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ABSTRACT 

With this report the authors propose a special class of generalized 

linear multistep methods. Such integration methods originate from the clas­

sical linear multistep meth_od by replacing the coefficients of the integra­

tion formula by functions of the Jacobian matrix. We have concentrated on 

the construction of formulas of which the principal characteristic root 

(the stability function) can be adapted to the problem under consideration, 

while the parasitic roots are zero. Moreover, -the formulas allow a crude 

evaluation of the Jacobian. By choosing the stability function appropriate­

ly, the intE~gration formulas may be used for efficient integration of para­

bolic, hyperbolic and stiff differential equations. 
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I. INTRODUCTION 

In this report we investigate the generalized linear multistep method, 

which may be used to solve numerically initial value problems for systems 

of ordinary differential equations of the type 

* = f(y). 

Generalized integration methods are characterized by the fact that the co­

efficients of the integration formula are functions of the Jacobian matrix, 

a device first proposed by Rosenbrock (see for example [2] and [5]). In re-

cent years several generalized Ru:nge-Kutta formulas have been developed at 

the Mathematical Centre in Amsterdam. A survey of these methods is given in 

[2]. Special classes of generalized linear rrrultistep methods have been pro­

posed by N~rsett [6], van der Houwen [I] and Lambert and Sigurdsson [4]. 

The integration method investigated in this report originates from 

the classical linear multistep method by replacing the coefficients of the 

integration formula by funations of the Jaaobian matrix J(y). The consider­

ed class of formulas may also be regarded as an extension of the class of 

formulas originating from the implicit linear multistep method by perfor­

ming one Newton-Raphson iteration with the last computed solution vector 

as predictor. 

This report merely concentrates on the aonstruation of the integration 

formulas. 

In section 2 we discuss two types of consistency conditions. The first 

type requires an aaaurate evaluation of the Jacobian matrix, while these­

cond one allows an inaaaurate evaluation of the Jacobian. From a practical 

point of view formulas allowing a crude Jacobian may be preferred to for­

mulas requiring a correct Jacobian. 

In section 3 we introduce integration formulas of which the principal 

root (the stability funation) can be adapted to the problem under consider­

ation, while the parasitia roots are zero. By choosing the stability func­

tion appropriately, these integration formulas may be used for efficient 

integration of parabolic, hyperbolic and stiff differential equations. Van 

der Houwen [I] already has given a third order two-step formula with pre-
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scribed stability function and zero-parasitic root, requiring a correct 

evaluation of the Jacobian matrix. Applications of this formula on stiff 

equations turned out to be satisfactory. 

Section 4 is devoted to the construction of integration formulas with 

prescribed stability function and zero-parasitic roots allowing a crude e­

valuation of the Jacobian matrix. Here we derive consistency equations for 

a formula using polynomial expressions and a formula using rational expres­

sions. 

In the last section we present a worked out example of a set of inte­

gration formulas of which the order can be varied without much computation­

al effort. 

Summarizing, in this report we have concentrated on the following 

points: 

I. operator coefficients instead of scalar coefficients, 

2. zero-parasitic roots, 

3. a prescribed stability function, 

4. an inaccurate Jacobian matrix. 

In a forthcoming paper the authors intend to publish further theoreti­

cal and numerical results. 

2, CONSISTENCY CONDITIONS 

The generalized linear k-step method is defined by the formula 

( 2. 1) 

where A£ and B£ are rational functions of hnJ(yn). In particular, we assume 

that B0 = 0. By this assumption (2. I) is an explicit formula. 

Let us first define the numbers 

(2.2) £ = -1,0, ... ,k-l. 

By representing the multistep method by the formula 



(2. 3) k ~ 1, 

we may give the following definition of consistency. 

