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ABSTRACT

With this report the authors propose a special class of generalized
linear multistep methods. Such integration methods originate from the clas-
sical linear multistep method by replacing the coefficients of the integra-
tion formula by functions of the Jacobian matrix. We have concentrated on
the construction of formulas of which the principal characteristic root
(the stability function) can be adapted to the problem under consideration,
while the parasitic roots are zero. Moreover, .the formulas allow a crude
evaluation of the Jacobian. By choosing the stability function appropriate-
ly, the integration formulas may be used for efficient integration of para-

bolic, hyperbolic and stiff differential equations.
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1. INTRODUCTION

In this report we investigate the generalized linear multistep method,
which may be used to solve numerically initial value problems for systems

of ordinary differential equations of the type

dy .
Generalized integration methods are characterized by the fact that the co-

efficients of the integration formula are functions of the Jacobian matrix,

a device first proposed by Rosenbrock (see for example [2] and [5]). In re-
cent years several generalized Runge—Kutta formulas have been developed at

the Mathematical Centre in Amsterdam. A survey of these methods is given in
[2]. Special classes of generalized linear multistep methods have been pro-

posed by Ngrsett [6], van der Houwen [1] and Lambert and Sigurdsson [4].

The integration method investigated in this report originates from
the classical linear multistep method by replacing the coefficients of the
integration formula by functions of the Jacobian matrix J(y). The consider-
ed class of formulas may also be regarded as an extension of the class of
formulas originating from the implicit linear multistep method by perfor-
ming one Newton—-Raphson iteration with the last computed solution vector
as predictor.

This report merely concentrates on the construction of the integration
formulas. '

In section 2 we discuss two types of consistency conditions. The first
type requires an accurate evaluation of the Jacobian matrix, while the se-
cond one allows an Znaccurate evaluation of the Jacobian. From a practical
point of view formulas allowing a crude Jacobian may be preferred to for-
mulas requiring a correct Jacobian.

In section 3 we introduce integration formulas of which the principal
root (the stability function) can be adapted to the problem under consider-—
ation, while the parasitic roots are zero. By choosing the stability func-
tion appropriately, these integration formulas may be used for efficient
integration of parabolic, hyperbolic and stiff differential equations. Van

der Houwen [1] already has given a third order two-step formula with pre-



scribed stability function and zero-parasitic root, requiring a correct

evaluation of the Jacobian matrix. Applications of this formula on stiff

equations turned out to be satisfactory.

Section 4 is devoted to the construction of integration formulas with
prescribed stability function and zero-parasitic roots allowing a crude e-
valuation of the Jacobian matrix. Here we derive consistency equations for
a formula using polynomial expressions and a formula using rational expres-
sions.

In the last section we present a worked out example of a set of inte-
gration formulas of which the order can be varied without much computation-
al effort.

Summarizing, in this report we have concentrated on the following
points:

1. operator coefficients instead of scalar coefficients,
2. zero-parasitic roots,
3. a prescribed stability function,
4, an inaccurate Jacobian matrix,
In a forthcoming paper the authors intend to publish further theoreti-

cal and numerical results.

2, CONSISTENCY CONDITIONS

The generalized linear k-step method is defined by the formula

k
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where A2 and B, are rational functions of th(yn). In particular, we assume

L

that BO = 0. By this assumption (2.1) is an explicit formula.

Let us first define the numbers

(2.2) 94 = —§ £ =-1,0,...,k-1,

By representing the multistep method by the formula



(2.3) Yoep = E (5 5Y ), k=21,

n'’n n—l""’y

n-k+1

we may give the following definition of consistency.

Definition 2.1

Let y be a solution of the differential equation. Then the multistep
method (2.1) is said to be consistent of order p at x = X when for any

set of fixed numbers Q> L =1,2,...,k-1,
- =. p+l
v ,) ~E &),y (x 1)) =0 ) as h - 0.

By substituting a solution y of the differential equation into the

right-hand side of (2.1) and by expanding y(xn+l_£) and f(y(xn+]_£)) in

powers of hn we may formally derive the series

.ogd
- i 4
(2.4) B () sy 00) = 1 Cohd = y(|
j=0 dx X=X
n
where
1 X 3 -
€ " _i_!gzlAqul+JB£qll’
(2.5)
k
C.= ) A,.
0 5 2

§
The Cj are functions of th(y(xn)). Let us introduce the abbreviations

. i
cgl) S C.(z)| __..
i azt 3 z=0

By expanding the operators Cj in Taylor series we write (2.4) in the form
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From this series the terms containing

j .
d

] y<x)|x=x hg
dx n

are easily selected. By putting the coefficients of these terms equal to
1/j! for j = 0,1,...p and by equating to zero all remaining terms of order
j<pin hn’ we find the consistency conditions for the generalized linear
multistep formula. In table 2.1 these conditions are listed. For the spe-
cial case k = 2, in [1] the consistency conditions are given in terms of

the derivatives of the functions Al and Bz.



