stichting mathematisch centrum

REKENAFDELING

RA

NR 27/72

JUNE

P.A. BEENTJES en K. DEKKER EEN 5e ORDE 6-PUNTS RUNGE-KUTTA FORMULE MET OPTIMALE STABILITEITSGRENS

2e boerhaavestraat 49 amsterdam

BILIOTHEGK MATHEMATISEM CENTRUM AMSTERDAM Printed at the Mathematical Centre, 49, 2e Boerhaavestraat 49, Amsterdam.

The Mathematical Centre, founded the 11-th of February 1946, is a nonprofit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O.), by the Municipality of Amsterdam, by the University of Amsterdam, by the Free University at Amsterdam, and by industries.

Inhoud

¢.

1.	Inleiding	1
2.	5 ^e orde Runge-Kutta methoden met een schatting voor de discrepantie	2
3.	De twee-parameter familie van oplossingen van Zonneveld	6
4.	Het stabiliteitspolynoom van een RK(5,6) methode	8
5.	Een RK(5,6) methode met maximale reële stabiliteitsgrens	10
6.	Stabiliteitsgebieden bij RK(5,6) methoden	12
7.	Testvoorbeeld	14

blz.

. .• . C.

1. Inleiding

In van der Houwen [2] zijn een aantal expliciete gestabiliseerde Runge-Kutta formules, met een orde van ten hoogste 4, gegeven.

Als aanvulling daarop geeft dit rapport een 5^e orde gestabiliseerde Runge-Kutta formule die voor vergelijkingen van het type

(1.1)
$$\widetilde{\mathbf{y}}' = \mathbf{f}(\mathbf{x}, \widetilde{\mathbf{y}}), \quad \widetilde{\mathbf{y}}(0) = \widetilde{\mathbf{y}}_0,$$

een grotere integratie-stap toelaat dan de bestaande 5^e orde 6-punts Runge-Kutta (RK (5,6)) methoden.

De constructie van dit Runge-Kutta schema is gebaseerd op de manier waarop Zonneveld [5] zijn RK(5,6) formule afleidde.

2. 5^e orde Runge-Kutta methoden met een schatting voor de discrepantie

Een m-punts Runge-Kutta methode voor vergelijkingen van het type (1.1) wordt gedefinieerd door

(2.1)
$$y_{0} = \tilde{y}_{0},$$
$$y_{n+1} = y_{n} + \sum_{i=0}^{m-1} a_{i}k_{n}^{(i)}, \quad n = 0, 1, 2, ...,$$
$$k_{n}^{(0)} = h_{n}f(x_{n}, y_{n}),$$
$$k_{n}^{(i)} = h_{n}f(x_{n} + M_{i}h_{n}, y_{n} + \sum_{j=0}^{i-1} L_{i,j}k_{n}^{(j)}), \quad i = 1, ..., m-1,$$
$$h_{n} = x_{n+1} - x_{n},$$
$$M_{i} = \sum_{j=0}^{i-1} L_{i,j}.$$

We noemen methode (2.1) p^e orde consistent indien geldt

(2.2)
$$y_n(x_{n+1}) - y_{n+1} = O(h_n^{p+1}), \quad n = 0, 1, 2, ...,$$

waarin $y_n(x)$ de locaal analytische oplossing is dat wil zeggen de oplossing van het beginwaarde probleem

$$\begin{cases} y'_{n} = f(x,y), \\ y_{n}(x_{n}) = y_{n}, & n = 0, 1, 2, \dots \end{cases}$$

Door ontwikkeling van het linkerlid van (2.2) in een Taylor-reeks in h_n vinden we voor 5^e orde consistentie de volgende betrekkingen tussen de parameters a_i , M_i en L_{ij} (i = 0,...,m-1; j = 0,...,i-1)

