NW

stichting
mathematisch
centrum MC
AFDELING NUMERIEKE WISKUNDE E M. NW 1/73 JANUARY
Wy

P.J. VAN DER HOUWEN and H., FIOLET
EXPONENTIAL FITTED RUNGE-KUTTA FORMULAS
“OF FOURTH ORDER

2e boerhaavestraat 49 amsterdam

THEMATISCH CENTRUM

el MA
BIBLIOTHEES AMSTERDAM

Printed at the Mathematical Centre, 49, 2e Boerhaavestraat, Amsterdam.

The Mathematical Centre, founded the 11-th of February 1946, 45 a non-
profit institution aiming at the promotion of pure mathematics and Lts
applications. 1t 45 sponsored by the Netherlands Governmment through the
Netherlands Onganization for the Advancement of Pure Research (Z.W.0),
by the Municipality of Amsterdam, by the University of Amsterdam, by
the Free Univernsity at Amsterndam, and by industries.

Contents

1. Introduction

2. Six-point formulas of fourth order
3. Stability

4. Step size control

5. An interpolation formula

6. The procedure EFFORK

T. Numerical examples

References

11
13
16
2L
33

-1

1. Introduction

In reference [4] aclass of fourth order, m-point Runge-Kutta
formulas is described of which the charactéristic root contains m - 4
free parameters. These parameters can be used to adjust the stability
properties of the formula to the differential equation under consideration.
In practice, this implies that in many cases a more efficient integration
formula is obtained than the standard fourth order Rungé—Kutta method. The
present paper gives a more detailed analysis of six-point stabilized fourth
order formulas.

In particular, attention is paid to a technique called "exponential
fitting" (see Iiniger and Willoughby [7]).Since a six-point formula of
fourth order has two free parameters it is possible to fit the characteris-
tic root at two points (cf. section 3). The stability regions of exponen-
tially fitted Runge-Kutta formulas were studied in references [5,6]; it
was pointed out that vector differential equations of type

du

(1.1) & = fltu)

of which the Jacobian matrix

Bfi)

ou.
J

(1.2) J = (

has eigenvalues with widely separated negative real parts (stiff differen-
tial equations), can be efficiently integrated by exponentially fitted
Runge-Kutta methods. Furthermore, it was shown that the efficiency in-
creases as the number of free parameters is larger. Therefore, we also
investigated six-point formulas containing 4 free parameters. It is proved
(section 3) that these formulas also are fourth order exact, but the error
constant is considerably larger; effectively, the four-parameter forms are
only second order correct.

The step size strategy used in our formulas is based on the assumption
that an exponentially fitted formula integrates a linear system accurately
(ef. [T]). This suggests to choose the integration steps in such a way that

the differential equation is sufficiently linear over the successive inte-

2=

gration steps. For that purpose a référénéé formﬁla was dérivéd which is
identical to the actual integration formula in case of linear equations.
For non-linear equations the reference fqrmﬁla is only second order accu-
rate, The difference of the results producéd by thése formulas is taken as
an estimate of the non-linearity. By monitoring this estimate an indication
of a suitable step is obtained. In additionm, wé automatically have a
(conservative) estimate of the local error, provided that thé system is
non-linear. The price to be paid for the stép size control just described
is an additional function evaluation in the reference formula.

Finally, an interpolation formula of third order is derived which can
be used when integration steps are chosen, which are larger than the
spacing of the reference points prescribed by the user of the integration
formula.

In section 6 an ALGOL 60 version of our integration formula is

presented; in section T a number of numerical examples is given.

-3=-

2. Six-point formulas of fourth order

Consider the six-point Runge-Kutta formula defined by
(0) _
o '
R)
“ﬁ33 " %'Tk §13=

(1) (2)
= A
uk+1 Wt Ao g T Tred F Ao Ty i

i} (1) . A(3)
Uep1 = O Py T Ty T Ay 3 T Tiare

(5) _ (h)
Wb T W T Tego

(2.1) W =t T [fﬁii + efilz ¥ 2féf$ " féii],
A2 - e,)
T M
83 2 v 0y L) T
iﬁ% =t * Oy + 2y 3) T
t(5) =t + 1

k+1 k k'’

This formula is second order exact irrespective the values of the parameters

As g It can be proved (cf. reference [4]) that it is fourth order exact as
dos

A isfy t onditions
Ty -> 0 when the parameters X3’1, X3’2, Ah,1’ L2 satisfy the c

=1
Mt T

(2.2)

Lo

For future reference we represent scheme (2.1) in the form of the

generating matrix (cf. Butcher [1]).

0o o0 0 0 0o 0
2 0 0 0 0 0
o 1 0 0 0 0
0 A 0 0 0
(2.11) *3.1 3,2
A
N 4,3 2 O
Q0 o0 0 0 10
101 1 0 o 1
6 3 3 6

3. Stability

The characteristic root of scheme (2.1) is given by (cf. [L4])

(3.1) R(z) = 1 + 2+ %-zz + 33 z3 + Sh zh + B5 z5 + 86 26,
where
B
By =13 tg (M, 1+ Ny 30
- 1
By =13 [hy, 0 v 20y, 3 (g 4+ 23,00,
(3.2)

55 =‘1_2}\)4,3(>‘3s1'+)\3’2) s
B, = o A, A
6~ 2k 73,2 "4,3°

We shall require that the parameters Bj’ J=35...,6 are such that the

function R(z) is exponentially fitted at two points z, = Tk51 and z, = Tk52, i.e.
z, z
e , R'(z1) =e ,

>v)
—
N
—_
~
"

[
o
"
=
—
N
-
I
o
u

or equivalently,

53 + Bz + 65z2 + 8623 = F(z) ‘
(3.3 s 8tz =29, 2y -
B), + 285z + 3662 =F'(z)

where

&2 - (1+2+35°)
! :

Z

F(z) =

When the parameters Bj are solved from conditions (3.3') we can determine

the parameters A. 1 from (3.2) by expressing the A\. in terms of Bj, that

Js Jsl
is
My, 1 = 12(8y-285),
A =68, -2 =2
4,3 %B3 727 Ay g
(3.21) 2
~6
A =24 — |
3’2 Ah’3
. B5-- 2B¢
A = 12

The final step then is to show that the parameters A. satisfy the con-
9

Js1
sistency conditions (2.2).

