
stichting

mathematisch

centrum

NW

~
MC

AFDELING NUMERIEKE WISKUNDE NW 17/75 MAY

J.C.P. BUS, 8. VAN DOMSELAAR & J. KOK

NONLINEAR LEAST SQUARES ESTIMATION -

2e boerhaavestraat 49 amsterdam

IUSi..lOJ'hiEEK
1111111111111111111~~1mm11rnii111111111111111111

MATHEMATJ:.K.;H [t'f,rH,HI 3 0054 00027 1297
A Mcv-rn r ~ _.,.__.. -l~ l"'lr .,

P.unted a..t :the Ma..thema.:ti.eal. Cer,;tJr,e, 49, 2e BoeJr.haa.ve.1,Vr.a.a..t, Am-6:teJr.dam.

The Ma..thema.tieal. Cer,;tJr,e, 6ou.nded :the 11-:th 06 Febll.uaJr.y 1946, ,i1, a non­
pll.o6U .ln6.:U:tuti.on cum.lng a..t :the pll.omo:tlon 06 pu!l.e ma:thema.:ti.C-6 and w
appUca:tloru.. 1:t ,i1, .6pon6oll.ed by :the Ne:thelli.a.nd6 GoveJr.nment fuou.gh :the
Ne:thelli.a.nd6 01tgan,lza.:ti.on 6oll. :the Advanc.ement 06 PU/Le Re.6eall.c.h (Z.W.O),
by :the Mu.n.lc..lpaU.:ty 06 Am-6:teJr.dam, by :the Un,lveJr..6Uy 06 Am-6:tell.dam, by
:the Fll.ee Un,lveJr..6Uy a:t Am-6:teJr.dam, and by .lndlL6:t'Ue6.

AMS(MOS) subject classification scheme (1970): 65D10, 65H10

Nonlinear least squares estimation

by

J.C.P. Bus, B. van Domselaar & J.Kok

ABSTRACT

Two algorithms for minimizing a sum of squares are described and com­

pared. The first one is the well-known Gauss-Newton algorithm. The second

one is based on the algorithm given by Marquardt.

KEY WORDS & PHRASES: nonlinear least squares, minimizing a sum of squares,

overdetermined nonlinear systems, curve-fitting.

CONTENTS

I. Introduction

2. Statement of the problem

3. The Gauss-Newton algorithm 3

4. An algorithm based on the ideas of Levenberg and Marquardt 6

5. Numerical comparisons 9

6. Conclusions 19

Ac.J<nowledgements 19

References 20

Appendix: ALGOL 60 procedures 22

1 • INTRODUCTION

In this report we describe and compare implementations of two algo­

rithms for the calculation of a least squares solution of an overdeter­

mined system of nonlinear equations. The first algorithm, given in section

3, is the well-known Gauss-Newton algorithm (see for instance HARTLEY [13]).

The second, which is described in section 4, is based on the algorithm

given by MARQUARDT [15].

Numerical results of these algorithms, together with those of some

general minimization algorithms, are given in section 5, while conclusions

based on numerical as well as theoretical considerations are stated in sec­

tion 6.

Finally, these algorithms are described in the form of ALGOL 60 pro­

cedures in appendix.

2. STATEMENT OF THE PROBLEM

A wide variety of problems in numerical analysis can be solved by

minimizing a sum of squares. In our opinion, the most important example

is the problem of fitting the function

(2. 1) g(t;x),

depending on a real variable t and a vector of parameters

x = (x1,x2 , ••• ,x l, tom observations (t.,y.), i = 1, ••• ,m (m ~ n).
n i i

Denote

T
y = (y 1 ' • • • 'y m)

and the function G: JR n ➔ JR m by

G(x)

Then, the residual function f: JR n ➔ JR m, depending on x, may be defined by

2

(2.2) f(x) = G(x) - Y.

With this notation, the "curve fitting problem" can be formulated as:

(2.3) · · · llf()U • h for some norm 11.11 1.·n lRm. m1.n1.m1.ze x wit respect to x,

Choosing the euclidean norm we obtain, by writing f.(x) = g(t.;x) - y.,
l. l. l._

a so-called nonlinear least squares problem:

(2.4)
m

minimize the sum of squares F(x) = I
i=l

2 (f.(x)) , with respeet
l.

or in vector notation:

(2.5) minimize F(x) = fT(x)f(x).

Hence, assuming that f 1.s twice differentiable, we want to calculate
n x E JR , such that

(2.6) VF(x) = O; is positive definite.

to x,

Denote the jacobian matrix of partial derivatives of the residual

function by J(x). Since

(2. 7)
af.(x)

l. (J(x)) .. = -.._-- =
l.J oXj

ag(t.;x)
l.

ax.
J

we see that J(x) equals the jacobian matrix of the function G(x).

Substituting (2.5) in the first equation of (2.6) leads to

(2.8)
T

J (x)f(x) = 0.

Hence, problem (2.5) can be replaced by the problem of finding x such that

(2.8) is satisfied, provided that the second derivative of F(x) is positive

definite at the solution.

3

In choosing a method for solving (2.8) we assume that analytical ex­

pressions for the elements of the jacobian matrix J(x) are available. A

well-known method for solving nonlinear equations is Newton's method. When

applying to (2.8), this method is defined by

(2.9) k = 0,1,2, •.. ,

where

(2.10) T rd T 1
H(x) = J (x)J(x) + Ldx J (x) Jf(x).

Hence, we should provide in each iteration the second derivative of the

function g(t;x), which is an (mxnxn)-tensor. However, realizing this will

be very difficult or even impossible for most practical problems and a

simplification of Newton's method is desirable.

3. THE GAUSS-NEWTON ALGORITHM

The method described in this section is essentially based on Newton's

method for solving (2.8) as given by (2.9) and (2.10).

If we assume that g(t;x) is a proper function for fitting the given

observations, then the residual function is smooth and its norm is small.

Therefore,

d T
lldxJ (x)f(x)II

will be small relative to II J(x)II. Hence it seems reasonable to approximate

H(x), given by (2.10), by the simpler expression

- T H(x) = J (x)J(x).

Substituting H(x) for H(x) in (2.9) we obtain

(3. 1) k=0,1,2, ••• ,

4

where

(3. 2)

The iterative method thus obtained is called the Ga:uss-Newton method. Con­

sidering (3. 1) we see that it is, in fact, the so-called "normal equation"

belonging to the overdetermined system of linear equations

(3.3)

As is well known (GOLUB [10]), one should not calculate ok by performing

the matrix multiplication and solving the synmetric linear system (3.1).

