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0. Introduction 

An automata theoretic model for developmental growth in filamenteous 

organisms has been proposed by Lindenmayer (1968). In a (k,l) L-System 

we rewrite every letter of a string simultaneously according to its 

context, consisting of the k left and 1 right letters. Here we shall 

introduce Context-Variable Lindenmayer-Systems, where a letter of a 

string is rewritten according to a selection of letters from that 

string. The criterion for the selection is an attribute of the letter 

concerned. These Systems will appear to be especially suited to model 

certain properties of "full-growthness" and "regeneration". The 

accompanying languages a.re called Context-Variable languages. 

1. Context-Variable Lindenmayer Systems 

Differences between Chomsky generative grammars and Lindenmayer Systems 

as language. generators are: 

(i) In the former one letter of a string is rewritten in each time 

step while in the latter all letters a.re rewritten simultaneous­

ly. 

(ii) In the Chomsky approach only terminal strings are elements of the 

language while in L-Systems all strings derived a.re elements of 

the language, i.e. no distinction is made between terminal and 

non terminal letters. 

The main feature that distinguishes Context-Variable L-Systems from 

(k,l) ones is that in Context-Variable L-Systems the relative place of 

the context of a letter can vary from time to time and from place to 

place. This feature makes the concept difficult to handle but we shall 

give some simple examples below. In these examples the Systems seem to 

strive at attaining a certain full-grown size and structure, which, 

however, is not terminal. Cells, i.e. letters, are changing state, 

dividing, and dying all the time. When we chop off a piece we observe 

a certain regenerative behavior .. 
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Def., 1,1. A Context-Variable Lindenmeyer System or C-V L-System is a 

3-tuple G = <I,o,cr> such that 

( i ) The alphabet I is a nonempty finite set and elements of l are 

called letters. 

(ii) The transition function o maps strings x € I+ onto strings y € I* 
. * . such that ,each element b4 of y has a superscript T. e: I , i.e. 

~ J 

·, ·2 T 

o ( a 1 a2 ••• an ) = b b ... b m 
1 2 m 

where 

X = a 1a2 ... a 
n 

T 1 T2 T 

y = b1 b2 b m 
m 

T. = p (j \ (j) ... p (j) 
~j < m 

J 0 1 n. 
with J 

a. ,b. 
1 J € I 

In the above definition o is deterministic; the generalization to 

the non deterministic case is done in the .obvious way. In this 

report we shall only be concerned with the deterministic case, 

(iii) The axiom cr is a word over I, each letter possessing a super~· 

script which is a string over I, i.e. 

where 
.,. = p(j)p(j) 
L j O 1 

T 
am 
m 

~ j < m. 

We also call the axiom the initial description of the C-V · 

L-System. 
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Remark:~. The superscript T. = p(j)p(j) ••• P(j) selects in string 
J O 1 n. · 

J 
b1b2 ... bj •.• b~ the context h(bj) according to which bj is going 

to be rewritten: 

h(b. ) = b ( . ) b (.) 
J j+p J j+p J 

0 1 

If J. + p~j) < O or if j + p~j) > m we substitute the empty word A for 
J. - J. 

b (")in h(b.). We will henceforth assume that Pbj) = 0 and omit Pbj) 
j+p. J J 

J. 

from the superscript of b .• 
J 

The C-V L-System generates words as follows: 
T1 T2 Tm 

Let x = a
1 

a
2 

am be a string. Then x generates y directly. written 

as x ........ y, if 

and for every j , .::_ j .::_ m, 

with 

T 
m 

a 

(l 
m 

m 

T • • 
J 

denotes the reflexive and transitive closure of~ and x *(k)"' y 

denotes a chain of length k: 

* d . . *(k) If x==P- y we say x pro uce$, generates or derives y, and if x ~ y 

then y is derived ink steps from x and xil.il y is a k-derivation of 
T 

1 
T

2 
T 

y fro~ x. A string x = a 1 a2 amm is called a description, and an 

element of xis called a cell. 
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Def. 1.2. A C-V L~Language is a set L(G).::. l* where 

Example 

Let 

Then 

L(G) = a I a n 

-1 +1 G = <{a}, {a+ a a , aa + A}, a> 

-1 +1 -1 +1 -1 +1 -1 +1 -1 +1 a~ a a => a a a a =:;;, a a a a 

~ ... ~ -1 +1 -1 +1 a a a a ~ 

We notice that when the description has reached a certain full-grown 

size it does not change any more although the individual letters cer­

tainly are no4 terminal or static, i.e. letters are dividing and dying 

all the time but the structure, complete with context relations, stays 

unaltered. 