~

(2.3a)	$\sum_{i=0}^{m-1} a_i$	= 1	;
(2.4a)	$\sum_{i=1}^{m-1} a.M.$	$=\frac{1}{2}$;
(2.5a)	$\sum_{i=1}^{m-1} a_i M_i^2$	$=\frac{1}{3}$;
(2.6a)	$ \begin{array}{ccc} m-1 & i-1 \\ \sum a_{i} & \sum L_{il} M_{l} \\ i=2 & l=1 \end{array} $	$=\frac{1}{6}$;
(2.7a)	$\sum_{i=1}^{m-1} a_i M_i^3$	$=\frac{1}{4}$;
(2.8a)	$\sum_{i=2}^{m-1} a_i \sum_{l=1}^{i-1} L_{il} M_l^2$	$=\frac{1}{12}$;
(2.9a)	$ \begin{array}{ccc} m-1 & i-1 \\ \sum a_i M_i & \sum L_{i1} M_{1} \\ i=2 & i=1 \end{array} $	$=\frac{1}{8}$;
(2.10a)	$\sum_{i=3}^{m-1} \sum_{l=2}^{i-1} \sum_{j=1}^{l-1} \sum_{p=1}^{l-1} \sum_{j=1}^{M} \sum_{p=1}^{M} \sum_{j=1}^{M} \sum_{p=1}^{M} \sum_{j=1}^{M} \sum_{j=1}^$	$=\frac{1}{24}$;
(2.11a)	$\sum_{i=1}^{m-1} a_i M_i^{\mu}$	$=\frac{1}{5}$;
(2.12a)	$\sum_{i=2}^{m-1} \sum_{l=1}^{i-1} L_{il} M_{l}^{3}$	$=\frac{1}{20}$;
(2.1 <u>3</u> a)	$ \begin{array}{ccc} {}^{m-1} & {}^{i-1} \\ \sum & {}^{a} \cdot M \cdot \sum & {}^{L} \cdot {}^{m} \cdot M \\ {}^{i=2} & {}^{i=1} & {}^{i=1} \end{array} $	$=\frac{1}{15}$;
(2.14a)	$\sum_{i=2}^{m-1} a_i M_i^2 \sum_{l=1}^{i-1} L_{il} M_l$	$=\frac{1}{10}$;
(2.15a)	$\sum_{i=2}^{m-1} a_i \left(\sum_{l=1}^{i-1} L_{il} M_l \right)^2$	$=\frac{1}{20}$;

(2.16a)
$$\sum_{i=3}^{m-1} a_i \sum_{l=2}^{i-1} L_{il} \sum_{p=1}^{l-1} L_{lp} M_p^2 = \frac{1}{60};$$

(2.17a)
$$\sum_{i=3}^{m-1} a_i \sum_{l=2}^{i-1} L_{il} M_l \sum_{p=1}^{l-1} L_{lp} M_p = \frac{1}{40};$$

(2.18a)
$$\sum_{i=3}^{m-1} a_i M_i \sum_{l=2}^{i-1} L_{il} \sum_{p=1}^{l-1} L_{lp} M_p = \frac{1}{30};$$

(2.19a)
$$\sum_{i=4}^{m-1} a_i \sum_{l=3}^{i-1} L_{ll} \sum_{p=2}^{l-1} L_{lp} q_{q=1}^{p-1} L_{pq} M_q = \frac{1}{120};$$

Analoog aan Zonneveld [5] proberen we, simultaan met het oplossen van deze consistentie-voorwaarden, te voldoen aan de relatie

(2.20)
$$\sum_{i=0}^{m-1} b_i k_n^{(i)} = \frac{h_n^2}{5!} \frac{d^5}{dx^5} y_n(x) + O(h_n^6).$$

Deze lineaire uitdrukking in de $k_n^{(i)}$, i = 0,...,m-1, kan dienen als maat voor de discrepantie van de numerieke oplossing.

Relatie (2.20) leidt tot het volgende additionele stelsel vergelijkingen

m_1 ∑ b_i i=0 (2.3b) = 0 ŝ $\sum_{i=1}^{m-1} b_i M_i$ (2.4b) = 0 ; $\sum_{i=1}^{m-1} b_i M_i^2$ (2.5b) = 0 ; $\sum_{i=2}^{m-1} b_i \sum_{l=1}^{i-1} L_{il}M_l$ (2.6b) = 0 ; $\sum_{i=1}^{m-1} b_i M_i^3$ (2.7b) = 0 ;

ţ.