This might decrease the stability of the process, since the condition num­

ber is squared. The right way to calculate ok is to obtain an orthogonal

decomposition of J(~), in order to solve (3.3) directly. Our implementa­

tion of the Gauss-Newton algorithm uses Householder orthogonalisation

(DEKKER [4], BUSINGER & GOLUB [3]). Thus, an orthogonal m-th order matrix

Qk and an m x n upper-triangular matrix Rk are calculated such that

(3.4)

Subsequently, ok is calculated by solving then x n upper-triangular linear

system, consisting of the first n equations of

(3. 5)

In many practical problems, it might occur that the algorithm describ­

ed is unstable, since J(~) is not necessarily of full rank n. Although our

algorithm terminates as soon as J(xk) appears not to be of full rank rela­

tive to the machine precision (see DEKKER [4], p.65), we also use a strat­

egy to control the step size. We choose

(3.6)

5

where ak is chosen such that

(3. 7)

Our version of the Gauss-Newton algorithm, which will be called algorithm

Gin the sequel, is defined by three blocks GI, G2 and G3. After initial­

isation (GI), N + I iteration steps (G2) are performed, where N is defined

by the stopping criteria (G3).

GI: initiaiisation;

let x0 be a given approximation to the minimum of F(x) and let Ere'

Ea and EO be three given tolerance values;

G2: iteration step, k = 0,1, ••• ,N;

calculate an orthogonal m-th order matrix Qk and an m x n upper-trian­

gular matrix~ such that (3.4) is satisfied; calculate the direction

of search~ by solving then x n upper-triangular linear system, con­

sisting of the first n equations of

if F(xk+dk) ~ F(~), then choose ak = 1, otherwise choose ak

where r is the smallest nonnegative integer, such that

and

G3: stopping criteria;

-r
= 2 ,

the number of iteration steps equals N + 1, where N is the smallest

nonnegative integer such that

or ~ llx II x E + E •
k+I re a

6

An implementation of algorithm Gin ALGOL 60 is given in appendix.

The main disadvantage of this method is that it may break down forcer­

tain k, if the jacobian matrix J(xk) does not have full rank n, within the

precision of calculation. Even when the algorithm does not break down, it

may occur that 0~11 becomes prohibitively large if the condition number of

J(~) is large. In that case, either the value of r, and therefore the num­

ber of function evaluations in the k-th step, will be large, or some local

solution far from the initial guess may be found.

4. AN ALGORITHM BASED ON THE IDEAS OF LEVENBERG AND MARQUARDT

One way of reducing the difficulties of algorithm G is based on an

idea of LEVENBERG [14], which is used by MARQUARDT [15] in his algorithm

for solving nonlinear least squares problems. The idea is to calculate a

step vector ok, k = 0,1,2, ••• , according to

(4. 1)

where Ak is a nonnegative scalar and~ is some positive definite matrix.

If we choose Ak = O, then ok equals the Gauss-Newton vector defined by

(3.1). When we choose~= I, where I denotes the unit matrix, then, for

any fixed k, if Ak tends to infinity then ok tends to the steepest descent

direction

(4. 2)

and its norm tends to zero (MARQUARDT [15], theorems 2 and 3).

To obtain a reasonable value for Ak' k = 0,1,2, .•• , we use the follow­

ing strategy, due to GOLDSTEIN & PRICE [9] and also given by FLETCHER [6].

Define sk = sk(A) and hk = hk(A) by

(4.3)

and

(4.4)

Then, we choose the value of Ak such that

(4.5)

whereµ is a given constant, 0 < µ < 0.5.

Using this strategy, it is possible that (4.3) has to be solved for

more than one value of A. An easy way of doing this is recoDDnended by

MARQUARDT [15]. He calculates the eigenvalues and eigenvectors of the

matrix product JT(~)J(~). However, this is mathematically equivalent to

the calculation of the singular values of J(xk) (GOLUB & REINSCH [12]).

Since the latter is more stable we use it in our algorithm. So, we calcu­

late a decomposition of J(~)

(4.6)

where Uk is an orthogonal m-th order matrix, Lk is them x n diagonal

matrix of singular values 0 1, ••• ,on, and Vk is an n-th order orthogonal

matrix. Substituting (4.6) in (4.3) leads to

(4.7)

where L2 =
.k

(4.8)

diag(o~, ••• ,o!). Hence, sk can be written as

7

provided A is chosen such that L; +Alis nonsingular, which is true for

A> O. This shows that, once the singular value decomposition is performed,

we only need a matrix-vector multiplication to obtain sk = sk(A) for var­

ious values of A.

Using these ideas, we define our Marquardt-type algorithm, called

algorithm Min the sequel, by the following three blocks M1, M2 and M3 •

After initialisation (M 1), N + I iteration steps (M2) are performed, where

N is defined by the stopping criteria (M3).

8

M1: initialisation;

let x0 be an approximation to the minimum of F(x); let s ands be r a
two given tolerance values andµ, w, v and~ given constants such that

0 < µ << 0.5, w < I, v > I and~> O;

M2: iteration step, k = 0,1, ••• ,N;

calculate the singular value decomposition given by (4.6); set

pk= ~Ui:kll 2; if k = O, then set)..60) = >.._ 1 = pk' otherwise (i.e. if

k > 0) set

)..(0)
= WAk-1' k

or

(0)
)..k =)..k-1' if)..).. k-1 > k-2;

1.f h('k(O)) > h ' ,(0) h . ' r (,(0)) A _ µ, ten set Ak = Ak , ot erwise, set Ak = v max Ak ,Pk,

where r is the smallest nonnegative integer satisfying

M3: stopping criteria;

the number of iteration steps equals N + I, where N is the smallest

nonnegative integer satisfying

or

An implementation of algorithm Min ALGOL 60 is given in appendix.

It is clear that, with the strategy for choosing)..k as described in

M2 , the value of)..k has a tendency of decreasing, in particular if the

function F(x) is convex, or if the jacobian matrix J(x) has a relatively

small condition number. In practice this means that algorithm M behaves

9

almost like algorithm Gin those cases where algorithm G behaves fine.

