
stichting 

mathematisch 

centrum 

AFDELING NUMERIEKE WISKUNDE NW 15/75 

J .G. VERWER 

$-STABILITY AND STIFF-ACCURACY FOR TWO CLASSES 

OF GENERALIZED INTEGRATION METHODS 
~,. !\ J 
tJ lJ 

~ 
MC 

MARCH 

2e boerhaavestraat 49 amsterdam 

Al-iL::illiilJt-1M 



PJtJ..nted at ;the Ma:theJ11a..t.i.c.a.t CentlLe, 49, 2e BoeJLhaa.vet>:.tJr.a.M, Am6;teJLdam. 

The Ma:theJ11a..tic.a.t CentlLe, 6ou.nded ;the 11-;th 06 FebJc.u.My 1946, ,U, a. non­
pJc.o6U in1>;t,Uu:Uon cu.ming a.:t ;the pJc.omo.:Uon 06 pull.e ma:theJ11a..tiC6 a.nd U:6 
a.pp-Uc.a..tioru.. I;t ,U, .opon1>0Jc.ed by ;the Ne;the.Jli.a.nd-6 GoveJLnment ;thJc.ough the 
Ne;the.Jli.a.nd.o 0Jc.ga.n-lza..t.i.on 6oJc. the Adva.nc.eJ11ent 06 PuJte Ret>ea.Jc.c.h (Z.W.O), 
by the Mun-lupa.tay 06 Am6teJc.da.m, by ;the Un-lveJL.6Uy 06 Am6;teJLdam, by 
the FJc.ee Un-lveJL.6Uy a;t Am6teJLda.m, a.nd by -lndl.l-6.tluet>. 

AMS (MOS) subject classification scheme (1970): 65L05 



S-stability and stiff-accuracy for two classes of generalized 

integration methods 

by 

J.G. Verwer 

ABSTRACT 

The S-stability and stiff-accuracy (concepts proposed by A. PROTHERO 
-•--·- --- -- ----- ,_, . . -~ 

and A. ROBINSON in,Math. Comp., Vol. 28, No 125, pp.145-162, 1974) are' 

studied for a class of generalized, linear multistep methods and general­

ized Runge-Kutta methods. These integration methods are characterized by 

the fact that the coefficients in the integration formulas are matrices, 

which depend on the Jacobian matrix of the differential equation under con­

sideration. An S-stable, stiffly accurate two-point Runge-Kutta method is 

developed. 

KEY WORDS & PHRASES: Numerical analysis, ordinary differential equations, 

initial value problems, stiff equations, S-stability, stiff-accuracy. 
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1. INTRODUCTION 

Let 

( 1 • I ) y' = f(x,y) 

represent a set of stiff differential equations subject to the initial 

condition 

A basic difficulty in the numerical solution of stiff systems is the re­

quirement of stability. The stability analysis of integration methods for 

stiff systems has centred largely on the stability of numerical solutions 

to the lim~ar test equation 

( 1 • 2) y' = oy, o complex, Re(o) < O, 

where o stands for an eigenvalue of the Jacobian matrix of system (I. I). 

Almost all concepts of stability, developed for equation (1.2), are modi­

fications of the concept of A-stahility proposed by DAHLQUIST r3J. 

In using A-stable, implicit one-step methods to solve stiff, non-linear 

systems with eigenvalues located in widely separated clusters, PROTHERO & 

ROBINSON [9] have found that 

(a) some A·-stable methods give highly unstable solutions, and 

(b) the accuracy of the solutions obtained often appears to be unrelated to 

the order of the method used. 

This has c,msed them to re-examine the form of stability required when stiff 

systems are solved and to question the relevance of the concept of order 

of accuracy for stiff problems. 

In their paper, PROTHERO & ROBINSON [9] propose the test-equation 

( I • 3) y' = g'(x) + o(y-g(x)), o complex, Re(o) < O, 

where g' is any given bounded function. They analyse the stability of nu­

merical approximations to the solution y = g of equation (1.3) and derive 

necessary and sufficient conditions for such stability, which is termed 
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S-stability. The new stability concept generalizes the concept of A-stabil­

ity. 

They also propose a new consistency concept for stiff equations, namely 

the concept of stiff-accumay. Roughly spoken, the accuracy of numerical 

approximations to the solution y = g of equation (1.3) is discussed by con­

sidering the asymptotic foPm of the local truncation error in the limit 

h Re(o) ➔ - 00 and h ➔ O, 

where h denotes an integration stepsize. 

The new concepts of S-stability and stiff-accuracy provide a greater 

insight into the numerical difficulties that are encountered with stiff 

systems. PROTHERO & ROBINSON [9] investigated implicit one-step methods 

based on quadrature formulas. We applied the new theory to two classes of 

generalized integration methods, namely generalized, linear rmtltistep 

methods with zero-parasitic roots (see HOUWEN, VAN, DER & VERWER [8] and 

VERWER [13]) and generalized Runge-Kutta methods (see e.g. HOUWEN, VAN, DER 

[6]). These generalized methods are characterized by the fact that the co­

efficients in the integration formulas are matrices which depend on the 

Jacobian matrix of the system to be integrated. 

The results of our investigation are described in this report. In sec­

tion 2 and 3 we give short outlines of the integration methods to be ana­

lyzed. Section 4 and 5 are devoted to the new concepts of S-stability and 

stiff-accuracy. In section 6 and section 7 we discuss results of the gen­

eralized multistep- and one-step methods, respectively, concerning the new 

concepts of stability and accuracy. In section 8 we propose a two-point gen­

eralized Runge-Kutta scheme which is developed according to the new criteria. 

In the last section, this new scheme, as well as some others, is applied to 

a test-equation of the form (1,3) and to a non-linear scalar equation. More 

extensive numerical results of the new Runge-Kutta scheme will appear in a 

forthcoming paper. 
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2. GENERALIZED MULTISTEP METHODS WITH ZERO-PARASITIC ROOTS 

The multistep formulas we are going to analyse belong to the class of 

generalized, linear k-step methods with zero parasitic roots and adaptive 

stability function (principal root). These integration methods are developed 

in HOUWEN, VAN, DER & VERWER [8] and further discussed in VERWER [13]. In 

this section we only give an outline of the method; for details the reader 

1.s referred to the references mentioned above. 

Let the points x., j = n+l ,n, .•. ,n+l-k denote the reference points of 
J 

the k-step formula. Let the parameter hn denote the steplength, hn = xn+l-xn. 

Further, let y denote the numerical approximation to the solution y(x) 
n n 

of system (1.1) at x = xn, and let f = f(x ,y ). Define n n n 

( 2. 1) Rand B1 , £ = 1, •.. ,k, 

to be rational functions with real coefficients. Then, the generalized, 

linear k-step method with zero-parasitic roots and adaptive principal root 

is defined by 

(2.2) 

where J denotes the Jacobian matrix of system (1.1) at the point (x ,y ). 
n n n 

The principal root is identified with the prescribed stability function R. 

