stichting

mathematisch

centrum MC
AFDELING NUMERIEKE WISKUNDE NW 13/74 SEPTEMBER

J.C.P. BUS & T.J. DEKKER

IWO EFFICIENT ALGORITMS WITH GUARANTEED CONVERGENCE FOR FINDING
A ZERO OF A FUNCTION

2e boerhaavestraat 49 amsterdam

MATHEM ATISCH CENTRUM

RIBLIOTHEEK
AMSTERDAM —e

Printed at the Mathematical Centre, 49, 2e¢ Boerhaavestraat, Amsterdam.

The Mathematical Centre, founded the 11-th of February 1946, is a non-
profit Anstitution aiming at the promotion of pure mathematics and Lts
applications. 1t is sponsored by the Netherlands Governmment through the
Netherkands Onganization forn the Advancement of Pure Research (Z.W.0),
by the Municipality of Amsterdam, by the University of Amsterdam, by
the Free University at Amsterndam, and by industries.

AMS (MOS) subject classification scheme (1970): 65HO5.

Two efficient algorithms with guaranteed convergence for finding a

zero of a function

by

J.C.P. Bus *) and T.J. Dekker **)

ABSTRACT

Two algorithms are presented for finding a zero of a real continuous
function defined on a given interval. The methods used are mixtures of
linear interpolation, rational interpolation and bisection.

The asymptotic behaviour of these algorithms is completely satisfactory.
The number of function evaluations needed to find a zero of a function is
bounded by four or five times the number needed by bisection and usually

considerably smaller.

*)

Mathematical Centre, Tweede Boerhaavestraat 49, Amsterdam.

*% . .
) University of Amsterdam, Roetersstraat 15, Amsterdam.

CONTENTS

1.

Introduction
Algorithm A
Algorithm M
Algorithm R
Numerical results
Conclusions
References

Appendix: ALGOL 60 procedures.

13

17

22

23

24

1. INTRODUCTION

Our starting point is an algorithm, published by DEKKER [3], for .

finding a zero of a real function defined on a given interval.

Section 2 contains a detailed discussion on this algorithm which we
call "algorithm A" in the sequel. The method used in algorithm A is a mix-
ture of linear interpolation and bisection. For this algorithm, convergence
is guaranteed and the asymptotic behaviour is completely satisfactory.
However, the number of function evaluations required by this algorithm may
be prohibitivel& large, in particular, when the zero appears to be multiple.
Therefore, BRENT [2] proposed a modified algorithm (called "algorithm B"
in section 5). For this algorithﬁ the upper bound of the number of function
evaluations needed equals (t+1)2—2, where t is the number of function eval-
uations needed by bisection.

In section 3 we present a modified algorithm ("algorithm M") having
the same asymptotic order of convergence as algorithm A but requiring at
most 4t function evaluations..This is achieved by inserting steps in which
rational interpolation (see JARRATT & NUDDS [5]) or bisection is performed.
ANDERSON and BJORCK [1] present an élgorithm (which we call algorithm C in
‘'section 5) which uses also linear interpolation and rational interpolation.
This algorithm may however require as many function evaluations as algorithm
A,

In section 4, we present another algorithm ("algorithm R") having a
higher asymptotic order 6f convergence and requiring at most 5t function
evaluations. This algorithm has a similar strategy but uses rational inter-
polation instead of linear interpolation.

In section 5, we compare some numerical results of the algorithms
mentioned and in section 6, we give some conclusions.

A description of our algorithms in the form of ALGOL 60 procedures is

given in Appendix.

2, ALGORITHM A

For a detailed description of algorithm A, together with a discussion

on its properties and an ALGOL 60 procedure, see DEKKER [3],

2.1. DATA. Given a real continuous function f of one real variable, two
distinct argument values X and X, satisfying f(xo) x f(xl) < 0, and a pos-
itive tolerance function § of one real variable satisfying 0 < 1T < §(x),
where T is a given positive constant (for instance, §(x) = T defines an
absolute tolerance T and §(x) = a|x| + T defines a relative tolerance a

when |x| is large).

2.2. RESULTS. The purpose of algorithm A (and of algorithms M and R presented

in the next two sections) is to find two (distinct) real numbers x and y

satisfying
f(x) x f(y) <0 ,
(2.2.1) fx) | < £
lx -y | < 28(x).

Since f is continuous, the first condition ensures that there exists a zero,
z, of £ in the closed interval with endpoints x and y; the second condi-
tion yields that x is the "best" approximation of z; the third condition

states that the required tolerance has been reached.

2.3. DEFINITION OF ALGORITHM A. From the data mentioned in 2.1, algorithm

A produces two argument values x and y satisfying (2.2.1). This is achieved
by calculating in succession the argument values X, (for i=2,...,n), and
a; b and c (for i=1,...,n) as defined in Al and A2 below, where n and the

results dellvered are defined in A3.