Therefore, we may expect algorithm M to be nearly as efficient as algorithm

G for well-conditioned problems. On the other hand, the strategy in algo­

rithm Mis such that it does not suffer from breaking down when the jacob­

ian matrix J(~) is singular, as algorithm G does. Therefore, algorithm M

is expected to be very useful for practical problems, since in most cases

little is known about the condition of the problem to be solved.

5. NUMERICAL COMPARISONS

In this section we compare four algorithms:

Algorithm G, defined in section 3.

• Algorithm M, defined in section 4.

• A variable metric algorithm for general minimization. This al­

gorithm, which uses a rank-one updating formula is given in

BUS [2] and is called algorithm R in the sequel. For an ALGOL

60 implementation see BUS ([16], section 5.1.2).

• A rank-two variable metric algorithm (BUS [2]), which is essen­

tially the same as the one given by FLETCHER [6]. See also

BUS([16], section 5.1.2). This algorithm is called algorithm F.

We divide our test problems into two sets.

The first set consists of rather artificial problems, where the nwn­

ber of variables equals the number of observations. In fact, these func­

tions are adopted from literature, where they were used for testing general

minimization algorithms and algorithms for solving systems of nonlinear

equations.

The second class consists of some real curve fitting problems.

Class I: Some artificial, test problems

Rather than giving the function g(t;x) and the observations (t.;y.),
l. l.

i = 1, ••. ,m (see section 2), we define these problems by giving f(x) (cf.

(2.2))

10

P1: Brown's function (see BROWN [1]).

f. (x) =
].

-(n+l) + 2x. +
].

f (x) = -1 +
n

n
II

j=1
x .•

J

n
t

j=l
j;'i

x.,
J

i = 1 , ••• , n-1 ,

This function, in which all but the last equation are linear, has·two

known zeroes; the vector x where each component has the value 1 and

the vector x where all components but the last one have the same value.

For instance, for n = 5 the approximate solution is:

T
X = (-0.579,-0.579,-0.579,-0.579,8.90) •

This function has been tested for n = 5,10,15,20.

In all cases the starting guesses are

x. = 0.5,
].

i = 1, •.. ,n.

P2: The double polynomial function (see FREUDENSTEIN & ROTH [8]).

T This function has a zero at (5,4) , but all procedures converged to a

point that proved to be a local minimum of the euclidean norm of the

residual function. The starting guess is (15,-2)T.

P3: A badly scaled problem (see POWELL [17]).

-xi -x2 = e + e - 1.0001.

1 l

For this difficult problem it is preferable to scale the parameters

x 1 and x2, so that their magnitudes are comparable, but it is interest­

ing to discover what happens when this advice is not followed. The

function has a zero at

T and the starting guess is (0,1) •

P4: Powell's function (see POWELL [17]).

fl(xl,x2) = xi,

10x1 2
f2(xl,x2) = x 1 + 0.1 + Zx2.

T This function has only one zero, viz. (0,0) , and this is the only

stationary point of the euclidean norm of the residual function. The

ill-conditionedness of the problem is illustrated by the eigenvalues

of the matrix JT(x)J(x) on the line x2 = 0:

1
02 = 4 + 1.

(x 1+0.l)
cr 1 = O,

Hence, JT(x)J(x) is singular for x2 = 0.

The starting guess is (3,l)T.

Class II: The cuwe fitting problems

P5 : The fertilizer experiment (see HARTLEY [13]).

In this model g(t;x) represents the yield of wheat corresponding to a

rate of application of fertilizer t. The observations (t.,y.),
l. l.

i = 1, ••• ,6, are given in table 5.1. The parameter x 1 is the asympto-

tic yield for large rates of fertilizer application and x2 is the ex­

ponential rate of response decrease.

12

T The initial guess for the parameters is (500,-140,-0. 18) .

Table 5.1

l. t. y.
l. l.

I -5 127

2 -3 151

3 -1 379

4 I 421

5 3 460

6 5 426

P6 : The heart-infarct problem (see VAN D0MSELAAR [5]).

The problem involves fitting a reduced model of an enzyme effusion

into the blood after a heart-infarct. The model has the following

form:

g(t;x)

where

glim=

d 1 (t) =

d2(t) =

and

dl. = .1.m

= C

x 4 (x 1-a)

a(x4-x 1)

d 1(t) d 2 (t)
d exp (-x4 t) + c d exp (- at) + g 1 . ,
1~ 1~ ~

g(oo,x) is the "normal effusion",

t
[(ln(T) - x3)2 I I + X4T] dT, T exp -0. 5\ ..

0
.,,..2

t f (ln(T) - x3\2

J + aT] d T T exp l-o.5 x2 J
0

lim d2(t).
t-+«>

In this nndel, x 1 is a constant of demolition, x2 a measure for the

duration of excessive effusion and x3 denotes the time at which the

13

maximum effusion appears. There are 17 observations (t.,y.).
i i

The starting guess is (0.14,0.2,2.40,0.28)T.

P7 : Trigonometric functions (FLETCHER & POWELL [7]).

This problem may be described in an easy way by giving G(x) (cf. sec­

tion 2).

G(x) = As(x) + Bc(x),

where A and Bare m x n matrices, whose elements are generated as ran­

dom integers between -100 and +100, s(x) and c(x) are n-vectors, such

that

s(x) = (sin (xi), sin (x2), ••• , sin (x))T
n

and

c(x) (cos (xi), (x2), ••• ,
T

= cos cos (x)) • n

* The observations are created as follows. The elements of a vector x

are generated as random numbers between -TT and +TT. Then

* Y = (I+bD)G(x),

where I is them-th order unit matrix.Dis some m-th order diagonal

matrix whose elements are generated as random numbers in the interval

[-0.5,0.5] and bis some scalar used for varying the magnitude of the

disturbance in the data. We have chosen b = 0.01, 0.05, 0.1, 0.2, 0.5

and 1.
* The starting guess is x + 0.0lo, where the elements of the vector o

are random numbers between -½n and +½n.

We tested the problem for (n,m) = (5,5), (5,10), (5,15), (10,10),

(10,15) and (10,20).

P8 : The exponential fitting problem (GOLUB & PEREYRA [11]).

14

The number of observations is 33.

The starting guess is (0.5,2.5,0.0l,-1,0.02)T.

The testing has been performed on a CYBER 73 computer with a machine
. . f 10- 14 . 1 precision o approximate y.

In order to be able to compare the four algorithms, which use differ­

ent stopping criteria, we used as a measure the number of function evalua­

tions needed to fall below a certain value for the norm of the function

f(x) (see (2.4)), which is specified in the tables under llf(x)II. The choice

of this value depends heavily on the accuracy of the data as far as the

second class of problems is concerned.

