stichting

mathematisch

centrum MC
REKENAFDELING §§{’ NR 22/71 NOVEMBER

o

G.H.A. KOK, J.M. VAN VAALEN

AN AUTOMATIC THEOREM-PROVER
/

2e boerhaavestraat 49 amsterdam

RIBLIOTHEEK MATHEMATISCH Ceifadie
s AMSTERDAY somsuame



Printed at the Mathematical Centre, 49, 2¢ Boerhaavestraat, Amstendam.

The Mathematical Centre, founded the 11-th of Februarny 1946, is a non-
progit institution aiming at the promotion of pure mathematics and £its
applications. It 4is sponsored by the Netherkands Government through the
Netherlands Onganization for the Advancement of Pure Research (Z.W.0),
by the Municipality of Amsiterdam, by the University of Amstendam, by
the Free University at Amstendam, and by indusiries.



Table of contents

Introduction

1.

Names and notions
1.1. Clauses

1.2, Example

Various proof procedures using the resolution rule
2.1. Inference rules and completeness
2.2. Search strategies and completeness

2.3. BEdit strategies

The program

3.1. Description

3.2. The text of the ALGOL 60 program
3.3. List of error messages

3.4, Examples

Possible extensions to the program

page

10
12

14
14
19
35
35

39



2



Introduction

In theéburse of the seminar on automatic thqéremyproving, which took
place at the Mathematical Centre from October '70 till July 'T1, we
made a theorem-proving-program. In this report we briefly review

the theory and publish the program, togethe? with some results.

The program can be used to prove theorems'éxpressed in the first order
predicate calculus. We assume that the reader is familiar with this
subject and also that he has some knowledge of model theory. For both

subjects we refer to Mendelson [1].

Reference

"[1] Elliot Mendelson, Introduction to mathematical logic.

D. van Nostrand Company, Inc. Princeton, 196k4.



1. Names and notions

Let some axioms Al, csey Ah and an alleged theorem B be given. We want
to get an answer to the guestion: does B follow from Al A A2 Ao A Ah'
We try to settle this by showing that'ﬂ(AjAAQA.f.AAh+B) is a contradic-
tion, or, equivalently, that CAlAAzA...AAnAﬂB) is unsatisfiable (i.e.
false for every interpretation).

The formulae have to be given in a special subset of the predicate

calculus, to wit as a conjunction of clauses.

1.1. Clauses

A clause is a disjunction of literals./A literal is a predicate (also
called: atomic formula, atom), possibly preceded by a negation symbol.
It can be proved [1], [2] that for every formula of the predicate
calculus there exists a conjunction of clauses, preceded by a universal
quantifier for each variable that occurs in that conjunetion, which is

true iff that formula is.

We now give an outline of the construction of that conjunction of

clauses. Let the original formula be F.

The first step is rewrite F in prenex normal form [3]. That means,
finding a formula Fl which holds iff F holds, and, moreover, has the
structure lel Q2x2, . ann A, in which Qpr vees Qn are quantifiers,

A is a formula which contains no quantifiers and X cees X, are all

ll
the variables that occur on A.
The second step consists of rewriting A as a conjunction of disjunctions

of literals.

The third step is to &liminate thé existential quantifiers from the

sequence lel’ eosy ann. This is achieved in the following way:

Let i be the smallest index such that Qi is an existential guantifier.
If there is none, the third step is finished; else we introduce a
Skolem function [2]'with parameters Xy, ...y X;_ 4 and substitute it
for every occurrence of X3 if 1 = 1 then the Skolem function has no

parameters. Now we delete Qixi from the prenex, and start again.

&



As every clause is now always preceded by a universal guantifier for
each variable we need no longer write these quantifiers but simply

remember their implied presence.

1.2. Example

Say we have a set V and a multiplication operator *, and the following

axioms:
axiom 1: V¥x,y Jdz X%y = Z (product in V),
axiom 2: Vx,y 3z ZkX = Y ' (left solution),
axiom 3: Vx,y Jz XxZ2 = Y (right solution),
axiom L: ¥Vx,y,u (xay)*u = xx(y*u) (associativity),
theorem: IxVy VX =y (identity element).

In order to translate this into predicate calculus we introduce the

predicate P(x,y,z), which can be interpreted as Xxxy = z.

axiom 1: Vx,y Iz Plx,y,z)»
axiom 2: ¥x,y Iz Plz,x,y),
axiom 3: Wx,y 3Jz Pix,z,y4),

axiom L4: ¥x,y,z,u,v,w (P{x,y,z}AP(y,u,v)AP{z,u,w)>P{x,v,w)) A

(Plx,y,z)AP(y,u,v)AP(x,v,w)>P{z,u,w) ),

negated, o
theorem’ Vx dy TPly,x,y).

If we now perform our three steps, where F is taken to be the conjuncw
tion of the above axioms and negated theorem, we obtain the following
result (which, by convention, is denoted as a set of clauses rather

than as the conjunction of these):



axiom 1 : Plx,¢,4(x,4)),
axiom 2 : Plglx,y),%,y},
axiom 3 : Plx,hix,yl),y),
axiom 4a: =Plx,y,z) v =Ply,u,v) v = Plz,u,w) v Plx,v,w),

axiom 4b: =P(x,y4,z) v =Ply,u,v) v =Plx,v,w) v Plz,u,w),

negated |
theorem ~

= Pilx), %, f(x)).

In this report we shall sometimes consider the clauses as a set of
literals; an important role is played by the "null clause'" which is the

empty set of literals, denoted by (.

References

[1] M. Davis and H. Putnam, A computing procedure for quantification
) theory, J. Assoc. Comp. Mach. 7 (1960), 201-215,

[2] M. Davis, Eliminating the irrelevant from mechanical proofs,
Proc. Sympos. Appl. Math., Vol. 18, Amer. Math. Soc.,
Providence, R.I., 1963, 15-30.

[3] Elliot Mendelson, Introduction to mathematical logic,

D. van Nostrand, Inc. Princeton, 196k,



2. Various proof procedures using the resolution rule

A proof procedure (T,I) consists of an inference system T, which deter-
mines a search space, and a search strategy I, which provides the way
of searching this space.

An inference system T can be complete or incomplete; similarly, a search
strategy T for a given complete T may or may not be complete for ob-

taining proofs constructable in T [1]1,[2].

2.1. 1Inference rules and completeness

In resolution theory, T consists in general of one rule of inference:
the resolution rule or some refinement of this rule [31, [4].

First we have to explain the so-called unification algorithm. Two
literals k and 1 are called unifiable if there exists a substitution Tt
such that kt = Llt; kr is then an instance of both k and 1.

If there is such a substitution then there is a most general substitu-
tion ¢ such that, if 7 is a substitution such that kt = lt, then 1 is a
composition of ¢ and another substitution, say i; thus, T = oA. The in-
stance ko is then called the most general instance of k and 1.

The unification algorithm can be described as follows:

1. let the given literals be k and 1; set j = 0 and 8y = € (the iden-

tity substitution);
2. if kej = lej, then stop and ej is the most general substitution;

3. scan kej and lﬁj in parallel - from left to right and locate the
leftmost position in which they do not agree; let tl and t2 be the
terms which begin at that position; if neither tl nor t2 is a
variable or either tl or t2 is a variable which is properly con-

tained in the other, then stop: K and 1 are not unifiable;

h, if tl1 is a variable then set_ej+1 = Gj {tz t1}, else set

6j+1 = ej {t1]|t2}, add 1 to j and goto step 2.



We can now define the resolution rule.

The

resolution rule: If A and B are clauses (without any variables in

common) containing literals k and 1 respectively such that k and 1 are

"opposite in sign" but |k| and |1]| (where |k| is meant to be the liter-

al k with its negation sign, if any, deleted) have a most general com-

mon

m
C

I

instance m and ¢ is the most general substitution with
|k|o = |1|o, then infer from A and B the clause
(A-{k})o u (B-{1})o.

C 1s called aresolvent of A and B.

R(A,B) denotes all resolvents that can be derived from‘A and B; note
that R(A,B) = R(B,A).