The language generated by this example is 

L(G) = {a, aa, aaaa}. 

Let G(k) = <{a}, {a+ a-ka+k, aa + A}, a>. 

The language produced by G(k) shall be called La(k). 

Then La(1) = {a, aa, aaaa}. 

In a similar way we obtain 

La(2) = {a, aa, aaaa} 

La(3) = {a, aa, aaaa, aaaaaaaa} 

La(4) = La(3) 

La(5) = {an I n = 1,2,4,8,12} 

La(6) = La( 5) 

etc. 
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La(o) = {).,, a} 

L a(-1) = {).,, a, aa} 

L a(-2) = {ljl,, aa, aaaa} 

La(-3) = La(-2) 

etc. 

We describe the general form of an La(k)-language by: 

Theorem 1. Let G(k) and La(k) be as above. 

a) Fork> 0 and k is even 

2t 2 2k 
= {a I O 2- t 2- log(k) + 1} u {a }. 

Fork> 0 and k is odd 

b) For k < -1 

c) 

Proof. By ot( a) we mean a1a2 a . if n 

*( t) 
a;a2 

. 
a ======-" ... a . n 

a) Fork > 0 

( i) 2 
lot(a)I 2t < k *) t 2- log(k) . = 

Ix I denotes the length of x. 
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There are no cells a:k in ot(a) such that production rule aa ➔ A 
1. . . I t+1 ( ) I t+ 1 is to b~ applied. Therefore all cells d1.v1.de and o ~. = 2 . 

(ii) 21og(k) < t .:::_ 21og(k) + 1. 

F 11 11 +k d -k (i>O), such that 2i+k < 2t pro-or a ce s a2i an a t . _ , 
2 -21.+1 

duction rule aa ➔ A will be applied. Let j = max t(i); then 
t 2i+k<2 

there are 2j cells in o (a) such that aa ➔ A will be the applied 

production rule. Fork is even: 2j+k = 2t or 2t-2j = k. 2j cells 

disappear and k cells divide in the next production, so 

lot+ 1{a)I = 2k •. Fork is odd 2j+k = 2t-1 or 2t-2j = k+1. 2j 

cells disappear and k+1 cells divide in the next production, so 

lot+ 1(a)I = 2k+2. 

(iii) 2 t > log(k) + 1. 

The last production gave us lot(a)I = 2k (k even), so half of 

the cells-divide and the other half disappears in the next pro­

duction: I c$ t+\a) I = 2k. For k is odd we get Io t+1( a) I = 2k+2. 

b) is proven 1.n a similar wa;y as a). 

c) follows from the productions. 

Corollary u 
kd 

a ) 4n I L (k = { a n .::_ 0} u {a, aa}. 

The C-V L-Systems we have been considering all start from a single 

cell, and, according to the predetermined genetical instructions (i.e. 

o and the specification of k),they grow at an exponential rate until 

the full-grown size is reached but for one move. Next the C-V L-System 

grows on the remainder and stays at the same size and structure, 

although at each generation individual cells disappear and divide. Note 

that there is a limited interaction all the time between the cells to 

achieve this goal. 
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We can investigate regenerative processes in these systems, by 

removing part of the (full-grown or growing) description. The missing 

part then is regrown again. When we divide a description into several 

parts, all of these.will eventually reach a full-grown stage, This is 

reminiscent of the remarkable regenerative properties of flatworms. 

The discussed C-V L-Systems are very simple, i.e. there is no differen­

tiation of cells. It would be interesting, to investigate similar re­

generative processes in more complex C-V L-Systems, e.g. with more 

cellular states. Does there exist a compl~xity bound, e.g. expressed 

in the size of the"alphabet (and presumably o), abov~ which only 

partial regeneration is possible?· 

We may qualify questions like this by distinguishing several kinds of 

regeneration, e.g. 

(i) Starting with one cell in a special state, i.e. reproduction. 

(ii) Starting from arbitrary parts of a full grown description. 