In order to solve equations (3.3') we introduce the abbreviations

s(z9) = 23 +2d, S(F) = F(z,) + F(z,),...
D(zd) = zg - zi, D(F) = F(z,) - F(z,),...

Equations (3.3') can then be written as

—6-

8,D(z) +B5D(2") + BgD(z°) = D(F),

S(F'),

28, +285(z) + 38,5(2°)

26.D(2) + 38,D(2°) = D(F").

A simple calculation leads to the following expressions for the para-

meters Bj :
s = D(z) S(F") - 2D(F)
® 3(z) s(z%) - 2p(z3)
_ D(F') - 3B6D(z2)
(3.1) Bs = ~2D(z)
By = 3 8(F') - B8(z) - 2 g8(s7),
83 = % S(F) - %’BhS(z) - %—BSS(ZE) - %'868(23).

For Zy -+ 0 and z, > 0 we deduce from these expressions

1

B = 720+ O(2%24);
85 = a5+ Ol(z,+2,)%),
By =3+ 0(zy+2)3),
By=7 +0((zyrz)Y).
This means that the parameter A. . behave as

Jsl

=3 2
My, =10t 0zg%25)7),

-T-

-1 2y

I L (CRENEN
=1

}\3’2 = 6 + O((Z1+Z2))9
=1

A3’1 =3 + O((z1+22)).

Substitution into the consistengy conditions shows that we have fourth
X + 0. It should be noted, however, that effectively
(Tkzo) method (2.1), (3.2), (3.3) is only second order exact. Methods which

order accuracy when Tt

are also effectively fourth order accurate can be obtained by putting

1

=1
B3 =% By = 2%

for all values of the step size 1, and by fitting only once at z., 6 and Zse

k 1

Formulas (3.2') and (3.4) then reduce respectively to

1 -
Ah’1 =5 - zuss, Ah,3 = 2h55,

(3.211)
A =E§"}\ =-1—_E§
3,2 85 3,1 2 85
and
_ D(F)
B = D(z) *
(3.4")
s - 1D(z) S(F) - 8(z) D(F)
572 D(z)

Having derived the coefficients Bj in terms of the fit-points zZ, and
2y, We arrive at the problem to determine the stability regions of the
integration method. This problem was considered in [5,6]. It was found
that for large values of [z1|tand |22| the stability region (defined by
the set of points S = {z | |R(z)| < 1}) consists of three subregions

situated at the origin and the points z, and Zy For small values of

-8-

|z1] and |z2| these subregions melt together and become approximately the

stability region of the polynomial

j.

1
- 2z

R(z) = . 0 3t

J

Il ~~10\

The cases of interest, however, are the larger values of |z1| and Izgl.

We then have (cf. [5]) for the left hand subregions the disks

Z.
lz-z.| < V2 |—L, 2, * 2
o Zo724

2
(3.5) : ' , §=1,2
225 < vz Mol ooz =z
in case of (3.3) and the disks
z.
|z-zj| < 24]zjl_3 lze_i1| s 2y * 2,
(3.5") , J = 1,2
-1
Iz—zjl < /2L lzjl s 29 T 25

in case of (3.4'). From this we can easily derive an upper bound for the

stepsize 1. For example in case of (3.3) we find

. S.
t< /25 =y » 817 &
5 s J = 1,2,
- -
T < V2 2 > 698,
J

where Gj is the center and ¥ the radius of the cluster near éj. The
right hand subregions resemble respectively the stability regions of the
polynomials

(3.6) 1+ z + l-zz

and

(3.6") 1+ gz + %-z2 + %-23 +'%E zh.

It can be proved that the following right hand stability conditions
hold:

2
T < » P =2,
S9tPg
(3.7)
2.6
T<6+2 ’P=u’
0 "0

where the eigenvalues éiose to the origin are supposed to be in the
negative interval [—60_00’03 when p = 2 and in the disk |-60+6| < Py When
p = L.

In an actual computation it is important that the parameters kj,l’ and
therefore the coefficients B., are calculated with high accuracy, in par-
have large values. Hence, we shall derive

ticular when |z.| and |z

)| ol
asymptotic expressions for the coefficients Bj which holds for [z1| > o and
|z2| > @, Let us write R(z) in the approximate form
2 (1+az+b22),

R(z) = (z—z1)2 (z=-2

Z2 Z2 2)
172
where a and b are determined by the condition R'(0) = R¥(0) = 1 (ef. (3.1)).
By working out the right hand side we can easily find the coefficients

Bj. Straightforward calculation yields

az .z~ 2(z,+z,)
R(z) = 1 + 172 1 72 2
2122
2 . 2 2
. (z1+z2) +2z122—2az1z2(z1+z2)+bz1 Z, Z2

2 2
Z1 %o

-10-

P . o
a(z1+z2) + 2az122,—,2z1z2(2122)b.—A2(z1+ze)

3
+ 222 Z
Z1 %5
1-2a(z +z,.) + (z.+z)2b + 2z.z.b
. 1722 1722 1%22°)
2 2 z
Z1 %
. a-2(z1+22)b ZS
2 2
1 %2
b 6
+ 5> 5 Z .
21 %

Identification with (3.1) leads to the following expressions for Bj,

J > 2:
66 = sg [%-- 251 + (35? - 252)],
- - 2 2
85 =g, & L1 - he1 + (6€1 - 282)] + 52(1—he1)

12 2 4 2
By = (eptzel) = 2e,(e] +e,) + 3, - 3¢

™
L]

2 2
ey * (282—361) + 2€1(2€1—3€2).

