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ABSTRACT 

An analysis is given of the convergence of Newton-like methods for 

solving systems of nonlinear equations. Special attention is paid to the 

computational aspects of this problem. 
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I • INTRODUCTION 

In this report we will be concerned with iterative methods for solving 

a system of nonlinear equations. Let 

(I.I) 
n n 

F: D C JR ➔ JR 

be some function defined on some region D. Let xO ED. Then we want to 

construct a sequence of points {xi}:=O' with xi ED (i = 1,2, ... ) such that 

(I. 2) z = lim x. 
i➔oo ]. 

exists and 

(). 3) F(z) = O. 

A very well-known method for solving this problem is Newton's method, 

defined by 

(1.4) 

where J(x) denotes the jacobian matrix of partial derivatives of F. For this 

method, KANTOROVICH [5] presented convergence results, known in literature 

as the Newton-Kantorovich theorem (see for instance ORTEGA & RHEINBOLDT 

[8]). However, most frequently J(xk) is not available, so that in practice 

an approximation to J(~) is used. In fact, calculating on a computer with 

finite wordlength, J(~) can not be obtained exactly. In order to derive 

results about the convergence of the very useful modifications of Newton's 

method, we study methods defined by 

(I. 5) 

where~ is some approximation to J(xk). We call such a method a Newton-Zike 

method. We mention the following examples: 
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I. The approximation to J(x) obtained by using forward difference formulas. 

Define the (i,j)-th element of a matrix B(x,h) by: 

1 • 
if h .. 'f 0, 

. . 1 1J 1 1J 1J 
l i;-(f. (x+h . . eJ)-f. (x)J, 

(1.6) (B(x,h)) .. = 1J cl 
-cl - f. (x) ' 

if h .. = 0, x. 1 1J 
J 

T n 2 
where h = (h11 ,h12 , ••• ,h1n,hZI'":•,hnn) E lR , 

F(x) = (f 1(x), •.• ,fn(x))T, and eJ denotes the j-th unit-vector in lRn. 

Then~ is obtained by 

(I. 7) 

2. The approximation to J(x) obtained by evaluating the analytic expressions 

for the partial derivatives on a computer with finite wordlength; 

3. 

where Ak E lR and I denotes the unit-matrix. The Newton-like method 

obtained in this way has been proposed by LEVENBERG [6] and MARQUARDT 

[7]. 

The analysis of Newton-like methods, given in this report is essen­

tially based on the Newton-Kantorovich theorem and its extension given by 

ORTEGA & RHEINBOLDT [8]. However, we use a somewhat different approach, in 

order to be able to deal with difficulties that arise when finite precision 

arithmetic is used. 

Considering (1.5) we see that it is obtained by approximating the 

function F(x) in a neighbourhood of~ by 

(1.8) 

and by solving the linear system which arises by setting Fk(x) = O. Clearly, 

two sources of errors arise in approximating a solution z, with F(z) = 0, 

by~(~), when a computer is used. 



I. The error caused by approximating F(x) by Fk(x). 

2. The error caused by the numerical solution of the linear system 

In section 2 we will discuss the properties of a Newton-like method 

when exact arithmetic is used, so that the second source of errors does 
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not occur. In section 3 we will discuss the influence of rounding errors in 

the computation on the results given in section 2. 

2. ANALYSIS OF NEWTON-LIKE METHODS 

Let a function F and some region D be given by (I.I). Let J(x) denote 

the jacobian matrix of partial derivatives of Fat x and let H(x) denote 

the tensor of partial second derivatives of Fat x. Suppose x0 ED is given 
00 

and a sequence {x.}. 0 is constructed by a Newton-like method as given by 
l. 1.= 

(1.5). Let, moreover, z ED be a solution of the system of nonlinear 

equations defined by F, i.e. z satisfies (1.3). Then, the aim of this 

section is to derive sufficient conditions such that {x.}~ 0 converges to z. 
l. 1.= 

We assume that exact arithmetic is used. To simplify notation we omit, 

whenever possible, the subscripts denoting the iteration index and we denote 

the current iterate by x and the new one by ~(x). 