Define the numbers 

(2.3) q 0 = (x 0 -x )/h , £ = -1,O, .•• ,k-1, )(, n-)(, n n 

and let y(j)(x) denote 
n 

(.) dJ 
yJ(x)=-.y(x)j j=O,1, .•.. 

n dxJ x=x 
n 

By substituting a solution y of the differential equation into the right­

hand side of (2.2), and by expanding 



4 

about x = xn, we obtain the formal expansion 

(2.4) 

where the functions C. are defined by 
J 

(2.5) 

(2.6) 

k 
l z BR,(z), 

R.= I 

Now it is clear that a possible choice for aonsistenay aonditions for p-th 

order aaauraay is 

(2. 7) 

C • ( z) = I / j ! , j = 0 , ••• , p- 1 , 
J 

C (z) = 1/p! + O(z) as z + O. 
p 

By assuming that R, the stability function, is consistent of order k, 

i.e. 

(2.8) 
di 

i R(z)I = I, i = o, ... ,k, 
dz z=O 

it may be proved that the maximal attainable order, in case of conditions 

(2.7), is p = k, if k ~ 2. Fork= 1 the order p = 2 if R is consistent 

of order greater than one. In this report we shall assume that p = k. 

Then, the consistency conditions (2.7) may be transformed to relations 

which determine uniquely the functions BR,, R, = J, ••• ,k, i.e. 

(2.9) 

(2. JO) 

(2.11) 

R(z)-1 
= --------z 

D.(z), j = 
J 

1 , ••• ,k, 

jD. (z)-1 
J 

z 
, j = 1 , ••• 'k- 1 • 



In fact, the k-step scheme of order k with consistency conditions (2.7)­

(2.8) is completely determined by the adaptive stability function R. 

For our analysis of S-stability and stiff-accuracy we need results on 

the asymptotic behaviour of the rational functions Bt, t = 1, ••. ,k, and 

5 

C., j = k,k+1, ... , as z + 00 • Denote the k-th order stability function R with 
J 

( 2. 12) 

LEMMA 2.1. The rational functions Rand Bt' t = 1, •.. ,k, as defined by (2.9), 

(2.10) and (2.11) have the same denominator. 

PROOF. The recurrence relation (2.11) yields 

(2.13) 

where 

(2.14) 

D. (z) 
J 

= (j-1) ! 
R(z)-P. 1 (z) 

J-

z 
j-1 

j = 

P. 1(z) = I + z + 
J- • • • + -,.( J.,.... --1-,-) ..,,.! • 

The function R is consistent of order k, i.e. 

(2.15) 
k+1 

R(z) = Pk(z) + O(z ) as z + O. 

Relation (2.15) implies that 

(2.16) 

R(z) - 1 = O(z), and 

jD.(z) - 1 = O(z), j = 1, ... ,k-1, 
J 

as z + O. l'his means that 

and 
R(z) - I, 

jD.(z) - I, 
J 

1, ..• ,k, 
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have a zero at z = 0. Thus, according to (2.10) and (2.11), the rational 

functions D., j = l, ..• ,k, have the denominator of R. As the functions 
] 

B,Q,, ,Q, = l,.".,k, are linear combinations of the Dj, this is also valid 

for the B,Q,. D 

LEMMA 2.2. If B j 0, we have 
m 

(a) All the B,Q, have a zero at infinity while, fork~ 2, at least one B,Q, 

has a single zero at infinity. 

(b) The functions C., J = k,k+J, ••• , do not have a pole at infinity. 
] 

PROOF. If Bm is not equal to zero, we see, from the preceding proof~ that 

(2.17) 

( 2. 18) 

m-1 ..• +(a -B )z 
m m 

m 
l+B 1z+ •. ,+Bmz 

m-1 .•• -B z 
m 

D.(z) = -------] m l+B 1z+.,.+Bmz 

By means of relation (2.9) we find 

, and 

j=2, ••. ,k. 

b (0) b(m-1) m-1 
,Q, + ... + ,Q, z 

(2.19) 

Because the Vandermonde Matrix 

(m-1) . provides a non-trivial solution, at least one b1 is not equal to zero 

establishing assertion (a). Assertion (b) is now easily proved by means of 

relations (2.6) and (2.19). D 

EXAMPLE 2.3. For future reference, we give the three-step scheme generated 

by the third order, L-acceptable (see REMARK (2,4)) Pade approximation 

(2.20) R(z) = 

I I + - z 
3 

2 1 2 • 
--z +-z 

3 6 



For constant stepsizes, i.e. qt= -t, the functions Bi are defined by 

23 I 

(2. 2 I) B1 (z) 
IT - zz 

= 2 I 2 ' - -z + -z 
3 6 

(2.22) 

4 1 - - + -z 
B2(z) 3 2 

= 
2 I 2 ' I - -z + -z 
3 6 

5 I 

(2.23) B/z) 
12-6z 

= 2 I 2 . 
- -z + -z 

3 6 

REMARK 2.4. In this paper we pay no special attention to rational approxi­

mations to the exponential. For all properties and definitions which are 

used the reader is referred to LAMBERT [JO]. We will, however, give one 

definition: let R be A-acceptable, then R is said to be strongly A-accept­

able, if 

lim !R(z)I < I. 
Re(z)+-00 
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Further, we let the variable z as well as the rational functions, which we 

shall meet, range over the extended complex plane. If Fis a rational func­

tion of which the behaviour for Re(z) ➔ - 00 must be studied, we consider 

F(l/z). We rewrite F(l/z) as a rational function F(z) and set F( 00) = F(O), 

while the order of a zero or pole at infinity is defined as the order of 

a zero or pole of Fat the origin (see AHLFORS r1J). Moreover, we shall 

always assume that all the formula manipulation is legal. 

3. GENERALIZED RUNGE-KUTTA METHODS 

Leth denote the steplength h = x 1 - x, and let y denote the n n n+ n n 
numerical approximation to the analytical solution y(x) of system (I.I) n 
at x = x. Let J denote the Jaaobian matrix of system (I.I) at the point 

n n 
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(x ,y ). Further, define , n n 

(3. I) A. n' j = 0, ... ,m; £ = 0, ••• ,j-1, J,J(, 

to be rational functions with real coefficients. Then, the generalized 

m-point Runge-Kutta method is defined by 

(3.2) 

(3. 3) 

= y + 
n 

m-1 
l A .(h J )k(j) 

m,J n n n ' 
j=0 

k(j) = h f(x 
11 n n 

j-1 
+ µ • h ' y + I A. (h J ) k ( £)) 

J n n t=0 J,£ n n n ' 

where the parametersµ. are given by 
J 

(3.4) 
j-1 

µ .. = l A. £(0). 
J £=0 J' 

These one-step methods are extensively discussed in H0UWEN, VAN, DER [6]. 

