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Two efficient algorithms with guaranteed convergence for finding a 

zero of a function 

ABSTRACT 

*) J.C.P. Bus 

by 

and T.J. Dekker**) 

Two algorithms are presented for finding a zero of a real continuous 

function defined on a given interval. The methods used are mixtures of 

linear interpolation, rational interpolation and bisection. 

The asymptotic behaviour of these algorithms is completely satisfactory. 

The number of function evaluations needed to find a zero of a function is 

bounded by four or five times the number needed by bisection and usually 

considerably smaller. 
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1. INTRODUCTION 

Our starting point is an algorithm, published by DEKKER E3], for . 

finding a zero of a real function defined on a given interval. 

Section 2 contains a detailed discussion on this algorithm which we 

call "algorithm A" in the sequel. The method used in algorithm A is a mix

ture of linear interpolation and bisection. For this algorithm., convergence 

is guaranteed and the asymptotic behaviour is completely satisfactory. 

However, the number of function evaluations required by this algorithm may 

be prohibitively large, in particular, when the zero appears to be multiple. 

Therefore, BRENT [2] proposed a modified algorithm (called "algorithm B" 

in section 5). For this algorithm the upper bound of the number of function 

evaluations needed equals (t+l) 2-2, where tis the number of function eval

uations needed by bisection. 

In section 3 we present a modified algorithm ("algorithm M") having 

the same asymptotic order of convergence as algorithm A but requiring at 

most 4t function evaluations •. This is achieved by inserting steps in which 

rational interpolation (see JARRATT & NUDDS [SJ ) or bisection _is _performed. 

ANDERSON and BJORCK [1] present an algorithm (which we call algorithm C in 

section 5) which uses also linear interpolation and rational interpolation. 

This algorithm. may however require as many function evaluations as algorithm 

A. 

In section 4, we present another algorithm ("algorithm R") having a 

higher asymptotic order of convergence and requiring at most St function 

evaluations. This algorithm. has a similar strategy but uses rational inter

polation instead of linear interpolation. 

In sec.tion 5, we compare some numerical results of the algorithms 

mentioned and in section 6, we give some conclusions. 

A description of our algorithms in the form of ALGOL 60 procedures is 

given in Appendix. 

2. ALGORITHM A 

For a detailed description of algorithm A, together with a discussion 

on its properties and an ALGOL 60 procedure, see DEKKER [3]. 
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2. I. DATA. Given a real continuous function f of one real variable, two 

distinct argwnent values x0 and x 1 satisfying f(x0) x f(x 1) ~ 0, and a pos

itive tolerance function o of one real variable satisfying O < T ~ o(x), 

where Tis a given positive constant (for instance, o(x) = T defines an 

absolute tolerance T and o(x) = a.lxl + T defines a relative tolerance a. 

when lxl is large). 

2.2. RESULTS. The purpose of algorithm A (and of algorithms Mand R presented 

in the next two sections) is to find two (distinct) real numbers x and y 

satisfying 

(2.2.1) 

f(x) X f(y) ~ Q 

lf(x)I ~ lf(y) I 

Ix -y I ~ 2o (x). 

Since f is continuous, the first condition ensures that there exists a zero, 

z, of f in thi~ closed interval with endpoints x and y; the second condi

tion yields that xis the "best" approximation of z; the third condition 

states that the required tolerance has been reached. 

2.3. DEFINITION OF ALGORITHM A. From the data mentioned in 2.1, algorithm 

A produces two argument values x and y satisfying (2.2.1). This is achieved 

by calculating in succession the argument values x. (for i=2, ..• ,n), and 
1. 

a. , b. and c. i( for i= 1, •.. , , n) as defined in A1 and A2 below, where n and the 
1. 1. 1. 

results deliv1?red are defined in Aj. 

Al (initialisation, i=l). 

If If (xl) I ~ If (xo) I , 

then b 1 == x 1 and a 1 = c 1 = x0 ; 

otherwis1? b 1 = x0 and a 1 = c 1 = x 1• 

A2 (iteration step, i=2, ••. ,n). 

Let the linear interpolation formula be defined, for a,;. b, by 

(2.3.1) l = l(b,a) = b _ f(b)(b-a) 
f(b)-f(a) 

= b 

if f(b),;. f(a), 

if f(b) = f(a),;. O, 

if f(b) = f(a) = O. 
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Let moreover, 

(2.3.2) h = h(b,c) = b + sign(c-b) x o(b), 

(2.3.3) m = m(b,c) = i(b+c) 

and 

(2.3.4) v = v(l,b,c) = l if l is between h(b,c) and m(b,c), 

= h(b,c) if ll - bl s o(b), 

= m(b,c) otherwise. 

Then the new iterate x. is calculated according to the formula 
1 

(2.3.5) x. = v(A.,b. 1,c. 1), 1 1 1- 1-

where 

Furthermore, let k be the largest (non-negative) integer satisfying 

k < i and f(~) x f(xi) s O. 
Then, b.,c. and a. are defined by 

1 1 1 • 

(2.3.6) b. = x., c. = x., a.= b. I 
1 1 1 k 1 1-

otherwise. 

