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Nonlinear parameter estimation in initial value problems 

by 

B. van Domselaar & P.W. Hemker 

ABSTRACT 

In this report an algorithm is presented for the estimation of para­

meters in differential equations. Parameters are obtained in the least 

squares sense. For the minimization for the sum of squares Marquardt's 

method is used. A multiple shooting technique is implemented in order to 

improve bad initial estimates of the parameters. The algorithm also pro­

vides confidence regions for the parameters obtained and other relevant in­

formation about the significance of the data with respect to the parameters 

asked for. A number of numerical results are reported and, finally, the al­

gorithm is described in the algorithmic language ALGOL 60. 

KEY WORDS & PHRASES: Curve fitting, parameter estimation, multipoint 

boundary value problems, mult1:ple shooting. 
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11)UCTION 

this report we consider parameter estimation in a model of a phys-

1tem, which is described by a system of ordinary differential equa­

•he parameters may appear both in the differential equations and in 

:esponding initial conditions. 

;ore discussing the method for estimating the parameters in a given 

1e briefly go into the philosophical background of parameter esti-

~ameter estimation is an important practical problem since it estab­

J link between essential parts of experimental science. The relation 

the scientist, his tools and his materials can be illustrated in 

1.-owing scheme: 

research 
~ - I 

worker 
\ system under 

i 
~l with free parameters and 

investigation 

their reliability t 
3.rameters 

experimental 

"' 
,._ 

data 
numerical - I 

~ 

analysis 

is fundamental that one never can prove a model to be the correct 

~re is, however, the possibility to reject the wrong ones, namely 

t::liscrepancy appears between the data and the model. It is important 

what role the parameters play in this context: each parameter rep­

a degree of freedom in the model. The parameters have to be chosen 

-at the model is consistent with the system under investigation, that 

~e is no discrepancy between data and model. Moreover, it is often 

le that the model is unique, that is, there is no freedom left. 

<::;orrect operational model (that is a model which is consistent and 
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unique) it should be possible to predict the future behaviour of a physical 

system. 

Whether a model is consistent or not, can be concluded from a discrep­

ancy with the data in two ways. Either a parameter is found that lies out­

side the allowed parameter space, or the model does not fit the data, even 

with the best set of parameter values, In this case we have to reject the 

model and to construct another one. 

On the other hand we can observe that the model is not unique in two 

ways. Either the parameters can not be determined uniquely, that is, the 

data allow the parameters to lie in a large subspace of the allowed parame­

ter space, or the model fits the data too well, that is, the model fits the 

data within an error which is less than the experimental error in the data. 

In this case we have to simplify the model in order to obtain a unique mod­

el. 

In relation to these important questions, it is clear that not only 

estimates of the parameters have to be determined, but also estimates for 

their reliability. This reliability, in its turn, is tightly connected with 

the accuracy and the reproducibility of the experimental data. Yet, it is 

even more connected with what data are taken from the physical system. 

2. THE MATHEMATICAL PROBLEM 

Mathematically, the parameter estimation problem can be stated as fol­

lows: A set of n differential equations with their initial conditions is 

given: 

{ 
y'(t,p) = g(t,y,p) 

m ..n n m n . where y: Rx R -+ .IK and g: Rx R x R -+ R are functions, t is a real 
m variable and p ER represents the vector of parameters. In the process con-

sidered, p has the value p*, which is unknown. The problem is to deduce an 

estimate p of the vector p*. 
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Suppose we have a set of observations (t. ,y. ), i=l, ... ,k, where y. is 
1 1 1 

an observed value of a component of y for the value of the argument t .. 
1 

Denote the vector of observations Y by 

T 
y = (y1,···,Yk) 

and the function Y: ]Rm -+ Rk by 

I\ 

Y(p) = 

I\ 
where y(t. ,p) is that component of y(t.,p) which corresponds to the observed 

1 1 

value y., 1 5 i 5 k. 
1 

Now, we may define the residual function f: Rm ➔ Rk, depending on p, by: 

I\ 

f(p) = Y(p) - Y. 

Then the problem consists of the determination of that vector p which min­

imizes the sum of squares 

( 2. I) 2 
= l!f(p)ll 2 , 

where II 11 2 is the Euclidean norm. 

Minimizing the sum of squares has the advantage of computational con­

venience. Moreover, under the assumption that the error in the data are sta­

istically independent and normally distributed with zero mean and variance 
2 a , least squares has the expedient property that confidence intervals for 

the computed parameters can easily be derived. The assumption on the vector 

of errors n in the vector of observations Y is denoted by the covariance 

matrix of n 

T 
E(nn ) 

2 a I, 

where I is the unit matrix. 
I\ 

For the computation of the vector of theoretical values Y(p) we use a 
numerical integration process. 
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3. MINIMIZING THE SUM OF SQUARES 

In this section we give an outline of the method used for minimizing 

F(p). Details of the method have been published in BUS et al. [3]. 

Denote the gradient vector V F(p) by 

(3. l) 
T VF(p) = 2 J (p) f(p), 

where J(p) is the Jacobian matrix of partial derivatives of the residual 

function with the entries 

a f.(p) a ~.(p) 
]. ]. 

J .. (p) = ---= ---
1.J ap. ap. 

J J 

, i=l, ..• ,k, j=l, .•. ,m. 

Starting with an initial approximate p, we seek a stepvector op, i.e. a 

correction top, such that 

(3.2) V F ( p+op) = 0. 

A Taylor series expansion of (3.2) yields 

T T T 3 T I 12 J (p+op) f(p+op) = J (p) f(p) + J (p) J(p) op+ <apJ (p)) f(p)op + 0 op . 

By neglecting the higher order terms and the term with the derivative of 

JT(p) we obtain 

(3. 3) 

This linear system is the starting point for the Gauss-Newton method. The 

diaadvantage of this method is well known: it fails if the Jacobian matrix 

J(p) is (nearly) singular. Then the length of op becomes too large. This 

problem is forestalled in the method of Marquardt (cf. MARQUARDT [8]). Here 

the stepvector op is determined by 

(3.4) T T (J (p) J(p)+\I)op = - J (p) f(p), 



where A is some nonnegative scalar. 

For A=O the vector op is equal to the vector defined by equation (3.3). 

If A tends to infinity the direction of op tends to the "steepest descent" 

direction and its length tends to zero 

T 
op~ - J (p) f(p)/A. 

5 

The problem is now to find a proper choice of A. In our implementation equa­

tion (3.4) sometimes will be solved for various values of A. In order to 

avoid superfluous calculations the singular value decomposition of J(p) is 

used: 

(3. 5) J(p) 

where U(p) E Rk x Rm and V(p) E Rm x Rm are orthogonal matrices and 

ICp) E Rmx l{m, with ICp) = diag(cr 1 , ... ,crm) is the diagonal matrix of sin­

gular values. 

Substituting (3.5) in (3.4) yields 'the stepvector op by 

(3. 6) 

After a successful iteration step, i.e. after a computation of op such that 

F(p+op) < F(p), the vector p + op will be taken as a new initial approxima­

tion in the next iteration step. The iteration process is stopped if the 

change in the sum of squares is less than an a priori given tolerance. 

Obviously, this tolerance should depend strongly on the accuracy of the ob­

served vector Y. 

4. INTEGRATION OF THE DIFFERENTIAL EQUATIONS 

I\ 

For minimizing F(p), we need the residual function f(p) = Y(p) - Y and 
A 

the Jacobian matrix J(p). For the computation of Y(p) we have to solve the 

system of differential equations which describes the model: 
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y'(t,p) = g(t,y,p) 
(4.1) 

The Jacobian matrix is computed from a family of systems of differential 
a 

equations derived from (4.1). For each component of p we solve yp = apy(t,p) 

from the system: 

(4.2) gp(t,y,p) 

a 3y Yo(p), 

where g (t,y,p) 
p 

a a 
= ap g(t,y,p) and gy = ay g(t,y,p). 

In this way, we have one additional set of differential equations for each 

component of p. This yields a large set of differential equations: 

y'(t,p) = g(t,y,p) 

(4.3) 

y' (t,p) = g (t,y,p) + g (t,y,p) y (t,y,p) 
Pt Pt y P1 

y (t,p) = g (t,y,p) + g (t,y,p) y (t,y,p). 
Pm Pm y Pm 

This set contains one system of nonlinear differential equations and m sys­

tems that are coupled with the first system. Each of these additional sys­

tems is linear in the dependent variable y. The structure of system (4.3) 
p 

can be clarified by its jacobian matrix: 

gy 
0 

gyp gy 
I JAC = 

0 . 

gyp 
m 

gy 

where 

This Jacobian matrix clearly demonstrates the one-way coupling in the system. 
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In addition we notice that the eigenvalues of JAC are all equivalent with 

the eigenvalues of g and thus the stability behaviour of system (4.1) and y 
system (4.3) is similar. 

For the solution of system (4.3) we use an implicit linear multistep 

method, viz. Gear's stiffly stable method (see HEMKER [5]). In each step of 

the integration process, first the independent set of n differential equa­

tions is considered. For each integration step, the computation of y implies 

the solution of the system of n nonlinear algebraic equations: 

where yk denotes the value of yin the k-th integration step and the vector 

~k contains information about a number of previous steps. After a choice of 

a suitable starting value yk (O) this system is solved by a modified Newton­

Raphson method: 

(4.4) 

When this iteration process has converged, we integrate the additional m 

systems of linear equations directly by 

(4.5) 

Here, we use the L-U-decomposed form of (I-hSgy(t,yk,p), that was already 

available from (4.4). 

