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ABSTRACT 

The numerical solution of singularly perturbed second order linear 

two-point boundary value problems is studied. A method is proposed that 

uses a weighted combination of the backward and forward divided difference, 

such that the boundary layer behavior is represented accurately. In a 

turning point region -with diameter O(e½)- an accurate approximation can 

be obtained when a local mesh with h = O(E½) is applied. A maximum prin­

ciple applies to the approximate solution if -it does for the exact solu­

tion. In addition,the method is easy to implement. 





I • INTRODUCTION 

A large number of physical problems give rise to singular perturbation 

problems, i.e. differential equations in which the highest derivative is mul­

tiplied by a small parameter. This occurs for initial value problems as well 

as for boundary value problems. In both cases the use of standard methods 

for solving the differential equations is impossible or highly in-

efficient. For initial value problems this situation led to the development 

of methods for the so-called stiff differentidl equ.ations. For boundary 

value problems much work has been done in the field of pure analysis and 

often solutions can be computed in the form of an asymptotic expansion in 

terms of the small parameter. A large ntnnber of interesting phenomena has 

been discovered and analysed. In this place we mention the work 

of Visik and Lyusternik [1957], Eckhaus and De Jager [1966] and Eckhaus 

[1972] on boundary layer problems in more dimensions and the work of 

O'Malley [1970] and Ackerberg and 0 1Malley [1970] on boundary value prob­

lems with a turning point in a one-dimensional domain. 

In contrast with the large ntnnber of publications which appeared on 

the numerical solution of stiff differential equations for initial 

value problems, only a few papers on the numerical solution of singularly 

perturbed boundary value problems are known to the author -although it is 

expected that this is a rapidly developing field. 

The purpose of this paper is to describe a finite difference method 

for solving the two-point boundary value problem of the form 

(I. a) ey"(x) + f(x) y'(x) - g(x) y(x) = k(x) 

(1.b) y(a) = ex, y(b) = 13, 

where Eis a small positive parameter. 

The same problem was considered by Pearson [1968], Il'in [1969] and 

Miranker and Morreeuw [1973], and a related problem was treated by Dorr 

[1970,1971]. Pearson [1968] introduced a variable net, using two-sided 

differences. Il'in [1969] multiplied the small parameter e by a factory, 
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depending on s, f(x) and the unifonn mesh spacing h. This factory is 

chosen such that the solution of the homogeneous problem is represented 

exactly. Dorr [1970] exploits the use of one-sided differences and Miranker 

[1973] makes use of the known analytic properties of the solution, in par­

ticular in the neighborhood of a turning point of the differential equa­

tion. 

In this paper we introduce a new method that couples most benefits of 

the known methods with an utmost simplicity. The method uses the connnon 

three-point difference approximation to y" (x.) and introduces a new three­
l. 

point difference approximation to y'(x.), which is a weighted combination 
l. 

of the backward and forward divided difference. The only disadvantage seems 

to be the low order of accuracy; although some may have the opinion that 

low order methods are inherent to the efficient solution of this kind of 

problems. 

2. THE METHOD 

The main difficulty in the nlllllerical solution of singular perturbation 

problems is to obtain a difference approximation that is asymptotically 

correct for£+ 0. It is well-known that replacing the first derivative 

y'(x) by central differences is not suitable for small e/h when the second 

derivative is approximated in the usual way by 

(2) 2 
y - = (y. 1-2y.+y. 1)/h • xx i+ l. i-

Moreover, for fixed hand f(x) jO, ands+ 0, no resemblance at all exists 

between the solution of the differential equation and the solution of the 

difference equation. 

This difficulty can be dealt with by the use of a directional divided 

difference operator [cf. Dorr, 1970] 

(3) y .... 
X 

if f (xi) > 0, 

if f(x.) :-;; 0, 
l. 