Furthermore, except for some cases where it is stated explicitly, we 

do not specify the norms used in this report. When 11•11 is used, the reader 

may think of any norm, provided it is used throughout and provided that the 
n n norm of L(L(lR ) ) is subordinate with the norm of L(lR ) , which in turn is 

subordinate with the norm of lR.n. Here, L(A) denotes the linear space of 

linear operators from A to A, for some space A, and a norm II• II L in L(A) 1.s 

called subordinate with some given norm II II in A if it is defined, for 

GE L(A) and XE A, by 

The following lemma will be extremely useful for obtaining the desired 

results. 



4 

LEMMA 2.1. (Perturbation lemma) 
n -1 

Suppose A E L(lR ) • Then A exists if and onZy if there is a B E L(Rn) 

such that B-l exists and 

Moreover, if A-l exists, then 

(X) 

(2. 1) A-1 = l (I-B-lA)n B-1 , 
n=O 

(2.2) 
1 DB- 111 IIB-lff 

U A- II s ------ s -------
- II I - B - l All 1 - II B - l g II B-AII , 

where I denotes the unit,-matrix. 

PROOF. See RALL [9] Section 10. 0 

Our analysis of Newton-like methods is based on the analysis of 

Newton's method as given by KANTOROVICH [SJ. See also ORTEGA & RHEINBOLDT 

[8], COLLATZ [2] and RALL [9]. It appears to be useful for our analysis to 

define a concept which expresses the relation between the jacobian matrix 

J(x) and its approximation M. The following definition appears to be useful. 

DEFINITION 2.2. Let F be differentiable on D L ]Rn and let for some real 

number r > 0 and integer m ~ 0 an operator M be defined by 

(2.3) 

where n0 c D and u; = {y E Rm I II yll s r}. Then M(x,h) is called a strongly 

consistent approximation to the jacobian matrix J(x) on D0 , if a constant 

c, called the consistency factor, exists such that 

(2.4) XE Do, h Eu;~ UJ(x)-M(x,h)II $ cllhU. 

An example of a strongly consistent approximation to the jacobian 

matrix of Fis given by the forward difference approximation B(x,h) defined 



by (1.6). The following result for B(x,h) can be proved. 

THEOREM 2.3. Assume that Fis continuously differentiable on D. Then, for 

any compact set D0 c D, there exists a p > 0, such that B(x,h), given by 

(1.6), is well-defined for h Eu: and x E D0• Moreover, if 

(2.5) IIJ(x)-J(y)U s yffx-yll, for all x,y E Do 
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and some constant y > 0, then B(x,h) is a strongly consistent approximation 

to J(x) on D0 . 

PROOF. See ORTEGA & RHEINBOLDT [8], section 11.2.5. 0 

The following corollary is easily derived from definition 2.2 and 

1 ennna 2 • I • 

COROLLARY 2.4. Let F be differentiable and J(x) nonsingular on D, with 

(2.6) -1 sup II [J(x)] II s <i. 
XED 

Let for some integer m and real r, the operator M be defined by (2.3) and 

let M(x,h) be a strongly consistent approximation to J(x) on D, with 

consistency factor c. Denote 

(2.7) p = min(r, l/(2ca)). 

Then [M(x,h)]-I exists for all h Eu:, x ED and 

00 

(2.8) [M(x,h)]-I = L (1-[J(x)]-I M(x,h))n [J(x)]-l 
n=O 

and 

(2.9) 

PROOF. Since h E Um, we know that 11h11 s p. Substituting this in (2.4) and 
p 

using lemma 2.1 leads innnediately to the required result. D 
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We are now ready to define precisely the class of methods that we are 

going to analyze. 

DEFINITION 2.5. We call a method as given by (1.5), for solving the non­

linear system F(x) = 0, where F satisfies (1.1), a Proper Newton-like method 

with consistency factor~, if there exists an operator Mas given by (2.3), 
m for some integer m and some real r, and hk E Ur (k = 0,1,2, ••• ), such that 

(2.10) k = 0,1, ••. , 

and M(x,h) is a strongly consistent approximation to J(x) on D with consis­

tency factor c. 

To study the convergence behaviour of proper Newton-like methods we 

compare them with Newton's method. Define, similar to (1.4) and (1.5) 

(2.11) ~(x) = x - [J(x)]-l F(x) 

and 

(2.12) *(x) = x - [M(x,h)]-l F(x). 