Al (initialisation, i=1).
If |£(x) | < [£(xp) s
then bl = xl and a1 = c] = 0;
otherwise bl = xo and a1 1 1

A2 (iteration step, i=2,...,n).

|
e

]
n
[l
"

Let the linear interpolation formula be defined, for a # b, by

(2.3.1) £ = £(b,a) = b - %%:—;f?—'(z% if £(b) # £(a),
= if £(b) = f(a) # O,
=b if £(b) = f(a) =

A3

Let moreover,

(2.3.2) h = h(b,c) = b + sign(c~b) x §(b),

(2.3.3) m = m(b,c) = §(b+c)

and

(2.3.4) v =v({,b,e)=£L if £ is between h(b,c) and m(b,c),

h(b,c) if |[£ - b| < §(b),

m(b,c) otherwise.

Then the new iterate X, is calculated according to the formula

]

(2.3.5) =x.

AN TLIRTLIP R

where

A, = £(b,

a.
i i=12"i~=

!)'

Furthermore, let k be the largest (non-negative) integer satisfying
1 <

k < i and f(xk) X f(xi) < 0.

Then, b.,c. and a., are defined by
i1 i

(2.3.6) bi

]
b
»
[e]
]
[\
=
]
o

if lf(xi)l < If(xk)l;

(2.3.7) bi X 85 = ¢ =X otherwise.

(termination).

Let n be the smallest positive integer satisfying
- <
(2.3.8) Ibn cnl < 26(bn).

Then, the algorithm terminates for i = n and delivers as results

(2.3.9) x = bn’ y = cn.

2.4. ADDITIONAL DEFINITIONS AND REMARKS.

2.4.1. Let Ji’ for i=1,2,...,n denote the closed interval whose endpoints

" are bi and e, Then, from the Znvariant relations

f(bi) X f(ci) <0
and

1£(b) | < 1£(c)]

it follows that Ji contains a zero z of f and bi is the best approximation

of z obtained up to and including step i.

2.4.2., The iterates x; (i=1,2,...,n) are all distinct and their mutual
distances are at least 1. Hence, lbi - ail 2 1t for i=1,2,...,n, so that

Xi and x; in (2.3.5) are well defined for i=1,2,...,n.

2.4.3. 1f a;_ ;T Ci o
b.
i-1

, used to calculate Ai in (2.3.5), are on different sides of z and we
call the i-th step a (IZnear) intrapolation step; otherwise, a;_; and b, _,

for certain i, then, the argument values a;_4 and

are on the same side of z and we call the i-th step a (IlZnear) extrapo-

lation step.

2,4.4, Obviously, algorithm A uses the function values f(xi), for i=0,1,...,n.

So, the number of function evaluations needed equals n + 1.

2.5. PROPERTIES. Algorithm A has the following properties (see DEKKER
[31).

2,5.1. If the given function f has a continuous second derivative in J1 and
a unique simple zero in this interval, then the asymptotic order of conver-
gence of algorithm A equals the largest root, P> of the equation

x2 - x-1=0, thus

P, = 1(1+/5) = 1.618;

2.5.2. The number of function evaluations needed is bounded above by T,

where

T = le - xol/r.
As BRENT [2] shows, this upper bound may indeed by attained.
2.6. DISCUSSION. If f(xi) x f(bi—l) < 0 for certain i, then

LIS | <4 |b ;

1 i~ Pim i-1 7 -1

otherwise

4|b

- ci_]l < lbi -c.| = |x, - ci-l' < |b - Ci-ll - T.

i-1 1[i i-1

So, we may have (very) slow convergence only if the latter case occurs

frequently.

If f has a continuous second derivative, z is a simple zero of f
(i.e. £'(z) # 0), and a and b are sufficiently close to z to ensure that
£f'(n) # 0 for n in the smallest interval containing a, b and z, then

£ = £Z(b,a), obtained by the linear interpolation formula (2.3.1), satisfies

(see DEKKER [3]).
(2.6.1) £ - z = (b-z)(a-z)K(E,n),
where
K(g,n) = £"(8)/£' (n)
and £ and n lie in the smallest interval containing a, b and z.

Hence, if Ibi - | is sufficiently small for certain io, then the iter-

ates x, converge to z and the values If(xi)l decrease monotonically for

iz io as long as

(2.6.2) G(Xi) < Il(xi,xi_l) - %,

Condition (2.6.2) ensures that, for i 2 io, the tolerance function does
not influence the i-th iteration step. Henceforth in this section (where
we consider the asymptotic behaviour of algorithm A), we take i = i, and

0

assume that condition (2.6.2) holds for all i 2 io. (In fact we consider

the process that is obtained if the tolerance function & tends uniformly
to zero on the interval Jl; see also the proof of theorem 3.3.2).