The possibility of coupling the integration of (4.1) with the integra­

tion of (4.2) with this ease, depends crucially on the linear form of the 

integration formula used. It cannot be achieved, for instance, with Runge­

Kutta methods. By (4.4) and (4.5), we compute the residual function f(p) 

and the Jacobian matrix J(p) row after row, when we are integrating (4.3). 
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5. THE MULTIPLE SHOOTING TECHNIQUE 

When starting the minimization of F(p), it is also desirable to have 

good initial estimates of p. Because of the nonlinearity in p of y(t,p), 

the sum of squares F(p) may have more than one local minimum. We use a mul­

tiple shooting technique (see for instance STOER & BULIRSCH [9]) to create 

good initial estimates of p. This technique easily fits into the parameter 

estimation method described in section 3. 

We divide the interval of integration [t0 , tk] into£+ 1 parts, de­

noted by a set of break-points {T 1, ••• ,T£}, which is a subset of {t1 , ..• ,tk}. 

Denote,TO = t 0 and TQ,+] = tk. 
~ m+Q, Let p ER be an expanded vector of parameters such that 

Here p . , I :::; i 
A * ID+l 

Y(p ), viz. pm+i 

Denote 

$£,represents an estimate of a component of the vector 
A * Y(T.,p ). 

1 

y(t;T.,p) = y(t,p) fort E [T., T. 1], i=O, ... ,£. 
l. l. 1.+ 

Successively, on each interval [T., T. 1], an initial value problem is 
l. 1+ 

solved. On the interval [TO, T1 J the integration is started with the ini-

tial conditions: 

(5. 1) 

Thereafter, on the intervals [T.,T. 1], i=I, ... ,£, the integration is con-1. 1.+ 
tinued with the initial conditions 

(5.2) y(T.;T.,p) := y(T.-T. 1,p), 
l. 1 1.• 1.-

for all components of y, except for that particular component of y(T.;T. ,p) 
l. l. 

for which we have an additional estimate p .. For this component we have m+1. 



(5.3) 
I 

-¥ Yj 
I 
I 

. I A ~ Pm+1.....__ y(t;T.,p) 
I ~ i 

I 
I 

/\ ( ~) /\ ( ~) y t•T. 1 ,P 1 yT.;T. 1 ,p 
~ 1- · I 1 1.-

I 
I 
I 
I 
I 

T .=t. 
1. J 

Fig. 5.1. 
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For these additional estimates, i.e. the extra parameters p 1, ••• ,p O , m+ m+,., 
we have initial estimates available from physical knowledge, viz. the ob-

servations of ~(T 1,p), ... ,~(Ti,P). 

(5.4) 

Hence, we have to solve the initial value problems 

y'(t,p) = g(t,y,p), t E [T.,T. 1], i=O, ... ,t, 
1 1+ 

with the initial conditions given by (5. I), (5.2) and (5.3). 

Now, beside the least squares conditions for the parameter p, we also have 

to satisfy the continuity conditions 

p . = y(T.;T. 1 ,p), i=l, ... ,£. 
m+1 1 1-

We add these conditions with a weighting factor M, to the original least 

bl d f . d "d 1 f . ~f· . ..,m+£ ~ =k+£, squares pro em. We e 1.ne the expan ed res1 ua unction ~ ~ .m. 

depending on p and M, by 

f (p,M) = 

y(tkj) - yk 

(y(TI;TO,p) - Pm+l) * M 
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and we have to minimize the sum of squares 

~ ~ ~r ~ 

F(p,M) = f (p,M) f(p,M). 

Th d d . . ~ ( ~ ) k + £ m+ £ • • e expan e Jacobian matn.x J p ,M E R x R is the matrix of partial 

derivatives of the expanded residual function and has the following form: 

JcP,Ml - (:J , 
where G1 E Rk x Rm+Q, with 

I\ ~ ay(t.,p) 
1 

(GI) .. = " 
l.J opj 

G2 E JI:/ x RmH with (G 2 ) .. = [~a (~(T. ;T. 1 ,p) - p . , * M. 
l.J p. 1 i- m+i 

J 

Further, the method is completely analogous to the method with a single 

interval of integration. 

During minimizing F(p), we may enhance the continuity conditions by increas­

ing the weighting factor M. On the other hand, we may omit a break-point 

and the corresponding parameter if the continuity condition is (almost) 

satisfied. Of course, we omit all extra parameters if sufficiently accurate 

initial estimates for p have been obtained. 

The advantage of the technique discussed is that a priori knowledge a­

bout a state-variable Y is used to obtain reasonable initial estimates for p. 

6. THE ALGORITHM 

Using the ideas described in the previous sections we construct algo­

rithm A. An implementation of this algorithm, written in the form of an 

ALGOL 60 procedure, is given in appendix I to this report. We distinguish 

in algorithm A the following four blocks: 

Al: initialisation. 

The following input must be given: 

* an approximation Po top; 

the observations (t.,y.), i=l, •.. k; 
1 1 



tolerance 

weighting 

tolerance 

values e:' and e:' · r a' 
factors M1, ••• ,M such that M. 1 > M., i=I, .•. ,s-1; 

S 1+ 1 

values e: (M1), .•• ,e: (M) and e: (M1), ... ,e: (M ). 
r r s a a s 

A2: first integration: rejecting or aaaeptin.g the given break-points. 
A 

Let p . be that component of Y corresponding to y(T.,p), i=l, ••. ,£0 • 
~1 1 

The initial conditions for the integration of the system 

( 6. l) y'(t,p) = g(t,y,p) 

11 

on the interval [T0,T 1] are given by (5.1). Perform the following block 

for i= I, ... , £0 + l : 

Perform the integration of (6.1) on the interval [T. 1,T.]. 
1- 1 

The choice of the initial conditions on the next interval are es­

tablished by the following test. If the continuity condition 

IA ~ I y(T.;T. l,p) - p . < e:a(Ml) 
1 1- m+1 

is satisfied, then the break-point T. and the parameter p . are 
1 m+1 

discarded and the initial conditions for the integration of (6.1) 

are given by (5.2). Otherwise the initial conditions are given by 

(5.2) and (5.3). 

Suppression of the break-points that have been discarded during this 

first integration and subsequent renumbering of the remaining break­

points yields a new set {T 1, ••. ,T11 } and a new set of corresponding 

parameters p 1, .•• ,p O , where £1 ~ £0 . m+ m+,., 1 

Block A3 is performed K times. Here K=min(t,s), where tis the smallest non­

negative integer for which it+l = 0 ands is the number of given weighting 

factors. 

A3: itePation step, j=l, •.• ,K. 

Minimize F(p,M.) by Marquardt iteration, with the set of break-points 
J 

{T 1, ••• ,Tij}. Stop this process if after an iteration step it turns out 

that 
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F(p,M.) - F(p+op,M.) 
J J 

:S s (M.) F(p+op,M.) + s (M.) 
r J J a J 

or 

F(p+op,M.) s s (M.). 
J a J 

Discard break-point Ti and parameter Pm+i if the continuity condition 

l~(T.;T. 1,p) - p .1 < E (M. 1), i=l, .•• ,£., i i- m+i a J+ J 

is satisfied. Renumbering the remaining break-points and parameters 

delivers the next set {T 1, ••. ,T£j+l} with the corresponding parameters 

Pm+ 1 , •.. , Pm+,Q,. where £. 1 s £ .• 
J+l' J+ J 

A4: minimization without b~eak-points. 

Let p be an approximation top, delivered after K iteration steps A3. 

Minimize F(p) by Marquardt iteration and stop this process if, after 

an iteration step, it turns out that 

F(p) - F(p+op) s s; F(p+op) + E~ 

then set p = p + op 

7. STATISTICS 

or F(p+op):,; EI a, 

As was pointed out in section I, it is essential to the problem to find 

not only a set of parameters p, but also estimates for their reliability. 

For the error n. in the observed value y. we assume an N(O,a2) distri-
i i 

bution and so it follows from (3.4) that the error in the estimated value p 
will also be normally distributed. As a first approximation, it is assumed 

that f(p) is linear in pin a sufficiently large neighbourhood of p. When 

f(p) is moderately nonlinear an adjusted theory for confidence regions can 

be found in BEALE [21. 

The approximate confidence region is that set of values of p for which 



F(p) - F(p) 
2 ~ma F (m,k-rn), 

t.t 
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where F (m,k-m) is the upper a probability point of the Fisher-distribution 
0. 

with m and k-m degrees of freedom. 

We may use 

2 as an adequate independent estimate of a • 

Expanding f(p) in Taylor series and retaining only terms up to the first 

order yields 

f(p) = f(p) + J(p) op, 

where 5 = p-p. 
p 

Then from (2.1) and JT(p) f(p) = 0, it follows innnediately that 

where J = J(p). 

Thus, the confidence region will be an ellipsoid 

(7. 1) 

where m -
t: = -k F(p) F (m,k-m). -m a 

From this ellipsoid we can derive some individual confidence intervals for 

p .• For example, the dependent interval with the ends 
l. 

p. + op. (I), where 
l. l. 

(7. 2) 

(I) 'v- T op. = 1c:/(JJ) .. l 
l. 1.1 

and the independent interval with the ends 
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P. + op~ 2), where 
1. - l. 

(7. 3) 

Geometrically regarded, the axis op. intercepts 
1. 

the ellipsoid at point op~!) 
l. 

from the centre of the ellipsoid. The tangent planes to 

normals to the direction of op. are defined by equation 
l. 

mensions this is illustrated by fig. 7.1. 

the ellipsoid with 

(7.3). In two di-

More information about the ellipsoid can be gained from the matrix JTJ. 

Using the singular value decomposition (cf.eq.(3.5)), the confidence region 

is given by 

T 
where oq = V op. This indicates that the principal axes of the ellipsoid 

coincide with the column vectors of V. Moreover, the lengths of the axes 

are: 

(7. 4) oq. = Ii.fa., i=l, ..• ,m, 
l. 1. 

where a. 1.s the i-th diagonal element of l· 
1. 