Table 2.1 Consistency conditions for formula 2.1
0 0
R RO RO
cé]) = 0.
(1y . (© _1
p 22 c +c2 =35
céz) = 0.
0) _ 1
Py 2 3 cj- 7T
céJ) =0,
=1 . -2
C%f ') + (G-D CEJ ) =0,
c§3'1) =0, for j = 3,4,...,py and i = 3,4,...,§-1.

In the preceding derivation we have made use of the relation

(2.6) y"(xn) = J(y(x )) y'(x).

This implies that in actual computation the Jacobian matrix should be given
with an order of accuracy p — 1. An alternative is to ignore the relation
between the first and second derivative. The consistency conditions then

reduce to

0 1 .
cg ) = ET s ] =0,1,...,p,
(2.7)
j-i . . .
ciJ ) _ o, 3= 1,2,000ps i =0,1,...,5-1.

This means that the functions Cj are given by

-2
(2.8) Cj(z) = 3%- + 0(zp ! J) as z > 0.
Formulas satisfying these conditions remain consistent of order p when the
Jabocian matrix is inaccurately evaluated. From a practical point of view,

such formulas may be preferred to formulas which strongly depend on a cor-



rect evaluation of J(yn). In the remainder of this report we shall concen-
trate on formulas allowing an inaccurate Jacobian. This section is conclud-

ed with the following theorems.

Theorem 2,1
The order of consistency p of formula (2.1) satisfying the conditiomns

corresponding to a correct evaluation of the Jacobian matrix is at most 2k.

Proof. If k 2 2 the theorem may be easily proved by counting the number of

parameters corresponding to the equations c§0) = 5%, j=3,4,...,p, listed

in table 2.1. The case k = 1 is trivial. [

Theorem 2.2
The order of consistency p of formula (2.1) satisfying the conditions

corresponding to a crude evaluation of the Jacobian matrix is at most 2k - 1.

Proof. With conditions (2.7) this theorem is easily proved by counting a-

0 1 .
§ ) - 7is ] = 0,...,p. U

gain parameters corresponding to c

3. STABILITY CONSIDERATIONS
Let us consider the test equation
(3.1) dy _ Jy

where J is the Jacobian matrix of the differential equation under consider-
ation. When applied to this equation our multistep formula (2.1) will re-

duce to a linear difference equation of the form

(3.2) Vol = [Al(z) + z Bz(z)] .

| Yn+1-2

[(Rer ko

L

where z = th. The characteristic equation corresponding to scheme (3.2) is

given by



L

L. - (A, (z) + sz(z)]ck_ - . -

(3.3) X - [A(2) + 2B (2) 0L

cee T [Ak(z) + sz(z)] = 0.

The coefficients of (3.3) are rational functions of z and are independent
of each other. This means that we can make vanish the parasitic roots for
all values of z without reducing the method to a one-step method. In the
sequel, we shall restrict our considerations to formulas with zero-parasitic
roots. This approach may be justified by the following reasons. Firstly, in

the numerical approximation Y, the solution components corresponding to

+
the parasitic roots are also pa;asitic and are not present in the analyti-
cal solution. Secondly, the principal root, ¢, may be identified with a
given stability function. This implies that we can adjust our integration
formula to the problem to be solved.

By requiring that all parasitic roots of (3.3) are identically zero, we

find the relations

(3.4) Az(z) = -zBQ(z), L =2,3,...,k.
The principal root 2, is given by

(3.5) c](z) = Al(z) + zBl(z).

By identifying Z, with a given stability function R we also obtain a rela-

tion for Al and Bl’ i.e.

(3.6) A](z) = R(z) - zBl(z).

Thus integration formula (2.1) is reduced to

3.7) y ne1-2) = IVn+1-2]

k
" R(z)yn + hn lzl Bg(z)[f(y

We should observe that relation (3.4) implies

AR(O) =0, 2= 2,3,...,k.



This means that the order of consistency p of those formulas of class (3.7)
satisfying the consistency conditions listed in table 2.1 is at most k + 1,
A third order, two-step scheme of this type is given in [1]. By the same

reason, consistency conditions (2.7) allow an order p < k. A modification

of Adams-Bashforth methods suggested by Ngrsett [6] turns out to be a sub-

class of (3.7) provided that the exponential terms present in the methods

are replaced by R(z).

