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Internal S-stability for generalized Runge-Kutta methods 

by 

J.G. Verwer 

ABSTRACT 

In a previous report the S-stability for genePalized Runge-Kutta 

methods was investigated. In this report the concept of intePnal S-stability 

is introduced. Internal S-stability is concerned with the stability be­

haviour of approximations at intermediate points from the step-interval, 

while S-stability is only concerned with the approximation at the endpoint 

of the step-interval. In order to illustrate the relevance of the new con­

cept of stability, numerical results are presented of an A-stable; an 

S-stable, and an internally s~stable method, applied to four stiff, non­

linear problems from literature. 

KEYWORDS AND PHRASES: NwnePiaal analysis, ominacy diffePential equations, 

initial value pPoblems, stiff equations, genePalized 

Runge-Kutta methods, intePnal S-stability. 
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1 • INTRODUCTION 

Let 

y' = f(x,y) 

represent a set of stiff differential equations, subject to the initial 

condition 

( 1 • 2) y = y at 
0 

A basic difficulty in the numerical solution of stiff, non-linear systems, 

is the requirement of stability. In order to analyse the numerical diffi­

culties that are encountered when solving such systems with implicit one­

step methods, PROTHERO & ROBINSON [7] propose the scalar test-model 

(1.3) y' = g'(x) + o(y - g{x)), o EC, Re(o) < O, 

where g is an arbitrary function with bounded derivative. They analyse 

the stability of numerical approximations to the solution y = g of equation 

(1.3) and derive necessary and sufficient conditions for such stability, 

which is termed S-stabiZity. They also analyse t~e accuracy of numerical 

approximations to the solution y = g, by considering the asymptotic form 

of the local truncation error for 

( 1 • 4) hRe(o) ➔ - 00 and h + O, 

where h denotes an integration stepsize. Herewith, they propose the concept 

of stiff-accuracy. 

In VERWER [11], we have applied the ideas of Prothero and Robinson to 

generaZized Runge-Kutta methods. We have derived necessary and sufficient 

conditions for the coefficient functions, to obtain the $-stability proper­

ty. This property has been shown to be of practical relevance for our class 

of methods. When applied to stiff, non-Zinear systems, S-stable methods 
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are more reliable than A-stable methods. 

We also considered the asymptotic form of the local truncation error, 

with respect to the solution y = g of (1.3), in the limit (1.4). It is of 

importance to note that our definition of stiff-accuracy differs from that 

given by Prothero and Robinson. Following a suggestion of PROTHERO [8], 

it is more convenient to use the term stiff-consistency instead of stiff­

accuracy for our methods. 

In VERWER [II], we suggested to develop formulas for which the asymp­

totic error mentioned above, is minimized. Until now this has not been 

shown to be of great practical relevance for our methods, when applied to 

stiff, non-linear systems. A more realistic approach to improve our S-stable 

methods is discussed in this report. 

With the derivation of the test-model (1.3) we neglect the dependence 

of the Jacobian upon x on each step-interval. In order to predict the 

stability and accuracy behaviour of an integration method for stiff, non­

linear systems, it is more realistic to consider test-models in which a 

variable Jacobian occurs. However, for most integration methods, and cer­

tainly for ours, it is impracticable to do this (see also LAMBERT & 

SIGURDSSON [5]). To get round this difficulty, we propose for our class of 

methods the concept of internal S-stability, which is stronger than$­

stability. Internal S-stability imposes conditions on approximations at 

inter>mediate points from the step-interval, while $-stability is only con­

cerned with the approximation at the endpoint of the step-interval. Thus, 

in a certain sense, this form of stability takes into account a variable 

Jacobian matrix. In the last section of this report we shall present some 

numerical examples which illustrate the relevance of the various stability 

concepts. 