(iii) Starting from arbitrary parts of a description at some stage of 

the growth process. 

(iv) Starting from select~d parts removed from the full grown descrip­

tion, etcetera. 

Note that there is a difference between cases where we remove an end 

part of a full-grown description, and cases where we remove a middle 

part, We illustrate this with the following example (k=2). 

The full grown description is: 

-2 +2 -2 +2 a a a a 

Regeneration with the left-end (skin) cell removed: 

+2 -2 +2 -2 +2 -2 +2 a a a ~ a a a a 

The two cells right have divided, while the new leftmost cell has 

disappeared in the production. Regeneration with the third (middle) 

cell removed: 
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-2 +2 +2 -2 +2 -2 +2 -2 +2 -2 +2 -2 +2 
aaa ~aaaaaa =="aaaa 

All three cells divide in the first production. In the second produc­

tion only the two outermost cells divide and the others disappear: the 

full-grown size is reached. 

We observe that the removal of different parts of the full-grown descrip­

tion may yield different courses for the regenerative process. Th~ 

above is suggestive of biological interpretations like the surrounding 

of a wound by wound-tissue which is discarded after the healing process 

has been completed, 

In the appendix we shall consider some closure (or rather non-closure) 

properties of La(k) languages, so as to get an insight into what 

place the considered structures take with respect to the other language 

generating devices. 

2. The Extended French Flag Problem 

Usually the French Flag problem is states as follows: suppose we have a 

string of cells all of which a.re in an identical state but because of 

some disturbance produce the pattern of a French Flag, i.e. one third 

red, one third white and one third blue. Moreover, when we cut off any 

piece of it which is large enough it produces this pattern again. 

The above is supposed to be (e.g. Herman, 1972) a meaningful statement 

of problems of biological regeneration. However, as we have stated be­

fore, what seems more meaningful is the design of structures which, 

starting from a single cell,attain a certain full-grown stage, no cell 

staying static, and furthermore, .. when we chop off a piece of this 

structure regrow. the missing piece until the full-grown stage has 

been reached again. 

When we discuss the French Flag in this context what we want is: 

(i) One cell divides and gives rise to a full-grown French Flag of a 

certain size which retains the same pattern and structure while 

individual cells are disappearing and dividing all the time. 

(ii) When we chop off a piece of the full-grown French Flag it regrows 

the missing piece. ,, 
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We will present a C-V L-System which does (i) and (ii). 

As the system has to reach a certain full-grown size, clearly the pro­

duction rules depend on this size. When we want a different full-grown 

size we will have to find a new set of productions. 

Furthermore, in the discussed system the a's serve as some kind of 

"head" of the structure, i.e. the front pa.rt always regenerates a new 

end pa.rt but an_end pa.rt does not always regenerate a new front part. 

When pa.rt of the head is contained in it, however, it does. The biolo~ 

gical interpretation of this phenomenon is so obvious (lizards!) that 

such a kind of partial regeneration has not ~o be justified further. We 

may point out that "higher" organisms which are more differentiated 

mostly lose regenerative properties to a certain extend which seems to 

be the price to be paid for a more complex structure. 

(Is there a maximal number of letters above which unlimited regeneration 

is not possible anymore? What about other types of regeneration?) 

We shall exhibit an example of a Context Variable Lindenmayer System 

with maximal a two neighbor context, which, starting from a single cell 

attains a full-grown description, i.e. the French Flag 

When this French Flag is cut, the left part always regenerates complete­

ly; the right part mostly not, depending on where the cut was placed. 

We will call a'a'a'a' the head, b'b'b'b' the trunk and c•c•c'c' the 

tail of the French Flag. 

l = {a, b, c}. The transition function is specified by the following 

rules (we only write those we need and leave the others open): 

-1+1 -1+1 
a ➔ a b 

-1+1 +1-1 
b ➔ b C 

+1-1 +1-1 
C ➔ C C 



aa + A 

bb + A 

cc+ c+1-1 +1-1 C 

ab + a +2+ 1 - 1 + 1 a 

ba ➔ b-1+1 +1-1 
C 

cb + c+1-1 +1-1 
C 

CCC ➔ A 

aab + a-1 + 1 - 1 + 1 a 

bbc + b-1+1 -1+1 b 

aba + a-1+1 -2+2 a 

cbc + c+1-1 +1-1 C 

ccb + c+1-1 +1-1 
C 

bab + :\ 

bee+ A 

ebb+ A 

cba + A 

acb + A 

10 
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Starting from axiom a we obtain the following production: 