Let us define them x m matrix 

(3.5) A = 

and them-vector 

0 0 

0 

• • • 0 

0 

(3. 6) A 
m 

T 
= [A O'A l, ••• ,A I] • m, m, m,m-

Then scheme (3.2) may be formally characterized by the (m+l) x m matrix 

(3. 7) r A 7 
Tjl. 

LA 
rn 
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The generalized Runge-Kutta method (3.2) is said to be aaeurate of 

order p, when the expansion of Yn+I in powers of hn agrees with p+1 terms 

with the Taylor expansion of the solution y(x) about the point x = x. For n 
establishing accuracy of order p, we need the derivatives of the functions 

A. n at z = O. Therefore we set 
J,N 

(3. 8) A (i) = dil.• A. n(z) I • 
j,t dz J,N z=O 

For a two-point scheme, the aonsistenay conditions for p = up top= 4 

are given in table 3.1 (cf. HOUWEN, VAN, DER [6]). 

TABLE 3.1 Consistency conditions for scheme (3.2), m = 2. 

p 

p ~ 

p ~ 2 

p ~ 3 

p ~ 4 

When applied to the scalar test equation 

y' = oy, 

formula (3.2) yields a relation of the type 

= R(z)y, 
n 
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where z =ho. The function R is called the stability funation of the in­n 
tegration method and is composed of the coefficient functions A. n 

J ,N 
In HOUWEN, VAN, DER [7], first to fourth order formulas of the class 

(3.2) are proposed, which possess an adaptive stability funation. For 

p = I, 2 and 3, the generating matrices of these formulas are presented 

below. The function R(p) denotes a stability function of order p. 

First order methods: 

(3.9) 

Second order methods: 

(3.10) 

Third order methods: 

(3.11) 

0 

R(l)(z) 
z 

0 

R(Z)(z) 
z 

0 

I 
4 

- I 

- I 

0 

0 

3 
4 

Two other formulas which are known in the literature, are a second order 

formula of ROSENBROCK [II], given by 



0 0 

(3.12) 12 - 1 
2 - (2-T2)z 0 

0 
2 

2 - (2-12)z 

and a third. order formula of CALAHAN [2], given by 

0 0 

(3.13) 
12 - (6+2✓3)z 0 

9 3 
12 - (6+2/3)z I 2 - (6+213)z 

Observe, however, that the formulas of Rosenbrock and Calahan are not 

adaptive. 

4. S-STABILITY 

I I 

Let g denote the solution vector of the stiff initial value problem 

(I.I). In the neighbourhood of y = g, we approximate the differential sys­

tem by 

( 4. I) y' = f(x,g(x)) + J(g(x))(y-g(x)) 

= g'(x) + J(g(x))(y-g(x)), 

where J(g(x)) denotes the Jacobian matrix along the solution g. In a suf-
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ficiently small neighbourhood of y = g, the stiffness properties of system 

(I.I) may be characterized by means of the linear approximation (4.1). 

Leth be a relevant stepsize, i.e. for a stiff eigenvalue o(x) of 

J(g(x)) we have h Re(o(x)) < < -1. Now we shall make two assumptions. The 

first assumption is that, to a first approximation, we may neglect the de­

pendence of J(g(x)) with x on each interval [x ,x +h]. This means that, per 
n n 

integration step, we may characterize the stiffness properties of system 

(4.1) with the linear system 

(4.2) y' = g'(x) + J(y-g(x)), 

where J is a constant matrix. The second assumption is that the matrix J 

may be diagonalized. Then, the numerical difficulties arising from the 

stiffness of system (I.I) may be analysed in terms of the stability and 

acauracy of numerical solutions to a single equation of the form 

(4.3) y' = g'(x) + o(y-g(x)), o complex, Re(o) < O, 

where g' is any given bounded function. Equation (4.3) is considered as 

a new test-equation. For a more extensive derivation of this test-equation 

the reader is referred to PROTHERO & ROBINSON [9]. In particular, they 

assume that the eigenvalues of the Jacobian matrices under consideration 

are located in widely separated clusters. 

The analytical solution of equation (4.3), with the initial condition 

y(x0) = y0 , is given by 

(4.4) y(:ic) 
o (x-xo) 

= e [y(xo)-g(xo)J + g(x). 

Regardless of the initial condition at x = x0 , the solution (4.4) tends to 

g(x) for x > x0 • Therefore, we may examine the stability of numerical ap­

proximations to the solution y = g. A stable behaviour of the numerical so­

lution yn+I with respect to g(xn+I) includes a stable behaviour of Yn+I to 

y(x 1) where y(x) is given by (4.4). PROTHERO & ROBINSON [9] give the fol-n+ 
lowing definition of stablity. 
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DEFINITION 4.1. An integration method is said to be S-stable if, for a dif­

ferential equation of the form (4.3) and for any real negative constant oO, 

a real positive constant h0 exists, such that 

(4.5) I
Yn+I - g(xn+l)I < I 

y - g(x) ' 
n n 

provided yn I g(xn), for all stepsizes O < h < hO and all complex o with 

Re(o) ~ oO• 

If the conditions of this definition only hold for larg(ho)I < a, the 

integration method is said to be S(a)-stable. In fact, the concept of S­

stability genePalizes the concept of A-stability. Analogously, the follow­

ing definition generalizes the concept of L-stability. 

DEFINITION 4.2. An S-stable integration method is said to be L-S-stable if 

in addition 

Yn+I - g(xn+I) 

Yn - g(xn) 
➔ 0 

as Re(o)-+ - 00 , for all stepsizes h > O. 

REMARK 4.3. Suppose g = c, c constant. When applied to equation (4.3), the 

integration methods discussed in this paper result in a relation of the 

form 

y +I= R(h o)y + (1-R(h o))c, n n n n 

where R is the stability function of the method. Now inequality (4.5) reads 

IYn+l - cl = jR(h o)I < I. 
yn - c n 

This means that if g is a constant function, S-stability is equivalent to 

A-stability. Of course, this is also valid for other types of stability. 
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When applied to the S-stabiZity equation (4.3), each formula dis­

cussed in the preceding sections will result into a relation of the form 

(4.6) y +1 = R(h o)y + h T (h o,h ;g), n n n nn n n 

where R is the stability function of the method. In general, the expression 

T contains values of g and g' for several arguments x. Observe, however, n 
that all methods discussed in this paper are not implicit. As a consequence, 

the values g(x +h) and g'(x +h) do not occur in T. n n n n n 
We define (cf. (4.5)) 

(4. 7) e: = y - g(x ), n n n 

and derive 

(4.8) 

The S-stability of the method is governed by the difference equation (4.8). 