Here, the parameters e, and e, are defined by

1

e

For the parameters A. . we finally have

Js1

_ 1 2 2
Ah,1 = 12[(€2+§'e1) - 281(€1+ 252)

-11-

+

2,2 3 2 2.,
51(3e1+852) - 12e7 e, + 12e e, - 582],

- _J1 2
Ah,B =-3 ¢ 681 - 2&51 + 128182 +
2 L
- 48 €7 €2 [2-381] - 36z~:1
+ h8€3 - 1hhe e2 + 6Oe2
1 172 2°
g
A = 2 ——
2 A ?
3, 4,3
A = 12 i [e, - 2e,e, + 32(-h+6€ -6e,.) + hee]
3,1 Xh 3 1 172 1 1 2 2°°

Similar expressions can be derived in case of formula (3.4'). Finally, we

remark that in the case (3.4') the special fit-points
z, = -7.59521, 2z, = =9.70395

generate the stability polynomial

- 12,1
R(z) =1+ 2z + 5% +tZ7z

3 5

+ +

2"+ .005303430 * z

[\:)'I_.

+ .0002L04T30 * z6 .
This polynomial has a real stability boundary

B = 9.97,

real

which is, in fact, the largest value obtainable by fourth order polynomials
of degree 6(cf. reference [3]).

4. Step size control

The stability considerations given in the preceding section are local

-12=

considerations,that is théy aré Baséd'on a linéar'approximation of the
differential equation in a neighbourhood of (tk,uk). Thus, the differential
equation should be sufficiently linear over the integration step T actual-
ly used. By choosing T sufficiently small, this condition can always be

satisfied., Hence, we are faced with the problem how small should T, be

k
chosen., We need the following strategy: let Gk+1 be a reference solution
which is identical to W ,q @ soon as the differential equation under

consideration is linear; then Ty should be such that

(h.1) [Ty =g |1 =y =g+l 11

where Ny and n, are given absolute and relative tolerances, respectively.
Furthermore, let Gk+1 be of order 5. Then

+1

(h.2) o e 11 = oltom) o

provided that p < p. The error function ¢(t,t) generally is a slowly

varying function of t and T, so that

||, ||
+1
-1

(l‘l"3) ¢(tk’Tk) ; ¢(tk_19Tk_1) = Tp
k

From (4.1) - (4.3) it then follows that

1
AL
| w2 |

(b.k) L

T = Tk-1
Next we consider the construction of the reference solution Ek+1. We

try to satisfy the requirements imposed on ﬁk+1 for the class of formulas

generated by the parameter matrix

0 0 0 0 0 0
1
> 0 0 0 0 0
1
h 0 > 0 0 0 0
. 0
(L.5) 0 A3q. %30 O 0
0 My,p O M3 0
0 0 0 0 A5,4 0
1.1 1 1 1
a2 1 4 0 0 —
3 6rg), 3 3 65)

Here, and Ah 3 are identical to the parameters used in the
b

23,10 23,20 My,
calculation of Uy The parameter AS,M is a free parafeter #z 1. Hence, an
additional point is introduced for the computation of LT It is easily
verified that (4.5) generates Runge-Kutta formulae of which the characte-
ristic root is identical with R(z), defined by (3.1), (3.2). From this it
is immediately clear that Ek+1 = in cise of linear differential

equations. Furthermore, this implies that is second order correct

u
~ k+1
(i.e. p = 2) in case of non-linear equations. n our experiments we have

chosen

=1
(4.6) As) =3 -

The step size T, can now be predicted by formula (L4.L4) with 5 =2. In

k

actual computation, however, we used a rational approximation of (L.L4),
namely

L
h.h =[2 -]
() Tk [3 n_+n ”uk]l T

3(1+ a ~) k-1

Y%k

For || || the Euclidean norm was chosen.

5. An interpolation formula

Suppose that the solution of a differential equation is required in

—1h-

given reference points & , Vv = 1,2,...,N. When formula (2.1) is used this
problem requires at least 6N function evaluations. However, if the inter-
vals gv—gva1 are small it may happen that the accuracy of the results is
much larger than required, so that relatively much computing time is spend
to the problem. For instance, when it turns out that an integration step as
large as &y - EO =&y - to yields sufficiently accurate results at t = Exe

one may ask whether it is possible to interpolate at the points t = gv,

v < N. We have tried to find an interpolation formula generated by the para-

meter matrix

0 0 0 0 0 0
i1 0 0 0 0 0
0o 3 0 0 0 0
0 A 0 0 0
(5.1) M = 3,1 3,2 R
0 M,1 0 xh’3 0 0
0 0 0 0 1 0
8, O, 0, 0 0 95

where eo, 645 8, and 6. are parameters which will be chosen such that the

2 >

result of applying M with step Ty is a reasonable approximation to the

solution at a point t =t + 1, O < T < 1, . This approximation will be

denoted by w + %-. Clear?y, the parameteis ej will appear to be functions
of 1. When we succeed we have obtained sn interpolation formula which does
not require additional function evaluations.

Our starting point in finding a reasonable accurate value for w + %-,
is the observation that applying M with step Ty is equivalent with k

applying 1§_M with step t. This implies that we simply have to satisfy as
T T
many consistency .conditions of ?g M with step T as possible. In doing so we

find the following set of conditons:

"k
p>1 T[eo+e +62+65]=1,
2
p>2 ;%—[1-91 +5 0, + 65] = %—,
(5.2) Ti [16 +16 +061=%
;5 T L T2 5 3
P23 3 >
iE (Lo + (A + 2)6 1= 1
37472 L1 4,37 75 6

-

Since only L parameters 6. are available at most third order accuracy can

be obtained for U + éL by solving these four consistency conditions.
k

However, when equations (5.2) are actually solved, it turns out that

T .
— =
w + T Ut g for T Tk, unless the parameter B_ defined by (3.2) equals

3

1/6. This is easily explained by observing that L is fourth order exact

0 it is effectively second order exact,unless B, = 1/6

3

we replace

as + 03 for 7

% K
T .
and Bh = 1/24. In order to make uk + T equal to Wty as T > 1T

k k

in the last equation of (5.2) the righthand side by B_. The corresponding

3"
interpolation function w * il-then is also effectively second order cor-
rect for T # 0 and third ordeér correct as T 0.

