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Nonlinear least squares estimation 

by 

J.C.P. Bus, B. van Domselaar & J.Kok 

ABSTRACT 

Two algorithms for minimizing a sum of squares are described and com

pared. The first one is the well-known Gauss-Newton algorithm. The second 

one is based on the algorithm given by Marquardt. 
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1 • INTRODUCTION 

In this report we describe and compare implementations of two algo

rithms for the calculation of a least squares solution of an overdeter

mined system of nonlinear equations. The first algorithm, given in section 

3, is the well-known Gauss-Newton algorithm (see for instance HARTLEY [13]). 

The second, which is described in section 4, is based on the algorithm 

given by MARQUARDT [15]. 

Numerical results of these algorithms, together with those of some 

general minimization algorithms, are given in section 5, while conclusions 

based on numerical as well as theoretical considerations are stated in sec

tion 6. 

Finally, these algorithms are described in the form of ALGOL 60 pro

cedures in appendix. 

2. STATEMENT OF THE PROBLEM 

A wide variety of problems in numerical analysis can be solved by 

minimizing a sum of squares. In our opinion, the most important example 

is the problem of fitting the function 

(2. 1) g(t;x), 

depending on a real variable t and a vector of parameters 

x = (x1,x2 , ••• ,x l, tom observations (t.,y.), i = 1, ••• ,m (m ~ n). 
n i i 

Denote 

T 
y = ( y 1 ' • • • 'y m) 

and the function G: JR n ➔ JR m by 

G(x) 

Then, the residual function f: JR n ➔ JR m, depending on x, may be defined by 
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(2.2) f(x) = G(x) - Y. 

With this notation, the "curve fitting problem" can be formulated as: 

(2.3) · · · llf( )U • h for some norm 11.11 1.·n lRm. m1.n1.m1.ze x wit respect to x, 

Choosing the euclidean norm we obtain, by writing f.(x) = g(t.;x) - y., 
l. l. l._ 

a so-called nonlinear least squares problem: 

(2.4) 
m 

minimize the sum of squares F(x) = I 
i=l 

2 (f.(x)) , with respeet 
l. 

or in vector notation: 

(2.5) minimize F(x) = fT(x)f(x). 

Hence, assuming that f 1.s twice differentiable, we want to calculate 
n x E JR , such that 

(2.6) VF(x) = O; is positive definite. 

to x, 

Denote the jacobian matrix of partial derivatives of the residual 

function by J(x). Since 

(2. 7) 
af.(x) 

l. (J(x)) .. = -.._-- = 
l.J oXj 

ag(t.;x) 
l. 

ax. 
J 

we see that J(x) equals the jacobian matrix of the function G(x). 

Substituting (2.5) in the first equation of (2.6) leads to 

(2.8) 
T 

J (x)f(x) = 0. 

Hence, problem (2.5) can be replaced by the problem of finding x such that 

(2.8) is satisfied, provided that the second derivative of F(x) is positive 

definite at the solution. 
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In choosing a method for solving (2.8) we assume that analytical ex

pressions for the elements of the jacobian matrix J(x) are available. A 

well-known method for solving nonlinear equations is Newton's method. When 

applying to (2.8), this method is defined by 

(2.9) k = 0,1,2, •.. , 

where 

(2.10) T rd T 1 
H(x) = J (x)J(x) + Ldx J (x) Jf(x). 

Hence, we should provide in each iteration the second derivative of the 

function g(t;x), which is an (mxnxn)-tensor. However, realizing this will 

be very difficult or even impossible for most practical problems and a 

simplification of Newton's method is desirable. 

3. THE GAUSS-NEWTON ALGORITHM 

The method described in this section is essentially based on Newton's 

method for solving (2.8) as given by (2.9) and (2.10). 

If we assume that g(t;x) is a proper function for fitting the given 

observations, then the residual function is smooth and its norm is small. 

Therefore, 

d T 
lldxJ (x)f(x)II 

will be small relative to II J(x)II. Hence it seems reasonable to approximate 

H(x), given by (2.10), by the simpler expression 

- T H(x) = J (x)J(x). 

Substituting H(x) for H(x) in (2.9) we obtain 

(3. 1) k=0,1,2, ••• , 
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where 

(3. 2) 

The iterative method thus obtained is called the Ga:uss-Newton method. Con

sidering (3. 1) we see that it is, in fact, the so-called "normal equation" 

belonging to the overdetermined system of linear equations 

(3.3) 

As is well known (GOLUB [10]), one should not calculate ok by performing 

the matrix multiplication and solving the synmetric linear system (3.1). 

This might decrease the stability of the process, since the condition num

ber is squared. The right way to calculate ok is to obtain an orthogonal 

decomposition of J(~), in order to solve (3.3) directly. Our implementa

tion of the Gauss-Newton algorithm uses Householder orthogonalisation 

(DEKKER [4], BUSINGER & GOLUB [3]). Thus, an orthogonal m-th order matrix 

Qk and an m x n upper-triangular matrix Rk are calculated such that 

(3.4) 

Subsequently, ok is calculated by solving then x n upper-triangular linear 

system, consisting of the first n equations of 

(3. 5) 

In many practical problems, it might occur that the algorithm describ

ed is unstable, since J(~) is not necessarily of full rank n. Although our 

algorithm terminates as soon as J(xk) appears not to be of full rank rela

tive to the machine precision (see DEKKER [4], p.65), we also use a strat

egy to control the step size. We choose 

(3.6) 
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where ak is chosen such that 

(3. 7) 

Our version of the Gauss-Newton algorithm, which will be called algorithm 

Gin the sequel, is defined by three blocks GI, G2 and G3. After initial

isation (GI), N + I iteration steps (G2) are performed, where N is defined 

by the stopping criteria (G3). 

GI: initiaiisation; 

let x0 be a given approximation to the minimum of F(x) and let Ere' 

Ea and EO be three given tolerance values; 

G2: iteration step, k = 0,1, ••• ,N; 

calculate an orthogonal m-th order matrix Qk and an m x n upper-trian

gular matrix~ such that (3.4) is satisfied; calculate the direction 

of search~ by solving then x n upper-triangular linear system, con

sisting of the first n equations of 

if F(xk+dk) ~ F(~), then choose ak = 1, otherwise choose ak 

where r is the smallest nonnegative integer, such that 

and 

G3: stopping criteria; 

-r 
= 2 , 

the number of iteration steps equals N + 1, where N is the smallest 

nonnegative integer such that 

or ~ llx II x E + E • 
k+I re a 
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An implementation of algorithm Gin ALGOL 60 is given in appendix. 

