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On a conjecture of Erdos concerning sums of powers of integers 

by 

M.R. Best & H.J.J. te Riele 

ABSTRACT 

It is shown here that if m and n are positive integers such that m ~ 2 

and (1 - - 1-)n ~½,then m-1 

n n n n I +2 + ••• +(m-1) ~ m, 

settling a conjecture of ERDOS (Amer. Math. Monthly, 56(1949), p.343, Ad­

vanced Problem 4347). 

Moreover, it is proved that the set M of integers ms x, such that 

there is an integer n for which (1 - m~l)n <½and for which(*) holds, has 

cardinality O(log x), for x +~.The question whether Mis finite or infi­

nite is still open, but, by inspecting the convergents of the regular con­

tinued fraction of 2/log 2, we computed 33 elements of M. 

KEY WORDS & PHRASES: Inequalities, sums of powers of integers, continued 

fraations, multiple-precision arithmetic 



l. RESULTS 

Consider pairs of integers (m,n) with m c 2, such that 

( J. l) 
n n n n 

l +2 + ... +(m-1) cm. 

n n n 
For large m the sequence (m-1) , (m-2) , (m-3) , ... can very closely be 

~pproximated by a geometrical sequence. In this way it is easily verified 

that (1.1) can never be satisfied if (m-l)n < !mn, (cf. VAN DE LUNE [3], par­

ticularly the addendum). On the other hand it is known that (I.I) is satis-
n n 

fied if (rn-3) > !(m-2) (cf. VAN DE LUNE, l.c.). 

At first sight, numerical data strongly suggest that (l.l) is true if 

and only if (m-2)n c ½(m-l)n. Indeed, VAN DE LUNE and TE RIELE [4] proved 

that this equivalence holds for almost all n (in the sense that the natural 

density equals I). However, ERDLJS [!] had conjectured long before that 

( l . I) holds 

i) for all pairs (m,n) with (m-2)n 2: Hm-l)n, and moreover 

ii) for infinitely many pairs (m,n) with (m-2)n < !(m-l)n. 

In this note, we prove the first conjecture. 

n n 
THEOREM!. Let m and n be integers such that m c 2 and (m-2) c !(m-l) . 

m-1 
Then l kn c mn. 

k=l 

This theorem is derived as an itmnediate consequence of the two follow-

1.ng theorems: 

THEOREM 2. Let rn and n be integers such that m c 2 and 
3 I , n n 

n c (rn - 2 - 12m)log 2. Then (m-2) < ½(m-1) . 

THEOREM 3. Let m and n be integers such that m c 2 and 

3 I m-] n n 
(m - 2 - 256m)log 2. Then l k cm. 

k=l 

Up till now not a single pair (m,n) satisfying (I. I) and 
n n 

(m-2) < ½(m-1) was known. The theorems 2 and 3 suggest however how to con-
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struct such pairs: n/m must be a good approximation to log 2. More precise­

ly, every pair (m,n) which satisfies the Diophantine inequality 

(I. 2) 
2m-3 2 

l 28mn ::;; -n- - log 2 < 6nm' 

satisfies (I.I) and (m-2)n < i(m-I)n. 

By use of the convergents of the regular continued fraction of 2/log 2 

we found 33 examples of such pairs, the smallest one being 

m = 12162 60233 52385 

n = 77745 19157 29368. 

It seems a hopeless task to prove that (1.2) has infinitely many sol­

utions, thus settling Erdos's second conjecture, since (1.2) is not essen­

tially weaker than the conditions in the conjecture (cf. section 5). 

In this report, some results from the theory of continued fractions 

are used. They are listed in the appendix. 

2. PROOF OF THEOREM 2. 

3 1 
Suppose m ~ 2 and n ~ (m - 2 - 12m)log 2. 

If m = 2, then n ~ ~!log 2, son~ I, hence <:=~)n = 0 < !-

If m= 3, then n > 53 2, son ~ 2, hence (m-2)n ::;; (02 = - 36log m-1 

If 4, then n 119 2, n ~ 2, hence (m-2)n cl/ m= ~ 4810g so ~ 
m-1 3 

Now let m ~ 5. Put l = m - 1. Then l ~ 4 and 

1 1 
(l - ~ - 12 (.l+l))log 2 > (l - ! - 12l)log 2. 

Hence 

I 
exp(n log(! - z)) < 

! < ½ • 4 

4 ! = - < 
9 2. 

< exp( (l - ~ - _I_)(-_!_, - _I_ - _I_ - _!_)log 2) = 
12.t l u.,2 3l3 4,e,4 

I I I I 
= exp(-(1 + -- - -- - --)log 2) = 

24l3 7U4 48l5 



= exp(-(1 + 1 (6l2 - 22l - 3))1og 2) < exp(-log 2) = !. 
144!5 

lhis completes the proof. D 

3. PROOF OF THEOREM 3. 

In this section we shall put A= 

states that 

m 

log 2 and S = l 
k=l 

S ~ 2 

provided that 

In order to prove this, we need some identities concerning the func­

tions f. defined by 
J 

f. (u) = 
J 

LEMMA. We have f. 
J 

I (u > O, j = 0,1,2, .•• ). 
k=O 

= -£' ~or j = j-1' J' 

2 3 x+4x +x 
4 ' ( 1-x) 

I , 2, •••• 

X 

2' 
( 1-x) 

-u If x = e then 

2 x+x 
f2(u) = 3' 

( 1-x) 

2 3 4 x+ 1 1 x + 1 1 x +x 

( 1-x) 5 

3 

2 3 4 5 6 x+57x +302x +302x +57x +x, 
= -------------

( 1-x) 7 

PROOF. Straightforward. 0 

REMARK. The coefficients in the polynomials occurring above are the Eulerian 

numbers (cf. RIORDAN [6]). 