To establish conditions for S-stability we use a lennna which is a slight 

modification of a lennna proposed by PROTHERO & ROBINSON [9]. 

LEMMA 4.4. Let E = (O,iiJ c JR with ii > O. Let S be some region in a:. For 

aZZ pairs (h,z) EE x Sand aZZ e:0 E ¢ we define 

(4.9) e: = a(z)e: 0 + hS(h,z). 

Then, a reaZ positive h 0 = h0 (e:0 ;s) ~ ii exists, such that 

(4.10) 

for aZZ pairs (h,z) E (O,h0 J x s, if and onZy if 

(a) la(z)I < 1 on S, 

(b) a reaZ positive h1 ~ h exists such that S(h,z)/(1-la(z)I) is unifonnZy 

bound.ed on (O,h 1J x S. 
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PROOF. Suppose conditions (a) and (b) are satisfied. Then, a positive num­

ber K0 exists such that 

8 (h, z) 

for all (h,z) E (O,h 1] x S. Further, we have 

1£1 ~ la(z)I 1£0 1 + hl8(h,z)I = 

= 1£ I - {I - la(z)l}{l£0 1 - hlB(h,z)l/(I-la(z)I)}. 

Because la(z)I < I on S, the choice 

yields 

for all z ES, all £0 IO and all h E (O,h0J. 

Next we suppose condition (a) is not satisfied. Then 

* for some z ES. As a consequence, for any h EE, there exists an £0 ~ 0 

such that 

* at (h,z ). This establishes a contradiction. 

Finally we suppose condition (b) is not satisfied. Then, for any real 

positive K 1 , a pair (h*,z*) EE x Sexists, with h* arbitrarily small, such 

that 
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By the choice 

we have 

Since 

* * there exists K1, such that for (h ,z) holds 

This establishes a second contradiction and completes the proof of the 

lennna. D 

For a given function g this lemma establishes conditions for the 

stability of solutions to equation (4.8). 

THEOREM 4.5. The integration method related to the error equation (4,8) is 

S-stahle 3 if a:nd only if 

(a) The stahility function R is strongly A-acceptahle3 

(b) A constant fi > 0 exists, such that 

(4.11) T (z,h ;g) + (R(z)g(x) - g(x +h ))/h n n n n n n 

is uniformly bounded on {(h ,z) I Re(z) < O, h E (O,h]}. 
n n 

PROOF. After observing that the strong A-acceptability of R implies 

lim jR(z)I < I, 
Re(z)-+-oo 

the theorem is easily proved by applying definition 4.1 and lennna 4.4 to 

the error equation 4.8. D 



THEOREM 4.6. The integration method r~Zated to the error equation (4.8) 

aan not be L-S-stabZe. 
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PROOF. As already observed, such a method is not implicit. This implies 

that the value g(x +h) does not occur in T. A consequence is that always n n n 
a function g exists, with g' bounded, such that for any h > 0, n 

( 4. 12) 

However, from equation (4.8) and definition 4.2 we see that we have L-S­

stability, if and only if, for any h > O, both R(z) and expression (4.11) 
n 

tend to zero as Re(z) ➔ -co, From (4.12) it thus follows that the method 

can not be L-S-stable. D 

REMARK 4.7. In the terminology of PROTHERO & ROBINSON [9], L-S-stability is 

called strong S-stability. They prove that certain implicit one-step formu­

las, which are based on Radau or Lobatto quadrature, are strongly S-stable. 

REMARK 4.8. The effect of S-stability is, that for given o, the upper bound 

to the range of stability h~, which depends on o, en and g, does not tend 

to zero if Re(o) ➔ -co. So, in contrast with A-stability, quantitative as­

pects of S-stability do not depend exclusively on the integration method, 

but also on the differential equation. As is to be expected, S-stability 

is meant to compare qualitatively the stability properties of integration 

formulas which share certain theoretical properties. Especially, for ex­

plicit integration methods, as discussed in this paper, we have to restrict 

ourselves to a comparative analysis. 

5. STIFF-ACCURACY 

It is well-known that, when integrating stiff differential equations, 

the local truncation error yields no reliable information about the size 

of the global error (see e.g. HENRICI [5], p.4 and VELDHUIZEN, VAN, [12]). 

Therefore, when analyzing integration methods for stiff systems, not only 
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the stability of the method has to be considered, but also the aceuracy. 

One has to relate the stiffness of the differential equation with the ac­

curacy of thei integration formula. For our methods we shall perform the 

accuracy analysis, as proposed by PROTHERO & ROBINSON [91. 

As Re(o) ➔ - 00 , the true solution to equation (4,3) tends to g(x) for 

any fixed x > xO, regardless of the initial condition at x = xO• Thus, for 

a stiff equation, a qualitative measure of the accuracy of the integration 

method is provided by the difference 

( 5. I) 

where y denotes the numerical solution at x = x I to the initial value 
n+l n+ 

problem 

(S. 2) y' = g'(x) + o(y-g(x)), y(x) = g(x ), 
n n 

The error d is dependent on the stepsize h , the eigenvalue o and 
n n 

the function g. We shall derive an asymptotic relation ford in the limit 
n 

(5. 3) Re(h o) ➔ - 00 and h ➔ O, 
n n 

which is of the form 

(5.4) d 
n 

where z =ho. 
n 

In relation (5.4) C., j = O, ... ,s ar~ real constants; Ph, p., 
• J / • -. J 

J = l, ... ,s, are integers greater or equal to zero; sis an integer greater 

or equal to I; t., j = l, ... ,s, are integers. This asymptotic relation pro-
J 

vides a good view on the accuracy of a methud when applied to stiff prob-

lems. In particular, it will appear from the results that the order of a 

method may be rather misleading for stiff problems. 

To obtain accurate results it is necessary that the integers t. are 
J 

all negative. A method with this property shall be called stiffly accurate. 



By putting En = O, i.e. yn = g(xn), in equation (4.8), we find 

(5.5) d = h [T (z,h ;g) + (R(z)g(x) - g(x +h ))/h ]. n nn n n nn n 

Thus, the e.quation for the error E may be written as 
n 

(5. 6) 

This implie.s that stiff-accuracy is necessary for S-stability. In theorem 

4.5 we have proved that the strong A-acceptability of R is also necessary 

for S-stability. From equation (5.6) it is nuw ciear, that we may expect 
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a better S-·stability behaviour if, in addition, R is L-acceptable. Because, 

if R is L-acceptable, the local truncation errors d are very quickly 
n 

damped out for Re(z) « -1. This implies that if R is L-acceptable and 

Re(z) << -I, the global errors E 1 approximately equal the local trunca­n+ 
tion errors d. 

n 

6. S-STABILITY AND STIFF-ACCURACY FOR THE CLASS OF GENERALIZED 

MULTISTEP METHODS 

When applied to the S-stability test equation (4.3), the adaptive 

multistep scheme (2.2) yields (compare (4.6)) 

( 6. 1) 

where z 

(6. 2) 

Yn+ 1 = R(z)y + h T (z,h ;g), 
n n n n 

=ho and 
n 

T (z,h ;g) = 
n n 

Assuming g to be sufficiently differentiable, we may state 

THEOREM 6.1. The adaptive multistep scheme (2.2) is S-stable if and only 

if the stability function R is strongly A-acceptable. 
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PROOF. The necessity of the strong A-acceptability of R follows inunediately 

from assertion (a) of theorem 4.5. 