Definition 2. 1 

Let y be a solution of the differential equation. Then the multistep 

method (2.1) is said to be aonsistent of order pat x = x when for any 
n 

set of fixed numbers q1 , i = 1,2, ••• ,k-1, 

O(hp+l) h 0 as -+ • 
n n 

By substituting a solution y of the differential equation into the 

right-hand side of (2.1) and by expanding y(xn+l-i) and f(y(xn+l-i)) in 

powers of h we may formally derive the series 
n 

(2. 4) E (y(x ), ••• ,y(x +l k)) = n n n -

where 

(2. 5) 

l 

t hj dj I 
l CJ. n d. i y(x) 

j=O r x=x: 
n 

The C. are functions of h J(y(x )). Let us introduce the abbreviations 
J n n 

(i) c. = 
J 

di 
. c.(z)I o· 

dz 1 J z= 

By expanding the operators C. in Taylor series we write (2.4) in the form 
J 

3 
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(2. 4') E (y(x ), ••• ,y(x I k)) = n n n+ -

I I I (i) i dj 
y(x)jx=x 

hi+j = = :-; c. J (y(x)) 
l.. J dxj n 

j=O i=O n 

I Uo /j-i) 3j-i (y(x)) i 
y(x)jx=x] hJ = = 

dxi l. n 
j=O (j-i)! n 

/j) 
hj (O) dJ 

y(x)jx=x hj L· 
0 . 

y(x)lx=x = I c. 
dxj 

+ -.-,- JJ (y(x)) n 
j=O J n j=I J. n n 

(j-1) 

I 
cl . I d 

y(x)jx=x hJ + + (j-1) ! 
Jr (y(x)) dx n 

j=2 n 

(j-2) i 2 
c2 . 2 

y(x)jx=x hj + + (j-2) ! 
JJ- (y(x)) 

dx2 
n 

j=3 n 

j-1 (j-i) i c. 
Jj-i(y(x)) hj. I I l. 

y(x)jx=x + (j-i) ! -. 
dx1 n 

j=4 i=3 n 

From this series the terms containing 

are easily selected. By putting the coefficients of these terms equal to 

1/j! for j = 0,1, ••• p and by equating to zero all remaining terms of order 

j ~pin h, we find the consistency conditions for the generalized linear n 
multistep formula. In table 2,1 these conditions are listed. For the spe-

cial case k = 2, in [I] the consistency conditions are given in terms of 

the derivatives of the functions At and Bt, 

+ 



(2.6) 

Table 2.1 Consistency conditions for formula 2.1 

p ~ 2 

(0) 
co = (0) 

cl = 1 , 

(1) 
co = o. 

(1) + /0) 1 
cl 2 =z, 

(2) 
co = o. 

(0) 1 
c. = !T , 

J J. 

c6j) = O, 

cij-l) + (j-1) c~j-2) = O, 
(j-i) 

ci = O, for j = 3,4, ••• ,p0 and i = 3,4, ••• ,j-1. 

In the preceding derivation we have made use of the relation 

y"(x) = J(y(x )) y'(x ). n n n 

5 

This implies that in actual computation the Jacobian matrix should be given 

with an order of accuracy p - 1. An alternative is to ignore the relation 

between the first and second derivative. The consistency conditions then 

reduce to 

(0) 1 j 0,1, ••• ,p, c. = -.,- , = 
J J. 

(2. 7) 
(j-i) = o, j = 1,2, ••• ,p; c. 
1. 

This means that the functions C. are given by 
J 

(2. 8) 

i = 0,1, •.• ,j-1. 

Formulas satisfying these conditions remain consistent of order p when the 

Jabocian matrix is inaccurately evaluated. From a practical point of view, 

such formulas may be preferred to formulas which strongly depend on a cor-
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rect evaluation of J(y ). In the remainder of this report we shall concen­
n 

trate on formulas allowing an inaccurate Jacobian. This section is conclud-

ed with the following theorems. 

Theorem 2. 1 

The order of consistency p of formula (2.1) satisfying the conditions 

corresponding to a correct evaluation of the Jacobian matrix is at most 2k. 