Equation (7.4) states that the longest axis, corresponding to the smallest 

singular value, defines the worst-determined direction in the parameter 

space. The shortest axis (largest singular value) defines the best-deter­

mined direction. 

\ 
\ 

\ 
\ 

0 

\ 
\ 

Pz 

Fig. 7.1. 

\ 
\ 

\ 
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We denote the deviation of the least squares estimate p from the true 

* value p by op. Hence the expectation of op will be zero and the covariance 

matrix of op reads: 

E(opopT) = E((JTJ)-1 JT f(p) fT(p) J(JTJ)-1) = 
= (JTJ)-1 JT E(f(p)fT(p)) J(JTJ)-1 = 

= 0 2(JTJ)-l = 0 2 Q QT, 

wherethecolumns of Q = VE-I are the principal axes of the ellipsoid (7.1). 

Since the singular value decomposition of J is available during the compu­

tation process, this information can easily be obtained. From the covariance 

matrix we readily derive the correlation matrix with entries 

where Q. and Q. are the i-th and j-th row vector of Q, respectively. 
i J 

In most cases, these considerations give sufficient information about 

the reliability of the estimate p. 

8. NUMERICAL RESULTS 

The ALGOL 60 version of algorithm A (see Appendix I) was tested on sev­

eral problems and in this section we give the results of the tests, with 

some discussion. The testing has been performed on a CD-Cyber 73-28 com­

puter. 

The first five problems have been taken from HEMKER [6], where also in­

formation about the origins of the problems and the corresponding experimen­

tal data can be found. 

Henceforth, a single integration of the coupled system (4.3) over the 

interval [t0 ,tk] will be called a function evaluation. A function evaluation 

is performed in order to obtain the residual function f(p) as well as the 

Jacobian matrix F(p). For each problem, we give the number of function eval­

uations needed to obtain a certain relative and absolute precision for the 

sum of squares F(p). The values of the relative and absolute precision, 
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E 1 and E', have been provided, dependent on the accuracy of the data. r a 
We will also give the relative starting value of A used, i.e. A0 • This 

value is required as an input parameter when using the implementation of 

the method of Marquardt, that is available in the software library NUMAL 

(see Hemker [7]). 

In order to obtain information about the reliability of the estimates 

p~ the correlation matrix, the covariance matrix and 1% confidence inter­

vals (c.f. eq. (7.3)) were calculated. 

We have tested the algorithm with and without break-points. The use of 

break-points implicates one additional integration of system (4.1) (see 

Appendix I). 

I) The ESCEP-probZem. 

This problem originates from biochemistry and represents a set of 

coupled chemical reactions. The mathematical model has the following form: 

dyl 
dt = - (l-y2) Yt + P2Y2 

Observations were obtained by means of a simulation run with the parameter 

values 

T 
p = (1000,0.99,0.0I) • 

The differential equation, which is stiff, was solved over the range 

0 $ t $ 30. The value of y2 increases rapidly for a short initial period 

and then almost remains in a steady state. 

We have tested our algorithm with five different sets of observations: 

A. values of y 1(t) and y2(t) from the simulation run, rounded to four dec­

imal places, for the values 

t = 0.0002 (0.0002) 0.002, 0.02(0.02) 0.1,· 1.0, 2.0, 5.0 (5.0) 30.0. 
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B. as A, but only the observations of y2(t) were taken. 

C. as B, but every second observation of B was left out. 

D. as B, but with values for t < 0.04 excluded. 

E. as B, but with values for t > 0.04 excluded. 

In all cases, the starting values of the parameters were 

T Po= (1600,.8,1.2) , 

and the relative starting value of A was AO= lO - 2. 

The parameters in the model are the rate constants of the chemical re­

actions and its values are nonnegative. We take advantage of this informa­

tion and scale the parameters by estimating their natural logarithms. 

We tested the algorithm with three break-points and without break­

points. The number of function evaluations, needed to fit the data within 

four decimals accuracy, are given in table 8.1. 

Table 8. 1 

A B C D E 

0 break-points 9 13 9 12 s*) 

3 break-points 1 I 1 I 12 1 1 7*) 

*) the model did not fit the data within the accuracy 

of four decimals. 

A complete testrun with data Bis given as an illustration in Appendix I. 

The model with data A,B or C is a correct operational model, since 

each set of data contains information from the initial as well as from the 

steady state period of y 2 • The calculated confidence intervals of the nat­

ural logarithms of the estimates were: 

These (absolute) confidence intervals for the logarithms are simply related 

to the (relative) confidence intervals of the original parameters. For ex-
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ample, a deviation of 0.05 in ln(p) corresponds to a relative accuracy of 

about 5% in p. 

The data D consist of observations only from the steady state period. 

The model is consistent with data D but not unique. The first parameter in 

the model, which is responsible for the behaviour of y2 in the initial 

period, could not be determined and kept the value 1600. 

With data E, which only consist of observations from the initial pe­

riod, the other two parameters cannot be determined. The model seems to be 

not consistent with the data E. The sum of squares attained the value 

F(p) = A10-5 and this value could not be improved. The parameters became 

the values: 

T p = (997.15, 0.470, 0.526) 

and the confidence intervals of their natural logarithms were 

T op= <= o.97 10-2, ± 1.11, ± 1.01) • 

2) Bellman's problem 

This test problem originates from a chemical reaction and the differ­

ential equation reads: 

The 14 observations of y 1 are given in one decimal place accuracy. The pa­

rameters p1 and p2 are the rate constants of the chemical reactions and the 

values are small and have a different order of magnitude. Therefore it is 

advised to scale the parameters by estimating the logarithms. Nevertheless, 

we did not follow this advice in the first instance. 
T The starting values of the parameters were Po= (10-6, 10-4) , and our 

algorithm found the estimates 
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with the confidence intervals 

and the calculated sum of squares was F(p) = 22.0. 

The problem is ill conditioned and this can be seen from the condition 

number of JT(p) J(p) which was about 10+6. The influence of the value of AO 

on the progress of the process is illustrated by table 8.2. The smaller the 

value of A0 , the smaller is the number of function evaluations needed to 

obtain the given results. This is due to the starting values of the param­

eters which are close to the final estimates. 

Table 8.2 

A = 
0 10-2 >- = 0 10-3 A = 

0 10-4 

0 break-points 20 16 13 

2 break-points 18 15 I I 

By estimating the natural logarithms of the parameters the problem 

becomes well conditioned and only 4 function evaluations were needed to ob­

tain the same results. 

3) Gear's problem. 

This problem also originates from chemical reactions and these reactions 

are described by the following system of differential equations: 

dt 

y 1(0) = 0.25, y 2(0) = 0.5. 
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The 4 observations of both y1 and y2 were given in 3 decimal places accura­

cy. The starting values of the parameters were 

T 
Po= (1,1,1,I) . 

The solution found was 

p = (0.7943, 0.8441, 0.8956, 0.9433)T 

and the confidence intervals were 

T 
op=(± o.034, ± o.o3o, ± 0.064, ± o.078) . 

The problem was tested with AO= 10-4. 

The model is not unique, since it fits the data within an error which 

is less than the experimental error in the data. With two break-points, 

4 function evaluations were needed to obtain these results and without break­

points 3 function evaluations were needed. 

4) Barnes' probiem. 

The following system of differential equations describes a set of 

coupled chemical reactions, which has many applications in theoretical biol­

ogy. 

The 10 observations of both y 1 and Yz were given in two decimal places accu­

racy. The results show that the model is not consistent with the data, since 

the sum of squares did not attain the accuracy of the data. 



The starting values of the parameters were 

T 
Po = ( I , 1 , I . 3) 

and the parameters obtained were 

p = (0.86, 2.07, 1.8l)T 

with the confidence intervals 

T op= (± 0.19, ± o.35, ± o.38) 

and the calculated sum of squares in the minimum was 

F(p) = 0.164. 

The problem was tested with \ 0 = 10-2. 
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In order to obtain these results, 6 function evaluations were needed with­

out using break-points and 7 function evaluations were needed when using 

3 break-points. 

5) The exponential fitting problem 

This artificial problem has the property that the parameters also ap­

pear in the initial values of the differential equations. 

We consider the sum of exponentials 

( 8. I) 

To this function, a system of linear differential equations is associated 

BIBLIOTHEEK MATHEMATISCH c· ·-­
-AMSTERDAM--· 
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The initial conditions are 

yl(O) = P1 + P3 + P5 

y2(0) = P1P2 + P3P4• 

The 17 observations of y 1 were obtained from equation (8.1) in an accuracy 

of four decimal places, using the parameter values 

T p = (-3, -20, +2, -1, +1) , 

for the values t = .02( .02) .1, .2( .2) 1.0, 5.0(5.0) 20.0. 

We have tested this problem with AO= 10-4 and with starting values of the 

parameters 

T Po= (-5, -10, +5, -.5, +.5) . 

Both with two break-points and without break-points the algorithm attained 

the given solution after 10 function evaluations. 

6) The enzyme effusion after a heart-infarct (see VAN DOMSELAAR [4]) 

This problem involves fitting a model of enzyme effusion into the blood 

after a heart-infarct. Shortly after a heart-infarct the enzyme activity 

in the blood is large, thereafter it decreases by demolition to its normal 

value. The model has the following form: 

where y 1 is the intravascular and y2 the extravascular enzyme activity. 

The unknown parameters in the model are p 1, the constant of demolition; p2 , 
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a measure for the place of the maximum of the effusion; p3 , a measure for 

the spreading of the effusion and p4 , the permeability constant. 