Suppose R is strongly A-acceptable. According to theorem 4.5, we just 

have to prove that a constant h > 0 exists such that 

is uniformly bounded on (O,h] x {z I Re(z) < 0}. From expansion (2.4) and 

conditions (2.7) it follows that for any z, Re(z) < 0, dn may be formally 

expanded as 

(6.3) d = 
n I 

j=k 
[C.(z)-1/J'!J hjg(j)(x ), h + 0. 

J n n n 

Because R is strongly A-acceptable the results of lenuna 2.2 are valid. As 

a result, the functions Bt' t = l, ••• ,k, and Cj, j = k,k+I, •.. , are uni­

formly bounded on {z I Re(z) < 0}. As in expression (6.3) the integer k ~ I, 

the uniform boundedness of the B1 and C. implies that for any fixed h > 0, 
- J 

d /h is uniformly bounded on (0,h] x {z I Re(z) < 0}. D n n 

By means of expansion (6.3) we may readily prove 

THEOREM 6.2. If the stability funation R is A-aaaeptable, the k-th oPdeP 

adaptive rrrultistep scheme (2.2) is stiffly aaauPate, with ph ~ k - I. 

PROOF. If R is A-acceptable we may apply lenuna 2.2. As the functions C., 
J 

j = k,k+I, ••. , do not have a pole at infinity, we may expand 

C.(z) = -c(.O) + -(1) -1 + R () c. z . . • , as e z + -ex,. 
J J J 

Substitution into expansion (6.3) yields 

(6.4) d = n l. 
j=k 

[-1/j! + I 
i=O 
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(6.5) -(0) k (k) -(1) -1 k (k) d ~ (c -1/k!)h g (x) + c. z h g (x) n k n n k n n' 

ash + 0 and Re(z) +-~,establishing the proof of the theorem. n n . 

REMARK 6.3. Observe that the adaptive multistep scheme is stiffly accurate, 

if it is S-stable. The converse need not be true. This depends on the sta­

bility function R. 

7. S-STABILITY AND STIFF-ACCURACY FOR GENERALIZED RUNGE-KUTTA METHODS 

We rewrite the S-stability test equation (4.3) as 

(7. 1) y' = oy + r, 

where the function r denotes 

(7.2) r = g' - og. 

We introduce the abbreviations 

(7.3) r . = r(x +µ .h ) , j = 0, ••• ,m-1, 
n,J n J n 

and them-vector 

(7 .4) T r = [r 0 ,r 1, ••• ,r 1J • n n, n, n,m-

Further, we define them-vectors, 

(7 .5) T 
e = [1,1, ••• ,1], 

and, for scalar equations, 

(7. 6) 

When applied to equation (7.1), the Runge-Kutta method (3.2) supplies 

the increment functions 
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(7. 7) 
(") j-1 (t) 

k .J =hr . + z(y + ' A (z)k ) l • o , n n n,J n t=O J,~ n 

where z =ho. Let I denote the identity matrix of order m. Then, the in­
n 

crement vector k may be expressed as (compare PROTHERO & ROBINSON f9l) 
n 

(7. 8) -1 
k = (I - zA(z)) [zy e +hr]. 

n n n n 

Now it is easily seen that y 1 can be expressed as n+ 

(7. 9) 

The matrix A(z) and the vector A (z) are given by (3.5) and (3.6), respec­
m 

tively. 

If g = 0, equations (7.1) and (7.9) reduce to 

y' = oy, 

and 

respectively. As a result, the stability function of method (3.1) is given 

by 

(7.10) 

We set 

(7.11) 

R(z) = 1 + zA (z)(I - zA(z))- 1e. 
m 

T (z,h ;g) = A (z)(I - zA(z))- 1r , 
n n m n 

so that equation (7,9) can be rewritten as (cf. (4.6)) 

(7. 12) Y .,. 1 = R(z)y + h T (z,h ;g). n· n nn n 

Next, we transform Rand T in such a way that the coefficient func­
n 

tions A. 0 are easier to recognize. To that end we introduce the functions 
J ,~ 
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(7. 13) 

where the su1IDD.ation runs over all k+2-tuples (ik+l'ik, ••• ,i0) which satisfy: 

j = ik+l>ik> ••• >il>iO = t. 

LEMMA 7.1. The inverse of the matrix I - zA(z) is given by 

(7.14) 

where 

(7.15) 

nl ,O(z) 

n(z) = nz,o(z) 

0 

nz 1 (z) , 

0 

0 

0 

j-i-t k+l 
n. n(z) = l z cr. k 0 (z), j = 1, ••• ,m-1; t = O, ••• ,j-1. 
J ')(, k=O J' ')(, 

PROOF. The matrix I - zA(z) is lower triangular with all diagonal elements 

equal to 1. After this observation the proof may be obtained by elementary 

matrix algebra. D 

The inner-product 

-1 
A (z)(I - zA(z)) e 

m 

may thus be expressed as 

so that R(z) equals, 

m-1 j-1 
l A .(z) (1 + l n. t(z)), 

j=O m,J t=O J' 

(7. 16) R(z) 
m-1 m-1 j-1 j-1-t k+Z 

= 1 + l A .(z)z + l l l A .(z)cr. k R,(z)z . 
j=O m,J j=l t=O k=O m,J J' ' 

To transform the second inner-product, i.e. 
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T (z,h ;g) = A (z)(I - zA(z))-1r 
:n n m n' 

we denote thie t-th column of n(z) with nt (z), t = 0, ••• ,m-1. Then, 

m-1 
T (z,h ;g) = 

11 n L A (z) n0 (z) 
t=O m x-

m--1 m-1 j-1-t 
'i' 'i' 'i' k+I 
l [A t(z) + l l A .(z) aJ • • k,t(z)z J rn,t· 

t=O m, j=t+l k=O m,J • 

For future rE?ference, we define 

(7.17) T n (z) m,x-

m-1 j-1-t k+l 
= A t(z) + L L A .(z) a. k t(z)z , t = O, ... ,m-1, 

m, j=t+I k=O m,J J' ' 

so that 

m-1 
( 7. 18) Tn(z,hn;g) = L T 0 (z) r n' 

t=O m,x- n,x-

The functions T O shall be useful for establishing S-stability and stiff­
m,x-

accuracy. Before proceeding with the theorem which establishes S-stability 

for our one-step methods, we give an example. 