Proof. If k ;2: 2 the theorem may be easily proved by counting the number of 

corresponding the equations (O} 1 
j 3,4, ... ,p, listed parameters to c. = =, , = 

J J • 
in table 2. 1. The case k = 1 is trivial. □ 

Theorem 2.2 

The order of consistency p of formula (2. 1) satisfying the conditions 

corresponding to a crude evaluation of the Jacobian matrix is at most 2k - 1. 

Proof. With conditions (2.7) this theorem is easily proved by counting a­

gain parameters corresponding to c~O) = :;, j = O, ... ,p. D 
J J • 

3. STABILITY CONSIDERATIONS 

( 3. 1) 

Let us consider the test equation 

dy = Jy dx 

where J is the Jacobian matrix of the differential equation under consider­

ation. When applied to this equation our multistep formula (2. 1) will re­

duce to a linear difference equation of the form 

(3. 2) 

where z = h J. The characteristic equation corresponding to scheme (3.2) is 
n 

given by 
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(3.3) 
k-R. 

+ zBR,(z)]z; -

+ zBk(z)] = O. 

The coefficients of (3.3) are rational functions of z and are independent 

of each other. This means that we can make vanish the parasitic roots for 

all values of z without reducing the method to a one-step method. In the 

sequel, we shall restrict our considerations to formulas with zero-parasitic 

roots. This approach may be justified by the ~allowing reasons. Firstly, in 

the numerical approximation Yn+l the solution components corresponding to 

the parasitic roots are also parasitic and are not present in the analyti­

cal solution. Secondly, the principal root, z; 1, may be identified with a 

given stability function. This implies that we can adjust our integration 

formula to the problem to be solved. 

By requiring that all parasitic roots of (3.3) are identically zero, we 

find the relations 

(3.4) R. = 2,3, •.• ,k. 

The principal root z; 1 is given by 

(3.5) 

By identifying z; 1 with a given stabil'ity function R we also obtain a rela­

tion for A1 and B1, i.e. 

(3.6) 

Thus integration formula (2.1) is reduced to 

k 
(3. 7) Yn+l = R(z)yn + hn R.Il BR,(z)[f(yn+l-R.) - Jnyn+l-R.J 

We should observe that relation (3.4) implies 

R. = 2,3, ••• ,k. 
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This means that the order of consistency p of those formulas of class (3.7) 

satisfying the consistency conditions listed in table 2.1 is at most k + I. 

A third order, two-step scheme of this type is given in [I]. By the same 

reason, consistency conditions (2.7) allow an order p ~ k. A modification 

of Adams-Bashforth methods suggested by N;rsett [6] turns out to be a sub­

class of (3.7) provided that the exponential terms present in the methods 

are replaced by R(z). 

4. FORMULAS WITH ZERO-PARASITIC ROOTS ALLOWING INACCURATE JACOBIAN MATRICES 

Substitution of (3.5) and (3.6) into the expressions for the functions 

C. introduced in section 2 yields 
J 

( 4. I) 

C. (z) 
J 

Our problem is now reduced to the selection of functions Bt such that the 

functions C. given by (4.1) satisfy the conditions (2.8). Substitution of 
J 

(4.1) into (2.8) leads to the system 

z z ... z Bl -1 + R(z) + e: I p+ 

(4.2) 0 

0 

1-q z 
I 

(2-qlz)ql 

p-1 (p-q z)q 
I I 

1-qk-lz B2 + E: p ... (2-qk-lz)qk-l B3 + E: p-1 = 

where thee:. are functions of z which may be freely chosen provided that 
J 

By use of the first row, i.e. 



k R(z)-1 + E l 
l B0 (z) = p+ 

£=} ~ z 

it is easily verified that this system can be written in the form 

qo ql qk-1 
;•1 

B2 
2 2 2 

qo ql qk-1 

(4.3) 

where the functions D. are defined by 
J 

R(z)-1 + E 1 (z) = _____ p_+ __ 
z 

(4.4) 
jD. (z)-1 - E 1 . (z) 

J p+ -J 
D. l ( z) = -------------J + z 

B3 

J = 

This recurrence relation for the function D. yields 
J 

(4.5) 

where 

D. (z) 
J 

By assuming that R is consistent of order p, i.e. 