If not mentioned otherwise, algorithm M has been tested with~= 0.01,

µ = 0.01, w = 0.5 and v = 10.

The results of the first class of problems are given in table 5.2.

Table 5.2

Class I

number of function evaluations needed

function n llf(x)ft G M F R

5 10-10 17 12 16 17

I 10 10-10 52 16 20 20
Pl

10-10 15 - 18 24 25

20 10-10 - 19 29 30

P2 2 6.99887 - 15 10 9

P3 2 10-10 150a) 54 150a) 150a)

P4 2 10-10 16 25 150a) 150a)

a) The precision asked for has not been attained.

15

Discussion of Pl.

For n = 5, algorithm G found the zero that is given as an example in

the description of the function, while the other procedures found

(1,1, ••• ,I)T. For n = IO, algorithm G had much difficulty in improving the

norm of the residual function at the initial guess x0 • For n = 15 and

n = 20 algorithm G failed. This behaviour is affirmed by theory (see the
T end of section 3), since the condition number of J (x0)J(x0) is propor-

tional to 2n.

Discussion of P2.

None of the algorithms found the zero minumum at (5,4)T. Algorithm G

did not converge because of a singular jacobian matrix. The other algorithms

found a relative minimum of the norm of the residual function at
. T
(11.412,-0.89681) •

Discussion of P3.

Algorithm M performed well on this problem, the other methods did not.

This is due to the condition number of JT(x)J(x) at the solution, which is

about 108 • After 150 function evaluations algorithm G reached 1.0 10-3 for

the norm of the residual function, algorithm R reached 0.4 10-4 and algo­

rithm F reached 0.6 10 -4.

Discussion of P4.

The rapid convergence of algorithm G was remarkable, although it was

not quadratic. After 150 function evaluations, algorithms Rand F reached

only the value 0.4 10-s for the norm of f(x). Algorithm M, however, seems

to be too careful. As is seen in table 5.3 the number of function evalua­

tions is highly dependent on the value of~- The less the value of~, the

more the behaviour of algorithm Mis alike that of algorithm G. Only the
-3 case~= 10 has an exceptional behaviour. The iteration path for this

case happens to contain a nearly stationary point, while the paths for the

other cases happen to avoid this point.

In the tables 5.4 up to 5.7 we give results of the problems from

class II. For the problems PS, P6 and P8 we have tried to give the user

an impression of the progress in the reduction of the norm of the residual

function relative to the number of function evaluations needed.

16

Table 5.3

number of
~ II f(x)II funct. eval. needed

10-6 10-10 25

10-5 10-10 29

10-4 10-10 32

10-3 0.5110-3 150a)

10-2 0.5910-6 50

10-1 0.5910-6 49

l o.2110-5 150a)

a) The precision asked for has not been attained.

Discussion of P5.

Since the starting guess is chosen close to the solution
T

(523.3,-156.9,-0.1996) , none of the methods had any difficulty in finding

this solution as is shown in table 5.4. Here, the more robust algorithm M

is clearly less efficient.

Table 5.4

number of function evaluations needed

II f(x)II G M F R

116. 25 2 14 5 6

115.73 4 20 7 8

115.715 7 23 10 l l

Discussion of P6.

The correlation matrix at the solution of this problem showed a strong

mutual dependence of the parameters. Therefore, they are very hard to deter-

17

mine. As shown in table 5.5 algorithm G did not succeed in finding a solu­

tion of this problem. Algorithm R was terminated because its execution

time exceeded the time limit which was imposed upon all procedures. Algo­

rithm F converged very slowly to a minimum. For algorithm M we used

~=0.1.

Table 5.5

number of function evaluations needed

II f (x)II G M F R

59.653 - 2 57 15

52.968 - 7 59 16

49,314 - 19 62 41

49.233 - 23 IOI -

Discussion of P?.

All results are reproduced in table 5.6. The problems with large data

disturbance (b = 0.5 orb= I) usually caused difficulty to algorithm G.

Moreover, for some problems with n = m, algorithm G did not find a solution

at all. The curve fitting problems with large data disturbance resemble the

problems with bad starting values of the parameters. The results of P7 show

clearly the differences between the two methods discussed. In case of a bad

initial approximation of the parameters, algorithm G may easily diverge,

but with an initial guess close to the solution, algorithm G converges

faster than the more robust algorithm M.

Algorithms Rand Fare obviously less efficient than algorithms G and

M.

18

Table 5.6

number of function evaluations needed

b n m II f(x)II G M F R

0.01 s s 10-IO 9 14 24 23
s 10 0.5937 8 10 23 14
s 15 1. 4598 4 8 20 I I

IO 10 10-10 15 18 56 42
10 15 I. 9722 4 9 21 19
IO 20 I. 1431 4 8 20 19

0.05 s s 10-IO 9 15 26 25
s IO 3.0229 4 9 21 14
s 15 7.2875 4 8 19 I I

10 10 I0-10 15 28 53 67
IO 15 9.8017 6 8 22 19
IO 20 5.7156 4 8 18 18

0. I s s 1.6790 - 18 28 28
s IO 6.2082 6 9 22 12
s 15 14. 5454 4 8 21 I I

10 IO 10-IO 15 18 45 38
IO 15 19.3903 7 7 23 19
IO 20 11.4315 s 7 18 18

0.2 s s 7.8174 - 15 22 23
s 10 13. 1897 24 8 21 14
s 1 '> 28.% 11 7 8 20 I I

IO 10 IO-IU 17 18 43 39
10 15 37.2044 6 I I 24 18
10 20 I 22.8625 s 7 19 19

o.s s s 10-IU - 12 so 42
s 10 38.6785 24 6 20 12
s 15 71.2177 12 9 31 18

10 10 10-lO - 18 44 53
10 15 63.1456 13 12 36 32
10 20 57.1347 s 7 20 18

I s s 21.3573 - 14 68 22
s 10 89.3793 31 8 14 I I
s 15 137.8861 14 9 35 15

10 10 3.7004 - 29 54 68
10 15 81.4203 7 13 31 28
10 20 114.2509 s 8 20 19

Discussion of PB.

The condition number of the matrix JT(x)J(x) at the solution was found
9 to be of order 10 • Therefore, for none of the algorithms the convergence

is quadratic (see table 5.7).