EXAMPLE 7.2. The two-point generalized Runge-Kutta scheme reads 

(7.19) = y + h A2 0 (h J) f(x ,y) + n n , nn n n 

The generating matrix (3.7), for scheme (7.19), equals 

0 0 

(7. 20) 0 



The vector r is given by r 
n n 

T 
= [r O,r 1J , where 

n, n, 

r = g'(x) - og(x ), n,O n n 

r = g'(x +A(O)h) - og(x +A(lOO)h ). 
n,l n 1,0 n n , n 

Expression (7.16), for the stability function R, yields 

(7.21) R(z) = 1 + (A2 0 (z) + A2 (z))z + A (z)A (z)z2 • 
, ,1 2,1 l~O 

Finally, the expressions (7. 1 7) , for the functions T JI,, yield m, 

(7.22) 

THEOREM 7.3. The generalized Runge-Kutta method (3.2) is S-stable., if and 

only if 

(a) The stability funation R is strongly A-aaaeptable., 

(b) The rational funations T JI,' JI,= O, ••• ,m-1, have a zero at infinity. m, 

PROOF. The necessity and sufficiency of assertion (a) follow innnediately 

from assertion (a) of theorem 4.5. 

Suppose assertion (b) holds. Expression (4.11) now reads 

d m-1 
hn = l T J/,(z)[g'(x +µJ/,h )-og(x +µJ/,h )J 

n J/,=O m, n n n n 

R(z)g(x )-g(x +h) 
+ n n n 

h n 

By assuming g to b~ sufficiently differentiable, and by expanding 
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g(x +µJ/,h) and g'(x +µJ/,h) into Taylor series, d may be formally expended n n n n n 
as 

(7. 23) 
m-1 

d = [R(z) - L z T J/,(z) - l] g(x) + 
n J/,=O . m, n 

I 
j=l 

m-1 
c I 

J/,=O 
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for h + 0. From relations (7.10), (7.11), (7.18) and the choice g - I, 
n 

it follows that 

m-1 
(7.24) R(z) - l z T 0 (z) -

t=O m,.., 
= o. 

As a result, (7.23) is reduced to 

(7. 25) d = 
n I 

j=I 

m-1 hJ . 
[ ' T ( ) (. j- I j) - l] ~ g(J) (x ) 

l m,t z Jµt -zµt J! n' 
t=O 

which implies that d /h is bounded for any fixed 
n n 

z, Re(z) < 0, ash + O. n 
Moreover, the functions z T 0 (z), m,.., t = O, ••• ,m-1, are uniformly bounded on 

{z I Re(z) < O}. This implies that for every fixed h > O, d /h 
n n 

is uniform-

ly bounded on (O,h] x {z I Re(z) < O}, establishing the sufficiency of as-

sertion (b). 

The nece;ssity of assertion (b) follows trivially from the expression 

ford /h . □ n n 

Next we discuss the stiff-accuracy properties of the generalized 

Runge-Kut ta mt~thod. 

THEOREM 7.4. The generalized Runge-Kutta method (3.2) is stiffly accurate, 

if and only if 

(a) The rational function T O has no pole at infinity, m, 
(b) The rational functions T "' t = 1, ••• ,m-1, have a zero at infinity. m,.., 

PROOF. Because µ0 = 0, the expansion (7.25), for the error dn' reads 

m-1 m-1 
I J h /I) (x ) + d = r. I T t (z) - I z Tm,t(z)µt -n t=O m, t=l n n 

m-1 . - I . hj . 

I r I T (z)(jµJ -zµJ) - I J -~ g(J)(x ) . 
j=2 t=I m,t t t J. n 

If at least one T "' t = l, ••. ,m-1, has no zero at infinity, there exists m,.., 
an integer j 0 , such that 



has a pole at infinity. In such a situation the method can not be stiffly 

accurate. This establishes the necessity of hypothesis (a) and (b). 

If hypothesis (a) and (b) are satisfied, we have the expansions 

(7. 26) 

where 

T n (z) m,.., 

t(O) = 0, t = 1, ••• ,m-1. 
m,t 

Substitution into the expansion ford yields n 

(7. 27) 

I 
j=2 

[-1 + 

+ ••• , as z + 00 , 
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ash + 0 and Re(z) + - 00 • This expansion establishes the stiff-accuracy. D 
n 

REMARK 7.5. Observe that the generalized one-step scheme is stiffly ac­

curate if it is S-stable. The converse need not be true. This depends on 

T 0 and R. m, 

Let us define the constants K1 and K2 by 

+ t(O) -
m-1 

/1) (7. 28) Kl = -1 I µ R, m,0 t= I m,t' 

and 

m-1 
t( I) -

m-1 
t(2). (7. 29) ~ = I I µ R, 

t=0 m,t t=l m,R. 

If K1 -:f, 0 and ~ :/: 0, it is easily seen that 
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As far as we know, there does not yet exist generalized Runge-Kutta meth­

ods with the property 

Kl = Kz = o. 

This implies that the existing methods share a rather disappointing accur­

acy behaviour for stiff problems. For all existing methods we have ph = O. 

Therefore, it seems worthwhile to develop new formulas with a better stiff­

accuracy behaviour. In the next section we propose such a formula. 

8. ANS-STABLE GENERALIZED RUNGE-KUTTA FORMULA 

In this section we shall consider the two-point scheme (7.19), i.e. 

( 8. I) Yn.+I = y + h A2 0 (h J) f(x ,y) + n n , nn n n 

(0) 
h A2 1(h J) f(x +Al 0h ,y +h A1 0(h J )f(x ,Y )). n, nn n , n n n, nn n n 

An additional property which we shall demand from the method is that it 

will not become useless when the Jacobian matrix is inaceuPately evaluated. 

For scheme (8.1) this means that the order has to remain two in case of in­

accurately evaluated Jacobians, while the order equals three in case of ac­

curate Jacobians. To obtain this property we have to impose the consistency 

conditions (see HOUWEN, VAN, DER [6]) 

(8.2) 

(8.3) 

(8.4) = -'(I) 
/\2,0· 

For practical reasons, we shall further demand that the rational functions 

A. 0 share thE~ same denominator of degree two. Thus, we denote 
J '.._, 
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(8.5) 

1 -+ a z 
A2,0(z) 

4 0 = , 
l+b 1z+b2z 2 

(8.6) 

3 -+ a z 
A.2 1 (z) 

4 I = 
' ' l+b 1z+b2z 2 

(8. 7) 

2 

Al O(z) 
3+ a2z 

= 
' ' l+b 1z+b 2z 2 

where b2 'f' O. By means of expressions (7.22), we see that assertion (b) of 

the S-stability theorem 7,3 is satisfied. Further, from theorem (7.4) it 

follows that the method, generated by (8.5), (8.6) and (8.7) is stiffly ac­

curate. 