(2.8b)	$ \begin{array}{c} \begin{array}{c} m-1 & i-1 \\ \sum & b_{1} & \sum & L_{1} \\ i=2 & i & l=1 \end{array} \end{array} $	= 0	;
(2.9Ъ)	$ \begin{array}{c} \begin{array}{c} m-1 & i-1 \\ \sum & b_i M_i & \sum & L_{il} M_l \\ i=2 & 1=1 \end{array} \end{array} $	= 0	;
(2.10b)	$ \begin{array}{cccc} {}^{m-1} & {}^{i-1} & {}^{l-1} \\ \sum & {}^{b} & \sum & {}^{L} & \sum & {}^{L} \\ {}^{i=3} & {}^{l=2} & {}^{il} & {}^{p=1} & {}^{L} \\ \end{array} $	= 0	;
(2.11b)	$\sum_{i=1}^{m-1} b_i M_i$	$=\frac{1}{5}$;
(2.12b)	$ \begin{array}{ccc} m-1 & i-1 \\ \sum b_{i} & \sum L_{i1} M_{1}^{3} \\ i=2 & l=1 \end{array} $	$=\frac{1}{20}$;
(2.13b)	$\sum_{i=2}^{m-1} b_i M_i \sum_{l=1}^{i-1} L_{il} M_l^2$	= <u>1</u> 15	;
(2.14b)	$ \begin{array}{c} m-1 & 2 & i-1 \\ \sum & b_i M_i^2 & \sum & L_{i1} M_{1} \\ i=2 & i & l=1 \end{array} $	$=\frac{1}{10}$;
2.15Ъ)	$\sum_{i=2}^{m-1} b_i (\sum_{l=1}^{i-1} L_{il}M_l)^2$	$=\frac{1}{20}$	•
(2.16Ъ)	$\sum_{i=3}^{m-1} \sum_{l=2}^{i-1} \sum_{j=1}^{l-1} \sum_{p=1}^{l-1} \sum_{lp'p}^{M^2}$	$=\frac{1}{60}$;
(2.17b)	$ \begin{array}{cccc} {}^{m-1} & {}^{i-1} & {}^{l-1} \\ \sum & {}^{b} & \sum & {}^{L} \\ {}^{i=3} & {}^{l=2} & {}^{l-1} & {}^{l-1} \\ \end{array} $	$=\frac{1}{40}$	•
(2.18b)	$ \begin{array}{cccc} {}^{m-1} & {}^{i-1} & {}^{l-1} \\ \sum & {}^{b} {}^{M} {}_{i} & \sum & {}^{L} {}^{l} {}_{i} & \sum & {}^{l} {}^{L} {}^{M} {}_{p=1} \\ {}^{i=3} & {}^{i=2} & {}^{i=2} & {}^{p=1} \end{array} $	$=\frac{1}{30}$;
(2 . 19b)	$ \begin{array}{cccc} {}^{m-1} & {}^{i-1} & {}^{l-1} & {}^{p-1} \\ {}^{\sum} & {}^{b} & {}^{\sum} & {}^{L} & {}^{i} & {}^{\sum} & {}^{L} & {}^{p-1} \\ {}^{i=4} & {}^{i=3} & {}^{i=2} & {}^{p-1} & {}^{p-1} \\ \end{array} $	$=\frac{1}{120}$;

3. De twee-parameter familie van oplossingen van Zonneveld

Voor het geval m = 6 heeft Zonneveld [5] de stelsels (2.3a) - (2.19a), (2.3b) - (2.19b) vereenvoudigd tot een stelsel van 33 vergelijkingen met 35 onbekenden, te weten