A3 (termination). 

Let n be the smallest positive integer satisfying 

(2.3.8) lb - c Is 2o(b ). 
n n n 

Then, the algorithm terminates for i = n and delivers as results 



(2.3.9) X = b ' y = C • 
n n 

2.4. ADDITIONAL DEFINITIONS AND REMARKS. 

2.4.1. Let J., for i=l,2, ••• ,n denote the closed interval whose endpoints 
1 

are b. and c .• Then, from the invariant relations 
1 1 

f(b.) x f(c.) ~ 0 
1 1 

and 

if(b.)I ~ if(c.)I 
1 1 

5 

it follows that J. contains a zero z off and b. is the best approximation 
1 1 

of z obtained up to and including step i. 

2.4.2. The itierates x. (i=l,2, .•• ,n) are all distinct and their mutual 
1 

distances are at least T, Hence, lb. - a. I ~ T for i=l,2, .•. ,n, so that 
1 1 

A. and x. in (2.3.5) are well defined for i=l,2, ... ,n. 
1 1 

2.4.3. If a. 1 = c. 1, for certain i, then, the argument values a. 1 and 
1- 1- 1-

b. 1, used to calculate A. in (2.3.5), are on different sides of z and we 
~ 1 

call the i-th step a (linear) intrapoZation step; otherwise, ai-l and bi-I 

are on the srune side of z and we call the i-th step a (linear) extrapo

lation step. 

2.4.4. Obviously, algorithm. A uses the function values f(x.), for i=O,l, •.. ,n. 
1 

So, the number of function evaluations needed equals n + I. 

2. 5. PROPERTIES. Algorithm A has the following properties (see DEKKER 

[ 3]). 

2.5.1. If the given function f has a continuous second derivative in J 1 and 

a unique simple zero in this interval, then the asymptotic order of conver

gence of algorithm A equals the largest root, p1, of the equation 
2 

x - x - 1 = O, thus 
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2.5.2. The number of function evaluations needed is bounded above by T, 

where 

As BRENT [2] shows, this upper bound may indeed by attained. 

2.6. DISCUSSION. If £(xi) x f(bi-l) SO for certain 1, then 

otherwise 

So, we may have (very) slow convergence only if the latter case occurs 

frequently. 

If f has a continuous second derivative, z is a simple zero off 

(i.e. f'(z) # 0), and a and bare sufficiently close to z to ensure that 

f'(n) # 0 for n in the smallest interval containing a, band z, then 

l = l(b,a), obtained by ~he linear interpolation formula (2.3.1), satisfies 

(see DEKKER [3]). 

(2.6.J) l - z = (b-z)(a-z)K(~,n), 

where 

and~ and n lie in the smallest interval containing a, band z. 

Hence, if lb. - c. I is sufficiently small for certain i 0, then the iter-
10 10 

ates x. converge to z and the values lf(x.) I decrease monotonically for 
1 1 



i ~ i 0 as long as 

(2.6.2) o(x.) < ll(x. ,x. 1) - x. I. 
1 1 1- 1 

Condition (2.6.2) e~sures that, for i ~ i 0, the tolerance function does 

not influence the i-th iteration step •. Henceforth in this section (where 

we consider the asymptotic behaviour of algorithm A), we take i ~ i 0 and 

assume that condition (2.6.2) holds for all i ~ i 0• (In fact we consider 

the process that is obtained if the tolerance function o tends uniformly 

to zero on the interval J 1; see also the proof of theorem 3.3.2). 

Then, by A2, we have b. = x.,a. = x. 1 and c. ~ x.. Let E. = b.-z (=x.-z) 
1 1 1 1- 1 k 1 1 1 

denote the erro:r of the i-th iterate. Then, (2.3.5) and (2.6.1) yield 

(2.6.3) E.+l = E.E. 1. K(~.,n.), 
1 1 1- 1 1 

where~- and n .. lie in the smallest interval containing b.,b. 1 and z. 
1 1 1 1-

Consequently, i:f f"(z) :f,. 0, we have K(z,z) :f,. O. Hence, for sufficiently 

large i, K(~.,n.) has the same sign as K(z,z). Therefore, the sign of 
1 :L 

K(z,z) and of two successive errors E. and e. 1 completely determine the 
1 1-

signs of the subsequent errors. Then. simple checking yields that, when 

7 

f"(z) -, O, ther,e are only the following two (essentially different) possi

bilities for the asymptotic behaviour: 

l. the iteration consists, of consecutive cycles of the form IIE, i.e. two 

intrapolation_steps followed by one extrapolation step; 

2. the iteration consists of consecutive extrapolation steps. 