The following data are known (for a particular patient): 

v 1 is the volume inside the blood-vessels and has the value 2.6, 

v2 is the volume outside the blood-vessels and has the value 2.7, 

q is a measure for the quantity of the total extra effusion and has the 

value 4991, 

y1 . is the normal effusion and has the value 27.8. 
im 

For several values oft the enzyme activity, y 1, was measured and 

these experimental results are given table 8.3. 

Table 8.3. 

t Y1 t Y1 

2.5 20.0 44.4 58.7 

3.8 23.5 47.9 41.9 

7.0 63.6 53. 1 40.2 

10.9 267.5 59.0 31.3 

15.0 427.8 65. I 30.0 

18.2 339.7 73. 1 30.6 

21.3 331. 9 81. 1 23.5 

22.9 243.5 91. 2 24.8 

24.9 212.0 101 .9 26. 1 

26.8 164. 1 1 15. 4 33.3 

30. 1 112.7 138.7 17.8 

34.0 88. I 163.2 16.8 

37.8 76.2 186.7 16.8 

42.4 62.3 

The problem was solved with AO= 10-1 and the initial estimates of the 

parameter values: 

T Po= (0.16, 2.6, 0.3, 0.32) • 
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The parameters obtained were 

p = (0.27, 2.65, 0.364, 0.2l)T 

with the confidence intervals 

T 
op=(± o.os, ± o.32, ± 0.098, ± 0.29) 

and the final sum of squares was 

F(p) = 4038.2. 

By using 3 break-points, 16 function evaluations were needed to obtain 

these results and without using break-points 15 function evaluations were 

needed. 

9. CONCLUSIONS 

The method for estimating parameters in differential equations, given 

in HEMKER [6], formed the base for the method described in this report. 

The method of Hemker has been improved by using the method of Marquardt for 

minimizing the sum of squares and by using a multiple shooting technique 

for improving bad starting values of the parameters. 

Algorithm A performed well on all problems that have been studied in 

section 8. For the problems tested, the use of break-points had almost no 

influence on the results. Nevertheless, we believe that the multiple shoot­

ing technique is a useful expansion of a method for estimating parameters 

in differential equations. Therefore, we advise to use break-points if no 

good initial approximation can be given. 
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Appendix I: Description and source text of the ALGOL 60 procedure PEIDE. 

The procedure PEIDE is an implementation of algorithm A in section 6. 

Before giving the description and source text, we describe some details of 

the ALGOL 60 procedure. 

The method of Marquardt has been implemented in the procedure MARQUARDT, 

which is described in BUS, et al. [3] and inserted in HEMKER [7]. The pro­

cedure FUNCT calculates both the residual function f(p) and the Jacobian 

matrix J(p) by solving system (4.3). 

In order to obtain information about the starting values of the para­

meters, the procedure PEIDE starts with calculating f(p0 ) without using the 

given break-points. 

Inside the procedure, the weighting factors M1 = 1, M2 = 4, M3 = 9 and 

M4 = 16 are given. The corresponding tolerance values are computed by 

e::' 1/4 
e:: a (Ml) := F(pO) (F(; )) Ml' 

0 ' 
( e:: )1/4 E: (M.) := 2 a(Mi-I) F(;) Mi, i=2,3,4, 

a 1 
I Q 

( € ) 2 r (Ml) 
r l /4. := F(po) F(po), Ml' 

c (M.) ( 
2 r )1/4 

:= 2 r(Mi-l) F(p0 ) Mi, i=2,3,4. r 1 

When the procedure MARQUARDT is used, a relative starting value of 

A, i.e.A0 , is required. Inside the procedure PEIDE, MARQUARDT can be called 

several times and, after each call, the value of AO is adjusted to the last 

value of A used. 



calling sequence: 

the heading of the procedure peide is: 
procedure peide(n, m, nobs, nbp, par, rv, bp, jtjinv, in, out, 

deriv, jac dfdy, jacdfdp, call ystart, data, monitor); 
value n,m,nobs; inte5er n,m,nobs,nbp; 
array par,rv,jtjinv,in,out; integer arrw bp; 
procedure call ystart,data,monitor; 
boolean procedure deriv,jac dfdy,jac dfdp; 

the meaning of the formal pararr.eters is: 
n: <arithmetic expression>; 

the number of differential equations; 
m: <arithmetic expression>; 

the number of unknown variables; 
nobs: <arithmetic expression>; 
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the number of observations; nobs should satisfy nobs,2:ffi; 
nbp: <variable>; 

entry: the number of break-points; if no break-points are 
used then set nbp=O; 

exit: with normal termination of the process nbp=O; 
otherwise, if the process has been broken off (see 
out[1]), the value of nbp is the nurrber of break­
points used before the process broke off; 

par: <array identifier>; 
array par[ 1 : m+nbp J ; 
entry: par[1:m] should contain an initial approximation 

to the required paraireter vector; 
exit: par[1:m] contains the calculated parameter vector; 

if out[1]>0 and nbp>O then par[m+1:m+nbp] contains 
the values of the newly introduced parameters 
before the process broke off; 

rv: <array identifier>; 
array rv(1: nobs+nbp]; 
exit: rv[1:nobs] contains the residual vector at the 

calculated minimum; if out[1]>0 and nbp>O then 
rv[nobs+1:nobs+nbp] contains the additional 
continuity requirements at the break-points before 
the process broke off; 

bp: <array identifier>; 
integer []Y bp[O : nbp]; 
entry: bpi, i=1, ... ,n, should correspond to the index 

of that time of observation which will be used as 
a break-point (1<bp[ i]<nobs); the break-points 
have to be ordered such that bp[i]~bp[jf if i_sj; 

exit: with normal termination of the process bp[1:nbp] 
contains no information; otherwise, if out[1]>0 
and nbp>O then bp[i], i=1, ... ,nbp, contains the 
index of that tilre of observation which was used 
as a break-point before the process broke off; 

jtjinv: <array identifier>; 
arrey jtjinv[1 : m, 1 : m]; 
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in: 

out: 

exit: the inverse of the matrix j' x j where j denotes 
the matrix of partial derivatives drv[i] / dpar[j] 
(i=1, ... ,nobs; j=1, •.• ,m) and j' denotes the 
transpose of j; this matrix can be used if 
additional information about the result is 
required; e.g. statistical data such as the 
covariance matrix, correlation matrix and 
confidence intervals can easily be calculated from 
jtjinv and out[2]; 

<array identifier>; 
array in[ O : 6]; 
entry: in this array the user should give some data to 

control the process; 
in[0]: the machine precision; 

for the cyber 73 a suitable value is 10-14; 
in[1]: the ratio: the minimal steplength for the 

integration of the differential equations divided 
by the distance between two neighbouring 
observations; mostly, a suitable value is 10-4; 

in[2]: the relative local error bound for the 
integration process; this value should satisfy 
in[2]<in[3]; this parameter controls the 
accuracy of the numerical integration; mostly, 
a suitable value is in[3]/100; 

in[ 3], in[ 4] : 
the relative, resp. the absolute tolerance for 
the difference between the euclidean norm of the 
ultimate and penultimate residual vector; 
the process is terminated if the improvement of 
the sum of squares is less than 
in[3] x (sum of squares)+ in[4] x in[4]; 
these tolerances should be chosen in accordance 
with the relative, resp. absolute errors in the 
observations; 
note that the euclidean norm of the residual 
vector is defined as the square root of the swn 
of squares; 

in[5]: the maximum number of times that the integration 
of the differential equations is performed; 

in[6]: a starting value used for the relation between 
the gradient and the gauss-nev,rton direction ( see 
[1]); if the problem is well conditioned then a 
suitable value for in[6] will be 0.01; if the 
problem is ill conditioned then in[6] should be 
gr'eater, but the value of in[6] should satisfy: 

<array 
exit : 
out[1]: 

in[0] < in[6] < 1/in[0]; 
identifier>; array out[1: 7]; 
in array out some by-products are delivered; 
this value gives information about the 
termination of the process; 
out[1]=0: normal termination; 
if out[1]>0 then the process has been broken off 



deriv: 

and this may occur because of the following 
reasons: 
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out [ 1] =1: the number of integrations performed 
exceeded the nurrber given in in[5]; 

out[1]=2: the differential equations are very 
nonlinear; during an integration the 
value of in[ 1] was decreased by a 
factor 10000 and it is adv~sed to 
decrease in[1], although this will 
increase computing tirre; 

out [ 1] = 3: a call of deri v delivered the value 
false; 

out[1]=4: a call of jac dfdy delivered the 
value false; 

out[1]=5: a call of jac dfdp delivered the 
value false; 

out[1]=6: the precision asked for can not be 
attained; this precision is possibly 
chosen too high, relative to the 
precision in which the residual vector 
is calculated (see in[3]); 

out [ 2] : the euclidean norm of the residual vector 
calculated with values of the unknovms delivered; 

out[3]: the euclidean norm of the residual vector 
calculated with the initial values of the 
unknown variables; 

out[ 4]: the number of integrations performed, needed to 
obtain the calculated result; if out[4]=1 and 
out[1]>0 then the matrix jtjinv can not be used; 

out[S]: the maximum number of times that the requested 
local error bound was exceeded in one 
integration; if it is a large number, it may be 
better to decrease the value of in[ 1]; 

out[ 6]: the improvement of the euclidean norm of the 
residual vector in the last iteration step of the 
process of marquardt; 

out[7]: the condition number of j' x j , i.e. the ratio 
of its largest to smallest eigenvalues; 