$$(3.1) \quad \sum_{i=0}^{6} a_{i} = 1 ; \qquad (3.2) \quad \sum_{i=0}^{6} b_{i} = 0 ; \\ (3.3) \quad \sum_{i=1}^{6} a_{i}M_{i} = \frac{1}{2} ; \qquad (3.4) \quad \sum_{i=1}^{6} b_{i}M_{i} = 0 ; \\ (3.5) \quad \sum_{i=1}^{6} a_{i}M_{i}^{2} = \frac{1}{3} ; \qquad (3.6) \quad \sum_{i=1}^{6} b_{i}M_{i}^{2} = 0 ; \\ (3.7) \quad \sum_{i=1}^{6} a_{i}M_{i}^{3} = \frac{1}{4} ; \qquad (3.8) \quad \sum_{i=1}^{6} b_{i}M_{i}^{3} = 0 ; \\ (3.7) \quad \sum_{i=1}^{6} a_{i}M_{i}^{3} = \frac{1}{4} ; \qquad (3.8) \quad \sum_{i=1}^{6} b_{i}M_{i}^{3} = 0 ; \\ (3.7) \quad \sum_{i=1}^{6} a_{i}M_{i}^{3} = \frac{1}{5} ; \qquad (3.10) \quad \sum_{i=1}^{6} b_{i}M_{i}^{4} = \frac{1}{5} ; \\ (3.9) \quad \sum_{i=1}^{6} a_{i}M_{i}^{4} = \frac{1}{5} ; \qquad (3.10) \quad \sum_{i=1}^{6} b_{i}L_{11} = 0 ; \\ (3.11) \quad \sum_{i=2}^{6} a_{i}L_{11} = 0 ; \qquad (3.12) \quad \sum_{i=2}^{6} b_{i}L_{11} = 0 ; \\ (3.13) \quad \sum_{i=3}^{6} a_{i}L_{i2} = a_{2}(1-M_{2}) ; \qquad (3.14) \quad \sum_{i=3}^{6} b_{i}L_{i3} = -b_{2}(1-M_{2})/4 ; \\ (3.15) \quad \sum_{i=4}^{6} a_{i}L_{i3} = a_{3}(1-M_{3}) ; \qquad (3.16) \quad \sum_{i=4}^{6} b_{i}L_{13} = -b_{3}(1-M_{3})/4 ; \\ (3.17) \quad \sum_{i=5}^{6} a_{i}L_{14} = a_{4}(1-M_{4}) ; \qquad (3.18) \quad \sum_{i=5}^{6} b_{i}L_{14} = -b_{4}(1-M_{4})/4 ; \\ (3.19) \quad \sum_{i=2}^{6} a_{i}L_{14} M_{i} = 0 ; \qquad (3.20) \quad \sum_{i=2}^{6} b_{i}L_{14} M_{i} = 0 ; \\ (3.21) \quad \sum_{i=1}^{1} L_{2i}M_{i} = M_{2}^{2}/2 ; \qquad (3.22) \quad \sum_{i=1}^{1} L_{2i}M_{i}^{2} = M_{2}^{3}/3 ; \end{aligned}$$

$$(3.23) \sum_{i=1}^{2} L_{3i}M_{i} = M_{3}^{2}/2 ; \qquad (3.24) \sum_{i=1}^{2} L_{3i}M_{i}^{2} = M_{3}^{3}/3 ;
(3.25) \sum_{i=1}^{3} L_{4i}M_{i} = M_{4}^{2}/2 ; \qquad (3.26) \sum_{i=1}^{3} L_{4i}M_{i}^{2} = M_{4}^{3}/3 ;
(3.27) a_{1} = 0 ; \qquad (3.28) b_{1} = 0 ;
(3.29) M_{5} = 1 ; \qquad (3.30) M_{6} = 1 ;
(3.31) L_{65} = 0 ; \qquad (3.32) b_{5} = 0 ;$$

(3.33) a₆ = 0

Iedere oplossing van dit stelsel geeft volgens (3.33) een 6-punts integratie formule terwijl met één extra punt een schatting gemaakt kan worden van de discrepantie.