The main disadvantage of this method is that it may break down forcer

tain k, if the jacobian matrix J(xk) does not have full rank n, within the 

precision of calculation. Even when the algorithm does not break down, it 

may occur that 0~11 becomes prohibitively large if the condition number of 

J(~) is large. In that case, either the value of r, and therefore the num

ber of function evaluations in the k-th step, will be large, or some local 

solution far from the initial guess may be found. 

4. AN ALGORITHM BASED ON THE IDEAS OF LEVENBERG AND MARQUARDT 

One way of reducing the difficulties of algorithm G is based on an 

idea of LEVENBERG [14], which is used by MARQUARDT [15] in his algorithm 

for solving nonlinear least squares problems. The idea is to calculate a 

step vector ok, k = 0,1,2, ••• , according to 

(4. 1) 

where Ak is a nonnegative scalar and~ is some positive definite matrix. 

If we choose Ak = O, then ok equals the Gauss-Newton vector defined by 

(3.1). When we choose~= I, where I denotes the unit matrix, then, for 

any fixed k, if Ak tends to infinity then ok tends to the steepest descent 

direction 

(4. 2) 

and its norm tends to zero (MARQUARDT [15], theorems 2 and 3). 

To obtain a reasonable value for Ak' k = 0,1,2, .•• , we use the follow

ing strategy, due to GOLDSTEIN & PRICE [9] and also given by FLETCHER [6]. 

Define sk = sk(A) and hk = hk(A) by 

(4.3) 

and 



(4.4) 

Then, we choose the value of Ak such that 

(4.5) 

whereµ is a given constant, 0 < µ < 0.5. 

Using this strategy, it is possible that (4.3) has to be solved for 

more than one value of A. An easy way of doing this is recoDDnended by 

MARQUARDT [15]. He calculates the eigenvalues and eigenvectors of the 

matrix product JT(~)J(~). However, this is mathematically equivalent to 

the calculation of the singular values of J(xk) (GOLUB & REINSCH [12]). 

Since the latter is more stable we use it in our algorithm. So, we calcu

late a decomposition of J(~) 

(4.6) 

where Uk is an orthogonal m-th order matrix, Lk is them x n diagonal 

matrix of singular values 0 1, ••• ,on, and Vk is an n-th order orthogonal 

matrix. Substituting (4.6) in (4.3) leads to 

(4.7) 

where L2 = 
.k 

(4.8) 

diag(o~, ••• ,o!). Hence, sk can be written as 

7 

provided A is chosen such that L; +Alis nonsingular, which is true for 

A> O. This shows that, once the singular value decomposition is performed, 

we only need a matrix-vector multiplication to obtain sk = sk(A) for var

ious values of A. 

Using these ideas, we define our Marquardt-type algorithm, called 

algorithm Min the sequel, by the following three blocks M1, M2 and M3 • 

After initialisation (M 1), N + I iteration steps (M2) are performed, where 

N is defined by the stopping criteria (M3). 
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M1: initialisation; 

let x0 be an approximation to the minimum of F(x); let s ands be r a 
two given tolerance values andµ, w, v and~ given constants such that 

0 < µ << 0.5, w < I, v > I and~> O; 

M2: iteration step, k = 0,1, ••• ,N; 

calculate the singular value decomposition given by (4.6); set 

pk= ~Ui:kll 2; if k = O, then set )..60) = >.._ 1 = pk' otherwise (i.e. if 

k > 0) set 

)..(0) 
= WAk-1' k 

or 

(0) 
)..k = )..k-1' if ).. ).. k-1 > k-2; 

1.f h('k(O)) > h ' ,(0) h . ' r (,(0) ) A _ µ, ten set Ak = Ak , ot erwise, set Ak = v max Ak ,Pk, 

where r is the smallest nonnegative integer satisfying 

M3: stopping criteria; 

the number of iteration steps equals N + I, where N is the smallest 

nonnegative integer satisfying 

or 

An implementation of algorithm Min ALGOL 60 is given in appendix. 

It is clear that, with the strategy for choosing )..k as described in 

M2 , the value of )..k has a tendency of decreasing, in particular if the 

function F(x) is convex, or if the jacobian matrix J(x) has a relatively 

small condition number. In practice this means that algorithm M behaves 
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almost like algorithm Gin those cases where algorithm G behaves fine. 

Therefore, we may expect algorithm M to be nearly as efficient as algorithm 

G for well-conditioned problems. On the other hand, the strategy in algo

rithm Mis such that it does not suffer from breaking down when the jacob

ian matrix J(~) is singular, as algorithm G does. Therefore, algorithm M 

is expected to be very useful for practical problems, since in most cases 

little is known about the condition of the problem to be solved. 

5. NUMERICAL COMPARISONS 

In this section we compare four algorithms: 

Algorithm G, defined in section 3. 

• Algorithm M, defined in section 4. 

• A variable metric algorithm for general minimization. This al

gorithm, which uses a rank-one updating formula is given in 

BUS [2] and is called algorithm R in the sequel. For an ALGOL 

60 implementation see BUS ([16], section 5.1.2). 

• A rank-two variable metric algorithm (BUS [2]), which is essen

tially the same as the one given by FLETCHER [6]. See also 

BUS([16], section 5.1.2). This algorithm is called algorithm F. 

We divide our test problems into two sets. 

The first set consists of rather artificial problems, where the nwn

ber of variables equals the number of observations. In fact, these func

tions are adopted from literature, where they were used for testing general 

minimization algorithms and algorithms for solving systems of nonlinear 

equations. 

The second class consists of some real curve fitting problems. 

Class I: Some artificial, test problems 

Rather than giving the function g(t;x) and the observations (t.;y.), 
l. l. 

i = 1, ••. ,m (see section 2), we define these problems by giving f(x) (cf. 

(2.2)) 



10 

P1: Brown's function (see BROWN [1]). 

f. (x) = 
]. 

-(n+l) + 2x. + 
]. 

f (x) = -1 + 
n 

n 
II 

j=1 
x .• 

J 

n 
t 

j=l 
j;'i 

x., 
J 

i = 1 , ••• , n-1 , 

This function, in which all but the last equation are linear, has·two 

known zeroes; the vector x where each component has the value 1 and 

the vector x where all components but the last one have the same value. 

For instance, for n = 5 the approximate solution is: 

T 
X = (-0.579,-0.579,-0.579,-0.579,8.90) • 

This function has been tested for n = 5,10,15,20. 