A simple calculation yields

85 = - —lE-TZ + —g§ T3)
2Tk 3Tk
LB
= 3.3 _
6, = 5 T l;(xh,1 + 2y, 5) 0
k
S . i T e + A L) .
3 3 5 L, 4,3
37, 37Ty

-16-

6. = -8, -6, - 0_.

Substitution into (5.1) leads to a third degree polynomial for u + %-:
‘ k

T (0) -1 _ 3 .00) (1)

(5.3) w * E PR T 5 fray 2000 4=h, Q)T+

(2) 1 .(5), 2
+2(hy, gy, Q) fL) -5 Rl Tt

+ T_2 ‘[g'f(o)

k3 Tk+1 +

5, (1)
+ (zxu’1+th’3~§) fk+1

[2) 2 (5)) 3

1
*g3m 2N, 7 3) T T3 RGS

In the ALGOL 60 implementation of scheme (2.1) the coefficients of this
polynomial are automatically computed and stored in an array I, where the
j=th row of I contains the j-th component of the coefficients o figz,... .
Thus in terms of I formula (5.3) reads

TO V
(5.3) w +i-=1 [T
Tk 2
T
3
T

6. The procedure EFFORK

In this section we describe an ALGOL 60 version of the integration
process discussed in the preceding sections.
The heading of the procedure EFFORK (Exponentially Fitted Fourth Order

Runge Kutta method) reads as follows:

-17-

procedure EFFORK (t, te, mO, m, u, derivative, output, k, phi, sigmad

sigmal, sigma2, ro0, rol, ro2, p, eta, aeta, reta,
hmin, hmax, I, fillI);

integer mo, m, k, p;

real

array

t, te, phi, sigmal, sigmal, sigma2, ro0, rol, ro2, eta, aeta,
reta, hmin, hmax;

u, I;

procedure derivative, output;
boolean fi111I;

The actual parameters corresponding to the formal parameters are:

te

mO,m :

<variable> ;

t is used as Jensen parameter;

entry: the initial value Q);

<expression> ;

the end value of t;

<expression> ;

indices of the first and last equation to be solved;
<array identifier> ;

a one-dimensional array u [mO : m] ;

entry: the initial values of the solution u(t);

derivative: <procedure identifier> ;

output

a procedure to be declared by the user:

procedure derivative (t,v); real t; array v;

<body> ;
upon completion of a call of derivative array v should contain
the components of f(t,v);
<procedure identifier> ;
a procedure to be declared by the user: procedure output;
<body >; by this procedure one may order to print the values of
t, ulmo0l, ..., ulm]l, etc;

<variable> ;

-18-

counts the integration steps;

entry: it is required that k = 0;

phi : <expression> ;
the argument ¢ of the point in the complex plane where expo-
nential fitting is desired;
phi = arg (z1) = 21 - arg (22);

sigme) <expression>
the modulus of the center of the cluster near the origin;
sigma0 = |8, |3

sigmal , sigma2 = : <expression> ;
moduli of the (complex) points where exponential fitting is
desired;
sigmal = |61|, sigma2 = [62|; if ¢#m then it is required
that sigmal = sigma2 ;

ro0 , rol , ro2 . : <expression> ;
radii of the clusters corresponding to sigma0 ., sigmal and
sigma? ;
ro0 , = Py rol . = Py and ro2 = P

P <expression> ;
determines the effective order of the scheme; the alternatives
are p =2 or p = 4 corresponding to (3.2') and (3.2"),
respectively;

eta <variable> ;

aeta, reta:

hmin, hmax:

the tolerance Ny which is a function of aeta and reta
(formula (4.1));

<expression> ;

absolute and relative tolerance ;

<expression >;

minimal respectively maximal steplength by which the integra-
tion is performed;

<array identifier>; array I [mO : m, O : 3]; in this array
information is stored, to be used in the interpolation

formula (formulas (5:3), (5.3');

-19-

£i11T : <Boolean expression> ;
if filll = false then the statements concerning array I are

skipped;

Next the complete ALGOL 60 text is presented:

procedure EFFORK(t,te,m0,m,u,derivative,output,k,
phi, sigma0, sigmal, sigma?2, ro0, rot, ro2,
p,eta,aeta,reta, min, hmax, I,£fi11I);
integer mO,m,k, p;
real t,te,sigmal, sigmal, sigma2, phi,ro0,rol,ro2,
eta,aeta,reta, hmin, hmax;
array u, IL;
procedure derivative, output;
boolean fillI;
begin real tau,z1,z2,z01,z02,phiO, pi,d2md1,c,c1,taul;
integer i, J;
boolean real,change,righthalfplane,first;
array mu[0:5],labda[—2:5],beta[3:6],
— r,r1,u0,ul,s[m:m],thethal0:3],e[0:5,1:3];

procedure forme;

begin real t1,t2;

e[0, T]:=1;3t1:=1/tau; t2: =t1xt1;
e[0,2]:=1.5xt1;e[0,3]:=e[5,3]:=2xt2/35e[1,2] :=2xt1x(1—mu[L4]);
e[1,3]:=tex(2>am[Lk]-5/3);e[2,2] :=2xtIxmu[L4];
e[2,3]:=t2x(1/3-2xmul[lk]);e[5,2]: =—.5%t1

end forme;

