5.2.1. If the ~onditions i), ii) and iii) of theorem 5.1.1 are 

satisfied and in addition 

iv) PhH : ~ + ¾ is h-un·iformZy bounded and bounded from below, 

v) (~1 l and (~1 ) q : ¾ -+ ¾ are h-u:niformZy bounded (Joy, all p suffi

ciently large if q = O), and 

v5) pis sufficiently large. 

Then 

PROOF. From equation (5.2.1) it follows that 

Further, 

= (L~l _ phH 1 ;1 ¾b)~ (~L)p _ (~REL)p 

= ~LA,p,O _ (~L)P. 

Since PhH is h-uniformly bounded from below, a C > 0 exists, independent 

of h, such that 

IIL-I R. __ L (...,REL)pll <_ C UM..TLA,p,O - (M..REL)pll, 
H -11h h •·ii -n -n 

and hence 
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D 

THEOREM 5. 2. 2. If the eondi tfons i), ii) and iii) of theoPem 5. I. l aPe satis

fied and in addition 

iv) 

v) 

vi) 

Then 

RHh: Yh + YH is h-unifomly bounded and bounded fPom belo~ 
-REL p -REL q 
(~ ) c·~1, 7 (~ ) : Yh + YH aPe h-uniformly bounded (fop all q suf_fi-

ciently laPge if p = 0), and 

q is suffieiently large. 

PROOF. The proof is similar to that of theorem 5.2.1. From equation (5.2.2) 

follows 

and 

+ R (~EL)q ~ phH ~11 K~Hcr l¾hl I (~REL)pl , 

(¾REL)q Lh phH ~I ~ = ~LA,0,q _ (~L)q . 

Since ¾his bounded from below 

and hence 
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D 

COROLLARY. Using the results of seetion 5.1 we immediately eonelude from the 

hypotheses of theorem 5.2.1 or theorem 5.2.2 that 

or 

Here the eonstants C, c0 (p) and c0 (q) are independent of the meshwidth h. 

We denote the sequence of discretizations used in the MLA by 

k=0,1,2, •.• 

, or briefly by 

k=0,1,2, ••• 

Herek is called the level of the discretization. 

We define 

(5.2.3) 

and 

(5.2.4) 

~ = ll~LAII 
k 

k = 1,2, •.• 
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If the conditions i) - vi) hold for the discretizations on all levels 

1,2, •. ,k, ... , then we easily derive from theorem 5.2.J the recursive rela

tion for~' viz. 

(S.2.5) 
= Kl 

:,; ·~ + C ~-I. 

From theorem 5.1.1 we know that~:,; C. C(p) independent of the level k. 

A similar recursive is obtained for ll~A II • 
k 

The_amount of work_in_one_clcle_of_the multi-level_algorithm 

If we sum up the work that is done in one cycle of the MI.A-algorithm on level 

level k, we find 

I) p+q relaxation sweeps on level k 

2) fh - 1nuh residual computation on level k. 

3) application of ¾h 
4) 

5) 

6) 

1 application of PhH 

subtraction P v from uh, and 
hH H 

cr application of a Ml.A-cycle at level k-1. 

We notice that, for a differential problem, all computations in 1) - 5) 

require O(Nk) operations if Nk is the number of unknowns in the system 

Lk~ = fk. 

Hence we write for the amount of work in one :MLA-cycle on level k: 

where CREL denotes the constant depending on the relaxation method. 
-d 

If we assume that Nk-I = pNk, (usually p = 2 , where dis the dimension 

of the original problem), we find 

.. MLA REL 2 k-1 k .MLA wk- :s;[(p+q)C +c]Nk[I+ap+(crp) + •.• +(op) ]+a w0-, 

where w0 denotes the (approximate) solution of the problem on the coarsest 

grid. Hence with ap < 1 we find 
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Nk REL k-1 
::; 1- crp [(p+q)C + C]+ o WO 

This means that c{1A is proportional to Nk, i.e. as long as o < Nk/Nk-l for 

k = 1,2, •.. the amount of work for one multi-grid cycle is proportional to 

the number of unknowns in the discretization Lkuk = fk. 

The above operation count holds for a discretized differential equation, 

where the number of operations for a relaxation or a Lh-evaluation is pro

portional to N. For the solution of systems arising from integral equations, 

the work for L -evaluation is generally O(N2 ). The same reasoning for dis

cretized Fredholm integral equations therefore shows that the amount of work 

in a multi-grid cycle is 0(N2). 