Hence,~(x) defines an iteration step of the Newton iteration and *(x) 

defines an iteration step of a proper Newton-like method. Furthermore, 

we assume that J(x) is nonsingular and satisfies (2.5) on DE ]Rn. Using 

the mean value theorem we obtain the following expression for the error in 

~(x) as an approximation to the solution vector z: 

(2. 13) 

where 

(2.14) 

and 

(2.15) 

II ~ ( x) - z II = II [ J ( x) J - l ( J ( x )( x- z ) - F ( x) ) II ~ S ( x , z ) II x- z II 2 , 

S(x,z) = ½( sup IIH(y)II) ll[J(x)J- 111 
yEL[z,x] 

L[z,x] = {uElRn I u=8x+(l-8)z,0~8~1}. 

(2.13) expresses the well-known result, that the asymptotic order of con-
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vergence of Newton's method is quadratic. In our further analysis we assume 

that that F(x) and M(x,h) satisfy the conditions of corollary 2.4. Then, the 

difference between $(x) and $(x) can be given by 

00 

= [I- I (I-[J(x)J- 1M(x,h))n][J(x)]-I F(x). 
n=O 

Hence, provided h Eu;, where pis defined by (2.7), we obtain 

00 

(2.16) 11Hx)-$(x)II s l (cllhll ll[J(x)J- 111)n U[J(x)]-I F(x)II s 
n=I 

s ~(x,h)D[J(x)J-l F(x)II, 

where 

(2.17) 

Furthermore, 

(2. 18) U[J(x)]-I F(x)U = llx-$(x)U S Ux-zU + 11$(x)-zll. 

So, combining (2.13), (2.16) and (2.18), we obtain the following upper 

bound for the error in $(x) as an approximation to z: 

(2. 19) 

S ~(x,h)llx-zll + (l+~(x,h))S(x,z)llx-zll 2 . 

-Since C(x,h) = O(llhll), we can only expect that the asymptotic order of 

convergence of a proper Newton-like method is quadratic if 11h11 = O(llx-zll). 

The above results are summarized in the following definition. 

DEFINITION 2.6. Let a nonlinear system be defined by F cf. (I.I) and let 

x0 ED be an approximation to the solution z of the equation F(x) = O. 

Then we say that this problem is properly solvable by a proper Newton-like 

method with consistency factor~. if the following conditions are satisfied: 
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a. J(x) and H(x) exist on D and J(~0) is nonsingular; 

b. h0 is chosen such that 

(2.20) 

and 

(2.2I) r 0 = C(x0,h0)U<p(x0)-x011 + H<P(xJ-zll < Ux0-zll; 

c. u0 = {y E 1Rn I Uy-zll::;; r 0} c D and J(x) is nonsingular on u0; 

d. define 

and hk 

e. 

(2.22) 

where 

K = sup C(x,hk) 
XEUO 

k= I , 2, •.• 

is chosen such that 

S = sup S(x,z). 
XEUO 

- l • K ::;; 
2 ' 

If a. to d. are satisfied then cr(F,z,x0 ,c) is called the solvability 

number of the Newton-like method with consistency factor c, for solving the 

nonlinear system F(x) = 0 with x0 as initial guess and z as solution. If 

a. to d. are not all satisfied, then the solvability number is defined to 

be infinite. 

The following theorem is now easily proved. 

THEOREM 2.7. If a nonlinear system defined by F cf. (I.I) with initial 

approximation x0 and solution z is properly solvable by a proper Newton-Zike 

method with consistency factor c, then the sequence of points, generated 

by this method, converges to z. If, moreover, the method is such that 

llhkll = O(llxk-zll) fork ➔ 00, then the asymptotic order of convergence is 

quadratic. 

PROOF. Since (2.20) is satisfied we may use a similar argument as in 

corollary (2.4). With inequality (2.I6) we obtain 



Because of (2.21) we know that 

Because of c. d. and e. we can use (2.19) which gives 

lliµ(x)-zll :o; o(F,z,x0 ,~)llx-zll :o; llx-zll. 

The result follows immediately. D 

Although, in practice, condition e. is a rather strong condition, it 

gives us a clear insight in the behaviour of a certain Newton-like method, 

provided one can derive results about the consistency factor of the method. 