procedure coefficient2;
begin z01:=21;202:=22;phiO:=phi;
if righthalfplane then z1:=z2:=0;
if abs(z1)>50Aabs(z2)>50 then
begin real a,b,a2,b2,ab;
b:=1/(21xz2);a:=if real then (z1+2z2)Xb else —2xz1Xcos(phi)xb;
a2:=axa;b2:=bxXb;ab: =axb;
labda[—1]:=12x(b+a2x(.5—ax(2-3xa+12xb)+8xb)+
Lixabx(3Xb—1)—-5xb2) ;
labda[l4]:=—.5+6xa+12xab+a2x(—24—96xb+1L4lLxab-36xa2+48xa)+
b2x(60—1k4kxa);
labda[3]:=2kx(b2x(.5-2Xa+3xa2—2xb))/labdall];
labda[—2]:=12XbX(a—2Xxab+a2Xx(—L+6xa~6xb) +uxb2) /labdal k];
goto mu3k
end;
if abs(z2-z1)>.1 then
begin real array a[1:4,1:4],f[1:4];
real z;integer j;
procedure init(i,z);integer i;real z;
begin real z2,2z3;
2.t =—7322: =2XZ3 231 =22XZ}
if abs(z)<y—3 then
begin f[i]:=1/6+z/24+2z2/120;£[1+1]:=1/2l+2/60+22/2L0 end
else

—20—

begin fli]:=(exp(z)—(1+z+22/2))/23;£[1+1]:=F[1]—(3xF[1]-.5)/2 end;
ali,1]:=a[i+1,2]:=1;a[i+1,1]):=0;a[1,2]:=2;a[i+1,3]:=2Xxz; -
a[i,3]:=z2;a[i,4]:=z3;a[i+1,4]:=3xz2
end;
Init(1,2z1);1init(3,22);
detsol(a,l4,f);
for j:=1 step 1 until 4 do beta[j+2]:=f[j]
end else
if realvzi<g—3 then
begin real z,z2,f1,f2,f3,fk;
Z:=—21322:=2X2}
if abs(z)<,~3 then A
begin £1:=1/6+2/20+22/120;f2:=1/24+z/60+z2/2L40;
£3:=1/60+2/120+22/420;fL:=1/120+2/210+22/672
end else
begin real expz;expz:=exp(z);
T1v=(expz—(1+z+22/2))/(z2xz);
£2: =f1—(3%xf1-.5)/z;
£3:=f1+(1-6x£1)/22+(.5-6%f2) /z;
fli: =(expz—6XE1—18xzxf2-9xz2XF3) / (z2X2)
end;
Peta[6]:=fL/6;
betal[5]:=(£3-6Xbetal6]1xz)/2;
beta[l]: =f2—3xbetal6]xz2—2Xbetal5 Ixz;
beta[3]:=F1-betalb]xz2xz~betal5 Ixz2—betalk]xz
end else
begin real array a[1:4,1:4],£[1:4];
real r,i,z2,expr,r2,i2,rt,it,rn, in,n;
integer j;
T:=z1xcos(phi);i:=z1xsin(phi);z2:=z1xz1;
expr:=exp(r);r2: =rxr;i2:=ixi;
rt:=exprxcos(i)—(1+r+r2/2-12/2);
it:=exprxsin(i)—(i+rxi);
rn: =rXx(r2-3xi2); in: =ix(3xr2—-i2);
n: =rnxrn+inxin;
£[1]:=(rtxern+itxin)/n;f[2]: =(itxrn—rtxin)/n;
f[3]:=f[1]3x(rxf[1]+ixf[2]-r/6)/22;
flh]:=f[2]3x(rxf[2]=ixf[1]+1/6)/z2;
a[2,1]:=a[3,1]:=all, 1]:=all,2]:=0;a[1,1]:=a[3,2]:=1;
a[1,2]:=r;a[2,2]:=1;a[3,3]:=2xr;al[k,3]:=2x1i;
al1,3]:=re—i2;a[3,4]:=3xal1,3]1;a[2,3]:=2xrxi;
alb,4]:=3xal[2,3]5a[1,4]:=rnja[2,4]:=in;

detsol(a, b, f);
for j:=1 step 1 until 4 do veta[j+2]:=F[J]
end;

Tabda[—1]:=12x(veta[k]-2xbetal[5]1);

labda[L]¥=6xbetal[3]-.5~1abdal—1];

labda[3]:=2hxbeta[6]/1labdall];

labda[-2]:=12x(beta[5]-2xbeta[6]) /1abdallt];
mu3k:mu[3]:=labda[3]+labdal—2];mu[4]:=1abda[lt]+labdal-1]
329 coefficient?2;

21—

procedure coefficientl;
begin real gl,g2,a,b;

z01:=213202:=z2; phiO:=phi;

a:=if real then —(z1+22) else 2xzlxcos(phi);

if righthalfplane then -

begin beta[5]:=1/120;eta[6]:=1/720 end else

it abs(z1)<5,2 A abs(z2)<5,2 then

begin beta[5]:=1/120 — 2z1x22/50L0;beta[6]:=1/T720+a/5040 end else
if abs(z1)>pl4 A abs(z2)>ph then

Pegin betal[6]:=1/(2kxz1xz2);betal5]: =—axbeta[6] end else

if real then -

Eggin z1:=>—21;22:=-22;

end

if ab
begin

Z

s(z1-z2)<.1 then
real z,z5,26,esz;
:=Z7;expz: =exp(z);26:=1/2M\6;25: = 26xz;

betal5]: =expzxz5x(6-2)—z5x(6+zx(5+zx(2+2zx(.5+2/12)))) ;
betal6]: =expzxzbx(z=5) +26x(5+2x(h+zx(1.5+zx(1/3+z/24))))

end else

begin
g

g

1:=if abs(z1)<5,2 then 1/120+21/720+z1xz1/5040 else

if abs(z1)>pk then —(z1+4)/(2hxz1xz1) else

T7 (2105) x(exp(zT)=(1+21x(1+21x(. 5+21x(T/6+21/24)))))
2:=1if abs(z2)<5,—=2 then 1/120+z2/720+z2xz2/50L0 else