De oplossing die door Zonneveld wordt aangegeven wordt bepaald door $M_3 = \frac{1}{2} \text{ en } M_4 = \frac{4}{5}$. De waarden van de parameters zijn dan

$$(3.34) \begin{cases} a_0 = \frac{35}{336}; a_1 = a_3 = a_6 = 0; a_2 = \frac{162}{336}; a_4 = \frac{125}{336}; a_5 = \frac{14}{336}; b_0 = \frac{21}{14}; b_1 = b_5 = 0; \\ b_2 = \frac{-162}{14}; b_3 = \frac{224}{14}; b_4 = \frac{-125}{14}; b_6 = \frac{42}{14}; L_{10} = \frac{2}{9}; L_{20} = \frac{1}{12}; L_{21} = \frac{1}{4}; \\ L_{30} = \frac{1}{8}; L_{31} = 0; L_{32} = \frac{3}{8}; L_{40} = \frac{53}{125}; L_{41} = \frac{-135}{125}; L_{42} = \frac{126}{125}; L_{43} = \frac{56}{125}; \\ L_{50} = \frac{-63}{28}; L_{51} = \frac{189}{28}; L_{52} = \frac{-36}{28}; L_{53} = \frac{-112}{28}; L_{54} = \frac{50}{28}; L_{60} = \frac{133}{168}; \\ L_{61} = \frac{-378}{168}; L_{62} = \frac{276}{168}; L_{63} = \frac{112}{168}; L_{64} = \frac{25}{168}; L_{65} = 0; M_1 = \frac{2}{9}; M_2 = \frac{1}{3}; \\ M_3 = \frac{1}{2}; M_4 = \frac{4}{5}; M_5 = M_6 = 1. \end{cases}$$

4. Het stabiliteitspolynoom van een RK(5,6) methode

Beschouw het volgende lineaire beginwaarde-probleem

(4.1)
$$\begin{cases} \widetilde{\mathbf{y}}' = \delta \widetilde{\mathbf{y}}, \\ \widetilde{\mathbf{y}}(0) = \widetilde{\mathbf{y}}_{0}. \end{cases}$$

Passen we hierop een RK(5,6) schema toe dan vinden we

$$y_{n+1} = P_6(h\delta)y_n$$
,

 \mathtt{met}

(4.2)
$$P_6(z) = \sum_{i=0}^5 \frac{z^i}{i!} + \beta z^6$$
,

waarin

(4.3)
$$\beta = a_5 \prod_{i=1}^{5} L_{i-1}$$

We noemen $P_6(z)$ het stabiliteitspolynoom.

We definiëren het $stabiliteitsgebied S van P_6(z)$ als volgt

$$S = \{z \mid |P_{6}(z)| \le 1\}.$$

Verder definiëren we de *reële stabiliteitsgrens* α van $P_6(z)$ door middel van

$$\alpha = \inf\{x \mid x > 0, |P_6(-x)| > 1\}.$$

Het is duidelijk dat α een functie is van β .

Van de ons bekende RK(5,6) formules had de methode van Lawson [4] de grootste reële stabiliteitsgrens, namelijk

$$\alpha_{\rm L} = 5.6$$
 $(\beta_{\rm L} = \frac{1}{1280}).$

Met behulp van een methode, gegeven in van der Houwen [1] berekenden we echter dat

(4.4)
$$\alpha_{\max} = \max_{\beta} \alpha(\beta) = 6.26,$$

en

(4.5)
$$\beta_{\text{opt}} = .725590420168_{10}^{-3}$$
.

In paragraaf 5 geven we een oplossing van de vergelijkingen (3.1) - (3.33) en (4.3), waarbij we in de laatste vergelijking $\beta = \beta_{opt}$ stellen.

Het is duidelijk dat deze oplossing correspondeert met een RK(5,6) schema waarvan de reële stabiliteitsgrens gelijk is aan α_{max} .

5. Een RK(5,6) methode met maximale reële stabiliteitsgrens

Zonneveld [5] heeft het stelsel vergelijkingen (3.1) - (3.33) opgelost, met M_3 en M_{μ} als vrije parameters. Daarbij geeft hij de uitdrukkingen

(5.1)
$$M_2 = 2M_3/(1+4M_3)$$
,

(5.2)
$$L_{10} = 2M_2/3$$

(5.3)
$$L_{21} = 3M_2/4$$
,

(5.4) $L_{32} = M_3^2 (M_3 - M_2) / M_2^2$,

(5.5)
$$L_{43} = M_4 (M_4 - M_2) (M_4 - M_3) / (3M_3 (M_3 - M_2)).$$

Uit (3.17) en (3.33) volgt

(5.6)
$$a_{5}L_{54} = a_{4}(1-M_{4}),$$

en uit (3.1), (3.3), (3.5), (3.7), (3.9), (3.27) en (3.33) vinden we

(5.7)
$$a_{\mu} = (20M_2M_3 - 10M_2 - 10M_3 + 6)/(120M_4(M_4 - M_2)(M_4 - M_3)(1 - M_4)).$$