1
denote the error of the i-th iterate. Then, (2.3.5) and (2.6.1) yield

Then, by A2, we have bi = xi,ai = xi_ and ci = xk. Let Ei = bi—z (=xi—z)

(2.6.3) €141 = €1%i-1 K(Ei,ni),

where £, and ni.lie in the smallest interval containing b.,b,_; and z.
Consequently, if £f"(z) # 0, we have K(z,z) # 0. Hence, for sufficiently
large i, K(Ei,ni) has the same sign as K(z,z). Therefore, the sign of

K(z,z) and of two successive errors e; and &5 completely determine the

1
signs of the subsequent errors. Then, simple checking yields that, when

£f"(z) # 0, there are only the following two (essentially different) possi-

bilities for the asymptotic behaviour:

1. the iteration consists. of consecutive cycles of the form IIE, i.e. two
intrapoiationhsteps followed by one extrapolation step;

2, the iteration consists of consecutive extrapolation steps.
In the first case, the length of Ji is smaller than 0.25 times the length
of Ji 3

number, N, of function evalutions needed..In the second case, convergence

. So, in this case, we find a small upper bound (viz.'% t) for the

may be very slow (N may attain the upper bound T). Therefore, we modify

algorithm A such that more than two consecutive extrapolation steps can

no longer occur in an iteration, while an interation consisting of consec-

utive cycles of the form IIE remains undisturbed.

3. ALGORITHM M

3.1. DEFINITION. From the data mentioned in 2.1, algorithm M produces two

argument values x and y satisfying (2.2.1). This is achieved by calculating

in succession the argument values X, di (for i=2,...,n) and a.,b.,c.
1’7174

(for i=1,...,n) as defined in Al (see 2.3) and M2 (below), where n and the

results deliverd are defined in A3 (see 2.3).

M2

(iteration step, i=2,...,1).
Let j = ji be the largest positive integer satisfying j = 1 or, if

1 <j<i, then
(3.1.1) |bj - cjl < 4 lbj_] - °j—1|'

Then the new iterate xi is calculated as follows (for the definitions
of h,m and Ai see A2).
Let

if £ is between h(b,c) and m(b,c),
h(b,c) if |£ = b| < 8§(b) and £ lies not outside

1]
&~

(3.1.2) w = w(£,b,c)

the interval bounded by b and m(b,c),

m(b,c) otherwise.
Then,

(3.1.3) X, = w(Ai,bi_ ,c._l) if ji 21i-2,

1° 71
=w(p,,b,_5c.) if j, =1i-3,
= m(bi 1,cl_l) otherwise,

where Py is defined as follows: for a # b let

f(a)-f(b)

(3.1.4) fla,b] = ==—

(i.e. the first divided difference of f at a and b);

for distinct a,b and d, using the abbreviations

a = f[b,d] x £(a), B = fla,d] x £(b),

define
(3.1.5) ¢ = r(b,a,d) = b - Eéggél if B #a,
= if B=a#0,
=0 if8=a=0,
then

(3.1.6) Py = r(bi—l’ai—l’di-l)'

Furthermore, let k be the largest (nmon-negative) integer satisfying

k < 1 and f(xk) X f(xi) < 0, then bi’ci’ai and di are defined by

(3.1.7) by =x,, ¢; =x, a; =b,_| if [£(x)| < [£Gx) s

=x,, c, =
(3.1.8) bi =X, 3 T, Tx otherwise;
(3.1.9) di = a5, if bi = x, or bi = bi—l;
d. = b. otherwise.
1 i-1

3.2. ADDITIONAL DEFINITIONS AND REMARKS. The definitions and remarks 2.4

are also valid for algorithm M.

3.2.1. Formula (3.1.5) is obtained by 3 - point rational interpolation,

where the interpolating function is

X-T
px*q

p(x) =

and the parameters p,q and r are determined such that ¢(x) = £(x) for

x = a,b,d (see also JARRATT & NUDDS [5]).

3.2.2. In addition to 2.4.2 it is obvious that for all i > 2, the argu-

ment values bi”ai and di are distinct and have a mutual distance which is

10

bounded below by 1. So, ps and X, in (3.1.6) an (3.1.3) are well defined.

3.2.3. In addition to 2.4.3 we speak about rational interpolation if
X, = W(pi’bi—l’ci—l)' Moreover, if in this case bi—l and a;_ lie on dif-
ferent sides of z, then we call the i-th step a rational intrapolation step;

otherwise we call the i-th step a rational extrapolation step.

3.2.4, Comparing the definitions of w and v ((3.1.2) and (2.3.4) respec—
tively) we note that w(£,b,c) # v(£,b,c), only if |[£ - b| < &6(b) and £
lies not in the interval bounded by b and m(b,c). We have replaced v by w
in algorithm M, because we think it is preferable from a theoretical point

‘of view, and it sometimes yields better results.

3.3. PROPERTIES. We state and prove the following two theorems on algorithm
Ml

3.3.1. THEOREM. Let data be given as mentioned in 2.1. Then the number
of function evaluations needed by algorithm M to obtain two values x and

y satisfying (2.2.1) is bounded by 4t, where
t = 21og(|x -X l/T).
170

(Note that t is the number of function evaluations needed by bisection).

PROOF. This follows from the definition of the algorithm, in particular
from formulas (3.1.1) and (3.1.2). A bisection step is performed whenever
none of the last three steps has reduced the length of the interval by a
factor < 0.5. Hence, the length of Ji is smaller than half the length of

J.