if abs(z2)>pk then —(z2+L)/(2kxz2xz2) else

T7 (2245) x(exp(z2)=(1+z2x(1+22%x(. 5+z2x(T/6+z2/2k))))) 5

beta[5]:=(z2xg1—21%xg2)/(z2-21) ;betal6]:=(g2—g1)/(z2—21)

end
else

begin real expre,expim,a2,al,b2,bl,a2b?2, ret,ren, imt,imn,d;

end;

a:=a/2;b:=d2md1xtau/2;

expim: =exp(a);

expre
al:=

ren: =
imn: =

: =expimxcos(b);expim: =expimxsin(b);

a X aj; alt:=a2xa2;b2:=bxXb;bl: =b2xb2;a2b2: =20xa2Xb2;
b2X(10Xak—a2b2+2xblh) 5

axbX(—2 xal+a2b2—10xbk);

ret: =expre—1—a—(a2-b2-axb2)/2—a2xa/6—(al—.3xa2b2+bl) /2L;
imt : =expim-bx(1+a+a2/3+(a+1)x(a2-b2)/6);

d:=1/
betal
betal

(renxren+imnximn);
6] :=—2xdx(renxret+imtximn) ;
5] : =—axbetal6]+2xbxdx(renximt—retximn)

Tabdal3]:= betal[6]/vetal5];
labdal 4]:=2hxbetal[5];
labda[-2]:=.5-labda[3];
labda[-1]:=.5-1labdalk4]

end coefficientl;

oo

procedure stepsize;
begin real 4,41,d42,s1,s2;
real: =abs(phi—pi)<.01;
righthalfplane:=(phi<pix.5Vphi>pix1.5);
dl:=sigmal;d2:=sigmal;
if hmin=hmax then begin first: -true,tau.-hmln end else
if first then beg begin first: ~false,tau'-tauo end else
begin real taustab, taul; -
tau: =h =hmax;
if realNabs(d1-d2)<.1 then taustab:=if p=2 then
exdT/(roixrol) eIse c/sqrt(dixro1)
else
begin d2md1:=if real then abs(d2-d1) else abs(2xd1xsin(phi));
if p=2 then begln In s1:=abs(cxd2/{roixd2md1));
2t =abs(cxd1/(ro2xd2md1))
end else
begin d:=A1%d2/d2md1;s1:=abs(cx(d/ro1)A.25/d1);
s2°-abs(cx(d/r02)A 25/d2)
end;
taustab:=if s1<s2 then s1 else s2
end; -
d:=abs(c1/(sigma0+ro0));
if taustab>d then taustab:=d;
If tauw>taustab then tau: =taustab;
For j:=m0 step T until m do ul[jl:=ulljl-ulJl;
eta: =aeta+retaxsqrt(vecvec(mO,m,0,u,u));
taul: =tauox(1/3+eta/ (.75x(eta+sqrt(vecvec(moO,m,0,ul,ul)))));
if taul<tau then tau:=taul;
if righthalfplane then tau:=hmax;
if tau<tmin then tau:=hmin;
end;
Tauo: =tau;
if t+tauw>te then tau:=te-t;
If tau<abs(tXy—12) then goto out;
Z1: =tauxd1;z2:=tauxd?;
s1:=.1xXrolxtau;
if real then begln s2: =, 1Xro2xtau;
change : =k=0V(abs(z01—z1)>s1Vabs(z02-2z2)>s2)
end else
begin d:=s1xs1;
change: =k=0V((z1-201)x(z1-201)+
z1%xz01x(phi—phi0)X(phi-phi0)>d)

end

end stepsize;

procedure difference scheme;
begin real mt,1t,ltau;
i1:=—1;
for j:=mO step 1 until m do uwO[jl:=ull[jli=r[jl:=ulj];
if £i11I then for j:=mO step 1 until m do I[j,0]):=ulj];
nextterm:
mt:=mu[i+1Ixtau;1t:=labdali+1 Ixtau;
if i=2Vvi=3 then
begln ltau:=labdali—-L]Ixtau;
for j:=m0 step 1 until m do r[j):=u0[jl+ltxr[jl+ltauxri[J]
end else

—23—

if i1 then for j:=m0 step 1 until m do r[jl:=u0[jl+ 1txr[j];
i: —1+1,
if i=5Ahmaxfhmin then
begin real 1t1,mtT;1%1:=mcl:=tau/2;
for j:=mo step T until m do s[jl:=u0[jl+ltixr[Jj];
derivative(t+mti1,s)
end;
derivative (t+mt,r);
if i=1 then for j:=mO step 1 until m do r1[jl:=r[Jj];
if £111T then
begin integer k;
if 1=0 then for J:=m0 step 1 until m do
for k:=1,2,3 do I[j,k]t=eli,kIxrl3l;
if i=1Vi=2Vi=5 then
for j:=m0 step 1 until m do
for k:=2,3 do I[J,k]:=I[J,kl+eli,kixr[]]
end;
if i=0Vi=1Vi=2Vi=5 then
Eggin real tht;
Tht:=if i=5 then tauxthetha[3] else tauxthetha[i];
for ji=mO step 1 until m do u[jTe=uljl+ thtxr[jl;
if hmin%hmax then
begln if i=5 Then
~ begin thti=tau/3;
for j:=mO step 1 until m do ul[Jj]:=ul[Jjl+thtxs[j]
end else
if 1=1Vi=2 then
For j:=m0 step 1 until m do ul[Jjl:=utljl+thtxr[J]

end

end;”

If i<5 then goto nextterm;

Ti=t+tau
329 difference scheme;
pi:=lxarctan(1);
if p=2 then begin c:=sqrt(2);c1:=2 end
— else begin c: =2hK 255 c1: =2.63 end;
taul: =hmin;first:=true;
mu[0]:=0;mu[1]:=mul2]r=m[3]:=mu[b]:=.5;m[5]:=1;
thetha[O]:=thetha[3]:=1/6;thetha[1]:=thetha[2]:=1/3;
labda[0]:=0;1labdal1]:=labdal[2]:=.5;1labdal[5]:=1;

next level:
stepsize;
if change then
begin if p=2 then coefficient2 else coefficientlh end;
Tf"f'l‘lll then Torme; -
—k+1,
difference scheme;
output;
if t<te then goto next level;
out:

end runge kutta orde L;