In all cases the starting guesses are 

x. = 0.5, 
]. 

i = 1, •.. ,n. 

P2: The double polynomial function (see FREUDENSTEIN & ROTH [8]). 

T This function has a zero at (5,4) , but all procedures converged to a 

point that proved to be a local minimum of the euclidean norm of the 

residual function. The starting guess is (15,-2)T. 

P3: A badly scaled problem (see POWELL [17]). 

-xi -x2 = e + e - 1.0001. 
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For this difficult problem it is preferable to scale the parameters 

x 1 and x2, so that their magnitudes are comparable, but it is interest

ing to discover what happens when this advice is not followed. The 

function has a zero at 

T and the starting guess is (0,1) • 

P4: Powell's function (see POWELL [17]). 

fl(xl,x2) = xi, 

10x1 2 
f2(xl,x2) = x 1 + 0.1 + Zx2. 

T This function has only one zero, viz. (0,0) , and this is the only 

stationary point of the euclidean norm of the residual function. The 

ill-conditionedness of the problem is illustrated by the eigenvalues 

of the matrix JT(x)J(x) on the line x2 = 0: 

1 
02 = 4 + 1. 

(x 1+0.l) 
cr 1 = O, 

Hence, JT(x)J(x) is singular for x2 = 0. 

The starting guess is (3,l)T. 

Class II: The cuwe fitting problems 

P5 : The fertilizer experiment (see HARTLEY [13]). 

In this model g(t;x) represents the yield of wheat corresponding to a 

rate of application of fertilizer t. The observations (t.,y.), 
l. l. 

i = 1, ••• ,6, are given in table 5.1. The parameter x 1 is the asympto-

tic yield for large rates of fertilizer application and x2 is the ex

ponential rate of response decrease. 
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T The initial guess for the parameters is (500,-140,-0. 18) . 

Table 5.1 

l. t. y. 
l. l. 

I -5 127 

2 -3 151 

3 -1 379 

4 I 421 

5 3 460 

6 5 426 

P6 : The heart-infarct problem (see VAN D0MSELAAR [5]). 

The problem involves fitting a reduced model of an enzyme effusion 

into the blood after a heart-infarct. The model has the following 

form: 

g(t;x) 

where 

glim= 

d 1 ( t) = 

d2( t) = 

and 

dl. = .1.m 

= C 

x 4 (x 1-a) 

a(x4-x 1) 

d 1(t) d 2 (t) 
d exp ( -x4 t) + c d exp ( - at) + g 1 . , 
1~ 1~ ~ 

g(oo,x) is the "normal effusion", 

t 
[ (ln(T) - x3)2 I I + X4T] dT, T exp -0. 5\ .. 

0 
.,,..2 

t f (ln(T) - x3\2 

J + aT] d T T exp l-o.5 x2 J 
0 

lim d2(t). 
t-+«> 

In this nndel, x 1 is a constant of demolition, x2 a measure for the 

duration of excessive effusion and x3 denotes the time at which the 
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maximum effusion appears. There are 17 observations (t.,y.). 
i i 

The starting guess is (0.14,0.2,2.40,0.28)T. 

P7 : Trigonometric functions (FLETCHER & POWELL [7]). 

This problem may be described in an easy way by giving G(x) (cf. sec

tion 2). 

G(x) = As(x) + Bc(x), 

where A and Bare m x n matrices, whose elements are generated as ran

dom integers between -100 and +100, s(x) and c(x) are n-vectors, such 

that 

s(x) = (sin (xi), sin (x2), ••• , sin (x ))T 
n 

and 

c(x) (cos (xi), (x2), ••• , 
T 

= cos cos (x )) • n 

* The observations are created as follows. The elements of a vector x 

are generated as random numbers between -TT and +TT. Then 

* Y = (I+bD)G(x ), 

where I is them-th order unit matrix.Dis some m-th order diagonal 

matrix whose elements are generated as random numbers in the interval 

[-0.5,0.5] and bis some scalar used for varying the magnitude of the 

disturbance in the data. We have chosen b = 0.01, 0.05, 0.1, 0.2, 0.5 

and 1. 
* The starting guess is x + 0.0lo, where the elements of the vector o 

are random numbers between -½n and +½n. 

We tested the problem for (n,m) = (5,5), (5,10), (5,15), (10,10), 

(10,15) and (10,20). 

P8 : The exponential fitting problem (GOLUB & PEREYRA [11]). 



14 

The number of observations is 33. 

The starting guess is (0.5,2.5,0.0l,-1,0.02)T. 

The testing has been performed on a CYBER 73 computer with a machine 
. . f 10- 14 . 1 precision o approximate y. 

In order to be able to compare the four algorithms, which use differ

ent stopping criteria, we used as a measure the number of function evalua

tions needed to fall below a certain value for the norm of the function 

f(x) (see (2.4)), which is specified in the tables under llf(x)II. The choice 

of this value depends heavily on the accuracy of the data as far as the 

second class of problems is concerned. 

If not mentioned otherwise, algorithm M has been tested with~= 0.01, 

µ = 0.01, w = 0.5 and v = 10. 

The results of the first class of problems are given in table 5.2. 

Table 5.2 

Class I 

number of function evaluations needed 

function n llf(x)ft G M F R 

5 10-10 17 12 16 17 

I 10 10-10 52 16 20 20 
Pl 

10-10 15 - 18 24 25 

20 10-10 - 19 29 30 

P2 2 6.99887 - 15 10 9 

P3 2 10-10 150a) 54 150a) 150a) 

P4 2 10-10 16 25 150a) 150a) 

a) The precision asked for has not been attained. 
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Discussion of Pl. 

For n = 5, algorithm G found the zero that is given as an example in 

the description of the function, while the other procedures found 

(1,1, ••• ,I)T. For n = IO, algorithm G had much difficulty in improving the 

norm of the residual function at the initial guess x0 • For n = 15 and 

n = 20 algorithm G failed. This behaviour is affirmed by theory (see the 
T end of section 3), since the condition number of J (x0)J(x0) is propor-

tional to 2n. 

Discussion of P2. 

None of the algorithms found the zero minumum at (5,4)T. Algorithm G 

did not converge because of a singular jacobian matrix. The other algorithms 

found a relative minimum of the norm of the residual function at 
. T 
(11.412,-0.89681) • 

Discussion of P3. 

Algorithm M performed well on this problem, the other methods did not. 