2. PRELIMINARIES 

Leth denote the steplength h = x +I - x, and let y denote the n n n n n 
numerical approximation to the analytical solution y(x) of system (1.1) at 

x = x. Let J denote the Jacobian matrix of system (I.I) at the point 
n n 

(x ,y ). Further, define n n 
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(2.1) A. 0 , j = o, ... , m; l = O, ••• ,j-1, 
J ,-L 

to be rational functions with real coefficients. Then, the generalized 

Runge-Kutta method is defined by 

(2.2) 
m-1 

Yn+l = yn + l A .(h J )k(j) m,J n n n ' j=O 

(2. 3) 
j-1 

k(j) = h f(x +µ.h ,y + l A. (h J )k(l)) 
n n n J n n l=O J ,l n n n ' 

where the parametersµ. are given by 
J 

j-1 
(2.4) µ. = l A. ,e_(O). 

J l=O J' 

3 

By means of (2.4), we also define the parameterµ, and shall always assume 
m 

thatµ = 1. This means that the scheme has always order of consistency 
m 

p ~ 1. For convenience, it is also assumed that µj I µkif j I k, 

j,k = O, ••• ,m-1. Results can be easily extended to the case of equal para­

meters. 

In the form (2.2)-(2.3), Runge-Kutta formulas are usually presented 

in the literature. By putting 

k (j) C) = h f(x +µ.h ,y J 1), j = o, ... ,m-1, n n n J n n+ 
(2.5) 

Yn+l = (m) 
Yn+l' 

the Runge-Kutta scheme assumes the form 

(O) 
Yn+l = yn' 

y(j) 
j-1 (l) (2.6) = yn + h l A. ,e_(h J )f(x +µlh ,y 1), j = 1 , ••• , m, n+l n l=O J, n n n n n+ 

Yn+l = (m) 
Yn+l 

In this paper we shall use representation (2.6). Formula (2.6) may be 

formally characterized by the (m+l)*(m+l) matrix 
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(2. 7) A = 

o, 0 

Al ,O 0 

A2,0 A2,I 

A A m,O m, I A m,m-1 

0 

0 

0 

In the next section we need the elements of the inverse of the matrix 

I - zA(z). In order to determine these elements, we introduce the functions 

(2.8) (J = 
j ,k,l 

where the summation runs over all (k+2)-tuples (ik+l'ik, ••• ,i0), which 

satisfy: j = ik+I > ik > ••• > i 1 > i 0 = l. Then, by means of elementary 

matrix algebra, it is easily proved that the inverse of the matrix 

(2.9) I - zA(z), 

is given by 

0 0 0 

nl,O(z) 0 0 

(2. 10) n(z) 
n2, 0 Cz) n2 l(z) 

= , , 

0 

n 1 (z) 
m, 

• n 1 (z) m,m-

( 
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where 

(2.II) 
j-I-l k+I 

n- o(z) = l z a. k oCz). 
J,~ k=O J, ,~ 

In this paper we pay no special attention to rational approximations 

to the exponential. For all properties and definitions which are used the 

reader is referred to LAMBERT [4]. We will, however, give one definition: 

Let R be A-acceptable, then R is said to be strongly A-acceptable if, in 

addition, 

(2.I2) lim IR(z)I < I. 
Re(z)-+-oo 

3. INTERNALS-STABILITY 

5 

In VERWER [II] we have studied the S-stability- and stiff-consistency 

properties of the generalized Runge-Kutta method. To that end we had to 

neglect the dependence of the Jacobian upon x on each step-interval 

[x ,x +h ]. In order to predict the stability and accuracy behaviour of a 
n n n 

generalized Runge-Kutta method when applied to a stiff, non-linear system, 

it is more realistic to consider test-equations in which a variable Jacobian 

occurs. However, for integration schemes of the Runge-Kutta type (2.6) it 

is impracticable to perform such an analysis (see also Lambert & Sigurdsson 

[5]). 

To get round this difficulty we propose, for generalized Runge-Kutta 

methods, the concept of internal S-stability, which is stronger than S­

stability. In a certain sense, this form of stability takes into account 

a variable Jacobian matrix. 