<procedure identifier>; 
this procedure defines the right hand side of the 
differential equations; 
the heading of this procedure should be: 
boolean procedure deriv(par, y, t, df); value t; 
real t; array par,y,df; 
entry: par ,Y, t; 

par[1:m] contains the current values of the 
unknowns and should not be altered; 
y[ 1 :n] contains the solutions of the differential 
equations at time t and should not be altered; 

exit: array df[1 : n]; 
an array element df[ i] should contain the rig,"1-it 
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hand side of the i-th differential equation; 
after a successful call of deriv, the boolean procedure 
should deliver the value true; 
however, if deriv delivers the value false, then the 
process is tenninated (see out[1]); 
hence, proper programning of deriv makes it possible to 
avoid calculation of the right hand side with values of 
the unknown variables which cause overflow in the 
computation; 

jac dfdy: <Procedure identifier>; 
the heading of this procedure should be: 
boolean·procedure jac dfdy(par, y, t, fy); ·value t; 
~ t; array par,y ,fy; 
entry: par,y,t; 

see deriv; 
exit: array fy[1: n,1: n]; 

an array element fy[i,j] should contain the 
partial derivative of the right hand side of the 
i-th differential equation with respect to y[j], 
i.e. df[i]/dy[j]; 

the boolean value should be assigned to this procedure 
in the same way as it is done for the value of deriv; 

jac dfdp: <Procedure identifier>; 
the heading of this procedure should be: 
boolean procedure jac dfdp(par, y, t, fp); value t; 
·~ t; ·array par,y ,fp; 
entry: par,y,t; 

see deriv; 
exit: array fp[1: n,1: m]; 

an array element fp[i,j] should contain the 
partial derivative of the right hand side of the 
i-th differential equation with respect to par[j], 
i.e. df[i]/dpar[j]; 

the boolean value should be assigned to this procedure 
in the same way as it is done for the value of deriv; 

call ystart: <Procedure identifier>; 
this procedure defines the initial values of the initial 
value problem; 
the heading of this procedure should be: 
boolean procedure call ystart (par, y, ymax); 
array par,y,ymax; 
entry: par; 

par[1:m] contains the current values of the 
unknown variables and should not be altered; 

exit: y ,yrriax; 
y[1:n] should contain the initial values to the 
corresponding differential equations; 
the initial values may be functions of the unknown 
variables par; in that case, the initial values of 
dy/dpar also have to be supplied; note that 



data: 

rronitor: 

dy[i]/dpar[j] corresponds with y[5xn+ixn+j] 
( i=1, •.• ,n , j =1, •.. ,m); 
ymax[i], i=1, ••. ,n, should contain a rough 
estimate to the maximal absolute value of y[i] 
over the igration interval; 
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<procedure identifier>; 
this procedure takes the data to fit into the procedure 
peide; 
the heading of this procedure should be: 
procedure data(nobs, tobs, cobs, obs); ·value nobs; 
integer nobs; ·array tobs,obs; integer·array cobs; 
entry: nobs; 

nob s has the same meaning as in pe ide; 
exit: array tobs[O : nobs]; 

the array element tobs[O] should contain the time, 
corresponding to the initial values of y given in 
the procedure call ystart; an array element 
tobs[i], 1<i<nobs, should contain the i-th time 
of observation; the observations have to be 
ordered such that tobs[i]<tobs[j] if·i~; 
•integer array cobs[1:nobsJ; 
an array element cobs[i] should contain the 
component of y observed at time tobs[i]; note that 
1<cobs[i]<n; 
array obsf 1 :nobs]; 
an array element obs[i] should contain the 
observed value of the component cobs[i] of y at 
the tirre tobs[i]; 

<procedure identifier>; 
this procedure can be used to obtain information about 
the course of the iteration process; if no intermediate 
results are wanted, a dummy procedure satisfies; 
the heading of this procedure should be: 
procedure rronitor(post,ncol,nrow,par,rv,weight,nis); 
value post,ncol,nrow,weight,nis; 
integer post,ncol,nrow,weight,nis; ·array par,rv; 
inside peide, the procedure monitor is called at two 
different places and this is denoted by the value of 
post: 
post=1: 

post=2: 

monitor is called after an integration of the 
differential equations; at this place are 
available: the curTent values of the urumown 
variables par[1:ncol], where ncol=m+nbp, the 
calculated residual vector rv[1:nrow], where 
nrow=nobs+nbp, and the value of nis, which is 
the number of integration steps performed during 
the solution of the last initial value problem; 
monitor is called before a minimization of the 
euclidean norm of the residual vector with the 
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procedures used 

procedure marquardt (see section 5.1.3.1.3) is 
started; available are the current values of 
par[1:ncol] and the value of the weight, with 
which the continuity requirements at the break­
points are added to the original least squares 
problem. 

( see hemker[ 7] ) : 
inivec = cp31010, 
inimat = cp31011, 
mulvec = cp31020, 
mulrow = cp31021, 
dupvec = cp31030, 
dupmat = cp31035, 
vecvec = cp34010, 
matvec = cp34011, 
elmvec = cp34020, 
sol = cp34051, 
dee = cp34300, 
marquardt = cp3444o. 
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source text: 

code 34444; 
·p:rocedure peide(n,m,nobs,nbp,par,res,bp,jtjinv,in,out,deriv,jac dfdy, 

Jae dfdp, call ystart,data,monitor); 
value n,m,nobs; integer n,m,nobs,nbp; 
array par,res,jtjinv,in,out; 
integer·array bp; 

·procedure call ystart,data,nonitor; 
·boolean procedure deriv,jac dfdy,jacdfdp; 
begin integer i,j,extra,weight,ncol,nrow,away,npar,ii,jj,rnax, 

nfe ,nis; 
-~ eps,eps1,xend,c,x,t,hmin,hmax,res1jin3,in4,fac3jfac4; ray aux[1:3],obs[1:nobs],save[-38:6xn ,tobs[O:nobs, 

nbp+nobs,1:nbp+m],ymax[1:n],y(1:6xnx(nbp+m+1)],fy(1:n,1:n], 
fp[ 1 :n, 1 :m+nbp J; 
integer array cobs[1:nobs]; 
boolean first,sec,clean; 

procedure inivec(l,u,a,x); ·code 31010; 
procedure inimat (11,u1, 12 ,u2 ,a,x); ~ 31011; 
procedure mulvec(l,u,s,a,b,x); ·code 31020; 
procedure mulrow(l,u,i,j,a,b,x); code 31021; 
·procedure dupvec(l,u,s,a,b); code 31030; 

· _procedure dupmat(l1,u1,12,u2,a,b); ·code 31035; 
~ procedure vecvec(l,u,s,a,b); ·code 34010; 
l],§d procedure matvec(l,u,i,a,b); ·code34011; 
procedure elrnvec(l,u,s,a,b,x); code34020; 
procedure sol(a,n,p,b); ~ 34051; 
procedure dec(a,n,aux,p); £Q,££ 34300; 
procedure marquardt(m,n,p,r,c,f,j,i,o); ~ 34440; 

£§fil_ procedure interpol(startindex,jump,k,tobsdif); 
value startindex,jump,k,tobsdif; 
integer startindex,jurrp ,k; -~ tobsdif; 
begin integer i; ~ s,r; s:=y[startindex]; r:=tobsdif; 

f2£. i: =1 step 1 until k ·.£2. 
begin startindex:=startindex+jump; 

s:=s+y[startindex]xr; r:=rxtobsdif 
end; interpol:=s 

end interpol; 

Drocedure jac dydp(nrow,ncol,par,res,jac,locfunct); 
value nrow,ncol; integer nrow,ncol; 
array par,res,jac; procedure locfunct; 
begin 

duprmt(1,nrow,1,ncol,jac,yp) 
~ jacobian; 
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· ·boolean·procedure funct(nrow,ncol,par,res); 
· ·value nrow,ncol; inte5er nrow,ncol; array par,res; 

begin integer l,k,knew,fails,same,kpold,n6,nnpar,j5n, 
cobsii; 
real xold,hold,aO,tolup,tol,toldwn,tolconv,h,ch,chnew, 
e"rror,dfi,tobsdif; 
boolean evaluate,evaluated,decornpose,conv; 

· array a[0:5],delta,last delta,df.,y0[1:n],jacob[1:n,1:n]; 
integer·array p[1:n]; 

real procedure norm2(ai); real ai; 
---Se.gin real s ,a; s := 10-1~ 

· ·for--r:-; 1 ·step 1 until n 22, 
begin a:= ai/ymax[i]; s:= s + 

norm2:= s 
ax a end; -

!fili norm2; 

procedure reset; 
begin if ch< hmin/hold·then ch:= hrnin/hold ·else 

if ch > hmax/hold ·thench:= hrnax/hold; -
x:= xold; h:= hold)(Ch; c:= 1; 
.f2!. j := O ·step n until kxn ,££ 
~.f?r i:= 1 pe-e 1 ·until n .92. 