This is due to the condition number of JT(x)J(x) at the solution, which is 

about 108 • After 150 function evaluations algorithm G reached 1.0 10-3 for 

the norm of the residual function, algorithm R reached 0.4 10-4 and algo

rithm F reached 0.6 10 -4. 

Discussion of P4. 

The rapid convergence of algorithm G was remarkable, although it was 

not quadratic. After 150 function evaluations, algorithms Rand F reached 

only the value 0.4 10-s for the norm of f(x). Algorithm M, however, seems 

to be too careful. As is seen in table 5.3 the number of function evalua

tions is highly dependent on the value of~- The less the value of~, the 

more the behaviour of algorithm Mis alike that of algorithm G. Only the 
-3 case~= 10 has an exceptional behaviour. The iteration path for this 

case happens to contain a nearly stationary point, while the paths for the 

other cases happen to avoid this point. 

In the tables 5.4 up to 5.7 we give results of the problems from 

class II. For the problems PS, P6 and P8 we have tried to give the user 

an impression of the progress in the reduction of the norm of the residual 

function relative to the number of function evaluations needed. 
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Table 5.3 

number of 
~ II f(x)II funct. eval. needed 

10-6 10-10 25 

10-5 10-10 29 

10-4 10-10 32 

10-3 0.5110-3 150a) 

10-2 0.5910-6 50 

10-1 0.5910-6 49 

l o.2110-5 150a) 

a) The precision asked for has not been attained. 

Discussion of P5. 

Since the starting guess is chosen close to the solution 
T 

(523.3,-156.9,-0.1996) , none of the methods had any difficulty in finding 

this solution as is shown in table 5.4. Here, the more robust algorithm M 

is clearly less efficient. 

Table 5.4 

number of function evaluations needed 

II f(x)II G M F R 

116. 25 2 14 5 6 

115.73 4 20 7 8 

115.715 7 23 10 l l 

Discussion of P6. 

The correlation matrix at the solution of this problem showed a strong 

mutual dependence of the parameters. Therefore, they are very hard to deter-
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mine. As shown in table 5.5 algorithm G did not succeed in finding a solu

tion of this problem. Algorithm R was terminated because its execution 

time exceeded the time limit which was imposed upon all procedures. Algo

rithm F converged very slowly to a minimum. For algorithm M we used 

~=0.1. 

Table 5.5 

number of function evaluations needed 

II f (x)II G M F R 

59.653 - 2 57 15 

52.968 - 7 59 16 

49,314 - 19 62 41 

49.233 - 23 IOI -

Discussion of P?. 

All results are reproduced in table 5.6. The problems with large data 

disturbance (b = 0.5 orb= I) usually caused difficulty to algorithm G. 

Moreover, for some problems with n = m, algorithm G did not find a solution 

at all. The curve fitting problems with large data disturbance resemble the 

problems with bad starting values of the parameters. The results of P7 show 

clearly the differences between the two methods discussed. In case of a bad 

initial approximation of the parameters, algorithm G may easily diverge, 

but with an initial guess close to the solution, algorithm G converges 

faster than the more robust algorithm M. 

Algorithms Rand Fare obviously less efficient than algorithms G and 

M. 
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Table 5.6 

number of function evaluations needed 

b n m II f(x)II G M F R 

0.01 s s 10-IO 9 14 24 23 
s 10 0.5937 8 10 23 14 
s 15 1. 4598 4 8 20 I I 

IO 10 10-10 15 18 56 42 
10 15 I. 9722 4 9 21 19 
IO 20 I. 1431 4 8 20 19 

0.05 s s 10-IO 9 15 26 25 
s IO 3.0229 4 9 21 14 
s 15 7.2875 4 8 19 I I 

10 10 I0-10 15 28 53 67 
IO 15 9.8017 6 8 22 19 
IO 20 5.7156 4 8 18 18 

0. I s s 1.6790 - 18 28 28 
s IO 6.2082 6 9 22 12 
s 15 14. 5454 4 8 21 I I 

10 IO 10-IO 15 18 45 38 
IO 15 19.3903 7 7 23 19 
IO 20 11.4315 s 7 18 18 

0.2 s s 7.8174 - 15 22 23 
s 10 13. 1897 24 8 21 14 
s 1 '> 28.% 11 7 8 20 I I 

IO 10 IO-IU 17 18 43 39 
10 15 37.2044 6 I I 24 18 
10 20 I 22.8625 s 7 19 19 

o.s s s 10-IU - 12 so 42 
s 10 38.6785 24 6 20 12 
s 15 71.2177 12 9 31 18 

10 10 10-lO - 18 44 53 
10 15 63.1456 13 12 36 32 
10 20 57.1347 s 7 20 18 

I s s 21.3573 - 14 68 22 
s 10 89.3793 31 8 14 I I 
s 15 137.8861 14 9 35 15 

10 10 3.7004 - 29 54 68 
10 15 81.4203 7 13 31 28 
10 20 114.2509 s 8 20 19 

Discussion of PB. 

The condition number of the matrix JT(x)J(x) at the solution was found 
9 to be of order 10 • Therefore, for none of the algorithms the convergence 

is quadratic (see table 5.7). 
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Table 5.7 

number of function evaluations needed 

II f(x)II G M F R 

.031250 5 10 11 13 

• 013872 19 11 14 15 

.007392 23 29 61 59 

6. CONCLUSIONS 

From the results given in section 5 it is obvious that algorithms R 

and F, which are efficient algorithms for general minimization (BUS [2]), 

are not efficient for minimizing a sum of squares. For such problems, one 

had better use an algorithm which is designed to solve nonlinear least 

squares problems. Furthermore, we may conclude that algorithm G is less 

reliable for general problems than algorithm. M. However, for problems 

which are known to be well-conditioned and where a good initial approxi

mation of the parameters is known, algorithm G will usually be more effi

cient than algorithm M. 

Therefore, we advise the user to use algorithm M, unless he knows 

that the matrix JT(x)J(x) has a relatively small condition number for all 

x in some convex region containing the solution and the initial guess. 

ACKNOWLEDGEMENTS 

We are very grateful to the Working Group on Numerical Algebra at 

Amsterdam and also to P.W. Hemker, for a large number of valuable sugges

tions concerning the implementation of the algorithms; to 

Dr. P.J. van der Houwen for his careful reading of the manuscript and to 

Th. Gunsing, Mrs. J.W. van Riel-Dijk and D. Zwarst for their efforts to 

get this report typed and printed. 