Some examples

10'

From the clauses P(%¥} v— Q{x) and - P({x) v = Ply) v R(x,y) we can

derive two new clauses: one by unifying P(x) and —P(x):
= Q(x) v ~Ply) v Rix,y)

and one by wnifying P(x) and = Ply): -
- Qly) v= P(x) v Rlx,y).

From the clauses P(x,§{x,y),z) v Q{x,z) and
=Plhix),y,g(x,y)) v R(x,y) we derive the clause:

Qlhlx),glx, §(h(x),£))) v Rlx, §(h(x),£)).

This we shall show step by step:
First, take care that the variables differ:

Pls,§(s,2),v) v Qls,v)
= Plhix),y,g9(x,4)) v Rix,y)

J = 0 and eo = ¢

scan from left to right:

o, = (hlx)[s} § =1
0, = {h(x)]s, glhix),2)|yr 3 =2
0, = th{x)[s, §lhlx),2)]y, glx,§hix),2))|v)
j=3 end Pls,{ls,1),v)0, =
Plhix);y,9(x,y) )0, =

Plhix), §(h(x),2),g(x, §{R{x]),2))].



3. An example of two literals which are not unifiable:

Plx,4(x)) anda Ply,gly))
or
Pix,4(x)) and P(3s,s).

What can we do with this inference rule?

Given some axioms Aj, ceoy Ah and an alleged theorem B, we want to get
an answer to the question: does B follow f‘:z‘om.A1 A A2 A vea A An.

We transform this question into: is the set containing {Aj,...,Ah,—wB}
unsatisfiable.

We suppose Al’ es oy An, —B to be in clause form; we can then derive
new clauses from this set of clauses.

The completeness of the resolution rule means that if Al' cosy Ah' - B
is an unsatisfiable set of clauses, then we can derive in a finite
number of steps the null clause (denoted by [), and if we can derive
the null clause the original set was unsatisfisble.

If the initial set of clauses is S (the axioms and the negated theorem),

the resolution rule defines the search space as follows:
R (S) =S

n>0: BYs) = {C | CeRAB) &AB e ()} u&S).

o

Completeness now means:

S is unsatisfiable iff there is an n such that
0 e RM(S).

Fach refinement of the resolution rule has associated with it a
refining condition P(A,B) on pairs of clauses A,B: a refinement allows

only the resolvents of clauses A,B satisfying P to be generated.

~n .
If R (S) denotes the subset of R'(S) that will be generated by a

refinement, then:

B =5
> 0: B*Y(s) = {c | C « R(AB) & AB « BS) &

(,(&,B) v P_(B,A)} u RHS).



The completeness again states that S is unsatisfiable iff there is an
n such that [] € ﬁp(S).

If, for a clause C, C e RP(S) = Rprl(s), where Rfl(S) is taken to be

@, we say that C is a clause of level n. The level of a clause is not
uniquely determined because the same clause can be constructed in
several ways. The level of [ is called.the level of the proof. In the
sequel the phrase "1 is the level of C" means 1 is equal to the smallest
n such that C ¢ B (S) - ¥ 1(s).

We shall mention only such refinements as We have implemented.
1. Unrestricted binary resolution, mentioned sbove, Pn(A,B) = true.

2. Plus p-resolution, allowing only to make so-called +p deductions.
A positive clause is a clause which contains no negative literals;
a negative clause contains only negative literals.

Condition for plus p~-resolution:
Pn(A,B) = df A is a positive clause.
3. Minus~p—resolﬁtion; condition:
Pn(A,B) = 4f A is a negative clause,

4, Resolution with set of support.

A subset of S is chosen as a support set T,
P (A,B) = af A e R'(S) = (S-T) or B ¢ R'(S) - (5-T)

for n = 1 this gives: A ¢ T; thus only such clauses are derived
in whose derivation at least one clause is used which is taken
from the support set. .

This refinement yields a complete inference system iff S - T is

a satisfiable subset of S (for example the axioms).

5. Linear resolution with set of support.

Let R_l(S) be the set S — T where T is the support set:
P (A,B) = af (AeS V AcTr(B)) & (BR'(S) - BV H(9)).

A e Tr(B) means: A belongs to the deduction tree of B.



Completeness

The shortest proofs for completeness are given by Anderson and Bledsoe
[51. |
Essential in thoseAproofs is the so-called lifting lemma (Robinson)
proved in [6].

A ground clause is a clause which contains no variables.

Very informally described this lemma states that when R denotes the
resolution operation and P denotes some very specific instantiation
(replacing of variables by constants) then R(P(S)) < P(R(S)); as a
generalization the relation R (P(S)) E.P(RF(S)) holds.

This means that if we have proved the completeness of the resolution
rule for ground clauses, implying a proof of FIn [ ¢ Rp(P(S)), we caﬁ
conclude that [ ¢ RP(S) which completes the proof of the general

completeness.

We will therefore prove completeness of unrestricted resolution for

ground clauses according to [5] as an example.

Define k(S) = ()} |C|) - |S| where |S| is the number of clauses in S
_ CeS |

and |C| the number of literals in the clause C.

Theorem. If S is an unsatisfiable set of ground clauses then [J can be

deduced by resolution,
Proof., By induction on k{(S).

Step 1. If k(S) = 0 then either 0 € S or S consists only of unit
clauses. The only way in which a set of unit clauses can be unsatisfi-
able is for two of those unit clauses to be negations of each other.

Using these two clauses will immediately produce [].

Step 2. Suppose a) S is an unsatisfiable set of clauses with

k(S) =N>0 and ©b) for any unsatisfiasble S' of clauses with k(S') < N
there is a deduction of [J from S by resolution.

If 0 € S, we have finished, so suppose [0 ¢ S; since k(S) > 0 there is
at least one clause of the form A V L where L is a literal, so

S =g8"' v {AvVL}.

Consider the sets S1 = S'y{A} and S, = S'u{L}.

2



10

Note that both sets are unsatisfiable and k(Si) < N and k(S2) < N. From
the induction hypothesis it follows that there is both a deduction of [
from S1 and a deduction of [ from 82 by resolution; in other words: for
some m and n: [« Rm(Sl) and [ e Rn(Sz). If 0 can be deduced by resolu-
tion from S1 then either [ or {L} can be deduced from S by simply per-
forming the same resolution steps.

When {L} is produced, all clauses of S, = S'u{L} are produced from S by
resolution (since surely those of S' are); so S, ¢ Rm(S), hence

Rp(Sz) < ﬁmﬁn(S): so [0 is produced by resolution from S. This completes
the proof.

2.2. Search strategies and completeness

The search space can be searched in several ways. In our program two

strategies can be chosen:

1. A complexity saturation strategy,

or

2. A diagonal search strategy given in [1] and applied for example
in [T1].

We have to define complexity of a clause. This can be done in several
ways. In the program the level of a clause is chosen as the complexity
of that clause; a different definition of complexity would have been
the number of resolution steps taken before finding this clause (number
of edges in the deduction tree).

A complexity saturation search strategy first generates all clauses of

complexity O and will generate all clauses of complexity £ before
generating any clause of complexity £ + 1.

When, in our program, this strategy is chosen first all resolvents of
level 1 are generated, then those of level 2 and so on.

One restriction was incorporated: upon finding a unit clause the pro-
gram tries to unify this clause with all unit clauses with opposite
sign generated before, in an attempt to derive the null clause.

The completeness of this strategy follows from the completeness of the
inference system.

Saturation strategies are inefficient but complete and terminate for

£



b

11

any unsatisfiable S with a refutation (deduction of [I) of least com-

plexity.

A diagonal search strategy generated clauses in order of cost, where
the cost of a clause is defined as the sum of the complexity g of- the
clause and its 'heuristic value' h.

This heuristic value can be for example the number of literals of the
clause, which is an estimate (specifically, a lower bound} of the path
that must be covered before reaching the nuil clause.

This search strategy is called diagonal as clauses of the same cost
(g+h) are on the same diagonal when plotted in a two dimensional array

with coordinates g and h. (fig. 1).

heuristic value

0 1 2 3 b 5

0 input clayses

A

4)

; (5)

complexity

fig. 1. Order of generating clauses by

using a diagonal search strategy.



12

Input clauses have complexity zero.

In the program we have chosen 'level' as complexity and 'number of
literals' as heuristic value of a clause.