Substitutie van (5.2),...,(5.7) in (4.3) geeft de vergelijking

(5.8)
$$(20M_2M_3 - 10M_2 - 10M_3 + 6)M_3 = 720\beta_{\text{opt}}.$$

Uit (5.1) en (5.8) leiden we een vierkantsvergelijking in M_{2} af,

(5.9)
$$5M_2^2 - M_2(2+960\beta_{opt}) + 480\beta_{opt} = 0.$$

De grootste wortel van M_2 leidt tot minimale waarden van de overige parameters. De nog overgebleven vrijheidsgraad hebben we benut door $a_3 = 0$ te kiezen. Hierdoor wordt M_4 eenduidig bepaald:

(5.10)
$$M_{\mu} = (3+2M_3)/5.$$

De waarden van de parameters a_i , b_i en M_i geven we in tabel 5.1, terwijl in tabel 5.2 de waarden van L_i opgenomen zijn.

Tab	el	5.	1
	_	_	-

i	a. i	b. i	Mi			
0	.1013 8388 8447 4274	+.1687 9574 4506 3191 ₁₀ +1	0			
1	0	0	.2166 3751 5122 2449			
2	.4710 9636 5451 7556	1422 2671 9546 3261 ₁₀ +2	.3249 5627 2683 3674			
3	0	+.1797 2905 6842 5553 ₁₀ +2	.4641 0728 0027 7517			
4	.3760 3358 8853 7316	8017 3755 1797 5110 ₁₀ +1	.7856 4291 2011 1007			
5	.5148 6157 2470 8536 ₁₀ -1	0	1			
6	0	+.2579 1843 4328 8994 10+1	1			

De waarden van a., b. en M..

Tabel 5.2

L 10	æ	+.2166	3751	5122	2449		;	$L_{20} = +.8123 \ 9068 \ 1708 \ 4184 \ 10^{-1}$;
^L 21	I	+.2437	1720	4512	5255		;	$L_{30} = +.1088 \ 9359 \ 0760 \ 4054$;
^L 31	,	+.7137	3905	6569	5119	10 ⁻¹	;	$L_{32} = +.2838 3978 3610 3951$;
L40	Ŧ	+.4136	4798	7348	0195		;	$L_{41} =9615 3115 2649 3416$;
L ₄₂	I	+.7328	5885	8261	3591		;	L ₄₃ = +.6006 6721 9051 0636	;
^L 50	=	1795	2996	1930	4468	10 ⁺¹	;	$L_{51} = +.4792 \ 6226 \ 0139 \ 7445 \ 10^{+1}$;
L 52	Ē	+.8241	2636	9753	6218		;	$L_{53} =4387 0248 2693 7314 10^{+1}$;
^L 54	=	+.1565	5754	7509	0715	10 ⁺¹	;	$L_{60} = +.8113 7444 5235 0849$;
^L 61	=	2142	3218	4008	3255	10 ⁺¹	;	$L_{62} = +.1230\ 7807\ 2667\ 0698\ 10^{+1}$;
^L 63	H	+.9335	8481	1221	5743		;	L ₆₄ = +.1665 8185 6955 8982	;
^L 65	-	0					٠		
		-							

6. Stabiliteitsgebieden bij RK(5,6) methoden

In deze paragraaf geven we het stabiliteitsgebied in een omgeving van de oorsprong van enige RK(5,6) methoden. In verband met de symmetrie van het stabiliteitsgebied is slechts het gedeelte met positieve y-coördinaat getekend.