20 

REFERENCES 

[ 1 J BROWN, K.M., A quadratically convergent Newton-like method based upon 

Gaussian elimination, SIAM. J. Num. An.~ (1969), 560-569. 

[2] BUS, J.C.P., Minimization of functions of more variables (Dutch), 

Mathematical Centre report NR 29/72 (1972). 

[3] BUSINGER, P. & G.H. GOLUB, Linear least squares solutions by 

Householder transformations, Num. Math. l_ (I 965), 269-276. 

[4] DEKKER, T.J., ALGOL 60 procedures in numerical algebra, part 1, 

Mathematical Centre tract 22 (1968). 

[5] DOMSELAAR, B. VAN, A mathematical analysis of the heart-infarct (Dutch), 

Mathematical Centre report NN 4/74 (1974). 

[6] FLETCHER, R., A new approach to variable metric algorithms, Comp. J. 13 

(1970), 317-322. 

[7] FLETCHER, R. & M.J.D. POWELL, A rapidly convergent descent method for 

minimization, Comp. J. ~ (1963), 163-168. 

[8] FREUDENSTEIN, F. & B. ROTH, Numerical solution of systems of nonlinear 

equations, J. ACM. _!_Q (1963), 550-556. 

[9] GOLDSTEIN, A.A. & J.F. PRICE, An effective algorithm for minimization, 

Num. Math • .!..Q_ (1967), 184-189. 

[]OJ GOLUB, G.H., Numerical methods for solving linear least squares 

problems, Num. Math.]_ (1965), 206-216. 

[11] GOLUB, G.H. & V. PEREYRA, The differentiation of pseudo inverses and 

nonlinear least squares problems whose variables separate, 

Univ. Central de Venezuela, Publ. 72-05 (1972). 

[IZJ GOLUB, G.H. & C. REINSCH, Singular value decomposition and least 

squares solution, Num. Math • .!!!._ (1970), 403-420. 

[13] HARTLEY, H.O., The modified Gauss-Newton method, Technometrics 3 (1961), 

269-280. 

[)~ LEVENBERG, K., A method for the solution af certain non-linear problems 

in least squares, Quart. Appl. Math. 2 (1944), 164-168. 



21 

[IS] MARQUARDT, D.W., An algorithm for least-squares estimation of non

linear parameters, SIAM. J • ..!_!_ (1963), 431-441. 

[ 16] NUMAL, a library of numerical procedures in ALGOL 60, Vol. 0 up to 8, 
, - -

Mathematical Centre, Amsterdam (1974). 

[ 17] POWELL, M.J .D., A hybrid method for nonlinear equations. In: 

Rabinowitz, P. (ed.), Numerical Methods for nonlinear alge

braic equations. Gordon and Breach (1970). 

iWll.101hifEl{ MAT M Hi A 

A.MSHRDAM 



22 

APPENDIX: ALGOL 60 procedures 

In this appendix we give the texts of two ALGOL 60 procedures, 

gssnewton and marquardt~ which implement algorithms G and M respectively. 

Before explaining the parameters we should give the following details about 

procedure marquardt (cf. algorithm M, section 3). The constantsµ, v and w 

are given values inside the procedure: 

µ = 0.01, w = 0.5, and V = JO. 

Furthermore, an upper bound on the value of Ak is imposed which depends on 

IIJT(~)J(~)II and the machine precision E, since it makes no sense to use 

a value of Ak which satisfies 

for in that case JT(~)J(~) + Akl is equal to Akl if computed with preci

sion E. An error exit is created if Ak becomes that large, since in our 

opinion this can only occur if the precision asked for is too high, or 

the function and/or jacobian matrix are not prograunned correctly. 



the heading of the procedure marquardt is: 

procedure marquardt(m, n, par, rv, jjinv, funct, jacobian, in, 

out); value m, n; integer m, n; 

array par, rv, jjinv, in, out; boolean procedure funct; 

procedure jacobian; 

the meaning of the formal parameters is: 

m: 

n: 

<arithmetic expression>; 

the number of equations; 

<arithmetic expression>; 

the number of unknown variables; n should satisfy n~; 

par: <array identifier>; 

array par [1 : n]; 

the unknown variables of the system; 

entry: an approximation to a least squares solution 

of the system; 

exit: the calculated least squares solution; 

rv: <array identifier>; 

array rv[l : m]; 

jj i nv: 

funct: 

exit: the residual vector at the calculated solution; 

<array identifier>; 

array jj inv[l : n, : n]; 

exit: the inverse of the matrix J* x J where J denotes 

the matrix of partial derivatives drv[i] / dpar[j] 

( i=l, ••• ,m; j=l, ••• ,n) and J* denotes the 

transpose of J. 

<procedure identifier>; 

the heading of this procedure should be: 
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boolean procedure funct(m, n, par, rv); value m, n; 

integer m, n; array par, rv; 

entry : m, n , par; 

m, n have the same meaning as in the procedure 

marquardt; 

array par[l:n] contains the current values of 

the unknowns and should not be altered; 

exit: array rv[l : m]; 

upon completion of a call of funct, this array rv 

should contain the residual vector, obtained with 

the current values of the unknowns; 

e.g. in curve fitting problems: 

rv[i] := theoretical value f(x[i], par) -

observed value y[i]; 

after a successful call of funct, the boolean procedure 

should deliver the value true; 

however, if funct delivers the value false, then it is 

assumed that the current estimates of the unknowns lie 

outside a feasible region and the process is terminated 

(see out[l]); 

hence, proper programming of funct makes it possible to 

avoid calculation of a residual vector with values of the 

unknown variables which make no sense or which even may 

cause overflow in the computation; 

jacobian: <procedure identifier>; 

the heading of this procedure should be: 

procedure jacobian(m, n, par, rv, jac, locfunct); 

value m, n; integer m, n; array par, rv, jac; 



procedure locfunct; 

entry: m, n, par, rv, locfunct; 

for m,n,par see: funct; 

rv contains the residual vector obtained with the 

current values of the unknowns and should not be 

altered; 

a call of locfunct(m,n,par,rv) is equivalent with 

a call of the user-defined procedure 

funct(m,n,par,rv), but, in addition, this call is 

counted to the total number of calls of funct 

(see out[4]) and, moreover, if funct delivers the 

value false then the process is terminated; 

exit: array jac[l : m, 1 : n]; 

upon completion of a call of jacobian, jac should 

contain the partial derivatives drv[i] / dpar[j], 

obtained with the current values of the unknown 

variables given in par[l :n]; 