24—

Finally, an outline is given of the subprocedures occurring in proce-
dure EFFORK.

procedure forme

This procedure is used for the construction of array I, concerning the

interpolation formula.

procedure coefficient 2

If the parameter p has the actual value 2 this procedure is used for

the calculation of A3’1, A3,2, Xh,]’ Ah,3 H

procedure coefficient L

If p = 4 this procedure calculates A3,1, A3’2, kh,1’ Xu’3 .

procedure stepsize

The determination of the step 1, is based both on the stepsize control

k
described in section 4 and the stability regions (3.5), (3.5'), (3.6),
(3.6').

Also in stepsize the variations of the complex points 2 =T X 61 is

considered. The coefficients are newly computed when Idgll > .1 % T % o -

procedure difference scheme

By this procedure the values of uljl], representing the components of
the numerical solution u(tk), are replaced by the components of an
approximation to u(tk+r).

T. Numerical examples

In this section results are presented of procedure EFFORK when applied

to a number of stiff differential equations.

25~

Two coupled equations

Consider the following initial value problem (cf. Fowler and Warten

£21)

(7.1) U =DU + F, u(0) = U, ,

_ [-500.5 h99.5> _[2 =x(-.1)
where D = { 499.5 =500.5/ ° F (g), UO L .

The matrix D has the eigenvalues 61 = -1000 and Gr = -1. The analyti-

cal solution of (7.1) is given by

U = 2(1-e"F) (}) + .1 % 1000t K”).

A uniform steplength was used for the integration from t = 0 to t = 10.

. 10 ~
In table 7.1 we give - "log e, where ¢ max]uk(t) - uk(t)l’ for some

values of the stepsize Tt. k=1,2
Parameters used
phi = T, Sigma.1 = sigmae = 100, hmin = hmax = t.

Since the integration was performed with a constant steplength, the choice

of the parameters sigma0O, roQ, rol, ro2, eta, reta is irrelevant.

Table 7.1 Numerical results for problem (7.1)

effective order| t stepsize T
1 .5 .2 .1 |.05 .02
2 1] .7 1.5 | 2.4 | 3.0 |3.7 | b.7T
2 10, 3.0 | 4.4 | 5.5 [6.1 6.8 7.8
L 11 1.7 | 3.3 | 5.1 |6.3 7.6 | 9.3
b 10| 5.0 | 6.4 | 8.1 [9.0 9.6 |12.0

26—~

The single equation U = U + &% 1nt + 1/%

We consider the initial value problem:

.t t
(1.2) U=-e"U+ e’ lnt + 1/t,

U(.01) = 1n(.01).

This problem has the solution U(t) = 1n(t). Since the Jacobian matrix
behaves as -exp(t), the differential equation becomes increasingly stiff
for t > 3. This suggests the use of a variable steplength. The fourth
order exact scheme gives rise to the stability condition (compare (3.5')

with z, = z2)

oy 1/h
(7'3) Tki*——'T/E .
(8%p)
where
§ = et and
p = radius of the cluster.

Instead of p = 0 we took

tk (Tk etk
Kk .

e e -1)~r1

(7.4) p
Substitution into (7.3) yields

-2t. /3
(7.3') <ol KT

From this it follows that the parameters rol and ro2 should be chosen

according to

t, /3
(7.4%) rol . = ro2 = 2&1/6 * e k .

27~

When the second order scheme is used, a similar calculation yields (com-

pare (3.5) with Z, =z

16 2%/3

rol. = ro2z. =2 * e .

However, since both schemes give rise to almost the same results, in table

7.2 only the results obtained with the fourth order scheme are presented.

Parameters used

te =6.Sa
1/6 * t/3

et, rol = ro2. =24 e’ ’7,

phi = 7, sigmal = sigma?2.
sigma0 = roQ = 0,
p =5k

aeta = Ngs reta = N hmin = .01.

Table 7.2 The effective fourth order method applied to problem (7.2)

n, =, hmax stepﬁumber —1Olog|u(6.5) - U(6.5)]
10'2 o1 159 6.4
107" o1 105 h.2
1072 .5 147 6.k
107" .5 81 4.6

. -1
A more detailed description of the experiment with Ng =N, = 10

and hmax = .5 is shown in table T.3. We have respectively given the step-
number k, the value t, of the integration variabie, the number of correct
digits of u(6.5), the maximal step 1, allowed by stability, the maximal step

1, allowed by (4.4'), the actual step T = min (TS,Ta) and the eigenvalue §.

-28-

Tablé 7.3 Thé'effective'fburth order method applied to problem (7.2) with
N, =N, = ‘10"1 and hmax = .5

by

k g | - log e | Ty .| T [s]
5 Th 2.9 1.58 .07 .07 1.19
10 1.588 2.3 .80 .45 .45 k.89
15 3.303 2.3 .22 .30 .22 27.2
20 4.062 2.6 .12 7 .12 58.1
25 L.556 2.4 .086 | .135 .086 95.2
30 4. 925 1.9 .067| .067 .067 137.6
35 5.191 2.2 .055 .07k .055 179.7
Lo 5.412 2.5 .48 057 .0L8 22h.1
50 5.77T4 2.8 .037|__.02k . .02k 321.9
60 6.068 2.2 .030| .035 .030 432.0
T0 6.295 3.0 .026 | .027 .026 541.6
80 6.495 3. .023| .013 .013 661.8
81 6.500 4.6 .022| .01k .005 665.1

From these results it is seen that initially the discrepancy of
linearity controls the step size ([0,1.6]1). For t > 3 the stiffness of the
equation becomes an important factor; in the interval [3.3, 5.4] the steps
are completely determined by stability conditions. However, when t increases
the equation also becomes increasingly non-linear; for t > 5.4 both stiff-

ness and non-linearity enter in the determination of a suitable step length.