=4 which proves the theorem. g

3.3.2, THEOREM. Let data be given as mentioned in 2.1. Let moreover, the .
given function f have a continuous fourth derivative and an unique simple
zero, z, in the interval J]' Then the asymptotic order of convergence of al-
gorithm M, finding an approximation of z equals P,

(For definitions of Jr and P, see 2.4.1 and 2.5.1).

11
PROOF. Let

(3.3.3) = £ () k > 0.

"
Then c # 0, because z is a simple zero of f by assumption.

We need more terms in the error formula (2.6.1). By straightforward cal-
culation, using Newton's interpolation formula and the assumption that f
has a continuous fourth derivative, we find

(3.3.4) L=z = (b-2)(a-2)[KK, (b-z+a=z) + O(|b-z| + la-z|)2],
where

2
K, = °2/°1 and K, = (cz/cl) - §3/c]-

Similarly, for the 3-point rational interpolation formula (3.1.5) we find

(see also JARRATT & NUDDS [5]1):
(3.3.5) r—- 2z = (b—z)(a—z)(d—z)[Kl + 0(|b=z| + |a-z| + |d-z|)].

From (3.3.5), it follows that the asymptotic order of convergence of the

3-point rational interpolation formula equals p_, where p_ is the largest
root of the equation x3 - x‘2 -x=-1=0; hencezp2 = 1.833, cf. JARRATT &
NUDDS [5].

We consider the asymptotic order of convergence of the iteration process,
that is obtained if we let the tolerance function § tend uniformly to zero
on the interval Jl' (We assume, of course, that exact arithmetic is used.)
This limit process is a well defined iteration process which does, however,
not terminate. (Here, we use the fact that the divided difference f[a,b]
converges to f'(a) when b converges to a). The intervals Ji (i=1,2,...)

are monotonically non-increasing (i.e. J c Ji,'for all i) and the length

i+l
of the interval Ji converges to zero for i tending to infinity. (Indeed the

length decreases by a factor < 0.5 in every 4 steps, cf. the proof of the

12

previous theorem). We choose i, such that f'(x) # 0 for x € Ji .

0

From the definition of the algorithm, in particular (3.1.1) and

0

(3.1.3), and the error formulas (3.3.4) and (3.3.5) we know that an integer

i, 2 i

1 exists, such that

0
a. for all i > il satisfying ji > 1 - 3, a bisection step is performed
to obtain the i-th iterate X, (i.e. X, = m(bi—l’ci—l)); S0,
If(xi)] > If(bi_l)[and f(xi) X f(bi—l) < 0; in this case, ai’bi and
e, are chosen according to (3.1.8) and the (i+l1)-th step will be an
intrapolation step;
b. for all i > i1 satisfying ji < i-3 we have If(xi)l < If(bi_l)l and
lxi—zl < lxi_]—zl; now, bi’ai and c, are obtained by (3.1.7); substi-

tuting € = bk - z for arbitrary k in (3.3.4) and (3.3.5), we obtain

'(3.3.6) A. =z = g, e. LK. - K. (e

i i-1 Si-2MKg T Ky(egyreg o) * 0Uey 1+ 1e; , DI,

(3.3.7) p. - 2 €

i ©i-1 &i-p Ei-3lKy + OUey (1 + My o1+ le; 5D

We distinguish between two cases.

A. There exists an iz > i], such that ji 2i -3 for all i 2 i,. Then,

for all i 2 12’ the iterate X, is obtained by linear interpilation
(with asymptotic order of convergence equal to pl) or by 3-point
rational interpolation (with asymptotic order of convergence equal to
P, > p]). This leads immediately to the required result.

B. For each iz 2 il’ there exists an i 2 1
We distinguish between two subcases.

2 such that 3; <1i- 3.

B.1. ¢, # 0. So, K0 # 0. Hence an integer v 2 i2 exists, such that jv <

v - 3 and K0 in formula (3.3.6) dominates. Consequently, using (a),

the (v+1) —th step is an intrapolation step and the sign of ei(i>v)

is determined by the sign of €,9€ -1 and KO. Then it is easily checked

that, from the (v+1)—-th step , the iteration consists of consecutive
cycles of the form IIE, i.e. two linear intrapolation steps followed
by one linear extrapolation step. This contradicts our assumption (B).

= 0. Then, also K. = 0.

B.2. 0

€

B.2.1.

B.2.2.

13

We again distinguish between two subcases.