it is a prerequisite for the proper operation of the 

procedure marquardt that the precision of the elements of 

the matrix jac is at least the precision defined by 

i n [ 3] and i n [ 4] ; 

in: <array identifier>; 

array in[O : 6]; 

entry: in this array the user should give 

control the process; 

in[O]: the machine precision; 

for the cyber 73 a suitable value 

in[l], in [2] are not used by the procedure 

some data to 

isio-14; 

marquardt; 
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in[3], in[4]: 

the relative and absolute tolerance for the 

difference between the euclidean norm of the 

ultimate and penultimate residual vector; 

the process is terminated if the improvement of 

the sum of squares is less than 

in[3] x (sum of squares) + in[4] x in[4]; 

these tolerances should be chosen greater than 

the corresponding errors of the calculated 

residual vector; 

note that the euclidean norm of the residual 

vector is defined as the square root of the sum 

of squares; 

in[5]: the maximum number of calls of funct allowed; 

in[6]: a starting value used for the relation between 

the gradient and the gauss-newton direction (see 

[2]); if the problem is well conditioned then a 

suitable value for in[6] will be 0.01; if the 

-problem is ill conditioned then in[6] should be 

greater, but the value of in[6] should satisfy: 

in[0] < in[6] ~ 1/in[0]; 

out: <array identifier>; array out[l : 7]; 

exit : in array out some by-products are delivered; 

out[l]: this value gives information about the 

termination of the process; 

out[l]=0: normal termination; 

out[1]=1: the process has been broken off, 

because the number of calls of funct 



exceeded the number given in in[5]; 

out[1]=2: the process has been broken off, 

because a call of funct delivered the 

va 1 ue fa 1 se; 

out[1]=3: funct became false when called with 

the initial estimates of par[l :n]; 

the iteration process was not started 

and so jjinv[l :n,1:n] can not be used; 

out[1]=4: the process has been broken off, 

because the precision asked for can 

not be attained; this precision is 

possibly chosen too high, relative to 

the precision in which the residual 

vector is calculated (see in[3]); 

out[2]: the euclidean norm of the residual vector 

calculated with values of the unknowns delivered; 

out[3]: the euclidean norm of the residual vector 

calculated with the initial values of the 

unknown variables; 

out[4]: the number of calls of funct necessary to obtain 

the calculated result; 

out[5]: the total number of iterations performed; note 

that in each iteration one evaluation of the 

jacobian matrix had to be made; 

out[6]: the improvement of the euclidean norm of the 

residual vector in the last iteration step; 

* out[7]: the condition number of .J x J, i.e. the ratio 

of its largest to smallest eigenvalues; 
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data and results: 

if this procedure is used for curve fitting then the relative 

accuracy in the calculation of the residual vector depends strongly 

on the errors in the experimental data and this should be reflected 

in the parameters in[3] and in[4]; 

the matrix jjinv can be used if some statistical information 

about the fitted parameters is required; the standard deviation, 

covariance matrix and correlation matrix may be calculated easily 

from jj i nv ; 

procedures used (tWMAL [ 16]): 

mulcol = cp31022, 

dupvec = cp31030, 

vecvec = cp34010, 

matvec = cp34011, 

tamvec = cp34012, 

mattam = cp34015, 

qrisngvaldec = cp34273. 

the heading of the procedure gssnewton is: 

procedure gssnewton(m, n, par, rv, jjinv, funct, jacobian, in, 

out); 

value m, n; integer m, n; array par, rv, jjinv, in, out; 



boolean procedure funct; procedure jacobian; 

the meaning of the formal parameters is 

m 

n 

par 

rv 

jjinv 

funct 

<arithmetic expression>; 

the number of equations; 

<arithmetic expression>; 

the number of unknowns in them equations (n ~ m); 

<array identifier>; array par[l: n]; 

the unknowns of the equations. 

entry : an approximation to a least squares solution 

of the system. 

exit the calulated least squares solution; 

<array identifier>; array rv[l : m]; 

exit the residual vector of the system at the 

calculated solution; 

<array identifier>; array jjinv[l : n,1 : n]; 

exit the inverse of the matrix J* x j, where J 

is the jacobian matrix at the solution and J* is 

J transposed; 

<procedure identifier>; 

the heading of this procedure should be 

boolean procedure funct(m, n, par, rv); value m, 

n; integer m, n; array par, rv; 

entry : m, n , par; 
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jacobian 

m, n have the same meaning as in the procedure 

gssnewton; 

array par[l:n] contains the current values of 

the unknowns and should not be altered. 

exit: array rv[l : m]; 

upon completion of a call of funct, this array rv 

should contain the residual vector, obtained with 

the current values of the unknowns. 

the programmer of funct may decide that some current 

estimates of the unknowns lie outside a feasible 

region; in this case funct should deliver the value 

false and the process is terminated (see out[l]). 

otherwise funct should deliver the value true; 

<procedure identifier>; 

the heading of this procedure should be 

procedure jacobian(m, n, par, rv, jac, locfunct); 

value m, n; integer m, n; array par, rv, jac; 

procedure locfunct; 

the meaning of the parameters of jacobian is 

m, n : see gssnewton. 

par : <array identifier>; array par[l : n]; 

entry current estimates of the unknowns. 

these values should not be changed. 

rv : <array identifier>; array rv[l : m]; 



entry : the residual vector of the system of 

equations corresponding to the vector of unknowns 

as given in par. 

exit the entry values. 

jac : <array identifier>; array jac[l : m, 1 : n]; 

exit the jacobian matrix at the current 

estimates given in par, i.e. the matrix of partial 

derivatives 

d ( rv )[ i] / dpa r[j], i = 1 ( 1) m, j = 1 ( 1) n. 

locfunct : <procedure identifier>; the heading of this 

procedure is the same as the heading of funct. 

a call of the procedure jacobian should deliver the 

jacobian matrix evaluated with the current estimates 

of the unknown variables given in par 

in such a way, that the partial derivative 

d(rv) [i] / dpar[j] is delivered in jac[i ,j], 

j = 1(1)n. 