4, FORMULAS WITH ZERO-PARASITIC ROOTS ALLOWING INACCURATE JACOBIAN MATRICES

Substitution of (3.5) and (3.6) into the expressions for the functions

Cj introduced in section 2 yields

k
Co(z) = R(z) - QZI sz(z),
4.1)
1

A}

. j-1
1 (J qu—])ql—lBl(z)'

I >

Cj(Z)

Our problem is now reduced to the selection of functions B2 such that the
functions Cj given by (4.1) satisfy the conditions (2.8). Substitution of
(4.1) into (2.8) leads to the system

z z . z B -1 + R(z) + ¢

1 pt+l
1 l-qlz cos l—qk_lz B2 1+ €
(4.2) 0 (2—qlz)q1 cee (2-qk_]z)qk_] B3 _ 1 + ep—l
0 (-q;2¢" ... (=q,_ 207/ \B 1+
1 1 tet k-1 k-1 k 1

where the Ej are functions of z which may be freely chosen provided that
ej = O(zJ) as z > 0.

By use of the first row, i.e.



it is easily verified that this system can be written in the form

i 1 oo ///B] |

99 9 L B) 2

2 2 2

9 q S By D,
(4.3) ° L] L] ° . - °

P P P \\
5 e qk—l// By Do

where the functions Dj are defined by

R(z)-1 + e__.(2)
_ p+1
Dl(z) = Z s
(4.4)
jD.(z)-1 - ¢ _.(2)
Dj+l(z) = y Z prl-) j=1,. sP

This recurrence relation for the function Dj yields

R(z) - P. 1"O(z)

—i41
+ O(zP I* ) z > 0,

4.5 D.(z) = (3=1)! i
(4.5) J( ) = (3-1) 3
where
2 P
_ z_ z_
Pj-l,O(z) =1+ z+ 5T teeot o7 "

By assuming that R is consistent of order p, i.e.

i
d .
(4.6) - R(z)|z=0 =1, i=0,1,...,p,
dz

we may derive for j = 1,2,...,pP,
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P-j
+

1 Z z
j—.'+(j+l).' L p.' ]+6p_j+](z)’

4.7) D (2) = (= [

where the Gj are functions of z satisfying the condition (compare ej)

§. = O(zJ) as z -+ 0.
J
Note that condition (4.6) is a necessary condition for each p-th order in-
tegration formula.
At the end of section 3 we have noted that the maximal attainable or-
der of the formulas discussed in this section is k. We now show that for

p = k system (4.3) has a solution by an appropriate choice of the function

Dk+1' Let BI’BZ""’Bk be the solution of the first k equations of (4.3),
i.e.

k i-1
(4.8) ) 4, B, = D:s i=1,2,...,k.

2=1
The (k+1)-st equation of (4.3) is satisfied when Dk+1 can be chosen such that

k
_ k

(4.9) Desr = Z A1 By

=1

From (4.5) it follows that for p = k the function D may be any reg

ular function of z. Hence, (4.9) can always be satisfied%+%his implies that
we can explicitly solve the original system (4.2) for p = k by solving the
equivalent system (4.3).

We shall illustrate this for two special cases. Firstly, we investigate
polynominal functions Bl of the form

(4.10) Bz(z) = bl + Yo B(z).

where the b2 and Y, are suitably chosen parameters and B is an appropriate-

ly chosen polynomial of degree k-1 independent of %, i.e.

(4.11) B(z) = b(o) + b(l)z + ... + b(k—l)zk_l.
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With relations (2.8), (4.7) and (4.8) it is easily verified that it is of

no use to investigate polynomials B, of higher degree than k - 1. Substitu-

L
tion of (4.10) and (4.11) into (4.8) yields the system

K oy i . e
ZO bz ] = G-D! I Tt S (@)

(4.12) Lo G

e =

j-1
WLy G- [bz+Yz

1 i

j=1,...,k.

. . . i . . .
Equating the coefficients of z~ yields the consistency equations

H j=]’2""’k’

K. . N
y q% : Yzb(l) S mD e o, .. k-1 and § = 1,...,k-i.

When we succeed to solve this system of equations we have found a k-th or-

der integration formula of the form

k
* *
(4.14) yn+l - R(th )yn ¥ hn QZ] bQ[f(yn+l—Z) - J yn+1—JL:| *
+ h B(h J%) E [£( - 3" ]
n - n & Yy yn+1-l) Tn+1-272

=1

where J* is some approximation for the Jacobian matrix J(yn). One should
observe, however, that in this special case, the maximal attainable order
is p = 3. To obtain higher order scpemgs with polynomial operators B2 of
type (4.10) one has to add terms cil)zl.
For certain types of Jacobian matrices it may be unattractive to com—
pute polynomial operators B2 because of a possible cancellation of digits.
This consideration leads us to a second special case. We investigate a ra-

tional function of the form

(a+Bz) "