( 1 ) 
-1+1 -1+1 +2+1 -1+1 -1+1 +1-1 a-==> a b ==::> a a b c 

~1+1 -2+2 -1+1 -1+1 +2~1 -1+1. +1-1 +1-1 
a a a a b b c c 

-1+1 -2+2 -1+1 -1+1 -1+1 -2+2 -1+1 -1+1 +1-1 +1-1 +1-1 +1-1 a a a a b b b b c c c c 

~1+1 -2+2 -1+1 -1+1 -1+1 -2+~ -1+1 -1+1 +1-1 +1-1 +1-1 +1-1 a a a a b b o b c c · c c 

idem. 

We .call this full-grown description FF, and observe that FF is the de­

sired French Flag; it stays at this structure although the individual 

cells are dividing and dying off continuously. Note that the head grows 

fastest and is completed first. 

Next we investigate the regenerative properties. 

There are eleven places at which FF can be cut. 

When we look at the left part resulting from such a cut we see: 

(N.B. We will sometimes omit superscripts when no confusion can result, 
4 -1+1 -1+1 -2+2 -1+1 -1+1 -1+1 ·) e.g. ab for a a a a b . 

(2. 1 ) -1+1 -1+1 -1+1 * a ~ a b ......;;, FF by ( 1 ) 

(2.2) -1+1 -2+2 a-1+1b-1+1 * a a ..,.. ~FFby(1) 

(2,3) -1+1 -2+2 -1+1 -1+1 -1+1 * a a a ====l> a b ==¢> FF by ( 1 ) 

(2.4) 
-1+1 -2+2 -1+1 -1+1 -1+1 -2+2 * 

a a a a ~ a a --* FF by (2.2) 

(2,5) 4 -1+1 4 -1+1 +1-1 4b+2+1b-1+1 +1-1 +1-1 ab ~ ab c ~ a c c ~ FF 

(2. 6) 4 -1+1 -2+2 4 -1+1 +1-1 * ab b ~ab c ~FFby(2,5) 

4 -1+1 -2+2 -1+1 4 -1+1 +1-1 * ) a b b b ~ a b c =--;;, FF by ( 2. 5 
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(2.8) 4 -1+1 -2+2 -1+1 -1+1 4 -1+1b-2+2 .* ) a. b b b b _ _,.,, a. b ~ FF by (2.6 

4b4 +1-1 4b4 +1-1 +1-1 FF a. C -=i> a. C C ~ 

(2.10) 4b4 +1-1 +1-1 FF a. C C ~ 

(2.11) 4 4 +1-1 +1-1 +1-1 a. b C C C ~ FF. 

Hence all left parts regenerate completely. 

The reader mey verify that the full-grown descriptions reached by the 

right parts are according to ( 3. 1 ) - ( 3. 11 ) ( when the cuts a.re placed as 

in (2. 1) - (2.11)). 

( 3. 1 ) \44 a C ~ FF 

( 3 .2) 2b4 4 a. q ..a"'~~ 
2b4 4 a C 

(3.3) 
4 4, 

ab c * 'I'~ FF 

(3,4) b4c4 ....,,,,,..,. b 4c4 

(3,5) b3c4 -~ b4c4 

(3.6) b2c4 2 4 
•• .,-.i,> b C 

4 *. b4c4 (3.7) b C ,~ 

(3.8) 4 4 
C """""1l!f> C 

( 3, 9) c3 4 
~ C 

(3.10) 2 4 
C '•"""'-'l> C 

(3.11) * 4 
C ··==-> C • 
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We may also cut a piece out of the middle of FF. It may be verified 

that 

(4.1) Every part of FF containing cells of the head regenerates 

completely to FF except parts of the form 

-1+1 -1+1 
a a n 

( i) -1+1 -1+1 a a ~ 11. 

( 1
•

1
.) -1+1 -1+1 * 2b4 4 f 1 a a n .....,. a · c or n ;:t /\ • 

(4.2) Every part of FF containing cells of the trunk but no head cells 

d . . b4 4 
1 grows'to a full-grown escr1pt1on c , except parts of the form 

(ii) 

-1+1 -1+1 
b b n 

-1+1 -1+1 * b2c4 b b n ~ for n ;:t 11.. 