In fact a gives us a possibility of measuring the degree of difficulty for 

solving the problem with the method. Furthermore, condition d. shows that 
-1 

the larger sutp II [ J (x)] II is, the smaller hk should be chosen. 
XEUQ 

3. THE EFFECT OF ROUNDING ERRORS 
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In this section we consider the effect of round off errors on the 

convergence behaviour of Newton-like methods. We use the following notation: 

E the precision of computation used; 

ftE(.): the expression inside the parentheses calculated with 

precision of computation E. 

When we want to apply the theory given in section 2 on a Newton-like method 

where all computation is done in finite precision, such a method is called 

a numerical Newton-like method in this section, we are immediately 

confronted with the problem that a numerical Newton-like method will, in 

general, not be a proper Newton-like method. Even when we choose 
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which is the best we can do anyhow, we can, in general, only guarantee that 

(3. I) 

where o ~£is some value depending on£ and the way~ is calculated. 

Therefore, the notion "strongly consistent approximation" (cf, def. 2.2) 

is not a useful concept when dealing with numerical Newton-like methods. We 

give an extension of the theory given in section 2, which is applicable to 

numerical Newton-like methods. First we introduce a more general concept 

for measuring the consistency of~ as an approximation to J(~). 

DEFINITION 3.1. (see def. 2.2) 

Let F be differentiable on D c ]Rn and let for some real number r > 0 and 

integral number m ~ 0 the operator M be defined by 

(3.2) 

where D0 c D and u; = {yElRm I llyll :s;r}. Then M(x,h) is called a 

nurneriaaZZy aonsistent approximation to J(x) on D0 , if there exist a 

constant c 1 and a function c0 (E,h) which is continuous in£ and h for 

£ ~ 0 and h E u;\{O}, such that for all x E D0 and h E u;\{O} the following 

conditions are satisfied: 

(3.3) 

(3.4) 

We call 

(3.5) 

lim co(E,h) = o. 
£➔0 

the aonsistenay funetion of M. 

As an example of a numerically consistent approximation we again 
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consider the forward difference approximation B(x,h), defined by (1.6). We 

prove the following theorem. 

THEOREM 3.2. Asswne that F (cf. (I.I)) is continuously differentiable on D. 

Then., for any compact set D0 c D there exists a p > E: such that B(x,h)., given 

by ( I. 6)., is: weU-defined for h E u; and x E D0 • Moreover., if (2. 5) is 

satisfied., then B(x,h) is a nwnerically consistent approximation to J(x) 

on D0 . 

PROOF. We use the following relations (WILKINSON [10], DEKKER [3]). 

(3. 6) 

(3. 7) 

If£ (a±b)-(a±b)I s (lal+lbl)E: , E: 

if£ (a/b)-(a/b)I s la/blE:. E: 

We assume that for some o = o(E:) ~ E: 

If£ (f.(x))-f.(x)I < Jf.(x)lo, E: 1 1 1 
Vx E D , 1 = I , 2 , • • • , n , 

where F(x) = (f 1 (x), ... ,f (x)/. Now, suppose h .. f:O. Then some simple 
n 1J 

algebra shows that the error in the forward difference approximation to an 

element of the jacobian matrix can be bounded by 

;)f. 
1 If£ ((B(x,h)) .. ) --,-,-! s E: 1] ox. 
J 

s l(B(x,h)) .. -~fil + E:l(B(x,h)) .. J +_l-1-_2E:_/lf.(x)l+Jf.(x+h .. ej)I\)' 
1] ox. 1] ~ 1 1 1] 

J 1] 

where we assumed that o <¾,which seems reasonable. Hence, using the 

9., 1-norm, 

llf£ (B(x,h))-J(x)II s (l+E:)IIB(x,h)-J(x)H + E:IIJ(x)U + 
E: 

+ 3(n+l)o 
h . min 

sup 
II y-xll sllhll 

where h . = min(Jh .. I, 1,J = 1, .•. ,m,lh .. I 1= 0). 
min 1J 1J 

MAlHEMATISCH 

(IIF(y)II), 
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From theorem 2.3 and the fact that n0 is compact and D open we know that 

there exist a p > 0 and a c1 such that 

(3.8) 

Choose 

3(n+l)o 
= h. lly-~~~llhll (IIF{y)ll)+dJ(x)II, 

min 

(3.9) 

Then the theorem is proved, since 

lim I o ( £) I = o. 
c:+O 

The following corollary shows the relation between the condition 

number 

K(J(x)) = IIJ(x)II If [J(x)J-lll 

D 

of the jacobian matrix and the condition number of its numerically consistent 

approximation. 