YLJ+IT:= save J+i] x c; 
c:= c x ch 

.§11£; 
decompose:::true 

~reset; -

procedure order; 
begin c:= eps x eps; j:= (k-1) x (k + 8)/2 - 38; 

~or~:= O step 1 until k'Q,£ a[i]:= save[i+j]; 
J := J + k + 1; 
tolup .- c x save[j]; 
tol := c x save[j + 1]; 
toldwn := c x save[j + 2]; 
tolconv:= eps/(2 x n x (k + 2)); 
aO:= a[O]; decompose:=·true; -!fili order; 

procedure evaluate jacobian; 
begin evaluate::: false; 

decompose:= evaluated:::·true; 
if-, jac dfdy(par,y,x,fy) 'then 
begin save [ - 3] : =4; -~ return ·end; 

£.llii evaluate jacobian; 



procedure decompose j acobian; 
· begin decompose:= false; 

c:= -ao x h; 
!s?£ j := 1 step 1 until n ·§.£ 
begtn·for_i:= 1st[~~ until n·§.£ 

Jacob[l,J] := fy 1,J] x c; 
jacob[j,j]:= jacob[j,j] + 1 

end· _, 
dec(jacob,n,aux,p) 
~ decompose j acobian; 

procedure calculate step and order; 
begin~ a1,a2,a3; 

a1:= if k < 1 ·then O else 
0:-75 x (toldwn/norm2(y[k><n+i])) ,i (0.5/k); 

a2:= 0.80 x (tol/error) ,i (0.5/(k + 1)); 
a3:= if k > 5 v fails* O 

then Q·else 
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Q.70 x (tolup/norm2(delta[i] - last delta[i]))~ 
(0.5/(k+2)); 

if a1 > a2 A a1 > a3·then 
begin knew:= k-1; chn~ a1 end·else .- ........................ 
if a2 > a3 then 
beff.i.n knew:~ ; chnew: = a2 -~ -~ 
begin knew:= k+1; chnew:= a3·~ 
~ calculate step and order; 

i£ sec~ begin_ sec:=fa~se; ~return·~; 
npar:=m; extra:=nis:=O; 11:=1; 
jj:=if nbp=O then o·else 1; 
n6:=nx6; - -
inivec(-3,-1,save,O); 
inivec(n6+1,(6+m)xn,y,O); 
inirrat(1,nobs+nbp,1,m+nbp,yp,O); 
t:=tobs[1]; x:=tobs[O]; 
call ystart(par,y,ymax); 
hma.x:=tobs[1]-tobs[O]; hmin:=hma.xxin[1]; 
evaluate jacobian; nnpar:=nxnpar; 

new start: 
k:= 1; kpold:=O; same:= 2; order; 
if. 7 deriv(par,y ,x,df) -~ 
begin save[ -3] :=3; g(to return·~; . 
h:=sqrt(2 x eps/sqrt norm2 (matvec(1,n,1,fy,df)))); 
if h > hrrax then h:= rnrax·else 
TI h < hmin then h:= hmin;-
xold:= x; ho~ h; ch:= 1; 
for i := 1 rjP 1 ·until n do 
begin save i :=y[i]; saveT'n+i]:=y[n+i]:=df[i]xh·~; 
fails:= O; 
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for 1: = O ·while x < xend do 
'5egin if x+h< xend 'thenx:= x + h else -- - - ~ ·beg:Ln h:= xend-x; x:= xend; ch:= h1hold; 

.f2.t j := n ·step n ·until kxn ·.9£ 
begin c:= ex ch; 

for i:= j+1 ·step 1 ·until j+n .9£ 
y[i]:= y[i] X C 

end· _, 
same:= if same<3'then 3·e1se same+1; 

·end· - - -_, 

cormnent prediction; 

c:= 1; 

for l:= 1 step 1 ·until n·do 
'Eegin for i:= 1 step n until (k-1)xn+l do 

forT:= (k-1)xn+l sjep -n ·until i do 
y[j] := y[j] + y[j+n ; -
delta[l] := 0 

end; evaluated:= false; 

·corrment correction and estimation local error; 
for l:= 1,2,3 do 
'5egin j;,[-, deriv(par,y ,x,df) -~ 

begin save[ - 3] : = 3; -~ return ·end; 
for i:= 1 [tjp 1·until n·do 
df[i]:= df i x h - y[n+iT;" 
if evaluate ·then evaluate j acobian; 
Ir decompose ~n decompose j acobian; 
sol(jacob ,n,p,df); 
conv:= true· -~ . !££. 1 := 1 step[ 1 ·until n ',9£ 
~ dfi:= df i]; 

Yl i]:= y[ i] + ao x dfi; 
y[n+i]:= y[n+i] + dfi; 
delta[i] := delta[i] + dfi; 
conv:= conv A abs(dfi) < tolconv x ymax[i] 

end· 
~ if conv ·then 
begin error:= norm2(delta[i]); 
~ convergence 

end 
end-:--_, 

corrnnent acceptance or rejection; 
if-, conv·then 
begin i£ •°evaluated ~ evaluate:= ~ 

·else 
'5'egi'n ch: =ch/ 4; ·if h<4xhmin '.!llli1 

begin save[-1T:= save[-1]+10; 
hmin:=hmin/10; 
if. save[ -1] >40 ~ ·goto return 

end 
end-:-­..:::..:.;.;;;. 
reset 
~ ~ convergence: 



· if error > tol then 
begin fails:= fails + 1; 

· if h > 1. 1 x hmin then 
begin if fails > 2 then 

begin reset; · goto new start 
end ·else 
~ncalculate step and order; 

if knew* k then 
begin k:= kne'w;order·end; 
ch:= ch x chnew; reset 

end 
end°7lse 
begin if k = 1 ·then 

begm corrment violate eps criterion; 
save[-2]:= save[-2] + 1; 
same:= 4; goto error test ok 

.§D.Si; 
k:=1; reset; order; same:= 2 

end 
endelse error test ok: 

begin fails:= O; 
·.r.sr. i: = 1 step 1 until n ·do 
begin c:= delta[i]; 

for 1: = 2 st[p 1 ·until k do 
y[lxn+i]:= y lxn+i] + a[lTx c; 
if abs(y[ i]) > ymax[ i] ·then 
ymax[i] := abs(y[i]) -

end; 
same:= sarre-1; 
if same= 1'then 
dupvec(1,n,O,last delta,delta) ~ 
if same= 0 ·then 
beg}n calcul"a't'e step and order; 

if chnew > 1.1 ·then 
begin -

if kl knew·then 
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begin if. kne-;-;-k ~ 
mulvec(knewxn+1,knewxn+n,-knewxn,y,delta, 
a[k]/knew); 
k:= knew; order 

end; 
same:= k+1; 
if chnew x h > hmax 
then chnew:= hmax/h; 
h:= h x chnew; c:= 1; 
.f.s!. j: = n step n ·until kxn ·££ 
begin c:= c x chnew; 

mulvec(j+1,j+n,O,y,y,c) 
·end; decorrpose: =~ 

end 
·eise same:= 10 

end'oT"a single integration step of y; 
nis:=nis+1; 
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corrrrnent start of a integration step of yp; 
if clean·then 
begin hol~; xold:=x; kpold:=k; ch:=1; 

dupvec(1,kxn+n,O,save,y) 
end else 
begin if h=Fhold ·~ 

begin ch:=h/hold; c:=1; 
!2:!z. j: =n6+nnpar step nnpar until 
kpoldxnnpar+n6·do 
'begin c: =cxch; -

for i: =j +1 step 1 until j +nnpar ·.92. 
Y t i] : =y [ i ] XC 

end; hold:=h 
~; 
if k>kpold ·then 
inivec(n6+kxrmpar+1,n6+kxnnpar+nnpar,y,O); 
xold:= x; kpold:= k; ch:= 1; 
dupvec(1,kxn+n,O,save,y); 
evaluate jacobian; 
decompose jacobian; 
if' jac dfdp(par,y ,x,fp) then 
begin save[-3] :=5; ·go(o return·.§!22-3 
·g npar>rn ~ inirnat 1,n,m+1,npar,fp,O); 

corrrrnent prediction; 
·.£2!: 1: =O step 1 until k-1 ·.92. 
'!s?!: j :=k-1 step ~until 1 ·ao 
elmvec(jxnnpar+n6+1,jxnnpar+nb+nnpar,rmpar,y,y,1); 

corrrrnent correction; 
!2£. J :=1 st(:G 1 ·~ npar ·.22, 
begin j5n:= J +5)xn; 

dupvec(1,n,j5n,y0,y); 
for i: =1 ]tep 1 ·until n do df[ i] : = 
hx(fp[i,j +matvec(1,n,i,fy,y0)) 
-y[nnpar+j 5n+i]; 
sol(jacob,n,p,df); 
1£!:: l:=O ·step 1 until k ',9£ 
begin i:=lxnnpar+J5n; 

elmvec(i+1,i+n,-i,y,df,a[l]) 
end 

end-
end-:--_, 

for l:=O while ·x>t ·do 
begin - -

comment calculation of a row of the jacobian 
matrix and an element of the residual 
vector; 

tobsdif:=(tobs[ii]-x)/h; cobsii:=cobs[ii]; 
res[ii]:=interpol(cobsii,n,k,tobsdif)-obs[ii]; 



if -, clean then 
beg_i,n[for i:=1 ·step 1 ·until npar·do 

yp ii,i]:=interpol(cobsii+(i+5)xn,nnpar,k, 
tobsdif); 

·corrnnent introducing of break-points; 
if bp[jj]iii ·then·else 
TI first A abs(res[ii])<eps1 ·then 
begin I nbp: =nbp-1; dupvec(jj ,n'5'p,T,bp ,bp); 

bp nbp+1]:=0 
·end else 
be'gin'extra:=extra+1; 

if first ·then par[m+jj]:=obs[ii]; 
c"omnent introducing a j acobian row and a 

residual vector element for 
continuity requirements; 

yp[nobs+jj,m+jj]:=-weight; 
mulrow(1,npar,nobs+jj,ii,yp,yp,weight); 
res[nobs+jj]:=weightx(res[ii]+obs[ii]-

par[m+jj]) 
·end 

end-:--
if. ~i=nobs then :go]o return-~ 
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beffa¼n t: =~<:>bs~ ~1 +1. ! . . . . 
lf bp(JJ]=ll A JJ<nbp·then JJ:=JJ+1; 
hmax:=t-tobs[ii]; hmin~in[1]; ii:=ii+1 

end· _, 
end· _, 

corrrrnent break-points introduce new initial values 
for y and yp; 

if extra>O then 
begin·!££, i :=1 ·step 1 ·until n ·s12. 

