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ABSTRACT

An analysis is given of the convergence of Newton-like methods for
solving systems of nonlinear equations. Special attention is paid to the

computational aspects of this problem.
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1. INTRODUCTION

In this report we will be concerned with iterative methods for solving

a system of nonlinear equations. Let
(1.1) F: D c R® > R"

be some function defined on some region D. Let X € D. Then we want to
. oo 3 3
construct a sequence of points {xi}i=0’ with x. e D (i =1,2,...) such that

(1.2) z = lim x.

i—-)oo 1

exists and
(1.3) F(z) = 0.

A very well-known method for solving this problem is Newton's method,

defined by
(1.8)  x = 0Gg) = x -3 FGy)

where J(x) denotes the jacobian matrix of partial derivatives of F. For this
method, KANTOROVICH [5] presented convergence results, known in literature
as the Newton—-Kantorovich theorem (see for instance ORTEGA & RHEINBOLDT
[8]). However, most frequently J(xk) is not available, so that in practice
an approximation to J(xk) is used. In fact, calculating on a computer with
finite wordlength, J(xk) can not be obtained exactly. In order to derive
results about the convergence of the very useful modifications of Newton's

method, we study methods defined by

-1 _
(1.5) Xie) = w(xk) = xk--Mk r(xk) s

where Mk is some approximation to J(xk). We call such a method a Newton—-Like

method. We mention the following examples:



1. The appréximation to J(x) obtained by using forward difference formulas.

Define the (i,j)-th element of a matrix B(x,h) by:

1 Jy_ :
h..[fi(X+hije ) fi(x)], if hij # 0,

ij
(1.6) (B(x’h))ij = .
5 £, (%) , if by =0,
2
where h = (h, ,,h h ,he,....h )T e R®
112712272 In? 217 .2 'nn ’

F(x) = (fl(x),...,fn(x))T, and e) denotes the j—th unit-vector in R%,
Then Mk is obtained by

(1.7) Mk = B(Xk’hk)'

2. The approximation to J(x) obtained by evaluating the analytic expressions
for the partial derivatives on a computer with finite wordlength;

3.

Mk = J(xk) + XkI,

where Ak €¢ R and I denotes the unit-matrix. The Newton-like method
obtained in this way has been proposed by LEVENBERG [6] and MARQUARDT

[71.

The analysis of Newton-like methods, given in this report is essen-—
tially based on the Newton-Kantorovich theorem and its extension given by
ORTEGA & RHEINBOLDT [8]. However, we use a somewhat different approach, in
order to be able to deal with difficulties that arise when finite precision
arithmetic is used.

Considering (1.5) we see that it is obtained by approximating the

function F(x) in a neighbourhood of X by
(1.8) Fk(x) = F(xk)-+Mk(x—xk)

and by solving the linear system which arises by setting Fk(x) = 0. Clearly,
two sources of errors arise in approximating a solution z, with F(z) = 0,

by w(xk), when a computer is used.



1. The error caused by approximating F(x) by Fk(x).

2. The error caused by the numerical solution of the linear system
Mk(x—xk) = -F(xk).

In section 2 we will discuss the properties of a Newton-like method
when exact arithmetic is used, so that the second source of errors does
not occur. In section 3 we will discuss the influence of rounding errors in

the computation on the results given in section 2.

2. ANALYSIS OF NEWTON-LIKE METHODS

Let a function F and some region D be given by (1.1). Let J(x) denote
the jacobian matrix of partial derivatives of F at x and let H(x) denote
the tensor of partial second derivatives of F at x. Suppose X € D is given

and a sequence {xi}:= is constructed by a Newton-like method as given by

(1.5). Let, moreover,oz € D be a solution of the system of nonlinear
equations defined by F, i.e. z satisfies (1.3). Then, the aim of this
section is to derive sufficient conditions such that {xi}:=0 converges to z.
We assume that exact arithmetic is used. To simplify notation we omit,
whenever possible, the subscripts denoting the iteration index and we denote
the current iterate by x and the new one by ¥(x).