Internal S-stability imposes more conditions on the rational functions 

A. 0 than S-stability. As a consequence, it will often occur that the con-
J,~ 

ditions for internal S-stability will only hold if larg(-o)I < a,a € (O,f). 

Therefore, it is more convenient to discuss internal S(a)-stability rather 

than internal S-stability. 

From formulas (2.4-(2.6) we see that the intermediate vectors 
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(j) 
yn+I' j = I, .•. ,m-1, are first order consistent approximations at the in-

termediate points x + µ.h. Because method (2.6) is generally applied to 
n J n 

stiff, non-linear systems, it is of importance to relate the stiffness of 
(j) 

the equation also with the intermediate approximations yn+l' j = I, ••• ,m-1. 

Until now, the stiffness has only been related to the approximation 

Y = y(m) 
n+ I n+l • 

We shall consider the test-equation (l .3). To begin with, we introduce 

the abbreviations 

r(j) = g'(x +µ.h) - og(x +µ.h ), 
n+l n J n n J n 

j = O, ••• ,m-1, 

(3.2) 

J=O, ••• ,m. 

Furthermore, w,e define the m+l-vectors 

(3. 3) 

➔ T 
e = [1, •.• ,1] • 

Observe that in our notation (O) = g(x ). Finally, for scalar equations, gn+l n 
we define the m+I-vector 

(3. 4) 

When applied to (1.3), the Runge-Kutta method (2.6) yields the rela-

tion 

(3.5) 

where z = h (compare VERWER [11]). 
n 



(3.6) 

Next, we define the errors 

E (j) = 
n+I 

and the error-vector 

(3.9) 
➔-

e: n+l 

J = 

The concept of S(a)-stability is concerned with the error e:(m)1• We shall n+ 

7 

now define the concept of internal S(a)-stability, which is concerned with 

the errors e:~i~, j = l, ... ,m. For our class of methods, internal S(a)­

stability is a stronger form of stability than S(a)-stability. 

DEFINITION 3.1. The generalized Runge-Kutta method is said to be internally 

S(a)-stable, if for a differential equation of the form (1.3) and for any 

real constant o0 < O, there exists an h0 > 0 such that 

(3.8) < 1/0) I 
n+ I ' J = I , ••• ,m, 

for all stepsizes O < hn < h0 and all o with Re(o) ~ o0 , and Jarg(-8) I < a. 

REMARK 3.1. An important effect of internal S-stability is that at each 

stage of the scheme the stiff components in the numerical solution are 

suppressed. This property is of importance, as in general we are dealing 

with non-linE~ar systems. In such a situation, the Jacobian matrix varies 

over the step-interval. In case of linear systems, the effect of internal 

S-stability is that at each stage rounding errors are suppressed. 

Let us derive the difference equation which governs the internal 

S(a)-stability. It follows from (3.5) that 

(3.9) 

Now it is t that the dependence of ➔ e:(O) is governed by easy o see En+I upon n+l 

the error-equation 
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(3.10) 
+ -1+ (O) -I -1 + = (I-zA(z)) e E + h [z ((I-zA(z)) -I)r l + En+ll n+l n n+ 

-I+ (O) + 
+ ((I-zA(z)) e g 1 - g 1)/h J. n+ n+ n 

In order to be able to use results from the S(a)-stability theory, we write 

(3.10) in a component-wise representation. By means of (2.10)-(2.11), the 

j-th component, R(j)(z) say, of the vector (I-zA(z))- 1t can be written as 

(3. 11) 
j-1 j-1-l k+l 

= I+ l l cr. k 0 (z)z , 
l=O k=O J' '.(.. 

In the same way, the j-th component of the vector 
+ -I -1 + 
Tn+l = z ((I-zA(z)) -I)rn+l' can be written as 

(3.12) 

where 

(3.13) 

j-1 (l) 
= l To .(z)r I ' 

l=O .(..,J n+ 

T 0 .(z) = 
.(..' J 

j-1-l 

I 
k=O 

k 
cr. k 0 (z)z 
J' '.(.. 