In the first case, the length of J. is smaller than 0.25 times the length 
1 

of Ji_3 • So, in this case, we find a small upper bound (viz. j t) for the 

number, N, of function evalutions needed •. In the second case, convergence 

may be very slow (N may attain the upper bound T). Therefore, we modify 

algorithm A such that more than two consecutive extrapolation steps can 

no longer occur in an iteration, while an interation consisting of consec

utive cycles of the form IIE remains undisturbed. 
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3. ALGORITHM M 

3.1. DEFINITION. From the data mentioned in 2.J, algorithm M produces two 

argument values x and y satisfying (2.2.1). This is achieved by calculating 

in succession the argument values x., d. (for i=2, ••• ,n) and a.,b.,c. 
l. l. l. l. l. 

(for i=1, ••• ,n) as defined in Al (see 2.3) and M2 (below), where n and the 

results deliverd are defined in A3 (see 2.3). 

M2 (iteration step, i=2, ••• ,n). 

Let j = j. be the largest positive integer satisfying j = 1 or, if 
l. 

1 < j < i, then 

Then the new iterate x. is calculated as follows (for the definitions 
l. 

of h,:m and L see A2). 
l. 

Let 

(3.1.2) w = w(l,b,c) = l if l is between h(b,c) and m(b,c), 

Then, 

(3.1.3) 

= h(b,c) if ll - bl s o(b) and l lies not outside 

the interval bounded by band m(b,c), 

= m(b,c) otherwise. 

x. = w(L,b. 1,c. 1) 
l. l. 1.- 1.-

if j. ~ i - 2, 
l. 

= w (p . , b. l , c. l) 
l. 1.- 1.-

if j. = i - 3, 
l. 

= m(b. l 'c. l) 1.- 1.-
otherwise, 

where p. is defined as follows: for a~ b let 
l. 

(i.e. the first divided difference off at a and b); 

for distinct a,b and d, using the abbreviations 



a= f[b,d] x f(a), 8 = f[a,d] x f(b), 

define 

(3.1.5) r = r(b,a,d) = b - 8 (b-a) 
if 8 'F a, (3-a 

= 00 if 8 = a 'F 0, 

= 0 if '3 = a = O; 

then 

( 3. I. 6) p • = r (b. l , a. l , d. l) , 
1 1- 1- 1-

Furthermo1re, let k be the largest (non-negative) integer satisfying 

k < i and f(x.) x f(x.) ~ 0, then b.,c.,a. and d. are derined by 
k 1 1 1 1 1 

(3.1.7) b .. = x.' c. = ~' a. = b. 1 if I f(x. > I ~ lf<~>I; :L 1 1 1 1- 1 

(3. 1.8) b. = ~' a. c. = x. otherwise; 
:L 1 1 1 

(3.1.9) d .. = a. I if b. = x. or b. = b. l; 
JL 1- 1 1 1 1-

d .. = b. l otherwise. 
JL 1-

3.2. ADDITIONAL DEFINITIONS AND REMARKS. The definitions and remarks 2.4 

are also valid for algorithm M. 

3.2.1. Formula (3.1.5) is obtained by 3 - point rational interpolation, 

where the interpolating function is 

x-r =--px+q 

and the parameters p,q and rare determined such that </>(x) = f(x) for 

x = a,b,d (see also JARRATT & NUDDS [SJ). 

3.2.2. In addition to 2.4.2 it is obvious that for all i ~ 2, the argu

ment values b .. ,a. and d. are distinct and have a mutual distance which is 
1· 1 1 

9 
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bounded below by T. So, p. and x. in (3.1.6) an (3.1.3) are well defined. 
l. l. 

3.2.3. In addition to 2.4.3 we speak about mtionaZ inteI7?0Zation if 

x. = w(p.,b. 1,c. 1). Moreover, if in this case b .. ] and a. 1 lie on dif-
1 l. 1.- 1.- 1.- 1.-

ferent sides of z, then we call the i-th step a rationaZ intrapoZation step; 

otherwise we call the i-th step a rationaZ eretrapoZation step. 

3.2.4. Comparing the definitions of wand v ((3.1.2) and (2.3.4) respec

tively) we note that w(l,b,c) r v(l,b,c), only if ll - bl ~ o(b) and l 
lies not in the interval bounded by band m(b,c). We have replaced v by w 

in algorithm M, because we think it is preferable from a theoretical point 

·of view, and it sometimes yields better results. 

3.3. PROPERTIES. We state and prove the following two theorems on algorithm 

M. 

3.3.1. THEOREM. Let data be given as mentioned in 2.1. Then the number 

of function evaluations needed by algorithm M to obtain two values x and 

y satisfying (2.2.1) is bounded by 4t, where 

(Note that tis the number of function evaluations needed by bisection). 

PROOF. This follows from the definition of the algorithm, in particular 

from formulas (3.1.1) and (3.1.2). A bisection step is performed whenever 

none of the last three steps has reduced the length of the interval by a 

factor~ 0.5. Hence, the length of J. is smaller than half the length of 
l. 

J. 4, which proves the theorem. O 
1.-

3.3.2. THEOREM. Let data be given as mentioned in 2..1. Let moreover, the • 

given function f have a continuous fourth derivative and an unique simple 

zero, z, in the interval J 1• Then the asymptotic order of convergence of al
gorithm M, finding an approximation of z equals p1• 

(For definitions of Jl and p1 see 2.4.1 and 2.5.1). 



