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ABSTRACT: This paper introduces Interaction Analysis, a method 

similar to the Association Analysis introduced by 

Williams and Lambert in 1959, Its purpose is the analysis 

of a complex pattern of interactions, a basic problem 

in phytosociology and also in many other subjects. The 

method is founded on an intuitively appealing definition 

of complexity as the sum of amounts of interaction. A 

definition of such an amount is given which is mathematically 

equivalent to that for the capacity of a noisy channel in 

information theory. 
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Interactions as additive components of complexity 

It is necessary to make precise the concept of aompZe:x:ity, and the 

investigations to be described in this paper are motivated by the 

desire to see whether entropy is as useful for the measurement of com­

plexity as it has proved to be (in the mathematical theory of communi­

cation, see Shannon [2J ) for the measurement of the possible information 

content of a signal. A definition of complexity at once simple and 

yet, as will be shown later, precise enough to serve as the basis of 

a mathematically defined measure, is: 

The wa:y in whiah a whoZe is different from the set of its par-ts. 

We should also be able to say by how much the whole is different from 

the se.t of its parts •. If it is not at all different, the complexity 

of the whole is just the sum of complexities of the parts. If it is, 

we say there is interaation between the part~ and the complexity of 

the whole is more than this sum, the difference being the a.mount of 

interaction. Therefore, if we can find a suitable measure of these 

interactions, they should be regarded as additive components of 

complexity. Such components should somehow take into account the 

overall intensity of interactions, not just those between pairs of 

parts. 

Let us call the whole a system,its parts subsystems, or, if they 

cannot be subdivided any more, variobZes. Suppose that the system 

Sis divided into subsystems s1 and s2 , which are respectively 

subdivided into s
11

, s
12 

and s21 ·;s22 , and so on until only variables 

are left. This may be represented by a hierarchical scheme: 
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s / s ~ s 

/ 1"' / 2"' • • • ( 1 ) 
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1 
V 
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According to our definition the complexity of S should equal the total 

amount of interaction present in S, that is, 

where C(X,Y) stands for the amount of interaction between X and y, 

It may be defined as follows. 

Suppose that for every possible subsystem of S there is defined a 

potentiaZ funation H, and that this function has the properties: 

monotonicity: H(S)::.. H(s 1) and H(S) ::_ H(s2 ) 

sub-addivity: H{S) .::_H{S
1

)+H(S
2

). • • • ( 2) 

Here s
1 

and s
2 

are subsystems obtained by a single division of S. 

The sub-additivity property allows a measure of interaction to be 

defined as follows: 

This explains why we have chosen the name "potential function" for 

H. 
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Interaction so defined is a difference of potentials, which is a 

straightforward generalization of the corresponding situation in 

physics where a force of attraction is the gradient of the corres­

ponding potential. The hierarchical scheme (1) may now be accompanied 

by the corresponding potentials and interactions: 

H(S) 
+C(S1 ,s2)= H_(s1 )+H(S2) 

• • • ( 3) 

+ ••• H(V 
1 

)+H(V ) 
n- n 

Let us consider the difference between the ~ighest and the lowest 

levels of potential in the hierarchical diagram: 

• • • ( 4) 

where v1, •.• ,Vn are the individual variables of which the system 

consists. The definition of complexity we proposed as: "The way in 

which a whole is different from the set of its parts". Suppose we 

want to compare the complexity of different systems: to be able to 

say that one system is more complex than another. One way to do this 

is to represent complexity as a real number. The formula (4) is a direct 

representation of the definition in numbers; it says in effect: 

"The measure C of complexity is the difference between the potential 

of the whole and the sum of potentials of its parts". 
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So much for the definition of complexity. Let us now consider an 

application. Especially interesting is the case where the set of 

individual variables v1, .•. ,Vn is large and where many interact with 

many others. In such a case we would like to know whether a simpler 

model would be able to give a satisfactory summary ot the given system. 

Let us consider the sums L. of the potentials of the subsystems of the 
l. 

same level in the scheme (3): 

1,= H(S), L2= H(s,)+H(S2), L3= H(s,,)+H(S12)+H(s2,}+H(S22), 

.•• , ~ = H ( V 1 ) + .•• +H ( V n) , and L 1 ~ L2 ~ L3 
~ • • . < ~. 

Suppose that L., the general term in this sequence, is already almost 
l. 

as large as L. Then we can say, that the subdivisions above level i 

account for almost all the interactions present in the system, and 

these subdivisions represent a useful summary of all subdivisions. 

In a system S there are many ways to subdivide successively to arrive 

at the variables v1, .•• ,Vn. Yet, for all these ~-L1 is the same 

and equal to the complexity of S. We want to do few subdivisions and 

yet capture as large an amount of interaction as possible. Some ways 

of dividing achieve this better than others. A criterion for judging 

how well this is achieved is the following quantity: 

U= L2-L1+2(L
3
-L2}+3(L4-L

3
)+ ••• +(k-1)(~-~-1) 

=(~-L1)+(~-L2)+ ... +(1ic-1ic-1). 
... (5} 

Apparently, the weights 2,3, ••• ,k-1 punish large interactions for 

being low in the scheme. Therefore, the best division scheme is the 

one for which U is minimum. 