J = o, ... ,m. 

The component-wise representation of (3.10) thus reads 

(3. 14) 

where 

(3.15) J = o, ... ,m. 

Observe that R(m) represents the stahiZity function of the integration 

method. The rational functions R(j), j = 1, •.• ,m-1, may be considered as 

stability functions for the intermediate approximations y(j)I' The function 
(') n+ 

R J is a rational approximation to the exponential exp(µ.z), of at least 
J 

order one. Thus, for these functions the usual definitions are applicable. 

Following the same method of proof, as given in VERWER [11], p.16, we 

now arrive at the following result. 
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THEOREM 3.1. Them-point, generalized Runge-Kutta method is internally 

S(a)-stable, if and only if 

9 

(a) The stability functions R(j), j = l, ••• ,m, are stPongly A(a)-acceptabZe, 

(b) A constant h > O exists, such that d(j)/h, j = l, ••• ,m, is unifoPmly n n 
bounded on {(h ,z)lh € (O,h], larg(-z)I < a}. 

n n 

By means of this theorem, we are able to prove a result which gives 

necessary and sufficient conditions for the rational functions. 

THEOREM 3.2. Them-point, genemlized Runge-Kutta method is internally 

S(a)-stable, if and only if 
(a) The stability functions R(j), j = l, ... ,m aPe stPongly A(a)-accept­

able, 
(b) The Pational functions T0 ., j = l, ••• ,m; l = O, ••• ,j-1, have a zePo 

,(,, J 
at infinity. 

PROOF. Necessity: for each j = l, ••• ,m, d(j) reads 
n 

(3. 16) 
j-1 

= h l To .(z)[g'(x +µoh) 
n .f.=O ,(,,J n ,(, n 

R(j)(z) g(O) - g(j) 
n+l n+l • 

- og(x +µoh)]+ 
n ,(, n 

According to theorem 3.1, a constant h > 0 exists, such that d(j)/h n n' 
j = l, ••• ,m, is uniformly bounded on {(h ,z)lh € (O,h], larg(-o)I < a}. n n 
By means of expression (3.16), the necessity of assertion (b) is now easily 

established. The necessity of assertion (a) follows i1IU11ediately from the 

necessity of assertion (a) of theorem 3.1. 

Sufficiency: According to assertion (b), the functions z T 0 .(z), 
,(,, J 

j = l, ••• ,m; l = O, •.• ,j-1, are uniformly bounded on {zlRe(z) < 0}. Thus, 
' d h 'f b d d f d(j)/h . - 1 1n or er to prove t e uni orm oun e ness o , J - , ••• ,m, on a 

n n 
region {(h ,z)lh € (O,h],h > O; larg(-z)I < a}, it is sufficient to prove 

(') n n 
that d J /h is bounded for any fixed z, Re(z) < O, ash + 0. 

By exp;ndin: g(x) and g'(x) about x, d(j) may be formal~y expanded as 
n n 



j-1 
(3. 17) - z l Tl .(z) - l]g(x) + 

l=O ,J n 

for h -+ O. From relations (3.11) and (3.13), it follows that 
n 

(3. 18) 
j-1 

R(j)(z) - z l T 0 .(z) - I= 0. 
l=O -<-,J 

As a result (3.17) is reduced to 

(3.19) d(j) = 
n 

which implies that d(j)/h is bounded for any fixed z, Re(z) < O, ash + 0. 
n n n 

Consequently, the sufficiency of assertion (b) is established. The suffi-

ciency of assertion (a) is trivial. D 

EXAMPLE 3.1. As an example, we give the rational functions that are needed 

in order to establish internal S(a)-stability for the two-point scheme 

(3.20) Yn+l = y + h A2 0 (h J )f(x ,y) + n n , n n n n 

h A2 1(h J )f(x +µ 1h ,y +h A1 0 (h J )f(x ,y )). n , n n n n n n , n n n n 

The functions are 

R(l)(z) = I + A1 0(z)z, 
' ' (3.21) 