Furthermore, except for some cases where it is stated explicitly, we
do not specify the norms used in this report. When Il is used, the reader
may think of any norm, provided it is used throughout and provided that the
norm of L(I(]Rn)) is subordinate with the norm of L(HJU, which in turn is
subordinate with the norm of R". Here, L(A) denotes the linear space of
linear operators from A to A, for some space A, and a norm H-HL in L(A) is

called subordinate with some given norm I | in A if it is defined, for

G ¢ L(A) and x ¢ A, by

The following lemma will be extremely useful for obtaining the desired

results.



LEMMA 2.1. (Perturbation lemma)
Suppose A € L(R™). Then A7 exists if and only if theve 7s a B ¢ L(R")

such that B\ exists and

IB-al < 1708 M0,

Moreover, if A ! exists, then

(2.1) LI SC 5 NV Lt L

n=0

-1 -1
3 < s 1
1 = I1-3 1Al

(2.2) 1AM < - ,
1 - 18”7 s-al

where 1 denotes the unit-matrix.

PROOF. See RALL [9] Section 10. [J

Our analysis of Newton-like methods is based on the analysis of
Newton's method as given by KANTOROVICH [5]. See also ORTEGA & RHEINBOLDT
[8], COLLATZ [2] and RALL [9]. It appears to be useful for our analysis to
define a concept which expresses the relation between the jacobian matrix

J(x) and its approximation M. The following definition appears to be useful.

DEFINITION 2.2. Let F be differentiable on D « R" and let for some real

number r > 0 and integer m = 0 an operator M be defined by

(2.3) M: DOXUI]I: c R™%R™ ~ L(RY),

where D, <D and U? = {ye R" | Iyl <r}. Then M(x,h) is called a strongly
consistent approximalion to the jacobian matrix J(x) on Dy> if a constant

c, called the consistency factor, exists such that
(2.4) x € Dy, he UL = 13(x)-M(x,h)I < clnl.

An example of a strongly consistent approximation to the jacobian

matrix of F is given by the forward difference approximation B(x,h) defined



by (1.6). The following result for B(x,h) can be proved.

THEOREM 2.3. Assume that F is continuously differentiable on D. Then, for

any compact set D c D, there exists a p > 0, such that B(x,h), given by

0

(1.6), Zs well-defined for h ¢ U? and x € D.. Moreover, if

0

(2.5) 1J(x)-J(y)I < yIx-yl, for all x,y e DO

and some constant y > 0, then B(x,h) s a strongly consistent approximation
to J(x) on Dy-

PROOF. See ORTEGA & RHEINBOLDT [8], sectionm 11.2.5. [J

The following corollary is easily derived from definition 2.2 and

lemma 2.1.

COROLLARY 2.4. Let F be differentiable and J(x) nonsingular on D, with

(2.6) sup 173711 < a.
Xe

Let for some integer m and real r, the operator M be defined by (2.3) and
let M(x,h) be a strongly consistent approximation to J(x) on D, with

consistency factor c. Denote
(2.7) p = min(r, 1/(2ca)).

Then [M(x,h)]—] exists for all h ¢ U?, x ¢ D and

(2.8) Mx,h) 1 = T (-3 17 Me,)T LI 17!
n=0

and

(2.9) ItM(x, )17 < 2a .

PROOF. Since h € U?, we know that Ihl < p. Substituting this in (2.4) and

using lemma 2.1 leads immediately to the required result. [J



We are now ready to define precisely the class of methods that we are

going to analyze.

DEFINITION 2.5. We call a method as given by (1.5), for solving the non-

linear system F(x) = 0, where F satisfies (1.1), a Proper Newton-like method
with consistency factor E, if there exists an operator M as given by (2.3),

for some integer m and some real r, and h,_ ¢ U? (k = 0,1,2,...), such that

k

(2.10) Mk = M(Xk’hk)’ k=20,1,...,

and M(x,h) is a strongly consistent approximation to J(x) on D with consis-

tency factor c.

To study the convergence behaviour of proper Newton-like methods we

compare them with Newton's method. Define, similar to (1.4) and (1.5)

(2.11) 0(x) = x - [J(x)17" Fx)

and

1

(2.12) v(x) = x - [M(x,h)]  F(x).