(4.15) B (z) =b, +c s
L (1+Gz)S

L L
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where 0 £ t < k=1 and s = k-t-1. The factors (0L+Bz)t and (]+52)_S may be ex-

panded to obtain

t t n
(o+Bz) = z dnz

n=0
and
-s kol m k
(1+682) = z e z + 0(z), z >0
m=0 .
respectively, where
_ .t t-n_n
dn-(n)a B,
_ (s+m-1)! . \m
S R

Substitution of these expressions into (4.15) leads to

t k-l m+n k
Bz(z) E z 8 m.n Z + 0(z) as z > 0,
n=0 m=0 T
where
b2+c£doe0, n=m-=0,
gl,m,n -
clemdn’ n>0vm>.0,.

Thus, we arrive at a power series expansion of B, which reads

2

k-1 oy .
4.16) B2 = J b2t v 0" as z 0,

i=0
where

(i) min(i,t)
bz = 8 3 .
n=0 ,i-n,n

Substitution of (4.16) into (4.8) yields the system
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+ nk—j+1(z)’ j = 1,004k,

where the nj are functions of z satisfying the condition (compare Gj)
nj(z) = O(ZJ) as z > 0.

Equating the coefficients of z' leads to the equations

£oha @) G . . .
(4.17) 221 q_; b, = ?%IITT , i=0,1,...,k-1 and j = 1,...,k-i.
(i)

Expressing the parameters b in the original parameters of (4.15) leads

2
to the system of consistency equations. When we succeed to solve this sys-—

tem of equations we have found a k-th order integration formula of the form

k
* *
(4.18) Yn+e1 © R(th )yh * hn ZZ] bztf(yn+l-l) - J yn+l-2] *
(a+gh 3" k x
+ h ———— Z cz[f(yn+]_£) -J yn+l—Z]’

Mj+sh J7)° g=1
n
where J* is some approximation to the Jacobian matrix J(yn). As in the pre-

vious case, the maximal attainable order for formula (4.18) is p = 3.

5. A WORKED OUT EXAMPLE

We shall derive the polynomial functions B2 of type (4.10) for
p =k =1,2 and 3. It will be shown that it is possible to choose the oper-
ator B and the parameters Yy independent of the order k. This feature pro-
vides a set of integration formulas with which order varying may be applied
without much computational effort. To that end we write the functions B2 in

the form

B (2) = (%) + v, B(2),
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where the index (k) denotes the order. For k = 1,2 and 3 the consistency

equations (4.13) reduce to (the parameters b(i) are independent of k)
b 4y 50 oy
1 1
and
b§2) + ylb(o) + béz) + yzb(o) = 1,.
ql(béz) + Yzb(o)) = %-,
(Y1+Y2)b(l) = %
and
b§3) + ylb(o) + b§3) + yzb(o) + b§3) + y3b(0) =1
a, 08P+ 9 p @) 4 q 8+ v - o,
2
B ®$ + v, @)+ P+ p @) - g
(4,7, + dy75) (1) - %,
(v; + Yy *vq) G %a

respectively, To meet the requirement of independency of k for the function

B we have to put Yq = 0. A simple calculation then yields

(1 _ 1

° 6v,4;°
(2) _1.(1)

b = gb 7,

Y, (3q1-1) Yos
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where Y, # 0 may be chosen freely. A further calculation yields

{2 =1 - E%T + (1-3q )y, b0,
b - EéT -y, »©

and
e 2 T I SR S O
b$? = 5%; (1-2q,7, b'? = 24,5y,
b$> = (2-3q))/6(d5mq,9,),

where b(o) also is a free parameter. By putting

Yo ='—l— and b(o) =1

6q1

the operator B(z) assumes the form

2

B(z) =1+ z + %T'
The free parameters Yo and b(o) may also be used to match two of the para-
meters bék). Another possibility is to give the free parameters appropriate

values with respect to R. This approach may lead to a further reduction of
computational labour. For k = 1 we simply have the integration formula

* *
Yn+1 R(th )yn * hn[f(yn) - J yn]°

The corresponding integration formulas for k = 2 and k = 3 assume the form

) - Jy ]

k
- (k)
Voo = I *h RZI b, L£( g b

n+l n Yn+1-4

where
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2
* * *
I =R(h J)y +hBhJ) Z Y LE( ) = Ty 1.

o=1 n+l-2
To exploit the partial independency of k we have to use a third order con-

sistent stability function R for all k. Note that for k = 2 the quadratic

form of B may be omitted.
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