¢y # 0. So, Kl # 0. Hence, as in (B.l.) an integer v 2 iz exists
such that the (v+1)-th step is a linear intrapolation step and the
1 1 in (3.3.7)

dominate, Consequently, the sign of e; (i>v) is completely determined

term Kl(si_ +ei_2) in formula (3.3.6) and the term K

by the sign of €€ and Kl. (Note that €5 (i>v) equals either

v-1
A, — z or p; - 2 and that a rational extrapolation step always yields
i

an iterate on the other side of z. So, this step is always followed
by a linear intrapolation step.) It can be shown that from the
(v+1)-th step the iteration consists of either only linear intra-

polation steps (viz. when K, > 0) or cycles of the form IEE', i.e. a

1
linear intrapolation step, a linear extrapolation step and a ratio-

nal extrapolation step. This also contradicts our assumption (B).

c3 = 0. Then, also K, = 0 and the most unfavourable situation is

1
an iteration consisting of consecutive cycles of the form IEE'B,

i.e. a linear intrapolation step, a linear extrapolation step, a
rational extrapolation step and a bisection step. Let the i-th step

be a bisection step yielding argument values a; =c, =x; and

. i o
b. = x,_.. Then a, - z= 0(1) and, according to (3.3.6) and (3.3.7),

i i-1°
the cycle IEE'B asymptotically yields:

I: €141 = Ai+l -z = O(Ei(ci-z)3) = O(ei),
E : €140 = Ai+2 -z = 0(€i+1€g) = O(sg),

E': €143 = P43 " 2 - O(€i+28i+18§) = O(eZ),
B : €144 = €543 0(51)

and aiih T Cies T Fiese

So, in this case, the effective asymptotic order of convergence equals
b . . .
V7 £ 1.626, which is greater than P This completes the proof of the

theorem. [

4, ALGORITHM R

4.1. DEFINITION. From the data mentioned in (2.1), algorithm R produces two

argument values x and y satisfying (2.2.1), by successively calculating

14

argument values Xss and di (for i=2,...,n) and ai’bi and c; (for i=1,...,n)
as defined in Al (see 2.3) and R2 (below), where n and the results delivered
are defined in A3 (see 2.3).

R2 (iteration step, i=2,...,n).
Let ji be defined as in M2. Then, the new iterate X, is calculated as
follows (for the definitions of Ai and m see A2, and for the definitions

of w and p; see M2):

(4.1.1) x, = wl,b,_ e,) if i=2,
= w(pi’bi—l’ci—l) if i 2 3 and ji >24i -3,
= w(Zpi—bi_l,bi_l,ci_l)if i 23 and ji =1i-4,
= m(bi—l’ci-l) otherwise.

Furthermore, bi’ci’ai and di are defined as in M2.

4,2. ADDITIONAL DEFINITIONS AND REMARKS. The definitions and remarks 2.4

and 3.2 are also valid for algorithm R.

4.2.1. In algorithm M a bisection step is performed (Xi=m(bi—]’ci—1)) when
ji =1 — 4, but in algorithm R a bisection step is performed when ji =1 - 5,
The reason for this difference lies in the different asymptotic behaviour

of the algorithms M and R. Using 3-point rational interpolation the errors
satisfy (3.3.5). Assuming K1 # 0, then the iteration may asymptotically
consist of consecutive cycles of the form IIEE, i.e. two intrapolation steps
followed by two extrapolation steps. (see also proof of theorem 4.3.2). We
do not want to disturb such an asymptotic behaviour. So, we have to allow
two consecutive extrapolation steps in algorithm R. Therefore, in algorithm
R, we modify the third of three consecutive extrapolation steps (ji=i—4) by
doubling the step—-length obtained with rational interpolation and a bisection
step is inserted if ji <i-4,

4,2,2, In addition to 2.4.3 and 3.2.3 we call an iteration step a modified

extrapolation step if X, = W(ZDi_bi-l’bi—l’ci-l)'

15

4.3. PROPERTIES. We state and prove the following two theorems on algorithm R.

4.3.1. THEOREM. Let data be given as mentioned in 2.1. Then the number
of function evaluations needed by algorithm R to produce two argument
values x and y satisfying (2.2.1) is at most 5t. (For the definition of t
see 3.3.1.)

PROOF. This follows immediately from the definition of the algorithm. [J

4,3.2, THEOREM. Let data be given as mentioned inf2.]ﬁ Let, mereover,

the giveﬁ function f have a continuous fifth derivative and a unique simple
zero, z, in the interval Jl.
Then, the asymptotic order of convergence of algorithm R, to find an approx-
mation of z, equals Py:

(For the definition of J, see 2.4.1 and of p, see the proof of theorem

3.3.2.).

PROOF. This proof is very much alike that of theorem 3.3.2.

Let ¢,, k > 0, be defined by (3.3.3). Then c # 0 by assumption. As in the

k’
proof of theorem 3.3.2 we consider the asymptotic order of convergence of
the iteration process that is obtained if we let the tolerance function §

tend uniformly to zero on the interval J . The length of the intervals Ji

converges to 0 for i tending to infinity} So, we may choose iO such that

f'(x) # 0 for all x € J; . From the definition of the algorithm and the

error formula (3.3.5) we may conclude that an integer il > io exists such

that

a. for all i = il’ satisfying ji =i - 4, a modified extrapolation step
is performed; then, using the notation € = bk - z for arbitrary k,
we obtain the following error formula:

(4.3.3) e; = 20;= b, -z=-¢e,_ [1+ O(Si_zei_3)3;
hence, f(xi) X f(bi-l) < 0 and the next step will be an intrapolation
step;

b. for all i = il’ satisfying ji 2 i - 3 the relations If(xi)l < lf(bi_l)l
and Ixi - z| < lbi-l - z| hold; consequently, bi’ai and c; are obtained

by (3.1.7).