(4.6) ·-. 
i 

dz 
R(z)Jz=O = 1, 

we may derive for J = 1,2, .•. ,p, 

i = 0,1, ••• ,p, 

= 

DI 

D2 

D3 

D 
p+l 

1, ••• ,p. 

z -+ 0, 

9 
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(4. 7) D. (z) 
J 

+ ••• + 
p-j ] 
~ + o • 1(z), 

p. p-J+ 

where the o. are functions of z satisfying the condition (compare E.) 
J J 

Note that condition (4.6) is a necessary condition for each p-th order in­

tegration formula. 

At the end of section 3 we have noted that the maximal attainable or­

der of the formulas discussed in this section is k. We now show that for 

p = k system (4.3) has a solution by an appropriate choice of the function 

Dk+l• Let B1,B2 , ••• ,Bk be the solution of the first k equations of (4.3), 

i.e. 

(4. 8) D., 
J 

J = 1,2, ••• ,k. 

The (k+I)-st equation of (4.3) is satisfied when Dk+l can be chosen such that 

(4.9) 

From (4.5) it follows that for p = k the function Dk+l may be any reg 

ular function of z. Hence, (4.9) can always be satisfied. This implies that 

we can explicitly solve the original system (4.2) for p = k by solving the 

equivalent system (4.3). 

We shall illustrate this for two special cases. Firstly, we investigate­

polynominal functions Bt of the form 

(4. 10) 

where the bt and Yi are suitably chosen parameters and Bis an appropriate­

ly chosen polynomial of degree k-1 independent oft, i.e. 

(4.11) 
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With relations (2.8), (4.7) and (4.8) it is easily verified that it is of 

no use to investigate polynomials B1 of higher degree thank - I. Substitu­

tion of (4. 10) and (4.11) into (4.8) yields the system 

(4. 12) 

j = l, ••• ,k. 

Equating the coefficients of i yields the consistency equations z 

k j-1 (b +y b (O)) I I qt-I = -:- , j = 1,2, ••• ,k, 
t=l 

t t J 

(4. 13) 
k j-1 b(i) (j-1)! I = i = I , ••• , k-1 and j = l, ••. ,k-i. qt-I Yt (j+i)! ' t=l 

When we succeed to solve this system of equations we have found a k-th or­

der integration formula of the form 

(4. 14) 

+ h B(h J*) 
n n . 

where J* is some approximation for the Jacobian matrix J(y ). One should 
n 

observe, however, that in this special case, the maximal attainable order 

is p = 3. To obtain higher order schemes with polynomial operators B1 of 

type (4.10) one has to add terms c~i)zi. 

For certain types of Jacobian matrices it may be unattractive to com­

pute polynomial operators B1 because of a possible cancellation of digits. 

This consideration leads us to a second special case. We investigate a ra­

tional function of the form 

(4. 15) 
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where O ~ t < k-1 ands 

panded to obtain 

t -s = k-t-1. The factors (a+Sz) and (!+oz) may be ex-

and 

t (a+Sz) 
t 

= I 
n=O 

k-1 
(l+oz)-s = l 

m=O 

m k 
e z + O(z ), 

m 
z-+ 0 

respectively, where 

d ( t) t-n n 
= a S , 

n n 

e = ( s +m- I ) ! ( _ 0 ) m 
m (s-1)! · 

Substitution of these expressions into (4. 15) leads to 

where 

t k-n-1 
\ \ g 2 m+n ( k l l + 0 z) as z-+ O, 

n=O m=O t,m,n 

Coed' 
N m n 

n = m = 0, 

n > 0 v tn >.O. 