Hence, $ (x) defines an iteration step of the Newton iteration and ¥ (x)
defines an iteration step of a proper Newton-like method. Furthermore,

we assume that J(x) is nonsingular and satisfies (2.5) on D e RY. Using
the mean value theorem we obtain the following expression for the error in

¢(x) as an approximation to the solution vector z:

1

(2.13) To(x)-zl = I[I(x)] " (J(x)(x-2z)-F(x))I < S(x,z)"x—z"z,
where
(2.14) S(x,2) = ¥ sup NHG)D 10361
yellz,x]
and
(2.15) Llz,x] = {ue R® | u=0x+(1-6)z, 0<06<1}.

(2.13) expresses the well-known result, that the asymptotic order of con-



vergence of Newton's method is quadratic. In our further analysis we assume
that that F(x) and M(x,h) satisfy the conditions of corollary 2.4. Then, the

difference between ¥(x) and ¢(x) can be given by

6(x) - p(x) = ((IG)T 7 -Mx,0) 171y F(x) =

= [1- § (I-[3) 1 MG, b)) ™30 17! Fx).

n=0

Hence, provided h ¢ U?, where p is defined by (2.7), we obtain

T oelal 10317 R it 17! Feol <

(2.16) I (x) - vl <
n=1
< CamIti@1! Faol,
where
(2.17) C(x,h) = clul 1317,
Furthermore,
(2.18) 1317 Pl = Ix=o(x)l < Nx-zl + 14 (x)-zl.

So, combining (2.13), (2.16) and (2.18), we obtain the following upper

bound for the error in Y(x) as an approximation to z:

A

(2.19) Ty (x)-zl < Tyx)-¢ ) + I (x)-zI <

S, ) lx-zI + (1+C(x,h))S (x,z)lx-zI 2.

IA

'f‘Since C(x,h) = o(lnl), we can only expect that the asymptotic order of

convergence of a proper Newton-like method is quadratic if Ihl = O(lx-zl).

The above results are summarized in the following definition.

DEFINITION 2.6. Let a nonlinear system be defined by F cf. (1.1) and let

X € D be an approximation to the solution z of the equation F(x) = 0.

Then we say that this problem is properly solvable by a proper Newton-like

method with consistency factor c, if the following conditions are satisfied:



a. J(x) and H(x) exist on D and J(XO) is nonsingular;

b. h, is chosen such that

0
(2.20) E(XO,hO) <!

and
(2.21) ry = E(xo,ho)u¢(xo)-x0u + Hg(x -zl < Ux -zl 5

c. U0 ='{y€:mF ] Uy-zﬂ:sro}c D and J(x) is nonsingular on UO;
d. define
K = sup C(x,h, )
k
xeU

k=1,22..
and hk is chosen such that K < };
e.
(2.22) o(F,2,%y,¢) = Kr(R+1)ST ) < 1,
where

S = sup S(x,z).

erO

If a. to d. are satisfied then o(F,z,x.,c) is called the solvability

0
number of the Newton-like method with consistency factor c, for solving the

nonlinear system F(x) = O with x, as initial guess and z as solution. If

0
a. to d. are not all satisfied, then the solvability number is defined to

be infinite.

The following theorem is now easily proved.

THEOREM 2.7. If a nonlinear system defined by F cf. (1.1) with initial

approximation x, and solution z is properly solvable by a proper Newton—1like

0
method with consistency factor c, then the sequence of points, generated
by this method, converges to z. If, moreover, the method i1s such that
"hk" = O("xk—z") for k » =, then the asymptotic order of convergence is

quadratic.

PROOF. Since (2.20) is satisfied we may use a similar argument as in

corollary (2.4). With inequality (2.16) we obtain



IN

"w(xo)—z" "w(xo)—¢(x0)" + H¢(XO)—zH

IA

Clxgsh) o (x) =%yl + 1o (xy)-zl.
Because of (2.21) we know that
Hw(xo)-zﬂ < on—zﬂ.
Because of c¢. d. and e. we can use (2.19) which gives
ly(x)-zl < E(F,z,xo,z)ux—zu < lIx-zl .
The result follows immediately. [J

Although, in practice, condition e, is a rather strong condition, it
gives us a clear insight in the behaviour of a certain Newton-like method,
provided one can derive results about the consistency factor of the method.
In fact o gives us a possibility of measuring the degree of difficulty for
solving the problem with the method. Furthermore, condition d. shows that

the larger su IIEJ(X)]_]" is, the smaller h, should be chosen.
Xéﬁjo k

3. THE EFFECT OF ROUNDING ERRORS

In this section we consider the effect of round off errors on the

convergence behaviour of Newton-like methods. We use the following notation:

€ : the precision of computation used;
f2.(-): the expression inside the parentheses calculated with

precision of computation e.