19

Table 5.7

number of function evaluations needed

II f(x)II G M F R

.031250 5 10 11 13

• 013872 19 11 14 15

.007392 23 29 61 59

6. CONCLUSIONS

From the results given in section 5 it is obvious that algorithms R

and F, which are efficient algorithms for general minimization (BUS [2]),

are not efficient for minimizing a sum of squares. For such problems, one

had better use an algorithm which is designed to solve nonlinear least

squares problems. Furthermore, we may conclude that algorithm G is less

reliable for general problems than algorithm. M. However, for problems

which are known to be well-conditioned and where a good initial approxi­

mation of the parameters is known, algorithm G will usually be more effi­

cient than algorithm M.

Therefore, we advise the user to use algorithm M, unless he knows

that the matrix JT(x)J(x) has a relatively small condition number for all

x in some convex region containing the solution and the initial guess.

ACKNOWLEDGEMENTS

We are very grateful to the Working Group on Numerical Algebra at

Amsterdam and also to P.W. Hemker, for a large number of valuable sugges­

tions concerning the implementation of the algorithms; to

Dr. P.J. van der Houwen for his careful reading of the manuscript and to

Th. Gunsing, Mrs. J.W. van Riel-Dijk and D. Zwarst for their efforts to

get this report typed and printed.

20

REFERENCES

[1 J BROWN, K.M., A quadratically convergent Newton-like method based upon

Gaussian elimination, SIAM. J. Num. An.~ (1969), 560-569.

[2] BUS, J.C.P., Minimization of functions of more variables (Dutch),

Mathematical Centre report NR 29/72 (1972).

[3] BUSINGER, P. & G.H. GOLUB, Linear least squares solutions by

Householder transformations, Num. Math. l_ (I 965), 269-276.

[4] DEKKER, T.J., ALGOL 60 procedures in numerical algebra, part 1,

Mathematical Centre tract 22 (1968).

[5] DOMSELAAR, B. VAN, A mathematical analysis of the heart-infarct (Dutch),

Mathematical Centre report NN 4/74 (1974).

[6] FLETCHER, R., A new approach to variable metric algorithms, Comp. J. 13

(1970), 317-322.

[7] FLETCHER, R. & M.J.D. POWELL, A rapidly convergent descent method for

minimization, Comp. J. ~ (1963), 163-168.

[8] FREUDENSTEIN, F. & B. ROTH, Numerical solution of systems of nonlinear

equations, J. ACM. _!_Q (1963), 550-556.

[9] GOLDSTEIN, A.A. & J.F. PRICE, An effective algorithm for minimization,

Num. Math • .!..Q_ (1967), 184-189.

[]OJ GOLUB, G.H., Numerical methods for solving linear least squares

problems, Num. Math.]_ (1965), 206-216.

[11] GOLUB, G.H. & V. PEREYRA, The differentiation of pseudo inverses and

nonlinear least squares problems whose variables separate,

Univ. Central de Venezuela, Publ. 72-05 (1972).

[IZJ GOLUB, G.H. & C. REINSCH, Singular value decomposition and least

squares solution, Num. Math • .!!!._ (1970), 403-420.

[13] HARTLEY, H.O., The modified Gauss-Newton method, Technometrics 3 (1961),

269-280.

[)~ LEVENBERG, K., A method for the solution af certain non-linear problems

in least squares, Quart. Appl. Math. 2 (1944), 164-168.

21

[IS] MARQUARDT, D.W., An algorithm for least-squares estimation of non­

linear parameters, SIAM. J • ..!_!_ (1963), 431-441.

[16] NUMAL, a library of numerical procedures in ALGOL 60, Vol. 0 up to 8,
, - -

Mathematical Centre, Amsterdam (1974).

[17] POWELL, M.J .D., A hybrid method for nonlinear equations. In:

Rabinowitz, P. (ed.), Numerical Methods for nonlinear alge­

braic equations. Gordon and Breach (1970).

iWll.101hifEl{ MAT M Hi A

A.MSHRDAM

22

APPENDIX: ALGOL 60 procedures

In this appendix we give the texts of two ALGOL 60 procedures,

gssnewton and marquardt~ which implement algorithms G and M respectively.

Before explaining the parameters we should give the following details about

procedure marquardt (cf. algorithm M, section 3). The constantsµ, v and w

are given values inside the procedure:

µ = 0.01, w = 0.5, and V = JO.

Furthermore, an upper bound on the value of Ak is imposed which depends on

IIJT(~)J(~)II and the machine precision E, since it makes no sense to use

a value of Ak which satisfies

for in that case JT(~)J(~) + Akl is equal to Akl if computed with preci­

sion E. An error exit is created if Ak becomes that large, since in our

opinion this can only occur if the precision asked for is too high, or

the function and/or jacobian matrix are not prograunned correctly.

the heading of the procedure marquardt is:

procedure marquardt(m, n, par, rv, jjinv, funct, jacobian, in,

out); value m, n; integer m, n;

array par, rv, jjinv, in, out; boolean procedure funct;

procedure jacobian;

the meaning of the formal parameters is:

m:

n:

<arithmetic expression>;

the number of equations;

<arithmetic expression>;

the number of unknown variables; n should satisfy n~;

par: <array identifier>;

array par [1 : n];

the unknown variables of the system;

entry: an approximation to a least squares solution

of the system;

exit: the calculated least squares solution;

rv: <array identifier>;

array rv[l : m];

jj i nv:

funct:

exit: the residual vector at the calculated solution;

<array identifier>;

array jj inv[l : n, : n];

exit: the inverse of the matrix J* x J where J denotes

the matrix of partial derivatives drv[i] / dpar[j]

(i=l, ••• ,m; j=l, ••• ,n) and J* denotes the

transpose of J.