COROLLARY 3.3. Let F be given (cf. (1.1)) and let J(x) be nonsingular on D. 

Suppose, for some integer m and real r the operator Mis defined by (3.1). 

Suppose M(x,h) is a numerically consistent approximation to J(x) on D with 

consistency function c(c:,h). Assume, moreover, that for all c: > 0 a value 

p > 0 exists such that 

(3.10) 
-1 H[J(x)J II~ I/(2c(c:,h)), 

Then [ft (M(x,h))J-I exists and 
E 

(X) 

for all x ED, 

(3.11) [ft (M(x,h))J-l = 
E 

L (I - [J(x)J- 1H (M(x,h)))n [J(x)]-l, 
n=O c: 
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(3.12) ll[H (M(x,h))J- 111 ~ 1/c(e,h), 
£ 

(3.13) K(f£ (M(x,h))) ~ 3K(J(x)). 
E 

PROOF. The proof of (3.11) and (3.12) follows easily from definition 3.1 

and lemma 2.1. For proving (3.13) denote M = ft (M(x,h)). Using (2.2) we 
E 

obtain 

II [J(x) J- 111 IIMII 
~ ------'---'-------

! -ll[J(x)J- 1IIIIJ(x)-MII 

Substituting IIMII ~ IIM-J(x)II + IIJ(x)II and K(J(x)) 2 I we obtain the required 

result. D 

We are ready now to define whether we may expect a numerical Newton­

like method to behave like Newton's method. 

DEFINITION 3.4. (see def. 2.5) 

We call a numerical Newton-like method for solving the nonlinear system 

defined by F (cf. (I.I)), a proper numerical Newton-like method with 

consistency function c, if there exists an operator Mas given by (3.2) 

for some integer m and real r, such that 

and M(x,h) is a numerically consistent approximation to J(x) on D. 

We give an analysis of proper numerical Newton-like methods which is 

analogous to the analysis of a proper Newton-like method. Denote by ~(x) 

the vector which exactly satisfies the equation 

(3.14) ft (M(x,h))(i(x)-x) = F(x). 
E 

Assume that the conditions of corollary 3.3 are satisfied. Then, an upper 

bound for the: error in ~ (x) as an approximation to qi(x) ( cf. ( I. 4)) can be 

given by 
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(3.15) 

where 

(3.16) 

and c(E,h) is given by (3.5). The proof of (3.15) uses corollary 3.3 in a 

similar way as corollary 2.4 is used in the proof of (2.16). 

Let f.Q, (~(x)) be the numerical approximation to ~(x). Then 
E 

(3.17) ft (~(x)) = ft (ft (w(x)-x)+x), E E E 

where ft (~(x)-x) denotes the numerical solution of the system (3.14), 
E 

where F(x) is replaced by ft (F(x)). 
E 

Now, suppose we want to solve with gaussian elimination on a 

computer with precision of arithmetic E, the linear system 

Ax= b, 

where A is given exactly, but bis not. Let the error in b be bounded by 

llobll. Then the error in the numerical solution i as an approximation to the 
* exact solution x is bounded by 

(3. 18) 

where g(n) is some function depending on the order n, the norm used and 

the pivoting strategy used (WILKINSON [10]), and where it is assumed that 

K(A) Eg(n) < 1. 

Applying this result to ft (~(x)-x) we obtain 
E 

(3.19) 

where 

(3. 20) 

lift (~(x)-x)-(~(x)-x)II s a(x,E,n)ll~(x)-xll, 
E: 

a(x,E,n) 

and o satisfies: 



(3.21) IIH(F(x))-F(x)II s ollF(x)II. 

We assume that the conditions of corollary 3.3 are satisfied, so that 

(3.13) can be used, and, moreover, that 

(3. 22) 3K(J(x))Eg(n) < 1. 

Combining (3.17) and (3.19) we obtain 
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11ft (~(x))-~(x)II s E(llft (i(x)-x)II + llxll) + lift (~(x)-x)-(~(x)-x)II s E E E 

Thus 

(3. 23) 

where 

(3. 24) S(x,E,n) = (l+E)a(x,E,n)+E, 

Finally, combining (2.13), (3.15) and (3.23) we obtain for the error in 

ft (~(x)) as an approximation to solution z: 
E 

(3.25) 

s dxll + S(x,E,n)llx-zll + (l+S(x,E,n))ll~(x)-zll. 