When we want to apply the theory given in section 2 on a Newton-like method
where all computation is done in finite precision, such a method is called
a numerical Newton-1like method in this section, we are immediately
confronted with the problem that a numerical Newton-like method will, in

general, not be a proper Newton-like method. Even when we choose
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M= L (I(x)),
which is the best we can do anyhow, we can, in general, only guarantee that
(3.1) HMk—J(xk)H < GHJ(xk)H,

where 6§ > ¢ is some value depending on € and the way Mk is calculated.

Therefore, the notion "

strongly consistent approximation' (cf, def. 2.2)
is not a useful concept when dealing with numerical Newton-like methods. We
give an extension of the theory given in section 2, which is applicable to
numerical Newton-like methods. First we introduce a more general concept

for measuring the consistency of Mk as an approximation to J(xk).

DEFINITION 3.1. (see def. 2.2)

Let F be differentiable on D ¢ R™ and let for some real number r > 0 and

integral number m 2 0 the operator M be defined by

(3.2) M: DOXUI:: c R%R" > L(RY),

where D0 c D and U? ='{ye Efll Iyl <r}. Then M(x,h) is called a

numerically consistent approximation to J(x) on D,, if there exist a

0’
constant ¢, and a function co(e,h) which is continuous in € and h for

1
€ >0 and h ¢ U?\{O}, such that for all x € D, and h ¢ U?\{O} the following

0
conditions are satisfied:

(3.3) "J(x)—f%E(M(x,h))H < co(e,h)-Fclﬂh",
(3.4) lim co(e,h) = 0.
e>0
We call
(3.5) c(x,h) = co(x,h)-+c1"h"

the consistency function of M.

As an example of a numerically consistent approximation we again
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consider the forward difference approximation B(x,h), defined by (1.6). We

prove the following theorem.

THEOREM 3.2. Assume that F (cf. (1.1)) s continuously differentiable on D.

Then, for any compact set D, c D there exists a p > e such that B(x,h), given

0
by (1.6), s well-defined for h e U? and x € Dy-

satisfied, then B(x,h) is a numerically consistent approximation to J(x)

Moreover, if (2.5) s

on DO'

PROOF. We use the following relations (WILKINSON [10], DEKKER [31]).

(3.6) Ifle(aib)-(aib)l < (lal+|b])e ,

IA

(3.7) |£2_(a/b)-(a/b)| < |a/ble.

We assume that for some § = 8§(g) = ¢
Ifle(fi(x))—fi(x){ < Ifi(x)lé, Vx e D, 1=1,2,...,n,

where F(x) = (f](x),...,fn(x))T. Now, suppose hij # 0. Then some simple
algebra shows that the error in the forward difference approximation to an
element of the jacobian matrix can be bounded by

Bfi
lsz((B(X’h))ij) _a—x—j‘l <

SF . )
__i 8+2e iy )
SRR RIS o (CICIREIS TR

1]

where we assumed that 6 < !, which seems reasonable. Hence, using the

Ql-norm,
Nfze(B(x,h))—J(x)" < (1+e)IB(x,h)=-J(x)I + elJ(x)li +
+» 2DE swp  (FD),
min ly-xl</nl
where hmin = min(lhijl, i,j = l""’m’lhijl # 0).

4 o i
BIBLIOTHERK  MATHEMATISCH  CENTRUM
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From theorem 2.3 and the fact that DO is compact and D open we know that

there exist a p > 0 and a EI such that

(3.8) IB(x,h)-J(x)I < Elﬂhﬂ.
Choose
_ 3(n+1)6
CO(E’h) = _ji;;;h-"y—iwg"h“ F@GH) + el

(3.9)

c, = (1+e)El.

1

Then the theorem is proved, since

lim |8(e)| = O.
>0 gd

The following corollary shows the relation between the condition

number

K (J(x)) = 13GOI LI 1M

of the jacobian matrix and the condition number of its numerically consistent

approximation.

COROLLARY 3.3. Let F be given (cf. (1.1)) and let J(x) be nonsingular on D.