Instead of this discrete choice between the forward and backward divided 

difference we introduce the Weighted One-Side Differences (WOSD) method 

(4) Y~ = ((l+a.) y. l - 2a..y. - (1-a..) y. 1)/(2h), 
X 1 1+ 1 1 1 1-

with a.. E [-1,+l]. 
1 

We notice that this contains the forward, the backward and the 

central differences, depending on the value of the parameter a. •• 
1 

The parameter a. is chosen, depending on E, f and h, such that 
1 

1) the local maximum principle holds for the solution of the difference 

equation whenever it holds for the differential equation [cf. Dorr, 

Parter and Shampine, 1973]; 

2) the boundary layer behavior of the solution of the differential 

equation is accurately represented by the solution of the difference 

equation. 

3. THE MAXIMUM PRINCIPLE 

3 

In order to obtain a difference approximation that satisfies the local 

maximum principle [cf. Brandt, 1973] we take a. such that the (tridiagonal) 
1 

matrix (a .. ), which results from the discretization 
1J 

(5) g ~ 0, 

1s of positive type [cf. Ciarlet, 1970]. This requires (definition of posi­

tive type) -a .. 1 :5: O, -a .. 1 :5: 0 and -a .. , -a .. -a .. 1 2 0, 
1,1+ 1.,1.- 1.,1+i 1,1 1.,1-

for all i with a< x. < b, where 
1 

(6) a .. 
1,1. 

E 
al.. 1·-1 = -2 

' h 

2a.. f (x.) 
1 1 

2h 
- g(x.) 

l. 

( l -a . ) f (x • ) 
1 l. 

2h 
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In the sequel we will omit the index i of a. and we will write f for 
1 

f (x.). 
1 

or 

(7) 

Since g ~ 0, the requirements read 

2 e: + ( l +a.) f h ~~ o
0 

} 

2e: - ( 1-a.) fh 

-1 < fh < _l_ 
l+a. - 2e: - 1-a. 

-1 0 +l 

+ fh 
2e: 

In this way we get bounds for the parameter a. depending on the value of fh/e:. 

We notice that the method of directional divided differences is one 

particular choice of a (discontinuous) function a(fh/e:) which satisfies the 

maximum principle. Other choices for the function a.(fh/e:), such that the 

maximwn principle holds for the numerical solution, are e.g. 

or 

2 hf a. = - arctan(-2 ) • 
'II' e: 

---, 
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Respectively, this is verified by 

- l+a < arctanh(a) 
I <--

1-a 

and 

-1 1Ta 
- < tan(-) l+a 2 

I 
< --1-a. 

An advantage of this kind of choice of a., as compared with the directional 

divided difference of Dorr, is that for fh << e the WOSD-method approaches 

the 2nd order accuracy of the central difference approximation. 

4. EXPONENTIAL FITTING 

The freedom left in the choice of the function a.(fh/e) will be ex­

ploited to obtain a good representation of boundary layer behavior. To this 

end we recall that the WKB-analysis of the homogeneous equation (1) gives 

an asymptotic approximation to the solution for small e. Away from a zero 

of f(x) this yields -to first order- two approximate solutions 

X 

(8) Y1 = exp{- I g(t)/f(t) dt} 

X X 

(9) (f (x)) -l l 

J £Et) dt + f g(t) /f(t) dt}. Y2 = exp{--
£ 

The function y 1(x) represents the solution of the reduced equation 

f(x) y'(x) - g(x) y(x) = 0, and y2(x) describes the boundary layer behavior 

(at the left-hand end for f(x) > 0 and at the right-hand end for f(x) < O). 

For eg << £2 the first term in the exponent of y 2 dominates and the bound­

ary layer behavior is approximated by 

C exp{-¾ j f(t) dt), 

This suggests to choose a(fh/e) such that the solution of 
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(10) sy" + fy' = 0 

is represented exactly. 