If S has a refutation of least complexity kK then both complexity
saturation and diagonal search terminate with a simplest pfoof.
Saturation search generates all clauses generated by diagonal search
(with the same function as complexity) but will generate in addition
all clauses of complexity less than k with cost greater than k.

So diagonal search is always at least as efficient as complexity
saturation search. .

For some examples see section 3.k,

2.3. Edit strategies

A generated clause can be redundant; an edit strategy tries to delete
some of these redundant clauses,
An edit strategy can be compatible or incompatible with the proof

procedure used [2].

1) Deletion of clauses which are alphabetic variants of clauses

already in memory.
2) Deletion of tautologies (clauses of the form P v =P).
3) Clauses of the form P VP VvV Q are transformed to
P v Q.

These three strategies are compatible with all complete proof proce-

dures using a resolution rule,

4)  An important edit strategy, not implemented in the program, is the
deletion of so-called subsumed clauses.
For example: if we have generated a clause A and we now generate
a clause A V B or vice versa, this clause A V B gives us no more

information and may be deleted.

5) The user gives a limit to the number of literals of the generated
clauses; no clauses with a greater number of literals will be

generated, Also, a limit to the depth of nesting of function



13

symbols may be prescribed. These latter strategies are, of course,

incompatible with any proof procedure, but sometimes they may help

us to find a proof more quickly.

It is clear that we should try to avoid generating redundant clauses

in the first place in stead of deleting them afterwards.

References

[1] D. Luckham, The resolution principle in theorem proving. Machine -
Intelligence I (eds. Collins and Michie) (1967), 47-63.

[2] R. Kowalski, Search strategies for theorem proving. Machine

Intelligence V (eds. Meltzer and Michie) (1970), 181-202.

[3] D. Luckham, Refinement theorems in resolution theory. Symp. on
Aut. Dem. Lecture notes in Mathematics 125 (1970),
163-190. '

[4] J. Allen and D. Luckham, An interactive theorem proving program.
Machine Intelligence V (eds. Meltzer and Michie) (1970),
321-337.

[5] R. Anderson and W. Bledsoe, A linear format for resolution with
merging and a new technique for establishing completeness.

JACM July 1970, 525-53k,

[6] J.A. Robinson, A machine oriented logic based on the resolution

principle. JACM January 1965, 23-41,

[7] R. Kowalski and D. Keuhner. Linear resolution with selection
function. Memo 34, October 1970. Metamathematics Unit.
Edinburgh University.



14

3. The program

3.1. Description

The program is organized in such a way that it can be used both off
line and on line. The version published here is off line. For the on
line version the Boolean bn Line must be set thue and the system pro-
cedures resym, prsym, printtext, nler and new page (see [1]) require

an environment in which they work through a teletype.
input descripbion for the theorem-prover.

<theory> ::= <heading> <list of axioms> <bar> <negated theorem>.

<heading> ::= <thinking time>, <strategy letter>, <inf system letter>,.
<maximal number of literals>,

<maximal depth>,

<strategy letter> ::= 4|d
<inf system letter> ::= u|p|m|s|L
<list of axioms> ::= <list of clauses>

<list of clauses>

<negated theorem>

<list of clauses> ::= <clause>|%list of clauses>, <clause>
<clause> ::= <clause number>:<list of literals> <comment>
<list of literals> ::= <literal>|<list of literals>V<literal-
<literal> ::= <predicate>|7<predicate>

<predicate> ::= <predicate letter> <idgit> <parameter part>
<predicate letter> ::= k|L|m|n|o|p|qlr

<idgit> 1= <empty>|0]|1]2]3

<parameter part> ::= <empty>|(<list of terms>)

<list of terms> ::= <term>|<list of terms>, <term>

<term> ::= <constant>|<function>|<variable>

<constant> ::= <constant letter> <idgit>[<unsigned integer>
<constant letter> ::= a|ble|d]e

<function> ::= <function letter> <idgit> <parameter part>

<function letter> ::= §|g|h|i|J
<variable> ::= <varigble letter> <idgit>
<variable letter> ::= &[t|u|v|w|x|y|z

!

<comment> ::= '<string not containing '>'|<empty>
&



15

<inf system letter>;
unrestricted resolution,
plus P resolution,

minus P resolution,

set of support, with the negated theorem as a support set |

>~ & 3 T &

linear resolution with set of support.
<thinking time>; to be expressed in seconds.

<clause number>; all clauses of a theory are numbered, starting with 1

for the first clause.
<idgit>; the idgits zero and enpty are considered identical.
Capitals and their corresponding small letters are considered identical.

’
Example: existence of the left-inversion.

. -1
axioms: X.X

e’
X.€ = X,

X (y.u)_ = (,X-Y) U,

il

theorem: _1x.x e.

input for the theorem-prover:

100, d, p, 8, 8,

1+ Plx,glx),e),

2: Plx,e,x},

3: aPly,u,v) v ~P{x,v,w) v =~Plx,y,z) v Plz,u,w),
4: =P(x,y,z) v =Plz,u,w) v = Ply,u,v) v Plx,v,w)|
5: =P(x,a,e}.

If a theory which is used as input is not in accordance with the input
description, it is skipped by the off line version. The one line version
will skip the theory if the error is in the heading, but if there is an
error in a clause, only that clause is skipped and asked for again.
Skipping in the on line version is done by setting the integer 4s4fockp

equal to zero.

All initial and deduced clauses are stored in the array clause, referen-

ces to these clauses are in axiom [ ]. The figure shows the organization



16

of axfom and clause for the situation of the simple theory:

1: P{0)
2: =1P{x) v P(§{x))]
3: = P(4(410))).

1 |+ increasing index

R

the value of £Lopo is
the index of this cell )

the value of hipo is
the index of this cell

LS [=_ S [~ 8

A

maxcl is the length
of the array clause




7

For each existing function or predicate the number of parameters is
stored in the array nopdi. In the array substifution there is a cell

for each variable. If there are no substitutions for a certain variable,
its cell contains zero, else its cell contains a reference to a complete
term in the array clause. In this way there can be some kind of recursion
in the substitution; e.g., the cell of X refers to f{(v) while the cell of

v refers to W,

Each cycle of computation may be considered beginning with a choice
operation where two clauses from the list of clauses already in memory
are chosen to make the next deduction, according to the search strategy
(procedure search if complexity saturation is required and procedure
search diagonal if the diagonal search strategy is used) and the infer-
ence system (the Boolean procedure: cond{L, f) delivers the value Lrwe
only if the two clauses with number 4 and j satisfy the condition given
by the inference system) chosen by the user.

Then the procedure 4ebofve is called with the numbers of the two clauses
as parameters.

Resolve begins to check i1f there is any time left to go on at all; if
there is, it verifies whether the new clause will have too many literals
(edit strategy); if so, we return and choose the next two clauses,
otherwise we search for two complementary literals in the two clauses

and try to unify those two.

The implementation of the unification algorithm.

We wrote an integer procedure Aubéym, one of whose parameters is a pre-
dicate. The first call of subsym delivers the predicate identifier and
subsequent calls deliver one after the other the symbols of its para-
meter list while any defined substitutions are being performed. After
the last symbol has been delivered Aubégm yields the value 1000 upon the
next call. With the help of subsym we wrote subsym! {(pred 1) and
subsym? [pred 7) which make it possible to deliver two predicates simul-

taneously.

The Boolean procedure unifdiabfe (pred 1, pred 2) checks if pred 1 and
pred 2 are unifiable and fills the array substitution. Local to
unifiable is the procedure substitution control which makes sure .that
the variable for which we need a substitution does not occur in the
patameterlist of the function that is to be substituted. As a side

effect a correct substitution is noted,



18

We now give a simplified description of unifiable:

L: tl:= subsym 1 [pred 1); £2:= subsym 2 (pred 2);

4§ 21 = 1000 A £2 = 1000 then unifiable := tuwe
else

Af %1 = %2 then goto L

ebse

Aif (variable (t1) v variable (£2)) A
substitution control then goto L

else

unifiable := false

When we have found the clauses to be unifiable we can construct the re-
solvent by using subsym (procedure maée nesolvent). If the resolvent is
a null clause we print the proof; if it is a unit clause we lock ahead
if the null clause can be generated directly; else we first examine
whether the clause just generated is a redundant one (edit strategy).
If the new clause (number = nocl) is a tautology, the procedure nofaut
delivers the value {afse and the clause ié skipped; when it is a alpha-
betic variant of some clause already in memory, nofdupl delivers the
value fqalse and we also skip this clause and choose the next two clauses
to be resolved.