Suppose, for some integer m and real r Lhe operator M is defimned by (3.1).
Suppose M(x,h) s a numerically consistent approximation to J(x) on D with
consistency function c(e,h). Assume, moreover, that for all e > 0 a value

p > 0 exists such that

iy

(3.10) ITJ(x)1" 0 <1/(2c(e,h)), for all x e D, h ¢ U?\{O}.

Then [flE(M(x,h))]—] exists and

1 1

- ] -1 e iGN L7,

(3.11) [£2 (M(x,h))]”
= n=0



(3.12) "[fle(M(x,h))]_]H < 1/c(e,h),
(3.13) K(fZE(M(x,h))) < 3k (JI(x)).

PROOF. The proof of (3.11) and (3.12) follows easily from definition 3.1
and lemma 2.1. For proving (3.13) denote M = sz(M(x,h)). Using (2.2) we
obtain

RISl
1= 13(x) 1 03—l

() = I Iv N <

Substituting IMl < IM-J(x)I + 13(x)l and «(J(x)) > 1 we obtain the required

result. [J

We are ready now to define whether we may expect a numerical Newton-

like method to behave like Newton's method.

DEFINITION 3.4. (see def. 2.5)

We call a numerical Newton-like method for solving the nonlinear system
defined by F (cf. (1.1)), a proper numerical Newton-like method with
consistency function ¢, if there exists an operator M as given by (3.2)

for some integer m and real r, such that

Mk = fle(M(Xk,hk))
and M(x,h) is a numerically consistent approximation to J(x) on D.

We give an analysis of proper numerical Newton-like methods which is
analogous to the analysis of a proper Newton-like method. Denote by ¥ (x)

the vector which exactly satisfies the equation
(3.14) £2_(M(x,0h)) (W(x)-x) = F(x).

Assume that the conditions of corollary 3.3 are satisfied. Then, an upper
bound for the error in ¥(x) as an approximation to ¢(x) (cf. (1.4)) can be

given by
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1

(3.15) Ie(x)-v(x)I < C(x,h,e)I[I(x)] " F(x)I,
where
(3.16) Clx,h,e) = c(e,mITI)T M,

and c(e,h) is given by (3.5). The proof of (3.15) uses corollary 3.3 in a
similar way as corollary 2.4 is used in the proof of (2.16).

Let fls(a(x)) be the numerical approximation to ¥(x). Then
(3.17) fze(m(x)) = fze(fze(a(x)—x)+x),

where flg(@(x)—x) denotes the numerical solution of the system (3.14),
where F(x) is replaced by fQE(F(x)).
Now, suppose we want to solve with gaussian elimination on a

computer with precision of arithmetic e, the linear system

where A is given exactly, but b is not. Let the error in b be bounded by
Isbl. Then the error in the numerical solution x as an approximation to the °

. * .,
exact solution x 1is bounded by

Ix=x"I [ eg(n) HGbH]

(3.18) _ﬁ;;F_-S <[ Toc@yegm Tl

where g(n) is some function depending on the order n, the norm used and

the pivoting strategy used (WILKINSON [10]), and where it is assumed that

k(A)eg(n) < 1.
Applying this result to fle(ﬁ(x)—x) we obtain

(3.19) 1£2_(0(x)=-x)=(@ )= < alx,e,n)lp)-xl,

where

_ [ eg(n) ]
(3.20)  al,em) = U6 T3t yeg @ * 0

and § satisfies
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(3.21) I£2 (F(x))-F(x)l < sIF(x)I. ,

We assume that the conditions of corollary 3.3 are satisfied, so that

(3.13) can be used, and, moreover, that

(3.22) 3k (J(x))eg(n) < 1.

Combining (3.17) and (3.19) we obtain

A

nfze(a(x))—a(x)u < e(nfze(a(x)—x)u + Ixl) + nfze(i(x)—x)-(a(x)—x)ns

< elxl + [(1+e)a(x,e,n)+eIlp(x)-xl.
Thus
(3.23) nfge(a(x))-$(x))us;guxu-+3(x,s,n)n$(x)—xu,
where
(3.24) B(x,e,n) = (1+e)a(x,e,n) +¢.