R( 2)(z) I + 2 
= (A2, 0 (z)+A2, 1(z))z+A2, 1(z)A 1,0(z)z , 

and 

TO,l(z) = Al,O(z), 

(3. 22) T0,2(z) = A2, 0 (z) + A2, 1(z)Al,O(z)z, 

Tl 2(z) = A2,l(z). 
' 
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REMARK 3.2. A sufficient condition for assertion (b) of theorem 3.2, is 

that A. 0 , j = l, .•• ,m; -l = 0, •.. ,j-1, has a zero at infinity. This follows 
J ,-<-

easily from definition (3.13). 

REMARK 3.3. It should also be remarked that the conditions for internal 

S-stability for an m-point scheme may be found more directly by succes­

sively writing down the S-stability conditions for a k-point scheme, for 

k = 1,2, .•• ,m. In order to present a more self-contained discussion of the 

stability problem, we have given the above derivation. 

REMARK 3.4. In case of equal parametersµ., j = 0, ..• ,m-1, assertion (b) 
J 

of theorem 3.2 can be easily modified by reordering relevant terms in 

expression (3 .16). 

4. NUMERICAL EXAMPLES 

In ord ◄er to demonstrate the relevance of the various stability con­

cepts we have discussed, i.e., A(a)-stability, S(a)-stability and internal 

S(et)-stability, we shall apply three schemes to four stiff, non-linear prob­

lems from literature. The problems are also discussed by ENRIGHT et al [2]. 

They read: 

I. (BJUREL et al [I]). 

y' = Y3 - IO0y 1y2, 
I 

y' 2y - 100 y 1y2 
4 2 = Y3 + - 2,10 Yz• 2 4 

y' = 100 y 1y2 - Y3, 3 

y' 4 2 = 10 y2 - y4 , 
4 

reference solution at x = 20: 

y 1 = 0.6397604446, 

y3 = 0.3602395553, 

y2 = 0.5630850708 10-2, 

y4 = 0.3170647969. 
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II. (LINIGER & WILLOUGHBY [6]). 

y1 = 0.01 - (1+(y 1+IOOO)(y 1+I))(O.Ol+y 1+y2), 

2 Yz = 0.01 - (l+y2)(0.0l+y 1+y2), 

y 1(0) = y 2 (0) = 0, 0 ~ x ~ IO, 

reference solution at x = IO: 

y 1 = - 0.10975436, Yz = 0.09977678. 

III. (GEAR [3]). 

y' = 
I 

- 0.013y2 - 1000y 1y2 - 2500y 1y3, 

y' = 
2 

- O.Ol3y2 - 1000y 1y2 , 

y' = 
3 

reference solution at x = 10: 

YI= - 0.32510-5, y2 = 0.90916832, 

y3 = 0.10908284101, 

IV. (ROBERTSON [ 9]). 

y' = 
I 

0.04 - 0.04(y1+y2) 

7 2 
y2=3.10y 1 , 

reference solution at x = 10: 

y 1 = 0.162339106310-4, Yz = 0.1586138424. 

The given problems all have real eigenvalues (see ENRIGHT et al [2]). 

Therefore, in the present section, we shall only be concerned with stability 

properties along the real axis (a=O). We emphasize that the relevance of 

the stability concepts we have discussed, continuous to go on in case of 

non-real eigenvalues. 

The three integration schemes to be considered, all have order of 

consistency equal to three. Only stability properties along the real axis 

shall be mentioned. The schemes use two stages. We shall characterize them 

as follows: 
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I. {VAN DER HOUWEN [10]). 

0 0 0 

( 4. 1) A(z) 
4 R(z)-1-z 0 0 = 3 2 

, 
z 

I 3 0 
3 4 

where 

(4. 2) 

This scheme is L(O)-stable, but not S(O)-stable, as the functions 

(4. 3) = _!_ + R(z)-1-z 
4 z 

have no zero at infinity. 