PROOF. Let 

(3.3.3) k > O. 

Then c 1 ; O, because z is a simple zero off by assumption. 

We need more terms in the error formula (2.6.1). By straightforward cal

culation, using Newton's interpolation formula and the assumption that f 

has a continuous fourth derivative, we find 

(3.3.4) l - z 

where 

Similarly, for the 3-point rational interpolation formula (3.1.5) we find 

(see also JARRATT & NUDDS [5]): 

(3.3.5) r - z = (b-z)(a-z)(d-z)[K1 + O(lb-zl + la-zl + ld-zl)J. 

From (3.3.5), it follows that the asymptotic order of convergence of the 

3-point rational interpolation formula equals p 2, where p2 is the largest 

root of the equation x3 - ~2 - x - 1 = O; hence p 2 ~ t.839, cf. JARRATT & 

NUDDS [5], 

11 

We consider the asymptotic order of convergence of the iteration process, 

that is obtained if we let the tolerance function o tend uniformly to zero 

on the interval J 1• (We assume, of course, that exact arithmetic is used.) 

This limit process is a well defined iteration process which does, however, 

not terminate. (Here, we use the fact that the divided difference f[a,b] 

converges to f'(a) when b converges to a). The intervals J. (i=I.2 •••• ) 
1. 

are monotonically non-increasing (i.e. Ji+l c Ji, for all i) and the length 

of the interval J. converges to zero for i tending to infinity. (Indeed the 
1. 

length decreases by a factor~ 0.5 in every 4 steps, cf. the proof of the 
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previous theorem). We choose i 0 such that f'(x) 1' 0 for x e: J .• 
1.0 

From the definition of the algorithm, in particular (3.1.1) and 

(3.1.3), artd the error formulas (3.3.4) and (3.3.5) we know that an integer 

i 1 ~ i 0 exists, such that 

a. for all i > i 1 satisfying ji > i - 3, a bisection step is performed 

to obtain the i-th iterate x. (i.e. x. = m(b. 1,c. 1)); so, 
l. l. 1.- 1.-

lf(x.) I> lf(b. 1)1 and f(x.) x f(b. 1):,;; O; in this case, a.,b. and 
l. . 1.- l. 1.- l. l. 

Ci are: chose~ according to (3.1.8) and the (i+l)-th step will be an 

intrapolation step; 

b. for all i > i 1 satisfying j.:,;; i-3 we have lf(x.)l:,;; lf(b. 1)1 and 
l. l. 1.-

lx.-zl :,;; Ix. 1-zl; now, b.,a. and c. are obtained by (3.1.7),· substi-
1. 1.- l. l. l. 

tuting e::k = bk - z for arbitrary kin (3.3.4) and (3.3.5), we obtain 

(3.3.6) 

(3.3.7) 

We distinguish between two cases. 

A. There exists an i 2 ~ i 1, such that ji ~ i - 3 for all i ~ i 2 . Then, 

for all i ~ i 2, the iterate xi is obtained by linear interpolation 

(with asymptotic order of convergence equal to p1) or by 3-point 

rational interpolation (with asymptotic order of convergence equal to 

Pz > p 1). This leads immediately to the required result. 

B. 

B. I. 

For each i 2 ~ i 1, there exists an i ~ i 2 such that ji < i - 3. 

We distinguish between two subcases. 

c2 1' O. So, K0 1' O. Hence an integer v ~ i 2 exists, such 

v - 3 and K0 in formula (3.3.6) dominates. Consequently, 

the (\J+l) -th step is an intrapolation step and the sign 

that j < 
V 

using (a), 

of e::. (i>v) 
l. 

is determined by the sign of e:: ,e:: 1 and K0• Then it is easily checked 
V v-

that, from the (v+l)-th step, the iteration consists of consecutive 

cycles of the form IIE, i.e. two linear intrapolation steps followed 

by one linear extrapolation step. This contradicts our assumption (B). 

B.2. c2 = O. Then, also K0 = 0. 
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We again distinguish between two subcases. 

B.2.1. c3 ; O. So, K1 ; O. Hence, as in (B.1.) an integer v ~ i 2 exists 

such that the (v+l)-th step is a linear intrapolation step and the 

term K1(ei_ 1+ei_2) in formula (3.3.6) and the term K 1 in (3.3.7) 

dominate. Consequently, the sign of Ei (i>v) is completely determined 

by the sign of E ,e 1 and K1• (Note that£. (i>v) equals either 
• V v- 1 

Ai - z or pi - z and that a rational extrapolation step always yields 

an iterate on the other side of z. So, this step is always followed 

by a linear intrapolation step.) It can be shown that from the 

(v+l)-th step the iteration consists of either only linear intra

polation steps (viz. when K1 > 0) or cycles of the form IEE', i.e. a 

linear intrapolation step, a linear extrapolation step and a ratio-

nal 

B.2.2. c 
3 

extrapolation step. This also contradicts our assumption (B). 