(Note that the same principle of exponential fitting is well-known in 

the numerical solution of stiff initial value problems,) 

( 11) 

Hence we take 

2e: - (1-a) fh 
------- = 2E: + (l+a) fh 

fh exp(--) 
s ' 

2s fh 
- fh + coth(z;). 

This function a(z) is easily computed since it allows a Taylor series ex­

pansion around the origin 

(12) 
3 2 5 7 z z z z 

a(z) = 3 - 45 + 945 - 4725 + 

It is readily seen that a(z) satisfies 

(13) 
-1 

I +et (z) 
l szs---:--:-

1-a(z) 

and hence this choice of a satisfies the condition for preserving the 

maximum principle properties. 

5. THE ALGORITHM 

The algorithm we propose now follows immediately. A set of nodal 

points {xi}~=O' x0 = a, xN =bis chosen in advance and the differential 

equation is replaced by the linear system 

i = I , 2 , ••• , N- I 

with 



(14) 

a .. 1 1,1+ 
2 

= (h+k)h + 

2e: 
(h+k)k 

f (x.) ( l+a.) 
]_ ]_ 

2h 

f (x. ) (l -a. ) 
]_ ]_ 

2k 

(
(h+k) f(x.)) 4e: 

cxi = co th 4e: i - (h+k) f(x.) ' 
]_ 

h and k = x. - x. 1• 
]_ i-

The discrete maximum principle is also satisfied for the non-uniform net. 

However, for a correct representation of the boundary layer, a uniform 

mesh is required locally; i.e. where the boundary layer is significant, 

the small region has to be covered by a (coarse or fine) uniform net. 

6. ACCURACY IN THE TURNING POINT REGIONS 

7 

It is clear that, for a 1 0, the method is only a first order method, 

i.e. the discretization error is O(h). From O'Malley [1970] we know that in 

the connnon case of a turning point x0 (f(x0) = O, f'(x0) 1 O, -g(x0)/f'(x0) 

is not a positive integer) the turning point region is O(VE). In this 

region a rapid change of the solution may be expected. It is therefore 

reasonable that, for approximation of the solution in this region, we take 

locally h = O(v'€) but h small compared with v'€. 
Since f(x0) = 0 and f'(x0); 0 we also have f(x) = O(v'e). Hence 

fh () d . h 1 Th" . 1· fh d h WOSD ~ = 0 1 and small as compare wit • 1s imp ies ex~ 6e: an t e -

method approaches to the method with central differences which is second 

order. Thus a reasonable good approximation of the solution in the turning 

point region can be obtained by using a local mesh 0(/2'). 
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7. NUMERICAL RESULTS 

In this last section we characterize the errors, which arise when our 

method is applied to a ntmlber of model problems. All computations discussed 

in this section were performed on a CDC CYBER 73/28 computer. 

7.1. Global accuracy 

First we give two examples to show that the global accuracy of the 

method is first order for large hf/e and second order for small hf/e. To 

this end we plot the logarithm of the error, e = max I y(x.) - y. I, versus 
i l. l. 

the logarithm of the mesh width h. 

We take two examples also given by Miranker and Morreeuw [1973]. 

Example I. (see fig. 1) 

Differential equation 

( 15) ey" + !xi y' - y = -(l+id cos(1rx) - 1rjxj sin(1rx); xe:[-1,+l]. 

Exact solution 

y = cos(1rx). 

-loge 

e 

-log h 

8 16 32 64 128 256 N 

-8 
Figure 1: Example 1: e = 10 • -log (e) versus -log(h). 

--
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Example 2. (see fig. 2) 

Differential equation 

(16) y" + lxl y' - y = 12ex2 + 4jx! x3 4 
- X , XE[-1,+J]. 

Exact solution 

4 
y = X • 

From fig. 2 it can be seen that the method approaches second order accuracy 

for small values of fh/£, 

-loge 

e 

-log h 

8 1 6 32 64 12 8 256 N 

Figure 2: Example 2: -2 
£ = 10 • -log(e) versus -log(h). E: = 

7.2. Accuracy in the turning point region 

Here we take the following differential equation as an example 

( 17) £Y 11 + xy 1 = 0, XE [-1,+l]. 