= 1(1)m, 

for the calculation of the derivatives one can use the 

values of the current estimates of the 

unknowns as given in par and the residual vector as 

given in rv. 

one can also use the procedure funct 

(parameter of gssnewton) through calls of the procedure 

locfunct (parameter of jacobian). this parameter of 

jacobian may be used when the jacobian matrix is 

approximated using (forward) differences. 

an appropriate procedure to this purpose is jacobnmf 
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in 

(NUMAL · [16] ). such a procedure may be ~sed only if 

the matrix elements are computed sufficiently accurate; 

<array identifier>; array in[O : 7]; 

in this array tolerances and control parameters should 

be given. 

entry 

in[O] : the machine precision. for calculation on the 

cyber 73 a suitable value is 10-14. 

in[l], in[2] 

relative and absolute tolerance for the step vector 

(relative to the vector of current estimates in 

par). 

the process is terminated if in some iteration (but 

not the first) the euclidean norm of the calculated 

newton step is less than in[l] x norm(par) + in[2]. 

in[l] should not be chosen smaller than in[O]. 

in[3] is not used by the procedure gssnewton; 

in[4] absolute tolerance for the euclidean norm of 

the residual vector. the process is terminated when 

this norm is less than in[4]. 

in[5] : the maximum allowed number of function 

evaluations (i.e. calls of funct). 

in[6] : the maximum allowed number of halvings of a 

calculated newton step vector ( see 

section 3 ). a suitable value is 15. 

in[7] : the maximum allowed number.of successive in[6] 

times halved step vectors. suitable values are 1 



out 

and 2; 

<array identifier>; array out[1 : 9]; 

in array out information about the termination of the 

process is delivered. 

exit 

out[1] : 

the process was terminated because (out[1] =) 

1.the norm of the residual vector is smal 1 with 

respect to in[4], 

2.the calculated newton step is sufficiently small 

(see in[1], in[2]), 

3.the calculated step was completely damped (halved) 

in in[7] successive iterations, 

4.out[4] exceeds in[5], the maximum allowed number of 

calls of funct, 

5.the jacobian was not full-rank (see out[8]), 

6.funct delivered false at a new vector of 

estimates of the unknowns, 

7.funct delivered false in a call from jacobian. 

out[2] : the euclidean norm of the last residual 

vector. 

out[3] : the euclidean norm of the initial residual 

vector. 

out[4] : the total number of calls of funct. 

out[4] will be less than in[5] + in[6]. 

out[5] the total number of iterations. 

out[6] the euclidean norm of the last step vector. 
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out[7] : iteration number of the last iteration in 

which the newton step was halved. 

out[8], out [9] : 

rank and maximum column norm of the jacobian matrix 

in the last iteration, as delivered by lsqortdec 

( NUMAL [16] ) in aux[3] and aux[S]. 

data and results 

the procedure gssnewton can be used for approximating an exact or a 

least squares solution of a system of nonlinear equations. when an 

exact solution is required, the procedure may terminate only with 

out[1] = 1, and very small values should be assigned to in[1] and 

in[2]. when a least squares solution is required, positive results 

of the procedure are signaled by out[l] = 1 or 2. whenever the 

procedure terminates with out[l] < 5, then the inverse of J* x J 

(see meaning of the parameter jjinv) is delivered in jjinv. in 

that case the covariance matrix and the standard deviations of the 

solution can be calculated. 

for a curve fitting problem, say 

estimate parameters par[l], , par[n] of a function 

y = f(x; par[l], ••• , par[n]), when a set of data (x[i],y[i]), 

= 1 (l)m, has to be fitted, 

the following system of m equations in the n unknown parameters 

par[l], ••• , par[n] can be derived: 



f(x[i]; par[l], ••• , par[n]) - y[i] = 0, = 1 ( 1) m. 

procedures used ( NUMAL·[16_]): 

vecvec = cp34010, 

dupvec = cp31030, 

elmvec = cp34020, 

lsqortdec = cp34134, 

lsqsol = cp34131, 

lsqinv = cp34136. 

source texts 

code 34440; 

procedure marquardt(m,n,par,g,v,funct,jacobian,in,out); 

value m,n; integer m,n; array par,g,v,in,out; 

boolean procedure funct; procedure jacobian; 

begin integer maxfe,fe,it,i ,j,err; 

real vv,ww,w,mu,res,fpar,fparpres,lambda,lambdamir., 

p,pw,reltolres,abstolres; 

a r ray em [ 0 : 7] , v a 1 , b , b b , pa r p res [ 1 : n] , j a c [ 1 : m , 1 : n ] ; 

procedure mulcol(l,u,s,t,a,b,x); code 31022; 

procedure dupvec(l,u,s,a,b); code 31030; 

real procedure vecvec(l,u,s,a,b); code .34010; 

real procedure matvec(l,u,s,a,b); code 34011; 
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real procedure tamvec(l,u,s,a,b); code 34012; 

real procedure mattam(l,u,s,t,a,b); code 34015; 

integer procedure qrisngvaldec(a,m,n,val ,v,em); 

code 34273; 

procedure locfunct(m,n,par,g); 

integer m,n; array par,g; 

begin fe:= fe+l; .!.f. fe ~ maxfe then err:= 1 else 

.!.f. ~ funct(m,n,par,g) then err:= 2; 

.!.!_err+o then goto exit 

end locfunct; 

vv:=10; w:=0.5; mu:= 0.01; 

ww:=(.!.f. in[6]<10-7 then 10-8 else 10-lxin[6]); 

em[0]:=em[2]:=em[6]:=in[0]; em[4]:=10xn; 

reltolres:=in[3]; abstolres:=in[4]+2; maxfe:=in[5]; 

err:= 0; fe:= it:= 1; p:=fpar:= res:= 0; 

pw:=-ln(wwxin[0])/2.30; 

.!.f. ~ funct(m,n,par,g) then 

begin err:= 3; goto escape end; 

fpar:= vecvec(l ,m,0,g,g); out[3]:=sqrt(fpar); 

for it:= 1, it+l while fpar > abstolres A 

res> reltolresxfpar+abstolres do 

begin jacobian(m,n,par,g,jac,locfunct); 

i :=qrisngvaldec(jac,m,n,val ,v,em) ;· 

if it=l then 



lambda:= in[6] x vecvec(1 ,n,O,val,val) else 

_!i p =O then lambda:= lambdaxw else p:= O; 

for i:=1 step 1 until n do 

b[ i] :=va 1 [ i ]xtamvec(1 ,m, i ,jac,g); 

1: for i :=1 step 1 unt i 1 n do 

bb[i]:=b[i]/(val[i]xval[i]+lambda); 

for i:=1 step 1 until n do 

parpres[i] := par[i] - matvec(l ,n, i ,v,bb); 

locfunct(m,n,parpres,g); 

fparpres:= vecvec(1,m,O,g,g); 

res:=fpar-fparpres; 