= O. Then, also K1 = 0 and the most unfavourable situation is 

an iteration consisting of consecutive cycles of the form IEE'B, 

i.e. a linear intrapolation step, a linear extrapolation step, a 

rational extrapolation step and a bisection step. Let the i-th step 

be a bisection step yielding argument values 

b. = x. 1• Then a. - z = 0(1) and, according 
1 1- 1 

a.= c. = x. and 
1 1 1 

to (3.3.6) and (3.3.7), 

the cycle IEE'B asymptotically yields: 

I 

E 

E': 

B . . 
and 

Ei+3 

Ei+4 

ai+4 

= Pi+3 -
= Ei+3 = 

= ci+4 = 

So, in this case, 
~~ VI= 1.626, which 

theorem. D 

4. ALGORITHM R 

xi+4· 
the effective asymptotic 

is greater than p1• This 

order of convergence equals 

completes the proof of the 

4.1. DEFINITION. From the data mentioned in (2.1), algorithm R produces two 

argument values x and y satisfying (2.2.1), by successively calculating 



14 

argument values x., and d. (for i=2, ••• ,n) and a.,b. and c. (for i=I, ••• ,n) 
1 1 1 1 1 

as defined in Al (see 2.3) and R2 (below), where n and the results delivered 

~e defined in A3 (see 2.3). 

R2 (iteration step, i=2, ••• ,n). 

Let j. be defined as in M2. Then, 
1 

the new iterate x. is calculat~d as 
1 

follows (for the definitions of A. and m see A2, and for the definitions 
1 

of wand p. see M2): 
1 

(4.1.1) x. = w(A.,b. 1,c. 1) 
1 1 1.- 1-

= w(p . , b. 1, c. 1) 
1 1- 1-

if i = 2, 

if i <!: 3 and 

= w(2p.-b. 1,b. 1,c. 1)if i <!: 3 and 
1 1- 1- 1-

otherwise. 

j. 
1 

j. 
1 

Furthermore, b. , c. , a. and d-. are defined as in M2. 
1 1 1 . 1 

<!: i - 3, 

= i - 4, 

4.2. ADDITIONAL DEFINITIONS AND REMARKS. The definitions and remarks 2.4. 

and 3.2 are also valid for algorithm R. 

4.2.1. In algorithm Ma bisection step is performed (x.=m(b. 1,c. 1)) when 
l. 1- 1-

j. = i - 4, but in algorithm Ra bisection step is performed when j. = i - 5. 
1 1 

The reason for this difference lies in the different asymptotic behaviour 

of the algorithms Mand R. Using 3-point rational interpolation the errors 

satisfy (3.3.5). Assuming K1 ; 0, then the iteration may asymptotically 

consist of consecutive cycles of the form IIEE, i.e. two intrapolation steps 

followed by two extrapolation steps. (see also proof of theorem 4.3.2). We 

do not want to disturb such an asymptotic behaviour. So, we have to allow 

two consecutive extrapolation steps in algorithm R. Therefore, in algorithm 

R, we modify the third of three consecutive extrapolation steps (j.=i-4) by 
]. 

doubling the step-length obtained with rational interpolation and a bisection 

step is inserted if j. < i - 4. 
]. 

4.2.2. In addition to 2.4.3 and 3.2.3 we call an iteration step a modified 

e:x:t'Y>nnoZation step if x. = w(2p.-b. 1,b. 1,c. 1). 
--~ 1 1 1- 1- 1.-
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4.3. PROPERTIES. We state and prove the following two theorems on algorithmR. 

4.3.1. THEOREM. Let data be given as mentioned in 2.1. Then the number 

of function evaluations needed by algorithm R to produce two argument 

values x and y satisfying (2.2.1) is at most St. (For the definition oft 

see 3. 3. I. ) 

PROOF. This follows inmediately from the definition of the algorithm. D 

4.3.2. THEOREM. Let data be given as mentioned in 2.J. Let, moreover, 

the given function f have a continuous fifth derivative and a unique simple 

zero, z, in the interval J 1• 

Then, the asymptotic order of convergence of algorithm R, to find an approx

mation of z, equals p2 • 

(For the definition of J 1 see 2.4.1 and of p2 see the proof of theorem 

3.3.2.). 

PROOF. This proof is very much alike that of theorem 3.3.2. 