Exact solution 
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y(x) = 1.5 + 0.5 erf(x//fi_). 

For small values of s, a coarse mesh ignores the internal boundary layer 

at x = O. This may flatter the results when mr !y(xi) - Yi! is taken as a 

measure for the quality of the approximation to y(x). For an accurate des­

cription of y(x) we need a local refinement of the mesh in the turning 

point region. Here, for computational purposes, we take this region 

(-4/2"', 4ft). 

In the experiments we take an (equidistant) mesh for [-1 ,-4/2] and 

[4/2"',+l J and we take a finer (equidistant) mesh on (-4/s,4/2). 

In the tables 1, 2 and 3 we give for resp. s = 10-2,10-4,10-8 the 

values of e = m~x ly(xi) - yil for 2xml mesh intervals outside and m2 mesh 
1 

intervals inside the turning point region. In the tables we denote 2,5610-3 

by 2.56(-3). 

In figure 3 the logarithm of the mesh width in the turning point re­

gion is plotted versus -ln(e) for the cases= 10-8, The direction of the 

straight line clearly shows the second order accuracy. 

e 

-loge I 
./ 

I • 

/ 
. I 

4 8163264178 

-log h 

nodal points in 
turning point region 

Figure 3: 10-8 y" + xy' = o, x E [-1,+l], y(-1) = I, y(l) = 2. 

log(e) versus log(h). 

------, 
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>z l 
4 8 ]6 32 64 128 

3 1.38(-2) 1.07(-2) 2.57(-3) 6. 50(-4) 1.76(-4) 5.85(-5) 

6 1.37(-2) 

} 
2.56(-3) 6. 41 (-4) 1. 67 (-4) 4.88(-5) 

I 2 

f 
~ 6.35(-4) 1 .60(-4) 4.22(-5) 

24 2.56(-3) 6.32(-4) I.58(-4) 4.01 (-5) 

48 1.37(-2) 1. 07 (-2) 2.55(-3) 6.32(-4) 1.58(-4) 3.94(-5) 

Table 1: max ly(x.) - y. I f~r € = 1 o-2. 
i 1 l. 

~ l 
4 8 16 32 64 128 

3 1.38(-2) 1. 07 (-2) 2.58(-3) 6.53(-4) I. 79 (-4) 6.23(-5) 

6 

l l l l l f 
12 6.23(-5) 

24 T T -r 6.21(-5) 

48 1.38(-2) I. 07 (-2) 2.57(-3) 6.50(-4) I. 76(-4) 5.85(-5) 

Table 2: max 
i 

ly(x.) - y. I for€= 10-4, 
1. 1 

>z I 4 8 16 32 64 128 

3 1.38(-2) 1,07(-2) 2.58(-3) 6.53(-4) 1,79(-4) 6.23(-5) 

6 

! i \ \ ) l 12 

24 

48 1.38(-2) 1.07(-2) 2. 58 (-3) 6.53(-4) 1. 79(-4) 6,23(-5) 

Table 3: max IY<x.) - Y. I for E = 10-8, 
i l. l. 

>z l 4 8 16 32 64 128 

3 11 15 23 39 71 135 

6 17 21 29 45 77 141 

12 29 33 41 57 89 153 

24 53 57 65 81 113 I 77 

48 101 105 113 129 161 225 

Table 4: The total number of meshpoints (2*ml+m2+1). -
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7.3. Some other turning point problems 

Here we consider the differential equation 

(18) e::y" + axy 1 - by= 0 x E [-1,+1], y(-1) = 1, y(+l) = 2, 

with constant coefficients, a =±1, b > 0 and O < E: << l. It is clear from 

theoretical considerations (as it is,in fact,from the numerical experiment), 

that the algorithm gives excellent approximation for a= -1. More inter­

esting are examples with a=+]. 