_!ires< mu x vecvec(1 ,n,O,b,bb) then 

begin p:= p+1; lambda:= vv x lambda; 

end• __ , 

_!i p=l then 

begin lambdamin:= ww x vecvec(l ,n,O,val ,val); 

if lambda<lambdamin then lambda:= lambdamin 

end· _, 

_!i p<pw then goto else 

begin err:= 4; 

goto exit 

end· __ , 

dupvec(1 ,n,O,par,parpres); 

fpar :=fparpres 

end iteration; 
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exit: 

for i:=1 step 1 until n do 

mu 1 co 1 ( 1 , n, i , i , j ac, v, 1 / ( va 1 [ i ] +in [ 0])) ; 

for i:=1 step 1 until n do 

for j:=1 step 1 until do 

v[i,j]:= v[j,i]:= mattam(l,n,i,j,jac,jac); 

lambda:= lambdamin:= val[l]; 

for i:= 2 step 1 until n do 

..!..!. val[i]>lambda then lambda := val[i] else 

..!..!. val[i]<lambdamin then lambdamin:= val[i]; 

out[7]:=(lambda/(lambdamin+in[0]))+2; 

out[2]:=sqrt(fpar); 

out[6]:=sqrt(res+fpar)-out[2]; 

escape: 

out[4] :=fe; 

OU t [ 5 ] : = i t -1 ; 

out[l]:=err 

end marquardt; 

code 344lil; 

procedure gssnewton(m, n, par, rv, jjinv, funct, jacobian, 

in, out); 

value m, n; integer m, n; 

array par, rv, jjinv, in, out; 



boo1ean procedure funct; 

procedure jacobian; 

begin integer i, j, inr, mit, text, 

it, itmax, inrmax, tim, feva1, feva1max; 

rea1 rho, resl, res2, rn, re1to1par, absto1par, absto1res, 

stap, normx; 

boo1ean conv, testthf, damping on; 

array jac[l :m + 1, 1 :n], pr, aid, so1 [1 n], fu2[1 ml, 

aux[2 : 5]; 

integer array ci[l:n]; 

rea1 procedure vecvec(1, u, shift, a, b); code 34010; --
procedure dupvec ( 1 , u, s, a, b) ; code 31030; --
procedure e 1 mvec ( 1, u, s, a, b, x); code 34020; 

procedure 1 sqortdec (a, m, n, aux, aid, Ci); code 34134; 

procedure 1sqso1 (a, m, n, aid,ci,b); code 34131; 

procedure 1sqinv(a, n, aid, Ci); code 34136; 

boo1ean procedure 1oc funct(m, n, par, rv); 

va1ue m, n; integer m, n; array par, rv; 

begin 1oc funct:= test thf:= funct(m, n, par, rv) 

A test thf; feva1:= feva1 + 1 

end 1oc funct; 

itmax:= feva1max:= in[5]; aux[2]:= n x ,in[0]; tim:= in[7]; 

re1to1par:= in[l] + 2; absto1par:= in[2] + 2; 
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abstolres:= in[4] + 2; inrmax:= in[6]; 

dupvec(l, n, 0, pr, par); 

if m < n then 

for i:= 1 step 1 until n do jac[m + 1, i]:= 0; 

text:= 4; mit:= 0; test thf:= true; 

res2:= stap:= out[5]:= out[6]:= out[7]:= 0; 

funct(m, n, par, fu2); rn:= vecvec(l, m, 0, fu2, fu2); 

out[3]:= sqrt(rn); feval:= 1; damping on:= false; 

for it:= 1, it+ 1 while it< itmax A 

feval < fevalmax do 

begin out[5]:= it; jacobian(m, n, par, fu2, jac, locfunct); 

if~ test thf then 

begin text:= 7; goto fail end; 

lsqortdec(jac, m, n, aux, aid, ci); 

.!..f. aux[3] f n then 

begin text:= 5; go to fail end; 

lsqsol{jac, m, n, aid, ci, fu2); dupvec(l, n, 0, sol, fu2); 

stap:= vecvec(l, n, 0, sol, sol); 

rho:= 2; normx:= vecvec(l, n, 0, par, par); 

.!..f. stap > reltolpar x normx + abstolpar 

v it= 1 A stap > 0 then 

begin for inr:= 0, inr + 1 

while if inr = 1 then damping on v res2 > rn 

else~ conv A (rn ~ resl v res2<res1) do 

begin comment damping stops when 

r0 > rl A rl < r2 (best result is xl, rl) 

with xl = x0 +ix dx, i:= 1, .5, .25, .125, etc. ; 

rho:= rho/ 2; if inr > 0 then 



begin res1:= res2; dupvec(1, m, 0, rv, fu2); 

damping on:= inr > 1 

end· __ , 
for i:= 1 step 1 until n do 

pr[i]:= par[i] - sol[i] x rho; 

feval := feval + 1; 

.!..!_ ~ funct(m, n, pr, fu2) then 

begin text:= 6; goto fail end; 

res2:= vecvec(1, m, 0, fu2, fu2); conv:= inr > inrmax 

end damping of step vector; 

if conv then 

begin comment residue constant; mit:= mit + 1; 

if mit < tim then conv:= false 

end else mit:= 0; 

if inr > 1 then 

begin rho:= rho x 2; elmvec(1, n, 0, par, sol, - rho); 

rn:= res1; if inr > 2 then out[7]:= it 

end else 

begin dupvec(1, n, 0, par, pr); rn:= res2; 

dupvec(1, m, 0, rv, fu2) 

end· __ , 

if rn < abstolres then 

begin text:= 1; itmax:= it end else 

if conv A inrmax > 0 then 

begin text:= 3; itmax:= it end 

else dupvec(l, m, 0, fu2, rv) 

end iteration with damping and tests else 
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begin text:= 2; rho:= 1; itmax:= it end 

end of iterations; 

lsqinv(jac, n, aid, ci); 

for i:= 1 step 1 until n do 

beg i n j j i nv [ i , i ] : = j ac [ i , i ] ; 

for j:= i + 1 step 1 until n do 

jjinv[i,j]:= jjinv[j,i]:= jac[i,j] 

end calculation of inverse matrix of normal equations; 

fa i 1 : 

out[6]:= sqrt(stap) x rho; out[2]:= sqrt(rn); out[4] := feval; 

out[l]:= text; out[8]:= aux[3]; out[9]:= aux[5] 

end gssnewton; 