If the clause is not deleted we fill the array history: historny [noct]
becomes the number of the first parent * maax (maximum of the number of
clauses that can be stored in the memory) + the number of the second
parent. This array hisfory is used to print out the proof when the null

clause has been found.



begin comment 3.2, The text of the ALGOL 60 program;
boolean on line;
integer isstockp;
‘on line:= false;
begin integer left bracket, right bracket; comma, negsym, orsym,
colon, period, bar, apos, new line, tabsym; space sym, letter
d, letter s, letter u, letter 1, letter p, letter m, maxcl, maax;
maxcl‘- 20000; maax:= 1000; comma:= 87: colon:= 90;
negsym:= if on line_then 65 else 763
orsym:= iF on line then 64 else 79; period:= 88;
left bracket:= 98; Tight bracket:= 99; new line:= 119;
tabsym:= 118; spacesym:= 93; apos:= 120;
bar:= if on line then 67 else 127; letter s:= 28; letter d°~ 13;
letter us= 30; letler p:= 25; lettér m:= 22; letter 1l:= 213
begin integer think time, strategy, litno, depth, start, level,
proof time, inf syst, noax, noth, nocl, lopo, hipo, sym,
bracket counter, addressl, address2, last term or predl, last
term or pred?2, stackpl, stackp2, number of theories, 1i;
integer array axiom[1:maax], clause[1:maxcl], historyl1:maax],
substituTionl 280:359], noparhso 2791, substack?,
- substack2[0:80,1:2];
boolean execute, on;

procedure read heading;
begin

procedure seperator; if sym = comma, ﬁhen readsym else

error(&F, er(15), exit);

sym:= 03 bracket counter:= 0;
think time:= readt(read sym, sym);
if think time < O then exit; seperstor; strategy:= symg
Teadsym; seperator; inf syst:= sym; readsym; seperator;
litno:= readl(readsym, sym); seperator;
depths= readl(readsym, sym), if sym + comms then error(
ﬂ’: er(1 5); ex1‘t),
if inf syst # letter u A inf syst + letter s A inf syst #
Tetter p A inf syst ¢+ letter m A inf syst + letter 1 then
error{{}, er(17), exit);
if strategy + letter s A strategy % letter d then error(
TF, er(16), exit); sym:= 0

end read heading;

integer procedure restart;

. Pegin nlcr; nlcr; printtext(

TXIT you want to try it with another strategy}), nlecr;
printtext({then give a new heading else print 0,}); nler;
read heading; nocl:= noax + noth;
lopos= axiomlnocl] + 2 X clauselaxiom{nocll];
hipo:= clause[lopo] = clauselclause[lopol] = 1; restart:= O;
goto cs

ena;




20

integer procedure additional time;
Pegin printtext(fhow much more time do you want to spend });:
“nlcr; proof time:= proof time + think time; sym:= 0;
think time:= readl(read sym, sym);
if think time < 0 then restart else start:= time;
additional time:=T
end;

procedure time control;
IT ThinK time < time — start then error(
F, er(102), iT on line then additional -time else exit);

boolean Pprocedure constant(é); value s; integer s
comment 80;.660€9;041 0005 -
constant:= s < 10V 8 > 100 A 8 < 1503

boolean procedure function(s); value 8; integer s;
comment O,..e0J9;3
function:= s > 150 A s < 200,

boolean procedure predicate(s); value 8; Integer s;
comment k0 0000795
redIcate:= 8 > 200 A s < 280,

boolean procedure variable(s); value s; integer s;
comment 80,..0.29;
variable:= s > 280 A s < 360,

integer procedure lopoplusi;

begin lopopluel:= lopo:= lopo + 1; 1f lopo = hipo then
“error(Lh, er(101), if on line then restart else exit)

end,

integer procedure hipomini;

begin hipominl:= hipog= hipo = 13 if lopo = hipo then
error{{t, er(101), if on line then restart else exit)

end,

procedure deaf'
bPegin ons= on line; on line:= false end;

procedure hear; if on then on line:= true;

integer procedure readsym;

&




21

begin boolean comment;
comment:= false;

1l: sym:= resym; deaf; prsym(sym); hear; if sym
begin comment:= Teomment; goto 1 end; ~ .
I comment V sym = new line V sym = tabsym V sym = sSpace sym
Then goto 1;

if sym = left bracket then bracket counter:= bracket counter

+ 1 else if sym = right bracket then bracket counters=
bracket counter — 1}
if (sym = colon V sym = period V sym = orsym) A bracket
counter + O then
begin bracke® counter:= 0; error({d, er(12), nothing) end;
if sym > 36 A sym < 63 then sym:= sym — 27;
Teadsym:= sym

329 read sym;

apos then

procedure error(diagnosis, action, termination);
string disgnosis; integer action, termination;
Beagin ——
integer procedure create(expr); integer expr;
comment create is used to bring expr to life;
create:= expr;

nler; printtext(disgnosis); create(action); nler;
create(termination)
end error;

integer procedure exit;
begin exits:= O3
if on line then isstockp:= O else if sym # period then
Tor syms= f_-EEym.whlle sym ¥ period do 3 nler; gofo ex
end; T

integer procedure print(x); value x; integer x;

begin integer i, j, xd3
integer array h[1:81;
print:= X; if x < O then prsym(65); x:= abs(x); xd:= x div 10;
for 13=1, T + 1 while x > 0 do -
Pegin je= i3 hli]T= X = xd X TO0; %= xd; xd:= x div 10 end;
Tor 1s= j step — 1 until 1 do prsym(h[1]) -

end d print;

integer procedure er(n); value n; integer n;

comment for use as 'action® in ferror’;

Pegin nler; teb; prsym(sym); tab; printtext(ferror 3):
er:= print(n); nler

end ex;

integer procedure nothing; comment for use in ‘error!';
nothings:= O;




22

procedure read theory;
begin integer axi, olopo, ohipo;

procedure initiglize;

K T R N g ry

begin integer i;
olopoz= lopo:= 0; ohipos= hipo:= maxel + 15 execute:= true;
noaxs= noths= nocl:= = 1;
for i:= 150 step 1 until 279 do nopar[il:= — 1

end initiglize; -

integer procedure lopo plus1;
begin lopo pluslz:= lopos= lopo + 13

iT lopo > hipo then error({}, er(1), exit)
end; -

integer procedure hipo mini;
begin hipo min T¢= hipos= hipo = 1;

iT lopo > hipo then error(4}, er(1), exit)
end; -

integer procedure no execution(but go on, if); label but go on;
boolean if; comment for use as "termination® in ‘error?;
begin executes= falge; no execution:= 0Oj
12 if if then goto but go on else
begin read sym; goto 1 end —
end no execution; ~ . T

integer procedure no execution on line version(but go on, if,
next clause); label but go on, next clause; boolean if;
begin comment if en error is found in the on line input: the
last clause is read sgain;
no execution on line version:= 03 if on line then
begin axi:= axi =~ 1; nler; lopo:= olopo; hipos= ohipo;
bracket counter:= O3 printtext({last clause again});
nler; isstockps= syme= O3 goto next clause
end
else no execution(but go on, if)
end no execution on line version;

integer procedure read clause;

comment gives the address of s clause in clausel];
Bedietrmnuteintd

begin Integer nol, rec;

integer procedure no execution(but go on, if);

label but go on; boolean if;

N0 execution:= no execution on line version(but go on,
if, next clause);