We denote by y*(x) the asymptotic solution for E: + 0 of equation (18) 

with a= +I. Outside the turning point region this solution reads 

for x < 0 
(19) 

for x > O, 

1.n addition 

In table 4 we give (for b = 0.5, 1, 1.0001 and 2) the values of 

e = mjx r IY*(x.) - y. I for different values of e; m2 mesh intervals 
lxi >4ve i 1 

were taken inside the turning point region (-4/2',+4/s) and ml mesh inter-

vals at each side, outside the turning point region. 
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ml = 64, m2 = 32 ml = 32, m2 = 16 
b E 

e y(0) e y(0) 

• 5 l.(-1) 1. 04 (-2) 7. 00 (-1) 3.17(-3) 6.91(-1) 

1. (-2) 9.18(-3) 3.89(-1) 9.65(-3) 3. 85 -1) 

1. (-3) 9.86(-3) 2.17(-1) 1. 70(-2) 2.13(-1) 

]. (-4) 1.76(-2) 1.18(-1) 3.37(-2) 1.12(-1) 

I . (-6) 4.01 (-2) 2.68(-2) 5.74(-2) 2.12(-2) 

] . (-8) 2.90(-2) 3.40(-3) 3.87(-2) 2.43(-3) 

I. 1.(-1) 2.48(-4) 3.77(-1) 2.46(-4) 3.74(-1) 

l. (-2) 2.12(-6) 1.19(-1) 2.06(-6) 1.18(-1) 

I. (-3) 5.90(-7) 3.77(-2) 4.00(-7) 3. 75(-2) 

I . (-4) 5.44(-8) 1.19(-2) 4.22(-9) J.18(-2) 

l. (-6) 4.97(-14) 1.19(-3) 2. 84 (-14) l. 18(-3) 

I . (-8) 4.26(-14) l • 19 (-4) 1.42(-14) 1.18(-4) 

I . 000 l ]. (-1) 2.52(-4) 3.77(-1) 2.46(-4) 3.74(-1) 

l. (-2) 4.35(-6) l.19(-1) 4.41(-6) 1.18(-1) 

1. (-3) l.96(-6) 3. 77(-2) 2. 75 (-6) 3.74(-2) 

1. (-4) 1.41(-6) 1.19(-2) 2.58(-6) 1.18(-2) 

l . (-6) 1.40(-6) 1. 19(-3) 2.26(-6) 1. 18(-3) 

l. (-8) 1.40(-6) 1.19(-4) 2.67(-6) l . 18 (-4) 

2. l. (-1) 5.72(-2) f.40(-1) 8.89(-2) 1.48(-1) 

l. (-2) 1.69(-2) 1.50(-2) 1.79(-2) 1.53(-2) 

1.(-3) 6.74(-3) 1.57(-3) 1.33(-2) l. 72(-3) 

]. (-4) 7.39(-3) I. 93(-4) 1.46(-2) 2.46(-4) 

]. (-6) 7.66(-3) 6.84(-6) l .51 (-2) 1.23(-5) 

l. (-8) 7.69(-3) 5. 60(-7) ].51(-2) 1.11(-6) 

Table 4 
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In figure 4 we show the computed value of -log(y(O)) plotted against 

-log(E), This shows that the asymptotic relation (20) is realized numer­

ically for values E > 1 o-4, For b = l (i.e. the case where the asymptotic 

solution outside the turning point region is linear) relation (20) is 

satisfied exactly even for E << J0-4. (Data used from table 4.) 

10 
- log y(O) 

b = 2.0 
7 

• 
6 

5 . 

4 b = 1.0 

./ 3 

2 
/" / /. /' . b - 0.5 
./· . 

~:~.-----
::---. 

2 3 4 5 6 7 8 
10 - loge 

Figure 4: The computed value .of y(O) as a function of E, 
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