Finally, combining (2.13), (3.15) and (3.23) we obtain for the error in

fzg(i(x)) as an approximation to solution z:

A

(3.25) ufgs(a(x))-zu < ufze(a(x))—m(x)u + ly(x)-zIl <

elxl +B(x,e,n)lx-zll + (1+8(x,e,n) ) y(x)-zl.

IN

With
Iy (x)-zl < 19 x)-¢ (x)I + g (x)-zl

we obtain as the final result:

(3.26) Hf,('.g(l-lj(x))—z" < elxl +L(x,e,h,n)lx-2zl +Q(x,e,h,n,z)llx—z“2,
where
(3.27) L(x,e,h,n) = B(x,e,n)+(1+B(x,e,n))C(x,h,e)

and
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(3.28) Q(x,e,h,n,z) = (1+B(x,e,n)) (1+C(x,h,e))S(x,2).

From the first term in the right hand side of (3.26) we see that one can not

expect to find a solution of a nonlinear system with a proper numerical

Newton-like method, within a relative precision which is higher than the

precision of computation. Furthermore, convergence at all depends on the

quantities:

- S(x,z), the convergence factor of the exact Newton method;

- C(x,h,e), which is a measure for the error in fle(M(x,h)) as a numerical
approximation to J(x); this quantity depends on the method;

- B(x,e,n), which reflects the condition number of the linear subproblem;
the condition number k(J(x)) should be small relative to 1/¢
(ef. (3.20)).

In either case, L(x,e,h,n) +Q(x,¢,h,n,z)lx—zl has to be less than 1 in

order to be able to guarantee convergence.

We summarize these results in the following definition:

DEFINITION 3.5. (see def. 2.6)

Let a nonlinear system be defined by F (cf. (1.1)) and let X € D be an
approximation to the solution z of the equation F(x) = 0. Then, we call
this problem numerically solvable by a proper numerical Newton-like method
with consistency function c(e,h) and precision of computation e, if the
following conditions are satisfied:

a. J(x) and H(x) exist on D and
K(J(XO)) < 1/(3eg(n)),

where g(n) depends on the method used for solving the linear system
(cf. (3.18));

. . ! .
b. hO satisfies C(xo,ho,e) < 4, and if

ro = &‘,onu + "d)(xo)—z" + [B(xoyesn)+(l+8(xoag ’n))C(XO’hO’E)]"¢(XO)—XO"
then

r, < on-zﬂ;
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c. U0 = {ye Rr" | Il y-zl Sro} cD
and

S%F k(J(x)) < 1/(3eg(n));
xel

d. define K = sup C(x,hy,e) and h; is chosen such that K < i
xel
k=1,20..

e. 0(F,z,x,,c,e) = B+ (1+B)C+ (1+B) (1+C)S ry <1,

0

where S

I

sup S(x,z),
ero

sup B(x,e,n).
xely

If a. to d. are satisfied, then o(F,z,xO,c,s) is called the numerical
solvability number of the proper numerical Newton-like method with consis-
tency function c, for solving the nonlinear system F(x) = 0 with X, as
initial guess and z as solution, and precision of computation e. If a., b.,
c. or d. are not satisfied, then the numerical solvability number is defined

to be infinite.

The following theorem is now easily proved.

THEOREM 3.6. (see theorem 2.7)
If a system of nonlinear equations defined by F (ef. (1.1)) with initial

approximation x, and solution z is numerically solvable by a proper

0
numerical Newton—like method with consistency function c and precision

of computation e, then the sequence of points, generated by this method

. * . * *
converges to a point x with Ix -zl < elxI.

PROOF. The proof is similar to the proof of theorem 2.7. Use of corollary
3.3 and the formulas (3.15), (3.25) and (3.26) leads immediately to the

required result. [J

4. SOME EXAMPLES

Consider the problem, given by GHERI & MANCINO [4]:
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(4.1) £.(x) = snxi+(i—n/z)Y+
o a a
+ jzl [zij(31n (log(zij))-cos (1og(zij)))],
j#i
where
F(x) = (£,(),.,E ()
and

z,. = Vx§+i/j

1]

and the starting point is chosen to be

= -r(0)K
(4.2) Xq = “F(0)5 >

where ¢ = Bn=- (a+1)(n-1), K = Bn+ (a+1)(n-1). We consider the

which
(4.3) n = 10, a =5, B = 14, vy = 3.
Let method A be a Newton-like method with

4.4) M= £ (I(x))

and let method B be a Newton-like method with

(4.5) ME = £2_(B(x,0.0001)),

where B(x,0.0001) is defined by (1.6) with hij = h = 0.0001,

As a value of & we use ¢ = 10—]4.