<procedure identifier>;

the heading of this procedure should be:

23

24

boolean procedure funct(m, n, par, rv); value m, n;

integer m, n; array par, rv;

entry : m, n , par;

m, n have the same meaning as in the procedure

marquardt;

array par[l:n] contains the current values of

the unknowns and should not be altered;

exit: array rv[l : m];

upon completion of a call of funct, this array rv

should contain the residual vector, obtained with

the current values of the unknowns;

e.g. in curve fitting problems:

rv[i] := theoretical value f(x[i], par) -

observed value y[i];

after a successful call of funct, the boolean procedure

should deliver the value true;

however, if funct delivers the value false, then it is

assumed that the current estimates of the unknowns lie

outside a feasible region and the process is terminated

(see out[l]);

hence, proper programming of funct makes it possible to

avoid calculation of a residual vector with values of the

unknown variables which make no sense or which even may

cause overflow in the computation;

jacobian: <procedure identifier>;

the heading of this procedure should be:

procedure jacobian(m, n, par, rv, jac, locfunct);

value m, n; integer m, n; array par, rv, jac;

procedure locfunct;

entry: m, n, par, rv, locfunct;

for m,n,par see: funct;

rv contains the residual vector obtained with the

current values of the unknowns and should not be

altered;

a call of locfunct(m,n,par,rv) is equivalent with

a call of the user-defined procedure

funct(m,n,par,rv), but, in addition, this call is

counted to the total number of calls of funct

(see out[4]) and, moreover, if funct delivers the

value false then the process is terminated;

exit: array jac[l : m, 1 : n];

upon completion of a call of jacobian, jac should

contain the partial derivatives drv[i] / dpar[j],

obtained with the current values of the unknown

variables given in par[l :n];

it is a prerequisite for the proper operation of the

procedure marquardt that the precision of the elements of

the matrix jac is at least the precision defined by

i n [3] and i n [4] ;

in: <array identifier>;

array in[O : 6];

entry: in this array the user should give

control the process;

in[O]: the machine precision;

for the cyber 73 a suitable value

in[l], in [2] are not used by the procedure

some data to

isio-14;

marquardt;

25

26

in[3], in[4]:

the relative and absolute tolerance for the

difference between the euclidean norm of the

ultimate and penultimate residual vector;

the process is terminated if the improvement of

the sum of squares is less than

in[3] x (sum of squares) + in[4] x in[4];

these tolerances should be chosen greater than

the corresponding errors of the calculated

residual vector;

note that the euclidean norm of the residual

vector is defined as the square root of the sum

of squares;

in[5]: the maximum number of calls of funct allowed;

in[6]: a starting value used for the relation between

the gradient and the gauss-newton direction (see

[2]); if the problem is well conditioned then a

suitable value for in[6] will be 0.01; if the

-problem is ill conditioned then in[6] should be

greater, but the value of in[6] should satisfy:

in[0] < in[6] ~ 1/in[0];

out: <array identifier>; array out[l : 7];

exit : in array out some by-products are delivered;

out[l]: this value gives information about the

termination of the process;

out[l]=0: normal termination;

out[1]=1: the process has been broken off,

because the number of calls of funct

exceeded the number given in in[5];

out[1]=2: the process has been broken off,

because a call of funct delivered the

va 1 ue fa 1 se;

out[1]=3: funct became false when called with

the initial estimates of par[l :n];

the iteration process was not started

and so jjinv[l :n,1:n] can not be used;

out[1]=4: the process has been broken off,

because the precision asked for can

not be attained; this precision is

possibly chosen too high, relative to

the precision in which the residual

vector is calculated (see in[3]);

out[2]: the euclidean norm of the residual vector

calculated with values of the unknowns delivered;

out[3]: the euclidean norm of the residual vector

calculated with the initial values of the

unknown variables;

out[4]: the number of calls of funct necessary to obtain

the calculated result;

out[5]: the total number of iterations performed; note

that in each iteration one evaluation of the

jacobian matrix had to be made;

out[6]: the improvement of the euclidean norm of the

residual vector in the last iteration step;

* out[7]: the condition number of .J x J, i.e. the ratio

of its largest to smallest eigenvalues;

27

28

data and results:

if this procedure is used for curve fitting then the relative

accuracy in the calculation of the residual vector depends strongly

on the errors in the experimental data and this should be reflected

in the parameters in[3] and in[4];

the matrix jjinv can be used if some statistical information

about the fitted parameters is required; the standard deviation,

covariance matrix and correlation matrix may be calculated easily

from jj i nv ;

procedures used (tWMAL [16]):

mulcol = cp31022,

dupvec = cp31030,

vecvec = cp34010,

matvec = cp34011,

tamvec = cp34012,

mattam = cp34015,

qrisngvaldec = cp34273.

the heading of the procedure gssnewton is:

procedure gssnewton(m, n, par, rv, jjinv, funct, jacobian, in,

out);

value m, n; integer m, n; array par, rv, jjinv, in, out;

boolean procedure funct; procedure jacobian;

the meaning of the formal parameters is

m

n

par

rv

jjinv

funct

<arithmetic expression>;

the number of equations;

<arithmetic expression>;

the number of unknowns in them equations (n ~ m);

<array identifier>; array par[l: n];

the unknowns of the equations.

entry : an approximation to a least squares solution

of the system.

exit the calulated least squares solution;

<array identifier>; array rv[l : m];

exit the residual vector of the system at the

calculated solution;

<array identifier>; array jjinv[l : n,1 : n];

exit the inverse of the matrix J* x j, where J

is the jacobian matrix at the solution and J* is

J transposed;

<procedure identifier>;

the heading of this procedure should be

boolean procedure funct(m, n, par, rv); value m,

n; integer m, n; array par, rv;

entry : m, n , par;

29

30

jacobian

m, n have the same meaning as in the procedure

gssnewton;

array par[l:n] contains the current values of

the unknowns and should not be altered.

exit: array rv[l : m];

upon completion of a call of funct, this array rv

should contain the residual vector, obtained with

the current values of the unknowns.

the programmer of funct may decide that some current

estimates of the unknowns lie outside a feasible

region; in this case funct should deliver the value

false and the process is terminated (see out[l]).

otherwise funct should deliver the value true;

<procedure identifier>;

the heading of this procedure should be

procedure jacobian(m, n, par, rv, jac, locfunct);

value m, n; integer m, n; array par, rv, jac;

procedure locfunct;

the meaning of the parameters of jacobian is

m, n : see gssnewton.

par : <array identifier>; array par[l : n];

entry current estimates of the unknowns.

these values should not be changed.

rv : <array identifier>; array rv[l : m];

entry : the residual vector of the system of

equations corresponding to the vector of unknowns

as given in par.

exit the entry values.

jac : <array identifier>; array jac[l : m, 1 : n];

exit the jacobian matrix at the current

estimates given in par, i.e. the matrix of partial

derivatives

d (rv)[i] / dpa r[j], i = 1 (1) m, j = 1 (1) n.

locfunct : <procedure identifier>; the heading of this

procedure is the same as the heading of funct.

a call of the procedure jacobian should deliver the

jacobian matrix evaluated with the current estimates

of the unknown variables given in par

in such a way, that the partial derivative

d(rv) [i] / dpar[j] is delivered in jac[i ,j],

j = 1(1)n.