23

corment now both versions look the same;

integer procedure read literal;

begin comment gives the address of a literal;
boolean negation;
integer predsym, Pp;s

integer procedure read identifier;
begin comment gives the code of an identifier;
integer identifier;
If sym < 10 then
Pegin read identifier:= — readl(readsym, sym);
“goto identifier read
end;
IT sym < 10 V sym > 35 then error(
FF, er(2), no execution(IT sym = orsym then next
literal else if sym = colon then next clause else
execution, Sym = orsym V sym = colon V sym = period));
reagd identifier:= identifier:= 10 X sym; read sym;
if sym < 10 then
begln if sym< I then read identifier;= identifier +
T sym else
begin error(¢h, er(3), no execution(here, true));
here: read identifier:= identifier + sym
end;
Tead sym
end; |
identifier read:
end read identifier;

integer procedure read term;

begin comment gives the address of a term;
integer term;
Term:= read identifier;
if I(constant{term) V function(term) V variable(term))
Then error(
T, "er(l), no execution(if sym = orsym then next
literal else if sym = colon then next clause else
execution, sym = orsymV sym = colon V sym = Pperiod))s
read term:= hipo min 1; clause[hipo]:= term;
if function(term) then read parameters(term);

end read term;

procedure read parameters(pred or fun); value pred or fun;
Integer pred or fun; —
begin integer pari;
pariz= O3 if sym = left bracket then
begin read sym;
nexc parsmeter: read term; pari:= pari + 1;
if sym = comma then
Pegin read sym; goto next parameter end
eise if sym % right bracket then error(
¥, er(5), no execution(}i Sym = orsym then next




el

literal else if sym = colon then next clause else
execution, sym = orsym V sym = colon V sym =
period)) else read sym
end; —
IT nopar[pred or fun] = = 1 then nopar[pred or funl:=
Pari else if noparlpred or funl # pari then error(
&+, erle,_ﬁo execution( if sym = orsym then next
literal else if sym = colon then next clause else
execution, sym = orsym V sym = colon V sym = period))
end read parameters;

read litergl:= Oj
if sym %+ colon A sym #+ orsym then error(
¥F, er(10), no execution(if sym = colon V sym = orsym
then here else execution, sym = colon V sym = orsym
¥V 8ym = period)) else read sym;
here: if sym = negsym then
begin negation:= true; read sym end
else negation:= false; predsym:= read identifier;
iT ipredicate(pred sym) then error(
¥, er(7), no execution(If sym = orsym then next literal
else if sym = colon then next clause else
eXecution, sym = orsym V sym = colon V Sym = period));
read literal:= lopo plus 1;
clause[lopo] := if negation then = pred sym else pred sym;
ppe= hipo min 13 read parameters(abs(pred sym));
lopo plus 1; clause[lopol:= pp; clauselppl:= pp - hipo
_e“_l:lf_i= read literal;

if sym = comma then readsym else if sym = bar then

Pegin noaxs= axl = 1; readsym end

‘else if sym = period then -

Pegin If noax = = 1 then error({}t, er(1l), exit) else
begin nocle= axi = 1; noth:= nocl = noax; goto execution
end

end;

IT sym < 10 then

Pegin if axi ¥ readi(read sym, sym) then error(
£F, er(8), no execution(if sym = colon then here else
execution, sym = colon V Sym = period))

end

else error(

T, er(9), no execution(if sym = colon then here else

execution, sym = colon V sym = period)); olopo:= Lopo;

ohipo:= hipo;
here: read clsuse:= rci= lopo plust; nols= O;
next literals read literal; nole:= nol + 1;

if sym = orsym then goto next literal; clause[rc]:= nol;
next clause:
_c_azx_dg read clsuse;

initialize;

for axis= 1 step 1 until maax do

Pegin historylaxi]:= 0; olopo:= lopo; ohipo:= hipo;
"axiom[axi]:= read clause




25

end;
execution: if sym ¥ period then error(
&}, er(137; exit) else if “lexecute then error(
&, er(i1), exit) —
Eﬁg read theory;

integer procedure print identifier(i); value 1; integer i;
if 1 < 0 then print( — i) else
begin comment i is the code of an identifier;
integer s, d;
Print ldentifiers= i; s:= i div 10; d:= i — s X 10; prsym(s);
if d > O then prsym(d); prsym(93) '
end print identifier;

integer procedure print term(t); velue t; integer +t;
begin comment t is the address of a term, this procedure
delivers the highest address lower than t which does not
belong to the complete term;
integer term;
Term:= clause[t]; print identifier(term);
print term:= if function(term) then print parameter
list(term, t = 1) else t = 1
EEE print terms

integer procedure print parameter list(pred or fun, 1)
value pred or fun, pl; integer pred or fun, pl;
TF noparlpred or fun] >0 then
Pegin comment pred or fun Is the code of an identifier of a
predicate or function,pl is the place in clausel] where its
parameter 1list begins. as in print term the procedure
delivers the first value which does not belong to the
parameter list;
integer i, npf;
npf:= nopar[pred or funl; prsym(left bracket);
for i:= 1 step 1 until npf = 1 do
Pegin pl:= print Term(pl); prsymlcomma) end;
Print parameter list:= print term(pl); prsym(right bracket)
end print parameter list
‘else print parameter list:= pl;

integer procedure print literal(l); value 1; integer 1;
begin comment 1 is the address of a literal, print 1literal
delivers the first value bigger than 1 which does not
belong to the literal,that means: if 1 is not the last
literal of the clause then print literal delivers the

address of the next one;
integer pred;
pred:= abs(clause[l]); if clause[l] < O ‘then prsym(negsym) ;
print identifier(pred);™
print paremeter list(pred, clause[l + 1] = 1);
print literal:=1 + 2
EEE print literal;




26

procedure print clause(address in clause);

velue address in clause; integer address in clause;

begin integer i, n of 1it;
n of 1it:= clause[address in clause] — clause[address in .
clause] div 100 X 1005 if n of 1it = O then
begin praym(100); prsym{T01); goto clause printed end;
address in cleause:= address in clause + 13
for i2= 1 step 1 until n of 1it = 1 do
Pegin address in clause:= print literal(address in clause);
“prsym(orsym)
end;
Print literal(eddress in clause);

clause printeds

ﬂg print clause;

procedure print axiom(address in axiom); value address in axiom;
integer address in axiom;
begin nlcr; print(address in axiom); prsym(colon);
print clause(axioml[address in axiom]
end;

integer procedure last of(term); value term; integer terms
IF Hunction{clauselterm]) then ~— -
begin if variable(clanselterm]) V constant(clause[tem]) then
TTast of:= term
end
else
Pegin comment last of gives the last address which still
does belong to term;
integer 1, 1o, nopart;
nopart:= noparlclauselterml]; los= term;
for 1:= 1 step 1 until nopart do loz= last of(lo — 1);
Tast ofs= To
end lagt of;

integer procedure subsym(term or pred, last term or pred,
stackp, address, substack); value term or pred;

integer term or pred, last term or pred, stackp, address;
integer array substack;

begin Integer t, clt;

procedure remlrsion(term), value term; integer term;

Pegin stackps= stackp + 1; substack[stackp,i]:= term;
substack|stackp,2] := last of (term)

_e_zl_g recursion;

if term or pred + last term or pred then
DPegin stackp:= — 1; last term or pred:i= term or pred;
T3If stackp = = 1 then

begin if predicate(abs(clause[term or pred])) then



27

begin stackp:= stackp + 13
substack[stackp,1]:= clause[term or pred + 1] = 13
substack(stackp,2]:= clause[term or pred + 1] —
clausel clause[term or pred + 111;
addresss= term or pred;
clt:= subsym:= abs(clause[term or pred]); goto ready
end else recursion(term or pred)
end
ends™

res if substack[stackp,1] < substackl[stackp,2] then
begin stackp:= stackp = 1; if stackp > — 1 then goto re end;
I’f stackp = — 1 then
Pegin address:= address — 1§ clt:= ~ 1000; subsym:= 1000;
Tgoto ready
end;

k: address:= t:= substack[stackp,1]; substack[stackp,ﬂ =t - 13
clte:= clause[t]; if variable(clt) then
begin if substitution[clt] > O them
T begin recursion(substitution{SIET); goto k end
end;
subsym:= clt;

ready:

end subsym;

integer procedure subsyml(term or pred), value term or pred;
integer term or pred;