Next, we shall demand that the numbers K1 and~' defined by (7.28) 

and (7.29),, respectively, equal zero, i.e. 

(8.8) 

(8.9) 

From (7 .26) 

(8.10) 

t (l) + t(l) t(2) 0 
2,0 2,1-µ12,1=' 

we see that t(O) = O, and J.1 1 = 
2,0 

From expressions (7 .22), (7 .26) and (8.6) it follows that 

(8.11) 

hence 

( 8. 12) 

and 



30 

(8.13) t(2) = 
2, I 

From expressions (7 .22), (7 .26) and (8.4)-(8.6) it follows that 

(8.14) 

Then, from condition (8.13), we find 

(8.15) 3 3 1 
aO - 2 a2 = 2 b 2 + b 1 + 2 . 

As a result, if the parameters a0 , a 1, and a2 satisfy relations (8.12) and 

( 8 . 1 5) , we have K1 = 1<z = 0 • 

Our next step is to satisfy the consistency conditions (8.3) and (8.4). 

To that end w,e calculate 

A ( I) bl /2) = .!. b2 l 
- 2b 1a0 , = ao ' 

--b 2,0 4 2,0 2 I 2 2 

(8.16) >.(I) 3 >.(2) 3 2 3 
- 2b l a 1, = al -4bl, =-b --b 2, I 2, 1 2 I 2 2 

/1) 2 
1 , 0 = a2 - 3 bl. 

From condition (8,4) it follows that 

(8. I 7) 

so that relation (8.15) yields 

( 8. I 8) 

Further, from condition (8.3) we find 

(8. 19) 



As a result, there is left one free parameter b 1, while the others are 

given by 

(8.20) 
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For this set of parameters the stability function R is given by (cf. (7.21)) 

(8.21) 
I () 2b) ( I b +b2) 2 (1 5 b )z3-(.12.._+.!.b +.!.b2)z4 + + z+ IT + 1 1 z - 4 + IT I s 7 6 4 1 4 1 R(z) = -----------5--1 ___ 2_2 _________ ' 

(J +b J z-( 24 + 2 b J) z ) 

and is consistent of order three. In this paper we shall use the parameter 

b 1 to satisfy the relation R(m) = O. Then an elementary calculation yields 

b 1 = -7/12, and R is given by 

(8.22) R(z) 144 - 24z - 23z2 - z3 
= ----------

(z-3) 2(z-4>2 

According to assertion (a) of theorem 7.3, R has to be strongly A-accept­

able to obtain s~stability. This property may be established by means of the 

maximum modulus theorem in complex analysis (see Ail.FORS [JJ). 

LEMMA 8.J. The rational function (8.22) is L-aaaeptabZe. 

PROOF. The rational function (8.22) is L-acceptable, if 

(a) R is analytic for all z with Re(z) s O, 

(b) lim R(z) = 0 as Re(z) ➔ -m, 

(c) IR(z)I s for all z with Re(z) = O. 

Conditions (a) and (b) are trivially satisfied, while condition (c) may be 

verified by an elementary calculation. D 

As L-acceptability implies strongly A-acceptability, assertion (a) of 

theorem 7.3 is satisfied. 

The last step is to determine the asymptotic relation for the error 

d • Expansion (7.27) and relations (8.8), (8.9) yield n 
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(8.23) 

1(2 t(l) _ 2t(2)) -Ih2 (2)( ) 
2 µ I 2, I µ I 2, I z ng xn ' 

as Re(z) ➔ - 0 , and hn + O, where µ 1 = ).~~b• To determine the right hand 

side of (8.23) we still need 

3 3 

(8.24) t (3) -al-bl (4+2bl) 
= , 

2, I b2 
2 

and 

2 3 
t(2) 

-a +-a +3b a 
(8.25) 3 I 4 2 ] 2 = 2,0 b2 

2 

Substitution of the parameter values (8.20), with b 1 = -7/12, yields 

(8.26) 

as Re(z) + - 00 and h ➔ O. 
n 

Sunnnarized, the matrix 

0 0 

(8.27) 0 

7 1 2 1 --z+- z I 2 12 

generates an S-stable, third order scheme of the class (8.1), which is 

stiffly acC!U:l'ate with the asymptotic error relation (8.26). The stability 



function of the scheme is L-acceptabZe. The scheme remains consistent of 

order two, in case of inaaau;r,ateZy evaZuated Jacobian matrices. 

33 

In a forthcoming paper the author intends to present numerical results 

of this scheme when applied to a number of stiff non-linear systems. 

REMARK 8.2. As scheme (8.1) is not implicit, i.e. µ 1 < I, we see from re­

lations (8.8) and (8.23), that for such a scheme always holds ph:;; I. 

REMARK 8.3. After this construction it is clear that it is not possible to 

develop generalized methods of the class (8.1), which are adaptive, such as 

the formulas of van der Houwen, and which 

(a) satisfy consistency conditions (8.2)-(8.4), 

(b) are S-stable, 

(c) provide an asymptotic relation.ford of the form 
n 

ash + 0 and Re(z) + -co. 
n 

9. DISCUSSION 

In this last section we shall investigate some of the schemes, earlier 

mentioned, with respect to their S-stability and stiff-accuracy. Further, 

we shall apply these methods to a test problem of the form (4.3) and to a 

non-linear scalar equation. Here we emphasize once more that, especially 

for explicit integration methods, $-stability is meant to compare qualita­

tively the stability properties of methods which share certain theoretical 

properties. 

I. The muZtistep scheme generated by (2.20)-(2.23). 

According to theorem 6.1 the scheme is S-stable and thus stiffly ac­

curate. By means of relation (6.6), the asymptotic relation for the error 

d is found to be n 

d h3 (3)( ) 4 -lh3 (3)( ) ~ g X --3 z g X • n n n n n 
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II. The one-step saheme generated by (3.11). 

For this scheme the functions T2 , 0 and T2, 1 are given by 

(3) 3 
= R (z) - z - 4 , 

4 R( 3)(z)-l-z 
= 3 2 • 

z 

Regardless of the choice for R( 3), the function T2, 0 has a pole at infinity. 

According to theorem (7.3) and (7.4), the scheme is neither S-stable nor 

stiffly accurate. If R(3) is given by (2.20), we obtain a third order, L­

stable scheme. Presently we shall apply this scheme to the test problem 

(9.1) and to the non-linear scalar equation (9.7). 