Let ck, k > O, be defined by (3.3.3). Then c 1 ~ 0 by assumption. As in the 

proof of theorem 3.3.2 we consider the asymptotic order of convergence of 

the iteration process that is obtained if we let the tolerance function o 

tend uniformly to zero on the interval J 1 • The length of the intervals Ji 

converges to O for i tending to infinity. So, we may choose i 0 such that 

f'(x) ~ 0 for all x E J .. From the definition of the algorithm and the io 
error formula (3.3.5) we m~y conclude that an integer i 1 ~ i 0 exists such 

that 

a. for all i ~ i 1, satisfying ji = i - 4, a modified extrapolation step 

is performed; then, using the notation Ek= bk - z for arbitrary k, 

we obtain the following error formula: 

(4.3.3) E. = 2p.- b. l - z = - E . . ][1 + O(E. 2E. 3)]; 
1 1 1- 1- 1- 1-

b. 

hence, f(x.) x f(b. 1) ~ 0 and the next step will be an intrapolation 
1 1-

step; 

for all i ~ i 1, satisfying ji ~ 

and Ix. - zl ~ lb. 1 - zl hold; 
1 1-

by ( 3. I • 7). 

i - 3 the relations lf(x.)I ~ lf(b. 1)1 
1 1-

consequently, b.,a. and c. are obtained 
1 1 1 
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Note that for all i ~ i 1, the inequality j. ~ i - 4 holds because of (a). 
• l. 

So, no bisection steps occur. 

Instead of (3.3.7) we need for this proof a more elaborate error formula 

which can be obtained by straightforward calculation using the assumption 

that f has a continuous fifth derivative. 

(4.3.4) 

where K1 is defined by (3.3.4) and 

We distinguish between two cases-

A. There exists an integer i 2 ~ i 1 , such that ji ~ i - 3 for all i ~ i 2• 

Then, for all i ~ i 2 , th~ iterate xi is obtained by ~ational inter

polation (with asymptotic order of convergence equal to p2). 
This proves the required result. 

B. For each i 2 ~ i 1, there exists an i ~ i 2, such that ji = i - 4. Hence, 

the i-th step is a modified step. 

We distinguish between two subcases. 

B.l. K1 ¥' O. 

By assumption (B) we may choose an integer v ~ i 2 such that the v-th 

step is a modified extrapolation step and the term Ki in formula 

(4.3.4) dominates. Consequently, using (a), the (v+l)-th step is an 

intrapolation step and the sign of ei(i>v) is completely determined by 

the sign of ek (k=v,v-l,v-2) and K1• Then, it is easily checked that,. 

from the (v+l)-th step, the iteration can only consist of cycles of the 

form I or IE, when K1 > O, and IIEE, when K1 < O; here I denotes a 

rational intrapolation step and E denotes a rational extrapolation 

step. This contradicts our assumption (B). 

B.2. K1 = O. 

Then, the most unfavourable situation is an iteration consisting of 
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cycles IEEE', i.e. a rational intrapolation step, two rational extra

polation steps and a modified extrapolation step. Then, according to 

(4.3.4) we have 

and the cycle IEEE' yields: 

E': e:. 
l. 

I 

E 

Using similar relations for the (i+4)-th up to the (i+7)-th iteration 

step we obtain 

Therefore, the effective asymptotic order of convergence is at least 

equal to~, where~ denotes the largest positive root of the equation 

x2 - 9x - 29 = O, which approximately equals 11.52. So,~~ 1.842, 

which is larger than Pz• This completes the proof of the theorem. D 

REMARK. In fact, for analytic functions having a simple zero, it can be 

shown that no modified steps will asymptotically occur in the iteration of 

algorithm R. So, the asymptotic order of convergence of algorithm R is as 

large as that of an iteration process using 3-point rational interpolation 

throughout. 

5. NUMERICAL RESULTS 

We have compared five algorithms for calculating a zero of a function 

of one variable. 



18 

Algorithm A, published by DEKKER [3] and described in section 2. 

Algorithm M, defined in section 3. 

Algorithm R, defined in section 4. 

Algorithm B, published by BRENT [2] (see section 1). 

Algorithm C, published by ANDERSON and BJORCK [1] (see section 1). 

For testing these algorithms we have chosen four groups of test functions. 

I. Some functions with a simple zero in the interval considered. These 

functions are (see also DOWELL & JARRATT [4]): 

l. f(x) = sin(x)- 0.5, 

on the interval [0,1.5]; 

2. f(x) = 2xexp(-n) + 1 - 2exp(-nx), 

3. 

4. 

5. 

6. 

on the interval [0,1] and n=l,2,3 and 4; 

f(x) = (l+(l-n) 2)x - (1-nx) 2, 

on the interval [0,1], and n=l,5 and 10; 

these functions have one turning point on [0,1]; 

2 n f(x) = x - (1-x) , 

on the interval [0,1], and n~l,5 and 10; 

these function have one inflexion on [0,1]; 

f(x) = (l+{l-n) 4)x - (l-nx)4, 

on the interval [O,l], and n=l,4 and 8; . 
these functions have one turning point and one inflexion on [O,l]; 

f(x) = (x-l)exp(-nx) + n 
X , 

on the interval [0,1], and n=l,5 and 10; 

this is a family of curves increasingly close to the x-axis for 

large n. 

II. Some functions of the form 

n f(x) = x +ax+ b, 

where n=3,5,9 and 19, and 

1. a= 1 and b = O; 
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2. a= O and b = 10-4; 

3. a= 1 and b = 10-4. 

These functions have a simple zero and an inflexion point of the order 

n-1 or n at the zero or in its neighbourhood. 