A third order differential equation

Consider the initial value problem

soo

U + (1-2reose) U + r (r-2cosé) U + r2U =0,

U(O)=1,ﬁ(0)=0,ﬁ(0)=0

(7.5)

-29-

where r and ¢ are given parameters.

This problem can be written in the equivalent form

. 0 1 0
U= 0 0 T,
(7.5') 9 | x° - r(r-2cos¢) 2rcos¢-
1
v 3(0)= 0
0. s

where ﬁ has the components U, U and U .

The eigenvalues of the Jacobian matrix of (7.3') are

-1, r ei¢ ¢ .

and r e

When r

1000 and ¢ = = m, the analytical solution of this problem is

w(m

given by

Y
n
1

o

We use this problem to show some results of the interpolation formula

(5.3).

Parameters used

te =1,

phi %-n, sigmal = sigma2? = 1000,
= 4, hmin = hmax = T,
£i111 = true

o]
I

—-30-

Starting in t = 0 we applied formula (5.3) with 1, = 1 and T = 5,

k
respectively. In table T.l4 we have given the interpolation point t and

-1olog €, Where € = max- Juk(t) - ;k(t)l'

k=1,2,3

Table 7.4 The interpolation formula applied to problem (7.5')

t =1 T=.5
o1 2.9 3.6
.2 2.3 3.1
.3 2.0 3.0
o 1.8 3.0
) 1.7 3.k
.6 1.6
T 1.6
.8 1.7
.9 2.2
1.0 1.7

A system of two non-linear equations

In nuclear reactor physics the following problem is of interest

(ef. LT1).

.
|

;= -2(Uy-U),
. - &
(1.6) § Up = 100, - (60+g) U, + .12kt,

u,(0) =0, U,(0) = 0

-31-.

The éigenvalues of the Jacobian matrix of (7.6) aré‘approximatély -60
and -.17, changing slightly during the integration from t = 0 to t = 10.
An analytical solution is not obtained and the résults from EFFORK, p = 4,
using a small steplength were taken as reférénce solution.

Since a uniform steplength was used, only thé following parameters are

of interest:

phi =7

| &

sigma 1 sigma2 = %(60.2+%+sqrt((60.2¥%) -
hmax = hmin = T.

% (60%) +8)

In table 7.5 we listed —1Olog|uk(10)-ak(10)|, k = 1,2 for some values
of the step size 1. Both second and fourth effective order schemes were

used.

Table 7.5 Numerical results for problem (T7.6)

p=L p=2

T Uy U % Y2 f
o1 8.4 6.4 5.7 6.6
.2 T.3 5.3 4.6 5.0
.3 T.1 4.6 4.1 4.8
b 6.1 k.o 3.8 3.6
.5 L.h h.9 3.5 L.h
.6 wmstable 3.1 2.5
.7 2.9 2.7
.8 2.5 1.7
.9 unstable

An examination of these results clearly shows that the p = 2-scheme
has an extended region of stability, while the p = lL-scheme is more accu-

rate.

-30-

Finally we givé SOmé résu1ts of”thé intérpolation formula, applied to
(7.6). Using the fourth order scheme, one integration step of length .5 was
performed, starting int =0 and t = .5, réspectivély. The results at some
interpolation points are listed in tables T.6 and T7.7. Hereby, we denoted
by us the reference solution and by Ei the solution obtained with the

interpolation formula.

Table 7.6 The interpolation formula applied to problem (7.6)

t U, Iu‘]'E] | u, |u2-'1\'12|
.1 215 4970 L 10=2 AT 10-3 072
.2 .69 10-5 10-& .38 10-3 L 10-2
.3 .16 10-& 2 10-h 59 4073 6 10-2
o .30 1o'h 2 10-& .80 10-3 5 41072
.5 uT7 10—& 7 1079 .10 10-2 3 1075

Table 7.7 Results of the interpolation formula with initial

value t = .5
" u, | w8 |- OLos(|u,-a, | /u,) |yt | |- "*Log([u,=5, /u,)
1 1™ 1731/ Y 5 gL Uyl fu,
.6 | .68 10—& 3 10—8 3.4 J12 -2 8 10-6 2.2
.T1.93 10-& 9 10-8 3.0 .1k 10722 19~ 1.8
.81.12 10-3 10-7 3.0 .16 10-2 i 10-5 1.7
.9 |.15 1073 10-7 3.1 .18 10-2 3 1075 1.8
1.0 | .19 1073 8 10-9 L4 21 2|2 10-6 3.0

From these tables it may be concluded that the interpolation formula
yields poor approximations in the initial phase, but is quite satisfactory

when the stiff components become negligible.

-33~-

References

L1]

[2]

£3]

CL]

(5]

L6]

L7l

Butcher, J.C., Implicit Runge Kutta processes, Math. Comp. 18,50 (196L).

Fowler, M.E., R.M. Warten, A numerical integration technique for
ordinary differential equations with widely seperated eigenvalues,
I.B.M. Journal, 537-543, (1967).

Houwen., P.J. van der, J. Kok, Numerical solution of a minimax problem,

TW report 123/T1, Mathematisch Centrum, Amsterdam, (1971).

Houwen, P.J. van der, Stabilized Runge Kutta methods with limited
storage requirements, TW report 124/T71, Mathematisch Centrum,

Amsterdam (1971).

,» A survey of stabilized Runge Kutta formulae, MC tract 37,
Mathematisch Centrum, Amsterdam (1971).

, Explicit Runge-Kutta formulas with increased stability
boundaries, Numer. Math. 20, 149-16L4 (1972).

W. Liniger, R. Willoughby, Efficient integration methods for stiff
systems of ordinary differential equations,
SIAM J. Numer. Anal., vol. T, no. 1 (1970).