Thus, we arrive at a power series expansion of BR. which reads 

(4. 16) k~I b(i)zi k = l + O(z) as z-+ O, 
i=O 

where 

min(i,t) 
I 

n=O 
gt i-n n · 

' ' 

Substitution of (4. 16) into (4.8) yields the system 



J = I, .•. ,k, 

where then. are functions of z satisfying the condition (compare o.) 
J J 

i Equating the coefficients of z leads to the equations 

(4.17) 
k 
, j-1 b(i) 
l qR.,-1 R., = 

t=l 

(j-1)! 
(j+i)! ' 

i = 0 , I , ••• , k- I and j = I, ... , k-i. 
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Expressing the parameters b~i) in the original parameters of (4.15) leads 

to the system of consistency equations. When we succeed to solve this sys­

tem of equations we have found a k-th order integration formula of the form 

k 
(4.18) Yn+l = R(hnJ*)yn + hn .e.!I b.e,[f(yn+l-t) - J*yn+J-.e,J + 

(a.+Bh J*)t k 
+ hn n * s l c.e,[f(yn+J-.e,) - J*yn+J-.e,J, 

(I+oh J ) t=l 
n 

where J* is some approximation to the Jacobian matrix J(y ). As in the pre­
n 

vious case, the maximal attainable order for formula (4.18) is p = 3. 

5. A WORKED OUT EXAMPLE 

We shall derive the polynomial functions B.e, of type (4.10) for 

p = k = 1,2 and 3. It will be shown that it is possible to choose the oper­

ator Band the parameters Y.e, independent of the order k. This feature pro­

vides a set of integration formulas with which order varying may be applied 

without much computational effort. To that end we write the functions B.e, in 

the form 
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where the index (k) denotes the order. Fork= 1,2 and 3 the consistency 

equations (4.13) reduce to (the parameters b(i) are independent of k) 

and 

and 

b (2) + y b(O) + b(2) + y b(O) = I 
I I 2 2 ' 

q (b(2) + y b(O)) = _21' 
I 2 2 

( Y +y ) b (I ) - I 
I 2 - 2 

b(3) + y b(O) + b(3) + y b(O) 
I 1 2 2 

+ b(3) + y b(O) 
3 3 

(3) y b(O)) q (b(3) + y b(O)) q I (b2 + + = -2 2 3 3 2' 

2 (b ( 3) 
q I 2 + y b(O)) 

2 
+ 2(b(3) 

q2 3 + y b(O)) 
3 - 3' 

( 1) 
(yl + Y2 + Y3) b = 2' 

(qly2 + q2y3) b(I) = ¼, 

(yl + Y2 + Y3) b(2) = 6' 

= 

respectively. To meet the requirement of independency of k for the function 

B we have to put y3 = 0. A simple calculation then yields 



where y 2 ; 0 may be chosen freely. A further calculation yields 

and 

= - 1- (l-2q y b(O) -
2q 1 I 2 

2 
= (Z-3ql)/6(q2-qlq2), 

where b(O) also is a free parameter. By putting 

y = _J_ and b(O) = I 
2 6q 1 

the operator B(z) assumes the form 

B(z) 
2 

z 
= 1 + z + 3• 
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(0) 
The free parameters y2 and b may also be used to match two of the para-

meters b~k). Another possibility is to give the free parameters appropriate 

values with respect to R. This approach may lead to a further reduction of 

computational labour. Fork= I we simply have the integration formula 

* * Y = R(h J )y + h [f(y) - J y ]. n+I n n n n n 

The corresponding integration formulas fork= 2 and k = 3 assume the form 

where 
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* * I = R(h J )y + h B(h J) 
n n n n n 

To exploit the partial independency of k we have to use a third order con­

sistent stability function R for all k. Note that fork= 2 the quadratic 

form of B may be omitted. 
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