III. Some simple polynomials with a multiple zero. 

f(x) = xn, 

on the interval [-1,10] and 

n=3,5,7,9,19_and 25; 

these functions have a zero of multiplicity n. 

IV. A function given by BRENT [2] for which all the derivatives vanish 

at the zero of the function ("multiplicity 00"). 

This function is defined by 

f(x) = 0 if X = 0 
-2 x exp(-x ) otherwise. 

The interval is chosen to be [-1,4]. 

The testing has been performed on a Cyber 73 computer, which has a 

machine precision of 48 bits. In all examples the tolerance function is 

chosen to be o(x) = lxl x 10-14 + 10-14. 

The results for these ,groups of testfunctions are given in tables 5.J 

to 5.4. In these tables we give the number of function evaluations needed 

by the various algorithms to find a zero of the given function within the 

given precision. 

Tabel 5.1 illustrates that algorithm M behaves almost the same as algorithm 

A for simple zeroes, while algorithm R, Band Care slightly better. The 

better results for algorithm Rare due to the use of the higher order 

rational interpolation formula (3.1.5) throughout. The better behaviour of 

algorithm Band C is caused by replacing each linear extrapolation step 

by an inverse quadratic interpolation step (in algorithm B, see BRENT [2]) 

or a rational extrapolation step (in algorithm C, see ANDERSON & BJORCK 

[1]). Hence in algorithms R, Band C we save roughly 10% of the number of 
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function evaluations at the cost of slightly more complicated calculations. 

table 5.1 

testfunetions of group I 

number of function evaluations 

function n A M I R B C 

l - 10 10 I 9 8 9 

2 1 9 9 
I 

7 8 7 

2 10 10 8 9 8 

3 11 11 I 9 10 9 

4 12 12 10 10 10 
! 

3 I 10 9 8 8 9 

5 10 10 9 9 8 

10 9 9 9 9 8 

4 1 9 10 8 9 9 

5 10 10 9 9 10. 

10 11 1 l 11 10 1 I 

5 l 10 10 8 9 9 

4 9 9 9 8 8 

8 7 7 8 7 8 

6 l 9 9 8 9 9 

5 9 9 9 9 9 

10 10 10 10 9 10 

total 165 165 149 150 151 
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From table 5.2 we see that algorithm R,C. and Mare better than algorithm 

B for finding a simple zero of a funct~on with a high order inflexion point 

at or near the zero. 

table 5.2 

testfunctions of group II 

number of function evaluations 

a b n .'A M R B C I 
I 

I 
1 0 3 11 12 11 15 12 I 

I I I 5 10 10 10 14 12 i 

I I 
I 

9 10 13 11 16 12 
I 

19 10 13 13 16 12 

0 10-4 3 21 26 17 26 21 

5 22 26 18 27 23 

9 23 .27 19 25 . 24 

19 23 27 19 24 24 

1 10-4 3 11 12 11 14 12 

5 10 10 10 14 11 

9 10 10 1 1 16 1 1 

19 . 10 13 13 16 11 

total 171 199 163 223 185 

Finally, tables 5.3 and 5.4 show clearly that algorithm A and also algorithm 

Care not efficient for calculating multiple zeroes. They may cause a com

puter program running out of time very quickly. 
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table 5.3 

testfunctions of group III 

number of function evaluations 

n: A M R B C 

3 I 17 151 91 147 118 

5 206 149 163 122 207 

7 293 161 206 138 294 

9 380 160 196 137 381 

19 802 179 206 141 759 

25 1320 159 174 123 961 

total 3118 959 1036 808 2720 

table 5.4 

function IV 

number of function evaluations 
A M R B C 

>5000 27 23 18 969 

6. CONCLUSIONS 

From the results given in section 5 it is obvious that algorithm A and 

Care not efficient for practical use on a computer if the multiplicity of 

the zero is not known in advance. 

Although, in most cases, the results of algorithm Bare slightly better 

than those of algorithm M, this is only due to the use of a more complicated 

formula in roughly 30% of the iteration steps. Moreover, there are examples 

(see table 5.2) for which algorithm M requires fewer function evaluations 

than algorithm B. So, for rather simple functions, whose evaluation is cheap 
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with respect to the calculations performed in one iteration step of algo

rithm M, we recommend the use of algorithm M, also, because the upper bound 

of the number of function evaluations needed is better than for algorithm B 

(see theorem 3.3.1). Algorithm Risto be preferred for more expensive func

tions, because of the higher asymptotic order of convergence of the inter

polation formula used in this algorithm (see theorem 4.3.2). This statement 

is affirmed by the numerical results in section 5. For functions having 

poles near the zero we also advise the use of algorithm R, because of the 

special character.of the interpolating function used in this algorithm. 
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8. APPENDIX: ALGOL 60 procedures 

In this appendix we give the text of two ALGOL 60 procedures, imple

menting algorithms Mand R, defined in sections 3 and 4. 