C

16

. Note that fdr all 1 2 il, the inequality ji 2 1 - 4 holds because of (a).

So, no bisection steps occur.

Instead of (3.3.7) we need for this proof a more elaborate error formula

which can be obtained by straightforward calculation using the assumption

that £ has a continuous fifth derivative.

(4.3.4) p; 2=

[K1 + Kz(ei_1+e. +e +

€i-1%1-2%i-3 j-2t€i-3)

2
* o(lei_ll + Iei_zl + lei_.3|) 1,

where K. is defined by (3.3.4) and

1

— 2—
K2 = c2c3/c1 c4/cl.

We distinguish between two cases.

A.

B.1.

B. 2.

There exists an integer iz > il’ such that ji 2i -3 for all i > i2'
Then, for all i 2 iz, the iterate X, is obtained by ;ational inter-
polation (with asymptotic order of convergence equal to pz).

This proves the required result.

For each i2 = il, there exists an i = 12, such that ji = i - 4. Hence,
the i-th step is a modified step.

We distinguish between two subcases.

K, #0.

By assumption (B) we may choose an integer v 2 i2 such that the v-th
step is a modified extrapolation step and the term K, in formula

(4.3.4) dominates. Consequently, using (a), the (v+1)-th step is an
intrapolation step and the sign of ei(i>v) is c¢ompletely determined by
the sign of ek‘(k=v,v—l,v—2) and Kl' Then, it is easily checked that,
from the (v+i)-th step, the iteration can only consist of cycles of the

form I or IE, when K, > 0, and IIEE, when K, < 0; here I denotes a

1 1
rational intrapolation step and E denotes a rational extrapolation

step. This contradicts our assumption (B).

Kl = 0.

Then, the most unfavourable situation is an iteration consisting of

17

cycles IEEE', i.e. a rational intrapolation step, two rational extra-
polation steps and a modified extrapolation step. Then, according to
(4.3.4) we have

2
€y = Teg-p Y 08y yes 085 3)s
and the cycle IEEE' yields:
', = _ .
'y €1 " 0(51 185-2° i- -3 = 0Ce; s
— = 2 e
L: €iv1 o(elel 15i- 2) 0(81 15i- 2)’
E : €140 = €i+1€i€i-1[K2(€' +O(e1 154-2€4 3)) + 0(e) =
- 2 2 .
= 0(81—1 i- 2(€i 2€i— Tey))’
2
B toey,y = 0(es,060,60) = OCeg_jef_p(e; pei_gve;)

Using similar relations for the (i+4)-th up to the (i+7)-th iteration

step we obtain

4 2 9 29

€i47 T 0(‘31+3 1+2(81428141%6543)) < 0(eg 48,70)

i+7
Therefore, the effective asymptotic order of convergence is at least
L .
equal to VCZ, where ¢ denotes the largest positive root of the equation
x> - 9% - 29 = 0, which approximately equals 11.52. So, VE T 1.842,
which is larger than Py- This completes the proof of the theorem. O

REMARK. In fact, for analytic functions having a simple zero, it can be
shown that no modified steps will asymptotically occur in the iteration of
algorithm R. So, the asymptotic order of convergence of algorithm R is as
large as that of an iteration process using 3-point ratiomal interpolation

throughout.

5. NUMERICAL RESULTS

We have compared five algorithms for calculating a zero of a function

of one variable.

18

. Algorithm A, published by DEKKER [3] and described in section 2.

. Algorithm M, defined in section 3.

. Algorithm R, defined in section 4.

. Algorithm B, published by BRENT [2] (see section 1).

. Algorithm C, published by ANDERSON and BJORCK [1] (see section 1).

For testing these algorithms we have chosen four groups of test functions.

I. Some functions with a simple zero in the interval considered. These

functions are (see also DOWELL & JARRATT [41):

1. f(x) = sin(x)- 0.5,
on the interval [0,1.5];

2, f(x) = 2xexp(-n) + 1 - 2exp(-nx),

on the interval [0,1] and n=1,2,3 and 4;
3. £(x) = (1+(1-n)P)x - (1-nx)2,

on the interval [0,1], and n=1,5 and 10;

these functions have one turning point on [0,1];

4. £x) = %2 - (1-0)0,
on the interval [0,1], and n=1,5 and 10;

these function have one inflexion on [0,1];

5. £(x) = (1+(-0)Hx - (-ax)?,
on the interval [0,1], and n=1,4 and 8;

these functions have one turning point and one inflexion on [0,1];

6. £(x) = (x~1)exp(-nx) + x",
on the interval [0,1], and n=1,5 and 10;
this is a family of curves increasingly close to the x—-axis for

large n.

II. Some functions of the form

f(x) = "+ ax + b,

where n=3,5,9 and 19, and

1. a=1and b= 0;

19

0 and b

N
[\
]

10743

w
[
]

I and b = ;p-4.