‘Subsyml 1= subsym(term or pred, last term or predl, stackpl,
addressl, substackl);

integer procedure subsym2(term or pred); value term or pred;
integer term or pred;
SubsymP:= subsym(term or pred, last term or pred2, stackp2,
address?, substack?);

boolean procedure unifiable(predl, pred2); value predl, pred2;
integer predi, pred2; —
Pegin last term or predl:= last term or predl:= 0O;

begin integer t1, t2, J;

boolean procedure substitution control(var, i); value var;
integer var, 1; -
begin comment delivers true if a substitution is still
possible else false, a side effect is that the
substitution is noted down in substitution[];
integer parcount, u, subvar;
subvar:= if i = 1 then addressl else address2;
if IfunctIon(if 1 = 1 then t1 else t2) then
begin substitution confTrol:= true;
substitution[var]s= subvar; goto ready
end; -
. Parcount:= nopar[if i = 1 then t1 else t2];




28

if parcount = O then goto true;

l: uz= if 1 = 1 then subsyml (predl) else subsym2(pred2);
parcount:= parcount — 1 + (if functIon(u) then nopar[u]
else 0); ‘

If 4 = var then substitution control:= false else if

Parcount > 0 then goto 1 else
true:

begin substitution control:= true;

“Tsubstitution[var]s= subvar —

end;

ready:

end substitution control;

for j:= 280 step 1 until 359 do substitution[jl:= 0;

1 ETz= subsynﬂ (predl’); to:= subsym2(pred2);
if ¥1 TOOO V 12 = 1000 then
begin 1f £1 = 1000 A t2 = 1000 then unifiables= true end
Tlse if t1 = “t2 then goto 1 else it (if varisble(T1) then
substitution conTrol(Ei, 2) else if variable(t2) then
substitution control(t2, 1) €lse Ffalse) then goto 1 else
unifiables= false

end

E’ri'@_ﬁnifiable;

procedure tell history(cl); value cl; integer cl;
I historylcl]l > O then
begin integer prell’, prcl2 » prel;
prelis= history[cl] div maeax;
prel2:= historylecl] = prell X masx; if prell < prcl?2 then
begin prel:= prell; prell:= prel2; prell:= prel end;
TeITl nistory(prell); tell history(prcl2); print axiom(cl);
printtext(¢:fromb); print(prell); prsym(93); print(prel2);
historylclls:= 0;
end tell history;

procedure line print(nocl, ci, c2); integer nocl, cl, c2;

begin deaf; print axiom(nocl); printTextl{L:fromb); print(cl);
preym(93); print(c2); hear

3:_19_ line print;

procedure lookaheads
Pegin integer i;
Tor T:= 1 step 1 until nocl do if clauselaxiom{i]] -
Clause[axioml1]] div 100 X 100 = 1 then
begin if clausel axiomlnocl] + 1] = = clauselaxiom[1] + 1]
then
Pegin if unifiable(axiom[i] + 1, axiomlnocl] + 1) then
Pegin nocl:= nocl + 13 deaf; nler; printtext(flevel= $);
abstixt(l, 0, level + 1); hear;
axiom[nocl]°- lopoplust; clause[lopo]s=
line print(nocl, i, nocl = 1);
. history[nocl]le:= i X maax + noecl = 1; nler; nler;




29

printtext(flevel= }); print(level + 1); printtext(
proof time= }); print(proof time + time — start);
nler; tell history(nocl);
if on line then restart else exit
end
end
end
@ookahead;

procedure take last;

begin Llopo:= axiom[nocl] = 13 nocl:= nocl = 13
hipo:= clause[lopo] — clauselclausellopo]]l = 1

EIE take last;

procedure resolve(el, ¢2); value el, ¢2; integer cl, c2;
DPegin integer adel, ade?, 13T, 1it2, i, J, ks
" boolean first;
Time control; adel:= axiomlct]; adel:= axiomlc2];
1it1:= clause[adel] — clause[adel] div 100 X 100;
lit2s= clauselade?] = clause[ade2] TIv 100 X 100;
firste= true; if 1itl + 1it2 — 2 > Titno then goto no;
for ig= T step 1 until 1it1 do
Tor je= 1 BTep 1 tntil 1it2 d0 if clauseladel + 2 X 1 = 1] =
=T X clauselade2 + 2 X J = T] Then
begin if first then I
““begin meke diff(adel, ade?); first:= false end;
IT unifiable(adel + 2 X 1 — 1, ade? + 2 X J — 1) then
Pegin nocl:= noecl + 13 if nocl = maax then -
““Pbegin nler; print(lopo); print(hipo); error(
TEF, er(101), if on line then restart else exit);
end; -
IF 1it1 + 1it2 = 2 then
Begin axiomlnocll:="Topoplusi; clausellopol:= 0;
Tine print(nocl, c1, c2);
historylnoecll:= ¢1 X maax + ¢2; nler; nler; printtext(
flevel= $); print(level); printtext(
< proof time= }): print(proof time + time — start);
nler; tell history(nocl);
if on line then restart else exit
end;
Topoplusl; axiomlnocl]:= lopo;
clause[lopols= 1it1 + 1it2 = 2 + level X 100;
for ks= 1 step 1 until 1it1 do if k + 1 then
Pegin if Tmeke resolvent(adcl + 2 X k) then goto no end;
Tor k3= 1 step 1 until 1it2 do if k # j then
Pegin if “meke resolvent(adc? + 2 X k) then goto no end;
it 1itl + 1it2 = 3 then
Pegin if notdupl then
“begin line print(nocl, ci, c2);
Thistorylnocl]l:= el X maax + c2; lookahead
end;
goto no
ends




30

1f notaut then
Pegin if notdupl then
begin line print{nocl, ci, c2);
“historylnocll:= ¢l X masx + ¢2;
end
end
~end
end;
no:
end resolve;

procedure meke diff(el, c2); value el, c2; integer cl, c2;
begin integer i, j, 1it, ad, adr, cl, k, sub;
“Tor Ti= 280 step 1 until 359 do substitution[il:= 0;
TiT:= clauselcl] = clausele1]™div 100 X 1003
for is= 1 step 1 until 1it do =
Pegin adr:= clauselcl + 2 X 1]; ad:= clauseladr];
TTor j:= 1 step 1 until ad do if variable(clauseladr = j]1)
Then substItutionlclauseladr = jll:= 1
end;
TiT:= clausel[c2] ~ clausel[c2] div 100 X 1003
for i3= 1 step 1 until 1it do =
Pegin adr:= clauselcs + 2 X 11; ad:s= clauseladr];
T for j:= 1 step 1 until ad do
Pegin cl:= clauseladr — j13 if variable(cl) then
“Pegin sub:= substitution[cil;
TiT sub = O then substitution[cll]:= 2 else if sub < O
Then clauseladr — jl:= — sub else if Sub = 1 then
Tor k:= 280 step 1 until 359 do if substitutionlk] = O
then -
Pegin substitution[k]:= 1; clauseladr = jl:= k;
“substitution[ecl]le= = k; goto next
end —
end;
nexts
end
end
end meke diff;

boolean procedure make resolvent(pred); value pred; integer pred;
begin integer address, newnot, fudepth, T, parcounts™
make resolvents= false; parcounts= fudepth:= newnot:= O;
address:= pred - 13 clausellopoplust]:= -clauseladdress];
clause[lopoplusi]s= hipominl; last term or predl:= 0;
subsyml (address);
for t:= subsyml (address) while t # 1000 do
begin newnot:= newnot + 15 clause[hipominT]:= t;
“iF function(t) then
Pegin fudepths= fudepth + 13 parcount:= parcount + nopar[tl;
TTIf fudepth > depth then
Pegin take last; goto no end
end -

else parcount:= parcount — 1;