begin y[i]:=interpol(i,n,k,tobsdif); 
·for j :=1 ·stjp 1 ·until npar ·do 
y[i+(j+5)xn :=interpol(i+(j+5)xn,nnpar,k, 

tobsdif) 
·end· 
~ . 
'!9£_ l:=1 step 1 ·until extra'££ 
begi[ cobsii:=cobs[bp[npar-m+l]]; 

y cobsii]:=par[npar+l]; 
for i:=1 ·(te~ 1 ·until npar+extra ·do 
y[cobsii+ 5+1)xn] :=O; -
inivec(1+nnpar+(l+5)xn,nnpar+(l+6)xn,y,O); 
y[cobsii+(5+npar+l)xn]:=1 

'.filE_; 
npar:=npar+extra; extra:=O; 
x:=tobs[ii-1]; evaluate jacobian; nnpar:=nxnpar; 
goto new start 

end 
end-

end step; 
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return: 
if save[-2]>max'then max:=save[-2]; 
funct:=save[-1]<1J'o"A save[-3]=0; 
if 7 first then­
monitor(1,nco'l,"'nrow,par,res,weight,nis) 

·!ill,£ funct; 

i:= -39; 
'!££. c:= 1,1,9,4,0,2/3,1?1/3A36,20.25,1,6/11~ 

1,6/11,1;11,84.02b,53.77B,o.25,.4b,1,.7,.2,.o2, 
156.25, 108.51, .027778, 120/274, 1, 225/274, 

. __ 85/~74, 15/274,_1/274, □~ 187.69, .0047361 
·.9£. beE?:n i := i + 1; saveLl] := c ·eqd,; 

data(nobs,tobs,obs,cobs); weight:=1; 
first:=sec:=false; clean:=nbp>O; 
aux[2]:=10-12; eps:=in[2]; eps1:=10 +10; 
xend:=tobs[nobs]; out[1]:=0; bp[O]:::::max:=O; 

· comment smooth integration without break-points; 
.l£ 7 funct(nobs,m,par,res) ~·go)) escape; 
res1:=sqrt(vecvec(1,nobs,O,res,res ; nfe:=1; 
if in[5]=1 then . . 
1?°egin out[1.]:=1; goto escape·end; 
i.f clean ·then 
begin fir~true· clean:=false; 

fac3:=sqrt(sqrt(in[3]/res1)); fac4:=sqrt(sqrt(in[4]/res1)); 
eps1:=res1xfac4; 

· ,U 7 funct(nobs,m,par,res) ~~escape; 
first:=false 

end else nfe:=O· -- ' 
ncol :=m+nbp; nrow:=nobs+nbp; 
sec:=true· 
in.J:=int3J; in4:=in[4]; in[J]:=res1; 

begin_~ w~ ·array aid[1:ncol,1:ncol]; 
weight:=away:=O; 
out[4]:=out[5]:=w:=O; 
for weight:=(sqrt(weight)+1)~2 ·while 
weightt16 A nbp>O do 
begin i£ away=O A vr.fo ·then 

begin comment if no"'""5re'ak-points were omitted then one 
function evaluation is saved; 

w: =weig.ht/w; 
!.9£.. i:=nob~+1 ·step 1 until nrow ·22, 
begin, ~or ~~=1 ·s[';p_1_·until nco1 ·.9.2. 

yp[l,J].-wxyp l,J], 
res[i]:=wxres[i] 

end· sec :=true; nfe: =nfe-1 _, 
.fil!l; 



in[3]:=in[3]xfac3xweight; in[4]:=eps1; 
monitor(2,ncol,nrow,par,res,weight.,nis); 
rnarquardt(nrow,ncol,par.,res,aid,f\mct,jac dydp,in,out); 

· ·g out [ 1] >O ~ · goto es cape; 

corrrrnent the relative starting value of lambda is 
adjusted to the last value of lambda used; 

away:=out[4]-out[5]-1; 
in[6]:=in[6] x 54away x 24(away-out[5]); 
nfe: =nfe+out [ 4] ; 
w:=weight; eps1:=(sqrt(weight)+1)42xin[4]xfac4; 
away:=O; 

comment useless break-points are omitted; 
for j :=1 stet 1 until nbp ·do 
begin i£ abs obs[bp1j] ]+res[bp[j] ]-par[j+m] )<eps1 

·then 
"5egin nbp:=nbp-1; dupvec(j,nbp,1,bp.,bp); 

dupvec (j +m,nbp+m, 1.,par ,par); · 
j:=j-1; away:=away+1; bp[nbp+1]:=0 

·end 
end-:--_, 
ncol:=ncol-away; nrow:=nrow-away 

end· _, 

in[3]:=in3; in[4]:=in4; nbp:=O; weight:=1; 
monitor(2.,m,nobs,par,res,weight.,nis); 
marquardt(nobs,m,par,res.,jtjinv.,funct,jac 
nfe:=out[4]+nfe 

dydp .,in,out); 

end· _, 
escape: 

end peide; -

if out[1]=3 ·then out[1]:=2 else 
TI out[1]=4 then out[1] :=6;-
TI save[-3]~0 ·then out[1]:=save[-3]; 
out[3] :=res1; -
out [ 4] : =nfe; 
out[5]:=max 
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Appendix II: An example of a computer run. 

In this Appendix we give the complete testrun of the ESCEP-model with 

data B (see section 8). 

~ 34445; 

co~nt the following procedure takes care of the output of the 
example program. it also interprets the numerical data 
that can be used to obtain statistical results; 

nT$Jcedure cornmunication(post,fa,n,m,nobs,nbp,par,res,bp,jtjinv, 
in,out,weight,nis); 

value post,fa,n,~,nobs,nbp,weight,nis; 
integer post,n,m,nobs,nbp,weight,nis; real fa; 
array par,res,bp,jtjinv,in,out; -
begin integer i ,j ; · real c; · array conf[ 1 :m] ; 
~·procedure vecvec(l,u,s,a,b); ·~ 34010; 
if post=5 then 
be~tn output"rb~j{x,/,10b,{the first residual vector},//,16b, 

ih4b ,{res[ i :!-,/}); 
for i :=1 s]ep 1 until nobs do 
output(61, 15b ,zd,2b ,+.4~0+zd,/:l-,i,res[i]); 

end·e1se if post=3·then 
begin output(61,<¼x,~ 

{the euclidean norm of the residual vector::!-, 
. 7d10+zd,2/ ,5b ,{calculated pararr.eters:1-,/:t-, 
sqrt(vecvec(1,nobs,0,res,res))); 
fQ!: i :=1 step 1 until m £2. 
output(61,{9b,+. 7d10+zd,/},par[i]); 
output(61,-cl:/, 
{nWTlber of integration steps performed: :1-,zzd,//},nis); 

end else if post=4 then 
beftn if nbp=O then output ( 61 ,{x,/ /, 5b, 

the winiwization is started without break-points}:!-) ·else 
~ output(61,:l:x,5/ ,20b, -

{the minimization is started with weight =},zd, 
3/:1-,weight); 
output(61,{/,5b, 
{the extra pararreters are the observations::!-}); 
for i :=1 s{Sp 1 until nbp do 
ootput(61, b,zd,2bi,bp[i]J; 

.fil'.19.; 
output(61,{6/ ,10b, 
{starting values of the parameters},/}); 
fQ!: i :=1 step 1 until m ·§£_ 
output ( 61,{20b, +. 7d10+zd,/ :j.,par[ i]); 
output(61,{//, 
{rel. tolerance for the eucl. norm of the res. vector:} 
,b,. 7d10+zd,/, 



{abs. tolerance for the eucl. norm of the res. vector:} 
,b,.7d10+zd,/,-4:relative starting value of larrbdah19b, 
{:i,b,.7c\0 +zd},in[3],in[4],in[6]) 

· ·end else if post=1'then 
'begir1- -

output(61,-4:10b,{starting values of the pararnetersi,/i); 
for i:=1 s{ep 1 ·until m·do 
output(61, 20b,+.7(\0 +zd,"i1',par[i]); 
output(61,~2/,{nwnber of equations},3b,{:},zd,/, 
{number of observations:},zd,2/, 
{rrachine precision},30b,{:h+.d10 +zd,/, 
{relative local error bound for integration},5b,{:},+.(\0+zd,/, 
{relative tolerance for residue},17b,{:},+.2(\0+zd,/, 
{absolute tolerance for residue},17b,{:},+.2(\0+zd,/, 
{maximum number of integrations to perform},6b,{:},zzd,/, 
{relative starting value of larnbda},14b,{:},+.2c\0 +zd,/, 
{relative minimal steplength},20b,{:},+.2c\0+zd,/}, 
n,nobs,in[O],in[2],in[3],in[4],in[5],in[6],in[1]); 
if. nbp=O ~ output ( 61,{/ /, 
{there are no break-points}}) ~ 
begin output(61,{//, 

{break-points are the observations :}}); 
for i:=1 ssep 1·until nbp do 
output(61, zzd,b},bp[i]) -

.§.U£; 
output (61,-4:/ /, 
{the alpha-point of the f-distibution :}, 
zd.ddhfa); 
end else if post=2 then 
beginoutput(61,{x}); if out[1]=0 ·then output(61,{2/, 
{normal terrrination ofthe processm-
~ .ll out[1]=1 ·~ output(61,{2/, 
{number of integrations allowed was exceeded}}) 
~ i£ out[1]=2 ~ output(61,{2/, 
{minimal steplength was decreased four times}}) 
·else if out[1]=3'then output(61,{2/, 
{a caIT of deriv delivered false}}) 
·~•i[ out[1]=4 ·~ output(61,{2/, 
{a call of jac dfdy delivered false i}) 
~ if out[1]=5·~ output(61,{2/, 
{a call of jac dfdp delivered false :H) 
~ i£ out[1]=6 ·~ output(61,{2/, 
{precision asked for may not be attained}}); 
i£ nbp=O ~ output ( 61 ,{2/, 
{last integration was perforrred without break-points}}) ·else 
begin output(61,{2/, -