(4.3) Every part of FF consisting of tail cells grows to a full tail 

c4, i.e. a full-grown description. 

3, Open Problems 

Def. 3,1. A C-V L-System G = <I, o, cr> stabilizes at w if w is the 

full-grown description of G. 

A C-V production scheme is a pair S = <I, o>. 

Def. 3.2. A C-V production scheme S = <I, o> stabilizes at w € I* if 

for all a€ I*the C-V L-System G = <I, o, cr> stabilizes at w. 

1. Given an w € l*,does there always exist a C-V production scheme 

that stabilizes at w. Find an algorithm which produces such a C-V 

production scheme. 
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2. If the answer to 1 is begative in general, then characterize the 

class (or a sub-class) for which the answer is positive. 

A sub-class as meant in 2 is e.g. 

{a4n In.:. o}. 

2k 
By example 1 . G(k), k is an even natural number, stabilizes at a for 

* every axiom cr E {a}. 

3. Given w EI*, does there always exist a C-V L-System 
I I 

G = <I , o, a>, l ~Land a El , such that G stabilizes at w. 

Give an algorithm to obtain such a G. (Can every word be generated 

by a C-V L-System with a one letter axiom such that the word is a 

full-grown description of that C-V L-System.) 

4. If the answer to 3 is negative, then characterize the class (or a 

sub-class) for which the answer is positive. 

Again, {a
4
n n > 0} is such a sub-class. 

5. Given w EI*, does there alwey-s exist a production scheme 
I I I 

S = <I , o>, l .=. L, such that for all a, w = ncr~, G = <I , o, cr> 

stabilizes at w. (Is universal regeneration possible for every 

word?) If not, characterize the class (or a sub-class) for which 

the answer is positive. 

{a4n In.:. O} is such a sub-class. 

One criterion for the finiteness of C-V L-Languages is whether the pro­

duced description ever stabilizes. 

6. Can we indicate conditions under which a C-V L-System stabilizes. 
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Appendix 

Theorem 2. The family of La(k) languages is not closed under 

(i) complementation, (ii) union, (iii) Kleenean star(*), 

(iv) Kleenean cross (+), (v) concatenation, (vi) intersection with 

regular sets; but it is closed under (vii) intersection. 

Proof. 

(J..) {a}* \ La( 1) · 1.­contains aaa, and aaa ~ u 
kd 

(ii) La(6) u La( 10) = {an I n = 1,2,4,8, 12, 16,20}. From theqrem 1 

follows La(k) ~ La(6) u La(10) for all k. 

( iii ) L a(k )* contains aaa and aaa ~ u La( k). 
kt::I 

(iv) as (iii). 

(v) L(1) • L(1) = {an In= 2,3,4,5,6,8} ~ La(k) for all k. 

t 
(vii) La(k 1) n La(k2 ) = {a2 IO..:::_ t ..:::_min( 2log(k 1),2log(k2 )) + 1} = La(k) 

for k = max{2t-l I 2t ..:::_ min(2k 1 ,2k
2

)}. 

Lemma.3. The family of La(k) languages is strictly contained in the 

family of regular languages over a one letter alphabet. 

Proof. All La(k) languages are finite. 

Lemma 4. The intersection of the family of La(k) languages with the 

family of OL-languages [Rozenberg & Doucet, 1971] consists of those 

La(k) languages for which La(k) ~ La(-k-1), viz. {La(O), La(-1)}. 

Proof. Consider the following OL-Systems: 



the;n 

and 

If h > 2 then 

and 

16 

h s
2 

= <{a}, {a ➔ a}, a> 

for h = 2 

for h = 1, 

for all h. 

for h = 1. 

for all h > 1 

for k it O. 

X All other OL-Systems over one letter alphabet have a production a ➔ a 

where x > 1, and therefore generate an infinite language. 

OL 

Regular 

l 

l:=-----------~-,! 
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Remark. La(k) languages are finite (containing usually more than 2 

elements) and are generated in a deterministic fashion. It is not 

possible to generate finite languages containing more than two elements 

deterministically by either formal grammars or 01-Systems. 
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