31

if parcount = 0 then fudepth:= O;
end;
clausel clause[lopo]l:= newnot; make resolvent:= true;

no:
end make resolvent;

boolean procedure notdupl;
begin integer i, Jj, k, n, 1it, adl, ad2, nol, no2, no;
boolean yes;
notdupls= true; adl:= axiom[nocl] — 13
lite= clauSeladl + 1] = clauseladl + 1] div 100 X 100;
nocl:= nocl = 1; -
for is= 1 step 1 until nocl do if clauselaxiom[i]] =
CTauselaxiom(1]] TV 1700 X 100 = 1it then
begin ad2:= axiomli] — 13
for js= 1 step 1 until 1it do
Pegin yes:= true; -
~for k:= 1 ‘step 1 until 1it do
Pegin if cTauseladT + 2 X jT = clause[ad2 + 2 X k] then
“begin nol:= clauseladl + 2 x j + 1];
Tnod:= clauselad2 + 2 X k + 1]; no:= clause[no1];
for n:= O step 1 until no do if clause[nol = n] %
Clause[no? = n)] then goto noo; yes:= false;

goto next
end;
noos
end;
next: if yes then goto nex
end; -
goto dupl;
nex:
end;

nocl:= noel + 13 goto ne;
dupl: notdupl:= falsej nocls= nocl + 1; take last;
ne:
end notdupl;

boolean procedure notaut;
begin integer i, j, address, 1it, terml, term2, ad, k;
notaut:= true; address:= axiomlnocl];
lits= clauseladdress] — clauseladdress] div 100 X 100;
for it= 1 step 1 until 1it do -
Pegin for Ti= 1 + 1 step 1 until 1it do if abs(clause[address
TF 22X J=1]) = avs(clauseladdress ¥ 2 X 1 — 1]) then
begin termls= clause[address + 2 X jl;
T term2:= clauseladdress + 2 x il; ad:= clause[termi];
for k:= O step 1 until ad do if clause[term! = k] #
clausel term® — k] Then gotc no;
if clauseladdress ¥ 2 X g = 1] = = clause[address + 2 X
T — 1] then
begin notaute:= false; take last end
else ' -
* Tegin lits= 11t — 13
Ve




32

clause[address]:= clause[address] = 13-
for ke= address + 2 X J + 1 step 2 until lopo do
Pegin clauselk = 1]:= clauselk + 117+ ad + 13
clause[k = 2]:= clausel[k]
end;
Topoz= lopo = 2;
for k:= term! — ad — 1 step — 1 until hipo do eclauselk
Fad + 1]:= clause[k]; Ripo:= hipo + ad + 17
end
end;
nos
end
end notaut;

boolean procedure bel(adl, ad2);
begin integer hisl, his2;
his1i= history[ad2] div maax;
his2:= historyl[ad2] =hisl X maax;
bels= if hisl = adl V his2 = adl then true else if hisl! = O
then false else if Tel(adl, his1) Then belladl, his2)
else true
EEE d bel;

boolean procedure belong(addressl, address2);
begin integer levl, lev2;
Tevit= clauselaxiom|address1]] div 100;
lev2:= clauselaxiomladdress2]] dIv 100;
belongs= if levl > lev2 then béTT"ddressE, addressl) else
if levl < Tev2 then bel(address!, address2) else false

eﬁaqbelong,

procedure fill box(h, f); value h, f; integer h, f;
begin integer i, j, nol, nor, nolT, norl, nool;
Tevel:= h; nool:= nocl; deaf; nler; printtext({level= });
print(level); hear;
for i:= 1 step 1 until nool do
Pegin nor:= clauselaxioml1]13 nol:= nor — nor div 100 X 100;
“Tnors= nor div 100; -
for js= 1 ¥ 1 step 1 until nool do
Pegin norl:= clauselaxiomljll;
noil:= norl = norl div 100 X 100; nori:= norl div 100;
if nol +noll =f + 2 A(nor=h=1Vnorl =hF=1)

Then
Pegin if cond(i, j) then resolve(i, j) end
en - - -
end |

end Till box;

procedure search diagonal;
egln integer diag, h;
“for dlag:= 1 step 1 until 100 do




33

begin deaf; nler; printtext(fdiagonal= }); print(diag); hear;
for h:= diag = 1, diag = 2 step = 1 until 1 do fill
" Pox(diag = h, h) _'
end;
Printtext(4all resolvents until diag 100 are made})
end search diag;

boolean procedure cond(address1 B addressE);

conds= 1f inf syst = letter u then true else if inf syst =
letter § then (if level = 1 then (address] < noax + noth A
addressl S noax) V (address? < noax + noth A address2 > noax)
else true) else if inf syst = letter p then
pluspladaresst) V plusp(address?) else IT inf syst = letter m
then minp(addressi) V minp(address?) else if level = 1

Then (addressl < noax + noth A addressi > noax) V

Taddress2 < noax + noth A address? > noax) else if address! >
noax + noth A address2 > noax + noth then beTong(addresst,
address?) else true;

procedure search;
begin integer i, Jj, noold, nonew;
nonews= Q;
- for level:= 1 step 1 until 100 do
Pegin deaf; nlcr; printtext({level= }); absfixt(lL, 0, level);
hear; noold:= nonew; nonew:= nocl; .
if noold = nonew then error(
¥, er(103), if on line then restart else exit);
for i:= 1 step 1 until nonew do
Tor j:= (if‘ 1 < noold then noold + 1 else i + 1) step 1
until nonew do if cond(I, ) then resdIv e(i, J)
end;
prlnt‘be}’t({ all resolvents until level 100 are made })
end search;

boolean procedure minp(address in axiom);

integer address in axiom;

begin integer address, number, i;
minp:= false; address;= axiom[ address in axiom];
nwn't)>er'- Z % (clause[address] — clause[address] div 100 x
100);
for 13= 1 step 2 until number do if clausel address + i] > O
Then goto no; minp:= true;

nos

end minp;

boolean procedure plusp(address in axiom);

integer address in axiom;

begin integer address, number, i;

Tplusp:= Talse; address:= axiom|address in axiom];
num‘t))er"— 2 X (clauseladdress] — clause[address] div 100 x
100);




34

for is= 1 step 2 until number do if clause[address + 1] < 0
Then goto nmo; plusp:= true; ’

no:

end plusp;

number of theories:= if on line then 1 000 000 else read; i:= 03
1: i:= 1 + 1; printtext($theory numbert); print(i); nler;
isstockp:= 0; read heading; read theory;
cs: starte= time; proof times= 0O;
if strategy = letter s then search else search diagonal;
ex: if i1 < number of theories then
begin new page; goto 1 end;

end
end

end™



3.3

35

List of error messages

Errors in the heading:

15: Heading incorrect.

16: Unknown strategy letter.

17: Unknown inference system letter.

Errors found during the translation of the theory:
[

oN U1 oW N

-3

ae

e

101
11:
12:
131
1h:

Memory exhausted.

No predicate or term where expected.

Digit > 3 used as ALdgit.

No term where expected.

Parameter list not concluded with }.

Number of parameters of a'predicate or function
with former occurrencés.

No predicate where expected.

: Clause number is incorrect.

Clause number is missing.

Literal is not preceded by a colon or by an v,

does not agree

No execution because there are errors in the input.

Period is missing.

Bar is missing.

Errors found during the execution:

101: Memory exhausted.
102: Time exhausted.

103: All resolvents are made but the empty  clause was not generated.

3.k

Examples

As a comparison between different inference systems and search

strategies we give here gll results of one example.

Theory in clause form (see section 1).

1

2:

Plglx,y),x,y),
P(X,h(x,y),y):



36

Plx,y,6(x,¢)),

¢ 2 Plx,y,z) v 5Ply,u,v) v qP(z,u,w) v Pix,v,w),
- P

Sy Ut S W

{
(
(x,4,2) v =Ply,u,v) v aPx,v,w) v Plz,u,w)]
: = Pli(x),x,5(x)) 'this is the negated theorem'.

Proofs: (all of level L)

inf syst. search strategy proof time " number of gener-
sec. ated clauses
u 4 no proof 704
u d >3 109
P 4 38 81
P d 38 81
m, 5, £ A 11 | 38
m, &, £ d 6 26

1.  proof using unrestricted resolution or plus p resolution:

7: =aPls,81,z) v =P(s,v,w) v Plz,h(s1,v),w): from 5 and 2
§: = Plg(s1,z),v,w) v Plz,h(sT,v),w): grom 7 and 1

9:  Plw,hlv,v),w): from & and 1 |

10:  [0O: grom 9 and 6.