With 

ll~(x)-zll s ll~(x)-¢(x)II + 11¢(x)-zll 

we obtain as the final result: 

(3.26) 

where 

(3. 27) 

and 

IIH (~(x))-zll s dxll +L(x,E,h,n)llx-zll +Q(x,E,h,n,z)llx-zll 2 , 
E 

L(x,E,h,n) = S(x,E,n)+(l+S(x,E,n))C(x,h,E) 
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(3.28) Q(x,e,h,n,z) = (l+B(x,e,n))(l+C(x,h,e))S(x,z). 

From the first term in the right hand side of (3.26) we see that one can not 

expect to find a solution of a nonlinear system with a proper numerical 

Newton-like method, within a relative precision which is higher than the 

precision of computation. Furthermore, convergence at all depends on the 

quantities: 

- S(x,z), the convergence factor of the exact Newton method; 

- C(x,h,e), which is a measure for the error in ft (M(x,h)) as a numerical 
E 

approximation to J(x); this quantity depends on the method; 

- B(x,e,n), which reflects the condition number of the linear subproblem; 

the condition number K(J(x)) should be small relative to 1/e 

(cf. (3.20)). 

In either case, L(x,e,h,n) + Q(x,i::,h,n,z)llx-zU has to be less than I in 

order to be able to guarantee convergence. 

We sullm1arize these results in the following definition: 

DEFINITION 3.5. (see def. 2.6) 

Let a nonlinear system be defined by F (cf. (I.I)) and let x0 ED be an 

approximation to the solution z of the equation F(x) = 0. Then, we call 

this problem numerically solvable by a proper numerical Newton-like method 

with consistency function c(e,h) and precision of computation e, if the 

following conditions are satisfied: 

a. J(x) and H(x) exist on D and 

where g(n) depends on the method used for solving the linear system 

( cf. ( 3. I 8)) ; 

b. hO satisfies C(x0 ,h0 ,e) ~½,and if 

r = 
0 

then 



and 

sup K(J(x)) < 1/(3e:g(n)); 
XEUO 

d. define K = sup C(x,hk,e:) and hk is chosen such that K:,; ~; 
xEu0 

k= 1 , 2, ••• 

e. cr(F,z,xO,c,e:) = 13+ (l+B)C+ (l+B)(l+C)SrO < 1, 

where S = sup S(x,z), 
XEUQ 

B = sup B(x,e: ,n). 
XEUQ 
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If a. to d. are satisfied, then cr(F,z,x0 ,c,e:) is called the numerical 

solvability nwriber of the proper numerical Newton-like method with consis­

tency function c, for solving the nonlinear system F(x) = 0 with x0 as 

initial guess and z as solution, and precision of computation e:. If a., b., 

c. or d. are not satisfied, then the numerical solvability number is defined 

to be infinite. 

The following theorem is now easily proved. 

THEOREM 3.6. (see theorem 2.7) 

If a system of nonlinear equations defined by F (cf. (I.I)) with initial 

approximation x0 and solution z is numerically solvable by a proper 

numerical Newton-Zike method with consistency function c and precision 

of computation e:, then the sequence of points, generated by this method 

converges to a point x* with llx*-zll :,; e:llx*II. 

PROOF. The proof is similar to the proof of theorem 2.7. Use of corollary 

3.3 and the formulas (3.15), (3.25) and (3.26) leads immediately to the 

required result. D 

4. SOME EXAMPLES 

Consider the problem, given by GHERI & MANCINO [4]: 
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( 4. 1) 

where 

and 

f.(x) = Snx.+(i-n/2)Y+ 
1 1 

F(x) = 

z .. = 
1.J 

n 
+ I 

j=l 
jfi 

[z .. (sina(log(z .. )) - cosa(log(z .. )))], 
1J 1J 1J 

(f 1(x), ... ,fn(x)) 
T 

lx~+i/j 
I 

1 

and the starting point 1S chosen to be 

(4.2) c+K 
X = -F(0)2cK' 0 

where c = Sn- (a+l)(n-1), K = Sn+ (a+l)(n-1). We consider the example for 

which 

(4.3) n == 10, a= 5, s 14, y = 3. 