In figuur 1 geven we het stabiliteitsgebied behorende bij de methode van Zonneveld; het stabiliteitspolynoom hiervan is

 $P_{6}(z) = 1 + z + \frac{1}{2} z^{2} + \frac{1}{6} z^{3} + \frac{1}{24} z^{4} + \frac{1}{120} z^{5} + \frac{1}{1440} z^{6}.$

Het stabiliteitsgebied van de methode van Lawson (hierbij is $\beta_{\rm L} = 1/1280$) is in figuur 2 getekend, terwijl figuur 3 het stabiliteitsgebied van de in dit rapport beschreven methode laat zien ($\beta_{\rm opt} = .72559_{10}-3$).

7. Testvoorbeeld

Als testvoorbeeld kozen we de stijve differentiaal-vergelijking (zie Lapidus en Seinfeld [3])

(7.1)
$$\begin{cases} y'(x) = -200(y(x)-F(x)) + F'(x), \\ F(x) = 10 - (10+x)e^{-x}, \\ y(0) = 10. \end{cases}$$

De exacte oplossing van (7.1) luidt

$$y(x) = F(x) + 10e^{-200x}$$
.

De jacobiaan van deze differentiaal-vergelijking is de scalar -200. Dit houdt in dat RK(5,6) methoden stabiel zijn bij integratie met staplengten h,

$$h \leq h_{max} = \frac{\alpha}{200}$$
.

De RK(5,6) methode van Zonneveld heeft een maximale integratiestap $h_{max} = .022$; terwijl de in dit rapport voorgestelde RK(5,6) methode stappen toelaat, die 40% groter zijn. Dit blijkt duidelijk uit tabel 7.1, waarin we de relatieve fout in x = .4 en x = 10 geven bij integratie met constante stap.

· · · ·					
stap	Zonneveld'	s methode	Nieuwe me	thode	
	$\mathbf{x} = .4$	x = 10	x = .4	$\mathbf{x} = 10$	
.020	1.9 ₁₀ -3	7.7 ₁₀ -10	4.5 10 ⁻⁵	5.7 10 ⁻¹⁰	
.021	1.0 10 ⁻¹	4.7 10-10	^{1.4} 10 ⁻³	3.3 ₁₀ -10	
.022	1.6	5.8 ₁₀ -1	1.6 ₁₀ -2	1.3 ₁₀ -10	
.023	7.3	10 ⁺²⁹	5.3 10 ⁻²	1.1 ₁₀ -10	
.024	1.8 ₁₀ +3	10 ⁺⁵²	2.8 ₁₀ -1	2.2 ₁₀ -10	
.025	4.4 10 ⁺²	10 ⁺⁶⁹	3.1	2.0 10 ⁻¹⁰	
.026	4.7 10 ⁺³	10 ⁺⁷⁸	3.1 ₁₀ -1	3.2 ₁₀ -4	
.027	9.9 ₁₀ +2	10 ⁺⁸³	6.6 ₁₀ -1	3.0 ₁₀ -10	
.028	1.8 10 ⁺³	10 ⁺⁸¹	7.7 ₁₀ -3	1.8 ₁₀ -9	
.029	2.9 ₁₀ +1	10 ⁺⁷¹	1.0 10-4	1.7 ₁₀ -9	
.030	8.2	10 ⁺⁴⁸	1.3 10 ⁻⁵	5.5 ₁₀ -9	
.031		:	6.0 ₁₀ -2	2.4 10 ⁻⁸	
.032			312	10 ⁺⁷⁰	

Tabel 7.1

Relatieve fout in x = .4 en x = 10 bij integratie van (7.1)

Referenties

- [1] Houwen, P.J. van der, One step methods for linear initial value problems I, Polynomial methods, TW report 119, Mathematisch Centrum, Amsterdam, (1970).
- [2] Houwen, P.J. van der, Stabilized Runge-Kutta methods with limited storage requirements, TW report 124, Mathematisch Centrum, Amsterdam, (1971).
- [3] Lapidus L., J.H. Seinfeld, Numerical solution of ordinary differential equations, Acadamic Press, New York, (1971).
- [4] Lawson, J.D., An order five Runge-Kutta process with extended region of stability, SIAM J. Numer. Anal. 3, 593, (1966).
- [5] Zonneveld, J.A., Automatic numerical integration, MC Tract 8, Mathematisch Centrum, Amsterdam, (1964).