2.  proof using minus p, set of support or linear resolution with set

of support:

7: =P(5,51,§(82)) v = P(s1,82,83) v =P(s,83,5(52)): fnom 6 and 5
&: = P(s1,82,v) v °Plglsl,5(s2)),v,5(82)): grom 7 and 1

9: = P(v,82,v):4nom & and 1

10:  0O: grom 9 and 2.

Mendelson [2] gives on page 40, a theory L1 (an axiom system for the
propositional calculus). vV and = are the primitive connectives. A o B

is used as an gbbreviation for = A v B. There are four axioms:

1. AV ADSA,
A>SAVEB,
AVvBosBVA,

.. (BoC) o (AVB o AvVC).

= W N



37

The only rule of inference is modus ponens. As an exercise there is
asked to prove in L1: A Vv —A, We did this exercise with the theorem~

prover (in 228 seconds).

Input:

300, D, P, 5, 3,
1: PIHIF(XX) X)) "AXTONT Y,

2: PH(X,F(X,¥))) 'AXIOMZ',

3: PH(F(X,Y),F(Y,X))) TAXIOM3',

4: PHHIY,Z) ,HIFIX,Y),F(X,Z}))) 'AXIOM4',

5: xP(H(X,Y)) v P{F(G(X),Y)) '"H(X,Y) IS SHORT',

6: mP(F(G(X),Y)) v P(H(X,¥)) '"FOR F(G(X),Y)',
7:=PH(X,Y)) v 2 P(X) v P(Y) "MODUS PONENS'/

§: 7P(F(A,G(A))) 'NEGATED THEOREM'.
proof':

9: =P(H(S,S1)) v P(H(F(S3,8),F(S3,81))): FROM 7 and 4
10: P(H(F(S2,F(Z,2)),F(S2,Z))): FROM 9 and 1

11: P(F(G(S2),F(S2,Y))): FROM 5 and 2

12: ~P(H(F(G(S),F(S,S1)),83)) v P(S3): FROM 11 and 7
13: P(F{G(Z),Z)): FROM 10 and 12

14: =P(F(S,S7)) v P(F(S1,S)): FROM 7 and 3

15: P(F(Z,G(Z))): FROM 13 and 14

T6: [O: FROM 15 and §.

We used the theorem prover to prove that for every set x, xnx = x. As

axioms we took:

1. Vx, vy Az XNY = Z,

2. Vx,y 3z XUy = z,

3. Vx, ¥ XNy = ynx,

L, vx, ¥y xUy = yux,

5. Vx, ¥, 2 xn(ynz) = (xny)nz,
6. ¥x, ¥, z xu(yuz) = (xuy)uz,
T. Vx, ¥y xn(xuy) = x,

8. Vx, vy xu(xny) = x.



38

In the input P(x,¢,z) could be interpreted as: xny = z, and Q(x,y,z)

as xUy = zZ.

Input:

100, d, p, 6, 3,

1: Plx,y,4(x,y)),

2: Qlx,y,9(x,y)),

3: =Plx,y,z) v Ply,x,z},
4: =Q{x,4,2z) v Qy,x,z),
5: aP(x,u,w) v = Ply,z,u
6: 4Plv,z,w) v X,Y,v)
7
g
9
0
1

<

<

-~ Plx,y,v} v Plv,z,w) ‘'axiom 5a',

<

- Ply,z,u) v Px,u,w) 'axiom 5b',

<

P(
= Q(x,u,w) v = Q( z,u) v =Q(x,y,v) v Qlv,z,w) 'axiom 6a’,
2 Qx,9,v) v =Qly,z,u) v Qx,u,w)  Taxiom 6b',
Plx,z,x} ‘'axiom 7',

<

: = Q{v, z,w)

(
:-wQ(X y:Z)

P{

P{

<

<

X,4,z) v Qx,z,x) 'axiom 8'|

a,a,a) 'negated theorem'.

proof: (in 3 seconds)

12: Q(s,4(5,41),8) ¢ from 1 and 10
13: P(s,5,8): grom 12 and 9
14: 0O: grom 13 and 11.

References

[1] D. Grune, Handleiding milli-systeem van de EL X8, Mathematisch Centrum.

°

[2] Elliot Mendelson, Introcduction to mathematical logisc, D. van

Nostrand Company, Inc. Princeton, 1964, °



L.

39

Possible extensions to the program

Instead of restricting the inference system to a resolution rule
only, one can add another inference rule called factoring. If a
clause A contains a literal 1 and a literal k of the same sign and
1 and k have a most general unifier o, then one can infer as
factor a new clause (A-{l})o. Factoring combined with a resolution

rule gives a complete inference system.

We might implement more advanced search strategies. For example
the upward diagonal search strategy. This is a diagonal search
strategy i.e., all clauses of cost g are generated before geners-
ting any clause of cost g + 1. But the order of generating clauses
of the same cost (diagonal) can be changed,

In section 2.figure 1 we draw up sll clauses of complexity 1 and
cost g first, then those of complexity 2 and so on. Upward diagonal
search generates clauses of let us say complexity ¢ and cost g
first, if possible; if we then generate a clause of complexity £
and cost g (g>f) we must thereafter generate all clauses of cost g
and complexity > £. (See [2] and [1].)

The program either yields the answer yes or it does not stop. If
the answer is yes the way the null clause was found is printed.
Sometimes (for example in applications to question-answering
systems) we want to know more: namely, we want to know which sub-
stitutions were made:

Example:

Theorem: 3AxR(x); negation: Vx-R(x).

If we know the substitutions performed during the proof we can
know what X satisfies the condition R.

Green [ 3] has suggested to replace the negated theorem T by

T UV ANSWER {...)] where the parameters of ANSWER are all the varia-
bles occurring in T. Instead of deriving the null clause we then
derive a clause that only contains the predicate ANSWER: the terms
of ANSWER then display the substitutions performed on the respec-

tive varisbles.



Lo

Another way to get information consists of extracting the informa-

tion from the resolution tree after the null clause has been found;

this has been suggested by Nilsson and Luckham [L]:

In the resolution tree, at every place where the negated theorem
occurs, it is replaced by a tautology; if the negated theorem, for
example, is P(x,y), we replace it by P(x,y} v =1 P{x,y).

Instead of deriving the null clause, then the theorem is derived
that has been proved, where Skolemfunctions are handled in a
specific way. The advantage of this method to that of Green is
that we do not need to take the literal ANSWER with us during the

whole search and yet we find the same or even more information.

Before using resolution rules we can split the theorem into a
number of separate subtheorems which are independent and each of
which is easier to prove. This we call the use of subgoals as

mentioned by Ernst [5].

One can think of implementing a special rule for easier handling
of the equality symbol. Something has been done using paramodulation
[6] or E-resolution but not many practical results have been ob-

tained,

Apart from the theorem proving program we can think of a program
which translates sentences in first order predicate logic into
clause form or even from a subset of Dutch into first order logic

and then into clauses.

We want to apply other artificial intelligence techniques to theo-
rem proving: for example the and-or-tree strategy of Slagle [T]

(see also Kowalski [1]) and a learning system mentioned by Water-

man [81.



b1

References

L1]

[2]

(3]

(4]

[5]

[6]

L7l

[8]

R. Kowalskl and D. Kuehner. Linear resolution with selecﬁion
functions. Memo 34, Octeber 1970. Metamathematics Unit.

Edinburgh University.

R. Kowalski. Search strategies for theorem proving. Mach. Int. V
(eds. Meltzer and Michie) (1970), 181-202.

C. Green. The application of theorem proving to questien-answering
systems. June 1969. Art. int. group techn. note 8, SRI
project T4k, Stanford.

D. Luckham and N.J. Nilsson. Extracting information from resolutidn
proof trees. Artificial Intelligence vol. 2, (Spring 'T1),
275k,

G.W. Ernst. The utility of independent subgoals in theorem proving.
Information and Control 8, (1971), 237-251.

L. Wos and G. Robinson. Paramodulation and set of support. Symp. on
Aut. Dem. Lecture notes in mathematics 125. (1970),
163-191.

J.R. Slagle and C.D. Farrell. Experiments in automatic learning for

a multipurpose heuristic program. CACM vol. 14, 91-99,

D. Waterman. Generalization learﬁing techniques for automating the
learning of heuristics. Artificial Intelligence vol. 1,
(1970), 121-170.