Let method A be a Newton-like method with 

(4.4) 

and let method B be a Newton-like method with 

(4.5) ft (B(x,0.0001)), 
E 

where B(x,0.0001) is defined by (1.6) with h .. = h = 0.0001, 1,J = l, ... ,n. 
1J 

As a value of Ewe use E = 10-14. 

As is easily shown, the jacobian matrix 

J(x) 

satisfies 

= (J .. (x)) 
1J 



J .. (x) = Sn, i = I , ... , n ii 

and 

IJ .. (x) I s: a+I, i,j = I, ... ,n, i ::J J. iJ 

Therefore, using Gershgorin's theorem (see for instance WILKINSON [II]) 

we have for the smallest eigenvalue ;\ . and the largest eigenvalue ;\ of min max 
JT(x)J(x): 

J~. >_ 47 00· 
• /1. • ' min ~ s: 200. max 

Hence, for the spectral norm we obtain 

(4.6) IIJ(x)II s: 200, 

K(J(x)) S: 4.2. 

Furthermore, 

0 

H(x) = 

II [J(x)J- 111 s: 0.021. 

• 0 

0 

0 0 

0 0 

h n-ln 
0 

where elementary computation shows that with the choice of a= 5 we have 

I h .. I < 55. 
iJ 

Therefore, we have approximately 

(4. 7) IIH(x)II s: 55/n' < 180. 

Using these results and assuming that gaussian elimination with complete 

pivoting is used, so that 

(4.8) 3 g(n) i::::l 20n 

19 
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(see WILKINSON [IO]), it is easily seen that condition a. and c. of 

definition 3.5 is satisfied. 

By (3.1) we have for the consistency function of method A: 

A 
c (x,h) = 2008. 

By choosing the very reasonable value o = 10-11, we obtain 

(4.9) A 
C (x,h,s) ~ 4.2 10-11 < 0.5 (condition b. of definition 3.5). 

From (3.20) and (3.24) we obtain 

( 4. 1 O) 
A 

S (x,s,n) < 3 10-9. 

Hence 

(4.11) 

It appears from this result and from theorem 3.6 that the condition 

(4. 12) 

is sufficient to guarantee convergence of method A. Numerical experiments 

show that this condition is easily satisfied. 

For method B we use the mean value theorem to obtain a value for c 1 in 

(3.8). Hence, with (4.7), 

c 1 ~ sup(IIH(x)II) < 180. 
X 

Using (3.9) we obtain for the consistency function of method B 

(4. 13) B c (s,h) J(n+l)o sup(DF(x)D) + E sup(DJ(x)D) + c 1h, 
h XED XED 

where 

D = {xEJR.0 I llx-zll ~ llx0-zll+h} 



and z is the solution of the problem. 

Since the order of magnitude of llzll and llx011 is about 1, we obtain 

after some elementary calculations 

!~B IIF(x)II < 103, 

so that, with the choice of hand o, we obtain from (4.2) 

and 

(condition b. of definition 3.5). 

Hence, using (4.10), it is easily seen that 

so that 

is sufficient to guarantee convergence of method B. 

21 

These examples show that a rather simple analysis is sufficient some­

times to proof convergence of a numerical Newton-like method in advance, 

even for such complicated functions as given by (4.1). It is enough to know 

roughly the region in which the starting guess and the solution lies. 

5. DISCUSSION 

In this report, we gave an analysis of Newton-like methods for solving 

systems of nonlinear equations. The main results of this analysis are 

expressed in definition 3.5 and theorem 3.6. They establish sufficient 

conditions for global convergence of Newton-like algorithms when finite 

precision arithmetic is used. It appears from these conditions that the 

condition of the jacobian matrix and the consistency of the approximation to 
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the jacobian matrix used in the algorithm, are crucial points for the rate 

of convergence. A second result expressed in definition 3.5 is the intro­

duction of a numerical solvability number. This number enables us to deter­

mine whether a problem may be expected to be easily solved. Although this 

is usually not useful for solving practical problems, it can be extremely useful 

when we have to create sets of test functions that should be used for 

testing algorithms for solving systems of nonlinear equations (see BUS [I]). 
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