These functions have a simple zero and an inflexion point of the order

n—-1 or n at the zero or in its neighbourhood.

III. Some simple polynomials with a multiple zero.
n
f(x) =x,
on the interval [-1,10] and
n=3,5,7,9,19 and 25;

these functions have a zero of multiplicity n.

IV. A function given by BRENT [2] for which all the derivatives vanish
at the zero of the function ("multiplicity '").

This function is defined by

f(x) =0 ifx=20

X exp(-x-z) otherwise.

The interval is chosen to be [-1,4].

The testing has been performed on a Cyber 73 computer, which has a
machine precision of 48 bits. In all examples the tolerance function is
chosen to be 8(x) = [x]| x j1p-14 + 19-14.

The results for these groups of testfunctions are given in tables 5.1
to 5.4. In these tables we give the number of function evaluations needed
by the various algorithms to find a zero of the given function within the

given precision.

Tabel 5.1 illustrates that algorithm M behaves almost the same as algorithm
A for simple zeroes, while algorithm R, B and C are slightly better. The
better results for algorithm R are due to the use of the higher order
rational interpolation formula (3.1.5) throughout. The better behaviour of
algorithm B and C is caused by replacing each linear extrapolation step

by an inverse quadratic interpolation step (in algorithm B, see BRENT [2])
or a rational extrapolation step (in algorithm C, see ANDERSON & BJORCK
[1]). Hence in algorithms R, B and C we save roughly 107 of the number of

20

function evaluations at the cost of slightly more complicated calculations.

table 5.1

testfunetions of group I

number of function evaluations
function | n A M R B c
1. - 10 10 9 8 9
2 1 9 9 7 8 7
2 10 10 8 9 8
3 11 11 9 10 9
4 12 | 12 10 10 10
3 1 10 9 8 8 9
5 10 10 9 9 8
10 9 9 9 9 8
4 1 9 10 8 9 9
5 10 10 {9 9 10 °
10 11 11 11 10 11
5 1 10 10 8 9 9
4 9 9 9 8 8
8 7 7 8 7 8
6 1 9 9 8 9 9
5 9 9 9 9 9
10 10 10 10 9 10
total 165 |165 149 150 | 151

21
From table 5.2 we see that algorithm R,C and M are better than algorithm
B for finding a simple zero of a function with a high order inflexion point
at or near the zero.

table 5.2

testfunctions of group II

number of function evaluations
a n ‘A M R B C
1 3 11 12 11 15 12 ‘
; 5 10 | 10 10 14 12
9 10 13 . 11 16 12
19 10 13 13 16 12
0 10=4| 3 21 | 26 17 26 21
5 22 26 18 27 23
9 23 27 19 25 " 24
19 23 27 19 24 24
1 10-4| 3 1| 12 1 14 | 12
5 10 10 10 14 11
9 10 10 11 16 11
19 10 13 13 16 11
total 171 199 163 223 185

Finally, tables 5.3 and 5.4 show clearly that algorithm A and also algorithm
C are not efficient for calculating multiple zeroes. They may cause a com—

puter program running out of time very quickly.

22

table 5.3

testfunctions of group III

number of function evaluations

n A | M R | B | C

3 117 | 151 91 | 147 118

5 206 | 149 163 § 122 207
7 293 | 161 | 206 | 138 | 294
9 380 | 160 196 | 137 381

19 802 | 179 206 | 141 759
25 1320 | 159 174 | 123 961
total 3118 [959 |1036 | 808 [2720

table 5.4

function IV

[number of function evaluations
A M R B C

>5000| 27 23 18 | 969

6. CONCLUSIONS

From the results given in section 5 it is obvious that algorithm A and
C are not efficient for practical use on a computer if the multiplicity of
the zero is not known in advance.

Although, in most cases, the results of algorithm B are slightly better
than those of algorithm M, this is only due to the use of a more complicated
formula in roughly 307 of the iteration steps. Moreover, there are examples
(see table 5.2) for which algorithm M requires fewer function evaluations

than algorithm B. So, for rather simple functions, whose evaluation is cheap

23

with respect to the calculations performed in one iteration step of algo-
rithm M, we recommend the use of algorithm M, also, because the upper bound
of the number of function evaluations needed is better than for algorithm B
(see theorem 3.3.1). Algorithm R is to be preferred for more expensive func-
tions, because of the higher asymptotic order of convergence of the inter-
polation formula used in this algorithm (see theorem 4.3.2). This statement
is affirmed by the numerical results in section 5. For functions having
poles near the zero we also advise the use of algorithm R, because of the

special character of the interpolating function used in this algorithm.

7. REFERENCES

[1] ANDERSON, N. & BJORCK, A., A new high order method of regula falsi
type for computing a root of an equation, BIT 13 (1973)
253-264.

[2] BRENT, R.P., An algorithm with guaranteed convergence for finding a
zero of a function, Comp. J. 14 (1971) 422-425.