The heading of the procedure implementing algorithm M reads: 

Boolean procedure zeroin (x,y,fx,tolx); 
real x,y,fx,tolx; 

The heading of the procedure implementing algorithm R reads: 

Boolean procedure zerdlinrat (x,y,fx,toli); 

real x, y, fx, tolx; 

The meaning of the formal parameters is: 

x,y real variables; 

fx 

tolx 

entry: the endpoints of the interval J 1 (see 2.4.1); 

exit: if the value of the procedure identifier is true, then 

the values of x and·y satisfy (2.2.1); 

real expression depending on x; the actual value of fx should be 

equal to the function value at the point given by the actual 

value of x; 

real expression depending on x; the actual value of tolx should 

be equal to the value of the tolerance function at the point 

given by the actual value of x; 

the procedure identifier will have the value true on exit if two argument 

values x and y are found which satisfy (2.2.1), otherwise the value of the 

procedure identifier will be false on exit. The last case can only occur 

if, on entry, the values of x and y do not satisfy f(x) x f(y) s O. 

Note that in the procedures we have written 

if p X ] = 0 V 

instead of 

if p = 0 V • • • • 



This is done b,ecause of the poor arithmetic of the Cyber 73 for values 

around the smallest positive representable number. 

On this comput1er, it can occur that the Boolean expression p = 0 has the 

value false while the expressions p/1 and p x l have the value 0. 

So, replacing the expression p = 0 by p x 1 = 0 removes the difficulty, 

at least in those cases that we checked. 

25 
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Boolean procedure zeroin(x., y, fx., tobc); 
·real x,, y, fx., tolx; 
Eegfn Jnteger ext; 

real c., fc., b, fb., a, fa., d, fd., fdb., fda., w., mb., 
to]: m., p, q; 
b:== x; fb:= fx; a:= x:= y; fa:= fx; 

interpolate: c:= a; fc:= fa; ext:= O; 
extrapolate: if abs(fc) < abs(ib) then 

beg~ if c ;/- a then begin d: =a;fd: = fa end; 
a:= b; fa:= fb; b:= x:= c; fb:= fc; c:= a; fc:= fa 

end interchange; 
to]~:= tolx; m:= (c + b) x 0.5; mb:= m - b; 
if abs(mb) > tol then 
beg~ if ext > 2 then w:= mb else 

begin tol:= tol x sign(mb-r;-
p:= (b - .a) x fb; if ext :,; 1 then 
q:= fa - fb else - -
begin fdb: = (fci- fb) / (d - b); 

fda:= (fd - fa)/ (d - .a); 
p : = f da x p; q: = f db x fa - fda x fb 

end; if p < 0 then 
beginp:= -p; q:= -q end; 
w: = if p x 1 = 0 v p $ q x tol then tol else 
if p< mb x q then p / q else rrb -- --

end;d:= a; fd:= fa; a:= b; fa:= fb; 
~ b:= b + w; fb:= fx; 
if (if fc ~ 0 then fb ;;: 0 else fb :,; 0) then 
goto interpolate else --
begin ext:= if w = rrb then O else ext + 1; 

goto extrapolate 
end 

end; y:= c; 
zer;oin: = if fc ;;: 0 then fb :,; 0 else fb ;;: 0 

end zeroin; 



Boolean procedure zeroinrat(x, y, fx., tolx); 
real x, y, fx, tolx; 
begln integ;er ext; boolean first; 

real b, fb, a, fa, d, fd, c, fc, fdb, fda, w, 
mb, tol, m, p., q; 
b:= x; fb:= fx; a:= x:= y; fa:= fx; first:= true; 

interpolate: c:= a; fc:= fa; ext:= O; 
extrapolate: if abs(fc) < abs(fb) then 

begin i:f c;, a then begin d: =a;fd: = fa end; 
a:= b; fa:= fb; b:= x:= c; fb:= fc; c:= a; fc:= fa 

end interchange; 
tol:= tolx; m:= (c + .b) x .5; mb:= m - b; 
if abs (mb )_ > tol then 
begin i:f ext > 3 then w: = mb else 

beg~n tol: = tol x sign(rrb r;-
p: = (b - a) x fb; if first then 
beS¼n q: = fa - fb; first: = false end else 
beg:m fdb : = ( fd - fb) / ( d - b) ; 

fda:= (fd - fa)/ (d - a); 
p:= fda x p; q:= fdb x fa - fda x fb 

end; if p < O then 
begin p: = -p; q: = -q end; 
if ext= 3 then p:= p x 2; 
w:= if p x 1 = 0 v p ~ q x tol then tol else 
if p < mb x q then p / q else mb -- --

end; ct:= a; fd:= fa; a:= b; fa:= fb; 
-x·-· b·- b + w· fb·- fx· .- .- , .- ' 
if (if fc ~ 0 then fb ~ 0 else fb ~ O) then 
got2_ interpolate else 
begin ext:= if w = mb then O else ext + 1; 

goto extrapolate 
end 

end; y: ~ c; 
zeroinrat: = if f c ~ 0 then fb ~ O else fb ~ O 

end zeroinrat; 
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