I I . (VERWER [ l I ] ) • 

0 0 0 

2 I 

(4.4) A(z) = 
---z 
3 3 
7 I 2 

- IT z + IT z 
0 0 

I l I 3 I 
4 - 24 z ---z 

4 8 
7 l 2 --z+-z 
12 12 

0 

This scheme is S(O)-stable, but not internally S(O)-stable, as the function 

(4. 5) 

Th b ·1· f . R( 2) . h b"l" f ' f h h e sta i ity unction , i.e., t e sta i ity unction o t e sc eme, 

is L(O)-acceptable, and reads 

(4. 6) R( 2)(z) = 144 - 24z - 23z 2 - z3 

(z-3) 2(z-4/ 
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III. 

0 0 0 

(4.7) J\(z) = 
29 1 2 

- 32 z + 8 z 
0 0 

I I 
4 - a z 

_ 29 z + .!_ z2 
32 8 

_ 29 z + .!_ z2 
32 8 

This scheme is internally S(O)-stable. Both stability functions R(l) and 

R( 2) are L(O)-acceptable, and read 

23 

(4.8) 
( I) - -9-6 z 

R (z) = -------,.. 
29 1 2 

--3-2z+8z 

(4.9) R( 2)(z) = 

Summarizing, method I is L(O)-stabZe, method II is S(O)-stabZe, and 

method III is inter-naZZy S(O)-stabZe. We still have to observe that we 

have chosen these three methods only to illustrate the relevance of the 

new stability theory. In this section, it is not our intention to propose 

a new, third order generalized Runge-Kutta scheme. 

The methods were applied with the following simple step-size strategies: 

strategy A: hn = if x0 ~ x ~ xt then h(l) else h( 2), where h(l) < < h( 2), 

strategy B: h = h, i.e., a constant step-size. 
n 

These numbers will be specified with the tables. In these tables, we give 

for each j-th component the number of significant digits 

sd. = 
J 

-10 
log (absolute error), at the endpoint of the given interval. The 

letter u refers to an unstable result. The calculations have been performed 

on a Cyber 73-26 computer. 
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Results for problem I: h(l) = 0.01, h( 2) = 0 l • , xt = 0.1,h=0.l. 

strategy A B 

method I II III I II III 

sd 1 u u 11.4 u u 0.4 

sd2 u u 13.3 u u 1.4 

sd3 u u u .o u u 0. 1 

sd 4 u u 10.0 u u -1.3 

Results for problem II: h(l) = 0.01, h(2) = 0.1, xt = 0.1, h = 0.1. 

strategy A B 

method I II III I II III 

sd 1 6.6 5.4 6.6 u 4.0 5.6 

sd 
2 

6.6 5.4 6.6 u 4.0 5.6 

Results for problem III: h(l) = 0.05, h{ 2) = 0.5, xt = 0.5, h = 0.5. 

strategy A B 

method I II III I II III 

sd 1 u 9.4 9.3 3.2 9.5 9.3 

sd2 u 6.8 8.4 2.4 4.8 8.3 

sd 
3 

u 6.7 7.6 2.4 4.8 7.6 

Results for problem IV: h(l) = 0.001, h(2) = 0.1, xt = 0.004, h = 0.05. 

strategy A B 

method I II III I II III 

sd 1 7.9 10.3 9.7 u u 4.9 

sd2 6. 1 8.5 7.5 u u 1.0 
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The results of these computations indicate that the stability proper­

ties, derived for the test-model (1.3), carry over to a certain extent to 

non-linear systems. We observe that the internally stabilized formula III 

is more reliable than the S-stable formula II. In general, internally sta­

bilized formulas may also be expected to be more accurate than the others. 

Finally, we observe that the results of these computations clearly indicate 

that S-stable methods are superior to A-stable methods. 
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