= 1(1)m,

for the calculation of the derivatives one can use the

values of the current estimates of the

unknowns as given in par and the residual vector as

given in rv.

one can also use the procedure funct

(parameter of gssnewton) through calls of the procedure

locfunct (parameter of jacobian). this parameter of

jacobian may be used when the jacobian matrix is

approximated using (forward) differences.

an appropriate procedure to this purpose is jacobnmf

31

32

in

(NUMAL · [16]). such a procedure may be ~sed only if

the matrix elements are computed sufficiently accurate;

<array identifier>; array in[O : 7];

in this array tolerances and control parameters should

be given.

entry

in[O] : the machine precision. for calculation on the

cyber 73 a suitable value is 10-14.

in[l], in[2]

relative and absolute tolerance for the step vector

(relative to the vector of current estimates in

par).

the process is terminated if in some iteration (but

not the first) the euclidean norm of the calculated

newton step is less than in[l] x norm(par) + in[2].

in[l] should not be chosen smaller than in[O].

in[3] is not used by the procedure gssnewton;

in[4] absolute tolerance for the euclidean norm of

the residual vector. the process is terminated when

this norm is less than in[4].

in[5] : the maximum allowed number of function

evaluations (i.e. calls of funct).

in[6] : the maximum allowed number of halvings of a

calculated newton step vector (see

section 3). a suitable value is 15.

in[7] : the maximum allowed number.of successive in[6]

times halved step vectors. suitable values are 1

out

and 2;

<array identifier>; array out[1 : 9];

in array out information about the termination of the

process is delivered.

exit

out[1] :

the process was terminated because (out[1] =)

1.the norm of the residual vector is smal 1 with

respect to in[4],

2.the calculated newton step is sufficiently small

(see in[1], in[2]),

3.the calculated step was completely damped (halved)

in in[7] successive iterations,

4.out[4] exceeds in[5], the maximum allowed number of

calls of funct,

5.the jacobian was not full-rank (see out[8]),

6.funct delivered false at a new vector of

estimates of the unknowns,

7.funct delivered false in a call from jacobian.

out[2] : the euclidean norm of the last residual

vector.

out[3] : the euclidean norm of the initial residual

vector.

out[4] : the total number of calls of funct.

out[4] will be less than in[5] + in[6].

out[5] the total number of iterations.

out[6] the euclidean norm of the last step vector.

33

34

out[7] : iteration number of the last iteration in

which the newton step was halved.

out[8], out [9] :

rank and maximum column norm of the jacobian matrix

in the last iteration, as delivered by lsqortdec

(NUMAL [16]) in aux[3] and aux[S].

data and results

the procedure gssnewton can be used for approximating an exact or a

least squares solution of a system of nonlinear equations. when an

exact solution is required, the procedure may terminate only with

out[1] = 1, and very small values should be assigned to in[1] and

in[2]. when a least squares solution is required, positive results

of the procedure are signaled by out[l] = 1 or 2. whenever the

procedure terminates with out[l] < 5, then the inverse of J* x J

(see meaning of the parameter jjinv) is delivered in jjinv. in

that case the covariance matrix and the standard deviations of the

solution can be calculated.

for a curve fitting problem, say

estimate parameters par[l], , par[n] of a function

y = f(x; par[l], ••• , par[n]), when a set of data (x[i],y[i]),

= 1 (l)m, has to be fitted,

the following system of m equations in the n unknown parameters

par[l], ••• , par[n] can be derived:

f(x[i]; par[l], ••• , par[n]) - y[i] = 0, = 1 (1) m.

procedures used (NUMAL·[16_]):

vecvec = cp34010,

dupvec = cp31030,

elmvec = cp34020,

lsqortdec = cp34134,

lsqsol = cp34131,

lsqinv = cp34136.

source texts

code 34440;

procedure marquardt(m,n,par,g,v,funct,jacobian,in,out);

value m,n; integer m,n; array par,g,v,in,out;

boolean procedure funct; procedure jacobian;

begin integer maxfe,fe,it,i ,j,err;

real vv,ww,w,mu,res,fpar,fparpres,lambda,lambdamir.,

p,pw,reltolres,abstolres;

a r ray em [0 : 7] , v a 1 , b , b b , pa r p res [1 : n] , j a c [1 : m , 1 : n] ;

procedure mulcol(l,u,s,t,a,b,x); code 31022;

procedure dupvec(l,u,s,a,b); code 31030;

real procedure vecvec(l,u,s,a,b); code .34010;

real procedure matvec(l,u,s,a,b); code 34011;

35

36

real procedure tamvec(l,u,s,a,b); code 34012;

real procedure mattam(l,u,s,t,a,b); code 34015;

integer procedure qrisngvaldec(a,m,n,val ,v,em);

code 34273;

procedure locfunct(m,n,par,g);

integer m,n; array par,g;

begin fe:= fe+l; .!.f. fe ~ maxfe then err:= 1 else

.!.f. ~ funct(m,n,par,g) then err:= 2;

.!.!_err+o then goto exit

end locfunct;

vv:=10; w:=0.5; mu:= 0.01;

ww:=(.!.f. in[6]<10-7 then 10-8 else 10-lxin[6]);

em[0]:=em[2]:=em[6]:=in[0]; em[4]:=10xn;

reltolres:=in[3]; abstolres:=in[4]+2; maxfe:=in[5];

err:= 0; fe:= it:= 1; p:=fpar:= res:= 0;

pw:=-ln(wwxin[0])/2.30;

.!.f. ~ funct(m,n,par,g) then

begin err:= 3; goto escape end;

fpar:= vecvec(l ,m,0,g,g); out[3]:=sqrt(fpar);

for it:= 1, it+l while fpar > abstolres A

res> reltolresxfpar+abstolres do

begin jacobian(m,n,par,g,jac,locfunct);

i :=qrisngvaldec(jac,m,n,val ,v,em) ;·

if it=l then

lambda:= in[6] x vecvec(1 ,n,O,val,val) else

_!i p =O then lambda:= lambdaxw else p:= O;

for i:=1 step 1 until n do

b[i] :=va 1 [i]xtamvec(1 ,m, i ,jac,g);