Interaction Analysis 

In this section we shall show how to apply the results of the previous 

section to a situation often encountered in phytosociology. 
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There it often happens that data are collected in such a way that 

numerous small areas of the surface of the earth, called quad.rats, 

are scrutinized for the occurrence of species of plants. Similar 

data are also studied in other subjects, so, instead of "quadrats" 

and "species", we shall use the more general terms "objects" and 

"predicates 11
• The data are arranged in an object-predicate table, 

. . f ,th which is a rectangular array o noughts and crosses. The J cell 
. th . th . ( . . the i row shows whether the i obJect does when it contains a 

or does not (when it contains a nought) possess the j th predicate. 

objects -➔ 

predicates 1 2 3 4 5 6 

J 0 0 X 0 0 X 

2 X 0 XX X 0 
3 X X 0 0 0 X 

4 0 X 0 X 0 0 
5 0 0 0 0 X 0 

of 

cross) 

From the mathematical point of view, which we adopt here, there is 

only a relative difference between objects and predicates: objects 

may be regarded as predicates to the predicates, which then feature 

as objects. In other words, if we stand the object-predicate table on 

its side, it is an object-predicate table again. In Association 

Analysis, if "normal analysis" corresponds to the one position of 

the table, "inverse analysis" corresponds to the other. 

We can now give an interpretation of the abstract notion of a 

"system" introduced in the previous section: the system is the set 

of predicates and the predicates represent the variables of the system. 

In that way the Analysis will be concerned with interactions among 

predicates. The only other thing that is still unspecified is the 

potential function H, and we proceed to show that the entropy of a 

set of partitions can play this role. 
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Predicate p divides the objects into two subsets, P and P, those 

that have p and those that do not have p, respectively. 

p 

Likewise, predicate q effects a partition. When this partition is 

"similar" or "dissimilar" to the previous one, we say that there is 

interaction between the two. 

PQ 

q p 

q 
much 

interaction 
(dissimilarity) 

The amount of interaction is conveniently measured by a difference 

of entropies. The entropy of a partition is defined as follows. Let 

the relative frequencies of the k cells of the partition r be 

f 1, .•• ,fk, then the entropy of the partition equals 

Each of the predicates p and q separately define a partition, and 

so also does the simultaneous application of p and q, The interaction 

between p and q is then defined to be 

H(p) + H(q) - H(p,q) ... (6) 
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In information theory p represents the message going into a noisy 

channel and q the message coming out of it. Shannon defined (6) as the 

information transmitted by the channel. McGill OJ noticed the 

applicability of the information-theoretical concept in a situation 

more similar to the one discussed here. The quantity (6) is O in the 

case of no interaction and positive otherwise. 

Any number of predicates may be applied simultaneously to the set of 

objects, and in a similar way an interaction may be defined for them: 

... (7) 

This quantity and its decomposition has been studied by Watanabe [4] . 
If p1, ••• ,pn are all the predicates of the object-predicate table, we 

may interpret this to be total amount of interaction present in the 

table, The entropy possesses the properties (2) and therefore qualifies 

as a potential function. This is explained in detail in an earlier 

paper [3], The quantity (7) is the total ·amount of complexity involved 

in the interactions of the system of variables, which are, in this 

case, predicates. 

As shown before, the a.mount of complexity may be hierarchically decom­

posed., In the case of the object-predicate table, this is done as 

follows. We saw that any set of predicates defines a partition in the 

set of objects. That is, to each object, say b, two sets of predicates 

are assigned: the set B of predicates that object b has and the set 

B that b does not have. Again, the difference in entropies is not negative: 

H(B) + H(B) - H(p,, ... ,p) > 0 . 
n -

This quantity may be called the entropy loading of object b, Thus, 

just like in Association Analysis, the set of predicates is successively 

split up: 
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H(p1 ' •• ' ,pn) 
+ C(A,A) = H(A) + H{A) 

H(A) + 

+ CA(B,B) = H(AB)+H(AB) 

I \ .. . . 
• 0 • . .. ,, 

+ ••• +H(p 1)+H(p) 
n- n 

Why should this decomposition, out of all possible ones, be especially 

meaningful? Such is the case, if a few splits already push up the 

levei of the potential function near its maximum. Then a few objects 

already characterise almost all interactions between predicates. By 

how much this is the case, is indicated by the quantity U (5) of the 

corresponding scheme. Ideally, we want to choose the splitting objects 

so, that U is minimum. At this time, we cannot make a better guess 

than to follow Williams and Lambert in choosing the object with 

. largest entropy loading available at each step. 

This ends the present description of Interaction Analysis. Much of it 

is implicit in Association Analysis, as described by Williams and 

Lambert [5]. They used "association" instead of interaction, which 

is, perhaps, unfortunate, because most people think of it as something 

like positive correlation, while the chief merit of their work lies 

in the fact that they include the positive as well as the negative, 

in short, what we call interaction. They did not derive interaction 

from a potential function; indeed, they did not give a numerical 

definition of interaction, but used instead a numerical criterion 

for deciding which subdivision to effect. This criterion involves 

computing tail probabilities for testing independence in large numbers 

of 2x2 contingency tables, 
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Unfortunately, these are about the only contingency tables where the 

asymptotically approximating chi-squared distribution gives poor 

results; so either prohibitively laborious exact probabilities are 

called for, or corrections must be applied. Without such corrections, 

a mathematical analysis of the properties of this criterion seems 

rather formidable; with them, it seems hopeless. 

Our method seems to represent a significant advance compared to 

Association Analysis in two respects: 

1) Interaction Analysis has a clear conceptual basis. Its purpose is 

of central interest in phytosociology: the analysis of a complex pattern 

of interactions. The most important concept, that of complexity, is 

given a numerical representation that corresponds in a simple way to 

an intuitively appealing definition of complexity. 

2) Entropies of partitions are simple to compute. There 1s hardly any 

scope for messy approximations that would make it difficult to 

understand what is going on. 
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