{the process stopped with break-points: }}); 
for i:=1 s¥ep 1 until nbp·do 
output(61, zzd,b},bp1i]) -

~; 
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output ( 61 ,-4: 4 / , 
{eucl. norm of the last residual vector :},.7~0+zd,/, 
{eucl. norm of the first residual vector::j.,.7~0 +zd,/, 
{number of integrations performed},7b,{::j.,zzd,/, 
-4:last irrprovement of the euclidean norm ::j.,.7~0 +zd,/, 
{conditon number of j'xj:i-,15b,{:},.7~0+zd,/, 
{local error bound was exceeded (maxim.): },zzd, 7 /h 
out[2],out[3],out[4],out[6],out[7],out[5]); 

· ·comment statistics for the parameters; 
output(61,{//,b,{parameters},12b,{confidence interval}, 
/:l-); 
for i:=1 s[rJ 1 ·until m do 
begin conf 1 :=sqrt(mxfa'xjtjinv[i,i]/(nobs-m) )xout[2]; 

output (61,{+. 7d10+zd,12b ,+. 7~0+zd,/},par[ i] ,conf[ i]); 
·end· _, 
c:=if nobs=m then O ·else out[2]xout[2]/(nobs-m); 
output(61,{5/,~correlat1on matrix},11b,{covariance matrix}, 
/:l-); 
·for i:=1 step 1 ·until m do 
·begin ,!2!: j :=1 ·step 1 until m do 

beS¼n ·,u:. i=j ~ output(61-;:F29b}); 
·lf. l>J. ·then output(61,{+. 7~0 +zd,b}, 
jtjinv[i,j]/sqrt(jtjinv[i,i]xjtjinv[j,j])) 
else output ( 61 ,{+. 7~0+zd,b},jtj inv[ i ,j ]xc) 

·end; output(61,{/:j.); 
end; output ( 61 ,{x:j.) 
·end· _, 

output(61,{3/,10b,{the last residual vector:i-,//,15b, 
{i:i-,4b ,{res[ i] },/:!-); 
·for i:=1 sle~ 1 ·until nobs do 
output(61, 1 b,zd,2b,+.4<1t0+zd,/:j.,i,res[i]) 

·.fil1£ communication; 



1-e user program reads: 

~gin inte0r i,m,n,nobs,n~p~ :real time,fa~ 
:3,.:t"ray par7.:6],res[1:26],JtJinv[1:3,1:3],1n[0:6],out[1:7]; 
integer·a.rray bp[0:3]; 
~rocedure peide(n,m,no,nb,p,r,bp,j ,i,o,d,jdy,jdp,cy,da,mo); 
:;ode 34444; 
~edure communication(p,f,m,n,no,np,pa,r,bp,j,i,o,w,ni); 
:;Ode 34445; -
:,oolean ·procedure jac dfdp(par,y ,x,fp); 

· · real x; · a.rray par ,Y, fp; 
13"e'grn real y2; y2:=y[2]; 

fp[T,T]":=fp[1,3] :=O; 
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fp[1,2]:=y2xexp(par[2]); 
fp[2,1]:=exp(par[1])x(y[1]x(1-y2)-(exp(par[2])+exp(par[3]))xy2); 
fp[2,2]:=-exp(par[1]+par[2])xy2; 
fp[2,3]:=-exp(par[1]+par[3])xy2; 
jac dfdp:=true 
~ jac dfdp;-

Jrocedure data(nobs,tobs,obs,cobs); 
·value nobs; integer nobs; 

· ·array tobs,obs,cobs; 
begin·inte er i; 

tobs O :=O; 
output(61,~x,4/,4b,~the observations were:i, 
//,b,~ii,3b,{tobs[i]~,3b,{cobs[i]~,3b, 
{obs [ i] :i,, / ~) ; 
·!£!: i: =1 · step 1 ·until nabs .£2. 
begin 

input(60,{3(n)~,tobs[i],cobs[i],obs[i]); 
output(61,{zd,3b,zd.4d,6b,d,6b,.4d,/~,i,tobs[i],cobs[i], 
obs[ i]) 

end 
end data; 

procedure call ystart(par,y ,ymax); 
· · arr§:,Y par ,Y ,ymax; 

begin y[1]:=ymax[1]:=ymax[2]:=1; 
y[2]:=0 
~ call ystart; 

boolean procedure deriv(par,y ,x,df); 
~ x; · array par ,Y ,df; 
·begin real y2; y2:=y[2]; 

df[1J:=-(1-y2)xy[1]+exp(par[2])xy2; 
df[2]:=exp(par[1])x((1-y2)xy[1]-(exp(par[2])+exp(par[3]))xy2); 
deriv:=true 

~deriv;-
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· 'boolean ·procedure jac dfdy(par,y ,x.,fy); 
· ·~ x; '[a) par ,Y ,fy; 

·begin fy 1,1 :=-1+y[2]; 
fy[1,2]:=exp(par[2])+y[1]; 
fy[2,1]:=exp(par[1])x(1-y[2]); 
fy[2,2]:=-exp(par[1])x(exp(par[2])+exp(par[3])+y[1]); 
jac dfdy:=true 

· ·~ jac dfdy;-

procedure monitor(post,ncol,ow,par.,res,weight,nis); 
value post,ncol,nrow,weight,nis; 
integer post,ncol,nrow,weight,nis; array par,res;; 

output(61,{2/,30b,{e s c e p - problem~,3/~); 
m:= 3; n:=2; nobs:=23; nbp:=3; 
par[1]:=ln(1600); par[2]:=ln(.8); par[3]:=ln(1.2); in[0]:=10-14; 
in[3]:=10-4; in[4]:=10-4; in[5]:=50; in[6]:=10-2; 
in[1]:=10-4; in[2]:=10-5; 
bp[1]:=17; bp[2]:=19; bp[3]:=21; 
fa:=4.94; 

·comment fa denotes the alpha-point of the fisher-distribution; 

corrnnunication(1,fa,n,m,nobs,nbp,par,res,bp,jtjinv,in,out,O,O); 
time:=clock; 

peide(n,m,nobs,nbp,par,res,bp,jtjinv,in,out,deriv,jac dfdy,jac dfdp, 
call ystart,data,rronitor); 

time:=clock-time; 
corrnnunication(2,fa,n,m,nobs,nbp,par,res,bp,jtjinv,in,out,O,O); 
output (61,{3/ ,5b, 
{the calculation in peide consumed~,b,zzd.dd,2b, 
{seconds},xi,time) 

·end -



this program delivers: 

es c e p - problem 

starting values of the parameters 
+.737775910 +1 
-.223143t5i0 +O 
+.182321t5i0 +O 

nwnber of equations : 2 
nwnber of observations:23 

machine precision 
relative local error bound for integration 
relative tolerance for residue 
absolute tolerance for residue 
w.aximum nwnber of integrations to perform 
relative starting value of lambda 
relative miniwal steplength 

break-points are the observations : 17 19 

the alpha-point of the f-distibution: 4.94 

the observations were: 

i tobs[i] cobs[ i] obs[i] 
1 0.0002 2 .1648 
2 0.0004 2 .2753 
3 0.0006 2 .3493 
4 0.0008 2 . 3990 
5 0.0010 2 .4322 
6 0.0012 2 .4545 
7 0.0014 2 .4695 
8 0.0016 2 .4795 
9 0.0018 2 .4862 

10 0.0020 2 .4907 
11 0.0200 2 . 4999 
12 0.0400 2 .4998 
13 0.0600 2 .4998 
14 0.0800 2 . 4998 
15 0.1000 2 . 4998 
16 1.0000 2 .4986 
17 2.0000 2 .4973 
18 5.0000 2 .4936 
19 10.0000 2 .4872 
20 15.0000 2 .4808 
21 20.0000 2 .4743 
22 25.0000 2 .4677 
23 30.0000 2 .4610 

21 

:+.110-13 
:+ .110 -4 
:+.1010 -3 
:+ .1010 -3 
: 50 
:+.1010 -1 
:+.1010 -3 
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normal terrriination of the process 

last integration was performed without break-points 

eucl. norm of the last residual vector : .14 3077610 - 3 
eucl. norm of the first residual vector: .133107110 +1 
number of integrations performed : 12 
last irrprovement of the euclidean norm : .222369410 -4 
conditon nurrber of j 'xj : .258288210 +3 
local error bound was exceeded (maxim.): 37 

parameters 
+.690767010 +1 
-.100394110 -1 
- • 460529210 +1 

correlation ~.atrix 

+. 385132010 +O 

confidence interval 
+. 3209313i0 - 3 
+.168777410 -3 
+ .194250110 -2 

covariance w.atrix 
+.694985710 -8 +,14O762E\0 -8 -.912984810 -8 

-.217039310 +O -.639288910 +O 

+.192211~0 -8 -.141424~0 -7 

+. 254609410 -6 



the last residual vector 

i res[i] 
1 +,174810 -5 
2 -.290510 -4 
3 +.281410 -4 
4 - . 387910 -4 
5 +.306910 -4 
6 +.310110 -4 
7 -.201910 -4 
8 -. 388710 -5 
9 +.105210 -4 

10 + .139110 -4 
11 -.510910 -4 
12 +. 238410 -4 
13 -.115610 -5 
14 -.261t5i0 -4 
15 - . 511610 -4 
16 + .224410 -4 
17 + .679410 -4 
18 - .141t\0 -4 
19 +.208710 -4 
20 -.198010 -4 
21 -.347610 -4 
22 -.224510 -4 
23 +. 188610 -4 

the calculation in peide consumed 108.57 seconds 
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