1: for i :=1 step 1 unt i 1 n do

bb[i]:=b[i]/(val[i]xval[i]+lambda);

for i:=1 step 1 until n do

parpres[i] := par[i] - matvec(l ,n, i ,v,bb);

locfunct(m,n,parpres,g);

fparpres:= vecvec(1,m,O,g,g);

res:=fpar-fparpres;

_!ires< mu x vecvec(1 ,n,O,b,bb) then

begin p:= p+1; lambda:= vv x lambda;

end• __ ,

_!i p=l then

begin lambdamin:= ww x vecvec(l ,n,O,val ,val);

if lambda<lambdamin then lambda:= lambdamin

end· _,

_!i p<pw then goto else

begin err:= 4;

goto exit

end· __ ,

dupvec(1 ,n,O,par,parpres);

fpar :=fparpres

end iteration;

37

38

exit:

for i:=1 step 1 until n do

mu 1 co 1 (1 , n, i , i , j ac, v, 1 / (va 1 [i] +in [0])) ;

for i:=1 step 1 until n do

for j:=1 step 1 until do

v[i,j]:= v[j,i]:= mattam(l,n,i,j,jac,jac);

lambda:= lambdamin:= val[l];

for i:= 2 step 1 until n do

..!..!. val[i]>lambda then lambda := val[i] else

..!..!. val[i]<lambdamin then lambdamin:= val[i];

out[7]:=(lambda/(lambdamin+in[0]))+2;

out[2]:=sqrt(fpar);

out[6]:=sqrt(res+fpar)-out[2];

escape:

out[4] :=fe;

OU t [5] : = i t -1 ;

out[l]:=err

end marquardt;

code 344lil;

procedure gssnewton(m, n, par, rv, jjinv, funct, jacobian,

in, out);

value m, n; integer m, n;

array par, rv, jjinv, in, out;

boo1ean procedure funct;

procedure jacobian;

begin integer i, j, inr, mit, text,

it, itmax, inrmax, tim, feva1, feva1max;

rea1 rho, resl, res2, rn, re1to1par, absto1par, absto1res,

stap, normx;

boo1ean conv, testthf, damping on;

array jac[l :m + 1, 1 :n], pr, aid, so1 [1 n], fu2[1 ml,

aux[2 : 5];

integer array ci[l:n];

rea1 procedure vecvec(1, u, shift, a, b); code 34010; --
procedure dupvec (1 , u, s, a, b) ; code 31030; --
procedure e 1 mvec (1, u, s, a, b, x); code 34020;

procedure 1 sqortdec (a, m, n, aux, aid, Ci); code 34134;

procedure 1sqso1 (a, m, n, aid,ci,b); code 34131;

procedure 1sqinv(a, n, aid, Ci); code 34136;

boo1ean procedure 1oc funct(m, n, par, rv);

va1ue m, n; integer m, n; array par, rv;

begin 1oc funct:= test thf:= funct(m, n, par, rv)

A test thf; feva1:= feva1 + 1

end 1oc funct;

itmax:= feva1max:= in[5]; aux[2]:= n x ,in[0]; tim:= in[7];

re1to1par:= in[l] + 2; absto1par:= in[2] + 2;

39

40

abstolres:= in[4] + 2; inrmax:= in[6];

dupvec(l, n, 0, pr, par);

if m < n then

for i:= 1 step 1 until n do jac[m + 1, i]:= 0;

text:= 4; mit:= 0; test thf:= true;

res2:= stap:= out[5]:= out[6]:= out[7]:= 0;

funct(m, n, par, fu2); rn:= vecvec(l, m, 0, fu2, fu2);

out[3]:= sqrt(rn); feval:= 1; damping on:= false;

for it:= 1, it+ 1 while it< itmax A

feval < fevalmax do

begin out[5]:= it; jacobian(m, n, par, fu2, jac, locfunct);

if~ test thf then

begin text:= 7; goto fail end;

lsqortdec(jac, m, n, aux, aid, ci);

.!..f. aux[3] f n then

begin text:= 5; go to fail end;

lsqsol{jac, m, n, aid, ci, fu2); dupvec(l, n, 0, sol, fu2);

stap:= vecvec(l, n, 0, sol, sol);

rho:= 2; normx:= vecvec(l, n, 0, par, par);

.!..f. stap > reltolpar x normx + abstolpar

v it= 1 A stap > 0 then

begin for inr:= 0, inr + 1

while if inr = 1 then damping on v res2 > rn

else~ conv A (rn ~ resl v res2<res1) do

begin comment damping stops when

r0 > rl A rl < r2 (best result is xl, rl)

with xl = x0 +ix dx, i:= 1, .5, .25, .125, etc. ;

rho:= rho/ 2; if inr > 0 then

begin res1:= res2; dupvec(1, m, 0, rv, fu2);

damping on:= inr > 1

end· __ ,
for i:= 1 step 1 until n do

pr[i]:= par[i] - sol[i] x rho;

feval := feval + 1;

.!..!_ ~ funct(m, n, pr, fu2) then

begin text:= 6; goto fail end;

res2:= vecvec(1, m, 0, fu2, fu2); conv:= inr > inrmax

end damping of step vector;

if conv then

begin comment residue constant; mit:= mit + 1;

if mit < tim then conv:= false

end else mit:= 0;

if inr > 1 then

begin rho:= rho x 2; elmvec(1, n, 0, par, sol, - rho);

rn:= res1; if inr > 2 then out[7]:= it

end else

begin dupvec(1, n, 0, par, pr); rn:= res2;

dupvec(1, m, 0, rv, fu2)

end· __ ,

if rn < abstolres then

begin text:= 1; itmax:= it end else

if conv A inrmax > 0 then

begin text:= 3; itmax:= it end

else dupvec(l, m, 0, fu2, rv)

end iteration with damping and tests else

41

42

begin text:= 2; rho:= 1; itmax:= it end

end of iterations;

lsqinv(jac, n, aid, ci);

for i:= 1 step 1 until n do

beg i n j j i nv [i , i] : = j ac [i , i] ;

for j:= i + 1 step 1 until n do

jjinv[i,j]:= jjinv[j,i]:= jac[i,j]

end calculation of inverse matrix of normal equations;

fa i 1 :

out[6]:= sqrt(stap) x rho; out[2]:= sqrt(rn); out[4] := feval;

out[l]:= text; out[8]:= aux[3]; out[9]:= aux[5]

end gssnewton;