As is easily shown, the jacobian matrix
J(x) = (Jij(x))

satisfies

example for
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Jii(x) = Bn, i=1,...,n

and

lJij(x)I < a+l, i,] ly00.,0, 1 # j.

Therefore, using Gershgorin's theorem (see for instance WILKINSON [111])

W; have for the smallest eigenvalue Anﬁlland the largest eigenvalue Amax of
J (x)J(x):

/Amin > 47.00; VAmax < 200.

Hence, for the spectral norm we obtain

1

(4.6) I3(x)Il < 200, UI[J(x)1 I < 0.021.
k(J(x)) < 4.2,
Furthermore,
0 0 0. 0 h
In
h21 0. 0 . .
H(x) = T N ' ' ,
. . hn—ln
h 0 0 0. . 0 0
nl

where elementary computation shows that with the choice of o = 5 we have
lhijl < 55.

Therefore, we have approximately

(4.7) Ia(x)Il < 55/n' < 180.

Using these results and assuming that gaussian elimination with complete

pivoting is used, so that

(4.8) g(n) ~ 20n3
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(see WILKINSON [10]), it 1s easily seen that condition a. and c. of
definition 3.5 is satisfied.

By (3.1) we have for the consistency function of method A:
cA(x,h) = 2008.

By choosing the very reasonable value § = ]0—11, we obtain

(4.9) Ax,h,e) < 4.2 [o-11 < 0.5 (condition b. of definition 3.5).

From (3.20) and (3.24) we obtain

(4.10) 88 (x, e,n) < 3 0=
Hence
(4.11) GA(F,z,xO,c,e) ~ (0.5X180XO.021)r0 ~ 1.89 -

It appears from this result and from theorem 3.6 that the condition

(4.12) ro < 0.53

is sufficient to guarantee convergence of method A. Numerical experiments
show that this condition is easily satisfied.
For method B we use the mean value theorem to obtain a value for c, in

] 1
(3.8). Hence, with (4.7),

c, < sup(lH(x)I) < 180.
1 X

Using (3.9) we obtain for the consistency function of method B
(4.13) SBe,n) = §£Eill§~su8<uF<x)u) + e sup(13()I) + Th,
h X€ xeB I

where

D={xeR" | Ig-zl < Ix,-z1 +n}
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and z is the solution of the problem.
Since the order of magnitude of Izl and onﬂ is about 1, we obtain

after some elementary calculations

IFGl < . 3,
sup 1FGIL <45

so that, with the choice of h and 8§, we obtain from (4.2)

1

B
¢ (e,h) < 310 3+ 21 12 + 1.8 i 2 2.1 2

0 0 - 10

and

cB(x,h,e) < 4]0—4 < 0.5 (condition b. of definition 3.5).

Hence, using (4.10), it is easily seen that

B
o (F,z,xo,c,e) _.4]0 4 + 1.89 .y

so that

rO < 0.53

is sufficient to guarantee convergence of method B.

These examples show that a rather simple analysis is sufficient some-
times to proof convergence of a numerical Newton-like method in advance,
even for such complicated functions as given by (4.1). It is enough to know

roughly the region in which the starting guess and the solution lies.

5. DISCUSSION

In this report, we gave an analysis of Newton-like methods for solving
systems of nonlinear equations. The main results of this analysis are
expressed in definition 3.5 and theorem 3.6. They establish sufficient
conditions for global convergence of Newton-like algorithms when finite
precision arithmetic is used. It appears from these conditions that the

condition of the jacobian matrix and the consistency of the approximation to
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the jacobian matrix used in the algorithm, are crucial points for the rate
of convergence. A second result expressed in definition 3.5 is the intro-
duction of a numerical solvability number. This number enables us to deter-
mine whether a problem may be expected to be easily solved. Although this
is usually not useful for solving practical problems, it can be extremely useful
when we have to create sets of test functions that should be used for

testing algorithms for solving systems of nonlinear equations (see BUS [11]).
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