III. The one-step saheme generated by (3.13). 

The functions T2 ,0 and T2 , 1 are given by 

108 - (27+18/J)z 
= ----'------.....;.= 

(12-{6+2/3)z) 2 

and the stability function equals 

R(z) = - 0,578z - 0.456z2 
2 • 

- 1.578z + 0.622z 

From theorem (7.3) and (7.4) we see that the method is S-stable and stiffly 

accurate. The numbers K1 and Kz, defined by (7.28) and (7.29), respectively, 

are given by 

10 - 2/J 
6 + 2 ✓3 ' 

1383 + 74813 
320 + 184✓3 ° 



The asymptotic relation ford may thus be written as n 

IV. The one-step saheme generated by (8.27). 

According to the results of section 8, this scheme is S-stable and 

stiffly accurate. The asymptotic relation ford is given by (8.26). 
n 
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From these methods it is clear, that for stiff problems, the effective 

order of a method is generally lower than for non-stiff problems. This 

change in the effective order will result in a lower level of accuracy 

for stiff problems. Especially the generalized Runge-Kutta methods share 

this disadvantage. Further, observe that the multistep scheme I and the 

one-step scheme II possess both the stability function (2.20). In illustra­

tion of our results, we apply the methods I-IV to two scalar equations. 

EXAMPLE A. The first equation is the test equation (cf. (4.3)) 

(9 .1) 
y' = g' + o(y-g), y(O) = g(O), o real, 

-x g(x) = 10 - (I0+x)~ , 

with the solution y g. The integration has been performed over the inter­

val [0,1], with the stepsize h = 0.1, for four values of o: o = -10000, 

-1000, -10, -1. In the tables of results, we give the number of signifi­

cant digits, i.e. 

(9. 2) 

The additional starting values for the three-step scheme are chosen equal 

to the values g(x) at x = -0.2, -0.1, O. 
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X 0. I 0.2 0.3 

I 2. I 2.4 2.6 

II .-2.1 -2.4 -2.2 

III -0. I 0.9 0.5 

IV 1.8 2.2 2.4 

- - - ----- ~- -
X 0. I 0.2 0.3 

I 2. I 2.4 2.6 

II -1.7 -I .4 -1.2 

III -0. I 0.8 0.5 

IV 1.9 2.2 2.4 

-
X 0. I 0.2 0.3 

I 2.7 3.0 3.2 

II 0.9 I.I 1.2 

III 0.3 0.5 0.7 

IV I. 9 2. I 2.2 

--

X 0. I 0.2 0.3 

I 4.5 4.8 5.0 

II 3.7 3.7 3.8 

III 2. I 2.1 2. I 

IV 4.5 4.5 4.5 

Table 9.1, o = -10000 

0.4 o.5 0.6 

2.7 2.8 2.9 

-2.0 -I .9 -I .8 

I. 0 0.8 I.I 

2.5 2.6 2.7 

Table 9.2, o = -1000 
-
0.4 0.5 0.6 

2.7 2.8 2.9 

-J.O -0.9 -0.8 

1.0 0.8 I.I 

2.5 2.6 2.7 

Table 9.3, o = -JO 

0.4 0.5 0.6 

3.3 3.4 3.5 

I. 3 1.5 1.6 

0.8 0.9 1.0 

2.4 2.5 2.5 

Table 9.4, o = -I 

0.4 0.5 0.6 

5. I 5.3 5.4 

3.8 3.8 3.8 

2. I 2.2 2.2 

4.6 4.6 4.6 

0.7 

3.0 

-1.7 

I • 0 

2.8 

0.7 

3.0 

-0.7 

I.I 

2.8 

0.7 

3.6 

I. 6 

).) 

2.6 

0 

5 

.7 

.5 

3.9 

2.2 

4.7 

0.8 

3. I 

-1.7 

1.2 

2.9 

0.8 

3. I 

-0.6 

I • 2 

2.9 

0.8 

3.7 

1.7 

J.2 

2.7 

0.8 
- -----

5.6 

3.9 

2.2 

4.7 

0.9 1.0 

3.2 3.3 

-I .6 -1.5 

1.2 I • 4 

3.0 3.0 

0.9 I • 0 

3.2 3.3 

-0.6 -0.5 

1.2 1.3 

3.0 3.0 

0.9 1.0 

3.8 3.8 

J.8 1.9 

1.2 1 • 3 

2.8 2.9 

0.9 I .O 

5.6 5.7 

3.9 3.9 

2.3 2.3 

4.7 4.7 



From the tables of results we may conclude that 

(a) the lower accuracy for stiff eigenvalues is clearly exhibited by all 

methods, even for o = -10; 
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(b) the lack of stiff-accuracy for method II causes unacceptable results; 

(c) for method III, the change of the effective order is too large (ph=0), 

and, compared with the two other one-step schemes, the method is also 

inaccurate for non-stiff eigenvalues; 

(d) the new one-step method IV is, for non-stiff eigenvalues, also more 

accurate than the two other one-step methods. 

EXAMPLE B. The second example originates from the stiff system (GEAR 14]) 

(9. 3) 

y' = 
1 

y' = 
2 

y' = 
3 

-0.013 y 1 - 1000 y 1y3 , 

-2500 y 2y 3, 

-0.013 y1 - 1000 y 1y3 - 2500 y2y3 , 

with initial values y 1(0) = y2(0) = 1 and y3(0) = 0. For system (9.3) holds 

y I = y' + Y2', 
3 1 

so that, by virtue of the initial conditions, 

By eliminating y3 we obtain 

(9.4) 
y' = 

1 
-.013 y 1 - 1000 y 1(y1+y2-2), 

y2 = -2500 y2(y 1+y2-2). 

A first analysis of system (9.4) reveals that 

(9.5) 

Then, with the initial conditions y 1 (0) = y2(0_) = 1, we find 
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(9.6) 2.5 0.0325. 
Y2 = y I e 

Substitution of the right hand side of (9.6) into the first equation of 

system (9.4) yields the single equation 

(9. 7) 

We have integrated equation (9.7) over the interval [0,l]. On this 

integration interval, the problem has a very smooth solution; however, it 

is also very stiff. The eigenvalue varies from -8750 at x = 0 to -8782 at 

x = I. The integration has been performed for four values of the stepsize 

h: h = 0.005, 0.01, 0.05, 0,1. The additional starting values for the three­

step scheme are computed by a second order starting mechanism (see VERWER 

[13]). In the table of results we give the number of significant digits 

(see (9.2)), while a dash stands for an unstable result. The reference so­

lution used at x = 1 is given by y 1(1) = 0.9906310343. 

Table 9.5 

h 0.005 0.01 0.05 0. I 

I 10.0 10.0 9.9 9.0 

II 3.0 - - -
III 4.5 4. I 3.4 3. I 

IV 7.0 7.3 6.6 5.7 

Again we may conclude, from table 9.5, that the lack of S-stability 

and stiff-accuracy for method II causes unacceptable results, while the 

new method IV is more accurate than the two other one-step methods. The 

very accurate results of the multistep method I are due to the particularly 

smooth behaviour of the solution y 1(x). 
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