[3] DEKKER, T.J., Finding a zero by means of successive linear interpola-
tion. In: Dejon, B. & Henrici, P. (eds.), Constructive aspects
of the fundamental theorem of algebra, Wiley Interscience,
London, 1969.

[4] DOWELL, M. & JARRATT, P., A modified regula falsi method for computing
the root of an equation, BIT 11 (1971) 168-174.

[5] JARRATT, P. & NUDDS, D., The use of rational functions in the iterative
solution of equations on a digital computer, Comp. J. 8 (1965)
62-65.

24

8. APPENDI

X: ALGOL 60 procedures

In this appendix we give the text of two ALGOL 60 procedures, imple-

menting algorithms M and R, defined in sections 3 and 4.

The heading of the procedure implementing algorithm M reads:

Boolean procedure zeroin (x,y,fx,tolx);

real

X,y¥,fx,tolx;

The heading of thé procedure implementing algorithm R reads:

Boolean procedure zerainrat (x,y,fx,tolx);

real

X,¥,£fx, tolx;

The meaning of the formal parameters is:

X,y

fx

tolx :
the proced

values x a
procedure

if, on ent

Note that

instead of

real variables;

entry: the endpoints of the interval J1 (see 2.4.1);

exit : if the value of the procedure identifier is true, then
the values of x and y satisfy (2.2.1); ‘

real expression depending on x; the actual value of fx should be

equal to the function value at the point given by the actual

value of x;

real expression depending on x; the actual value of tolx should

be equal to the value of the tolerance function at the point

given by the actual value of x;

ure identifier will have the value true on exit if two argument
nd y are found which satisfy (2.2.1), otherwise the value of the
identifier will be false on exit. The last case can only occur

ry, the values of x and y do not satisfy f£(x) x f(y) < 0.

in the procedures we have written

25

This is done because of the poor arithmetic of the Cyber 73 for values
around the smallest positive representable number.

On this computer, it can occur that the Boolean expression p = 0 has the
value false while the expressions p/1 and p x 1 have the value O.

So, replacing the expression p = 0 by p x 1 = 0 removes the difficulty,

at least in those cases that we checked.

26

Boolean procedure zeroin(x, y, fx, tolx);

“real x, ¥y, fx, tolx;

begin integer ext;
real c, fc, b, fo, a, fa, d, fd, fdo, fda, w, mb,
tol, m, p, qQ;
b:= x; fb:= fX; a:= x:= y; fa:= fx;
interpolate: c:= a; fc:= fa; ext:= 0
extrapolate: if abs(fc) < abs(fb) then
begin if c # a then begin d:= a; "a; fd:= fa end;

a:= by fa:= fb; b:= x:= ¢; fb:= fc; c:= a; fe:=

end 1nterchange
tol:= tolx; m:= (c +b) x 0.5; nb:=m - b;
if abs(mb) > tol then
egn if ext > 2 then w:= mb else
eg:n tol:= tol x 31gn(mb5
(b —.a) x fb; if ext < 1 then
q fa - fo else
beggn fdb fd - fo) / (d - b);
= (fd - fa) / (d - .a);
p:= fdaxp, g:= fd x fa - fda x fb

fa

end; if p < 0 then

begin p:= ~p; q:= -q end;

w;:iﬁp X 1 = ovaqxtolthentolelse
if <nbxqthenp/qelse1rb

begin ext:= if w = mb then 0 else ext + 1;

end
end; EZERT
zer01n=1ffc 2 0Othen fb s Oelse fb 2 O

end zeroin;

5 =)
(if fc 2 0 then fb = 0 else fb < 0) then

Boolean procedure zeroinrat(x, y, fx, tolx);
real X, y, fx, tolx;
begin integer ext; boolean first;
“ryeal b, Ib, a, fa, d, fd, c, fc, fd, fda, w,
mb, tol, m, P, q;

b:= x; fb:= fx; a:= x:= y; fa:= fX; first:= true;

interpolate: c:= a; fc:= fa; ext:= 0;
extrapolate: if abs(fc) < abs(fb) then

begin if ¢ # a then begin d:= a; - a; fd:= fa end;
a:= b; fa:= fb; b:= x:= c; fb:= fey c:= a; fe:= fa

end 1nterchange
tol:= tolx; m:= (¢ +b) X .5; nmb:=m - b;
if abs(mb) > tol then
eg;n if ext > 3 then w:= b else
begin tol:= tol X sign(mb);
p:= (b - a) x fb; if first then

beg& q:= fa - f.'b “first:= false end else
fdb

—(fd-fb)/(d-b)

fda:= (fd - fa) / (d - a);
p:= fda x p; q:= fd x fa - fda x fb
end; if p < 0 then :
begin p:= -p; q:= —q end;
if ext = 3 then p:=p X 2;
w:=if px1=0v p =< qX
if p <mb x q then p / q else nb
d:= a; fd:= fa; a:= b; fa:= fb;

goto interpolate else

begin ext:= if w = mb then 0 else ext + 1;

goto extrapolate
end
end; y:= c;
zeroinrat:= if fc =z 0 then fb < 0 else fb =
end zeroinrat;

0

27