To prove the theorem, it suffices to consider n = LA(m- ¾ - 2; 6m)J. 1) 

We have: 

l. 
l exp(n log(l - ~)), 

k=O 

1) By LxJ we mean the greatest integer less than or equal to x. 
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where l < m may be chosen arbitrarily. Since for O ~ x < l: 

oo k 2 3 4 
\ X X X X 

log( 1-x) = - l k :2: - x - 2 - 3 - _4_(l ___ x_) , 
k=l 

we have 

.e. 
k k 2 k 3 k4 

s 2:: I exp(n(- - - - - -- - ) ) = 
m 2m2 3m3 3 k=O 4m (m-l) 

.e. 
2 3 

k 4e) = I exp(- kt - k E - k n -
k=O 

where t n n n = -, E = --z, n = -3, and e = 
m 2m 3m 

n 
3 • 

4m (m-£.) 

Defining p = I -kt 
e we have 

k>£. 
co 

s I exp(- 2 3 - k4e) 2:: kt - k E - k n - p 2:: 

k=O 

co 

2 I 
k=O 

co 

2 I 
k=O 

2 2 -kt -k E 
- (k3n + k4e)e-k ~) e (e - p 2 

-kt 2 4 2 l 6 3 3 4 
e (1 - k E + ~k E - -ks - kn - k e) - p = 

6 

Now define v by n = A(m-v), so v = m - n/A. Since 

3 I A(m - - - --) 
2 256m 

> n > 
3 1 l 

A(m - - - - - --) 
2 A 256m' 

it follows that 

3 I 3 I I I 
-2 + 256m ~ V < - + - + -- < 2 95 + --2 A 256m • 256m' 

hence 
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Now assume m > 700, and choose l = 5 log m. Then by the lemma we have 

A A\J 
e: = 2m - -2, 

2m 

A 2 A 2v :>. 2 
>--->--

8m2 4m3 8m2 

-lt -3.45 , 
e m "' p < -- < --- < -3, 
l-e-t 0.49 m 

f 4 ( t) < f 4 ( 0. 69) < 154, 

f2(t) = £ 2(A) + >;:f3'A) 

< 6 + 26Av + 333 
m 2 

m 

f3(t) f3(),) + Avf Cs) = 
m 4 

0.52A 
3 ' 

m 

A AV A 
n=---<-

3m2 3m3 3m2 ' 

l 3 
~ 

0.01001>.. 
3 

m 

2 2 
+ 26Av + 154A 2} 

+ A "2 f4(s) < 6 < 
2m2 2m m 

(t < s < A), 

< 26 + 
154>.. v 

< 26 321 
(t < s < >..), +-

m m 

Substituting all these estimates in the estimate for S, we obtain: 

0.27>.. 154 _ O.OIOOI>..9670 
3 3 m m 

:>. 
- - > 

3 
m 
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Since 
13),.-3 

6A 

2>,.v 3A 2v 2 3),. 
>2+--+------

m .; m 

75>,. 2 78A 42>,. 97A A +--------------
4 2 3 3 3 3 
m m m m m 

= 2 + ;(2v-3) + 4(3>,.v2 - (l3A-3)v + l!A - ~6) - 49 ~>,.. 
m m 

3A-v 2 - (l3A-3)v is a monotonically 
3 = 1.445 ... , we derive from v > 2: 

increasing function of -v for 

3 JJ 3 l Now define JJ by -v = - + - so JJ = (v - -2)m. Then JJ > and 2 m' 256 

S > 2 A (2 + 6>,. - 25 - 492) > 2 A (2 0. 007784 - 492 ) > +2 µ 6 m +2 µ- m 
m m 

> 2 + 4<0.000028 - 4!2) > 2, 
m 

7 Thus we have proved Theorem 3 in case m > 2*10 . Form~ 700 the theo-

rem has been checked by direct (ccmputer-) verification. Hence we may as-
7 sume 700 < m ~ 2*10 . 

I 
First suppose JJ ~ 4i• Then 

s > 2 + 4<2µ - 0.007784 - 4!2) > 2 + ;co.12 - 0.01 - ~~;) > 2. 
m m 

I Hence we may assume moreover that JJ < 4A. But then by the definition 

of -v and µ: 

hence 

3 
µ = ( V - -)m = 

2 
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This implies that (2m-3)/n is a convergent of the regular continued 

fraction of 2/log 2 (see the appendix, (A7)). There are only three conver­

gents pk/qk which 
pk/qk - 2/log 2 > 

i) 2m - 3 = Pg 

ii) 2m - 3 = P13 
iii) 2m - 3 = P15 

come into consideration, i.e. , for 
O, odd and 700 7 

pk 1S < m s 2*10 : 

= 229 l , n = q = 794, 
9 

::: I 206321 , n = q!3 = 418079, 

= 31668469, n = q l 5 = 10975455, 

which 

m = I 14 7, b!O = 

m = 603162, bl4 = 

m = 15834236, bl6 = 

Here b. is the i-th partial denominator of the regular continued fraction 
1 

of 2/log 2. (The first 601 b's are given in Table 1 of Section 4). 

Case i) has been verified directly. 

Since, by (AS) of the appendix, 

we have in 

so that 

2 
I) n2 pk 

)..1 > ~(2m-3 _ =-(-
2A n ;\ 211 qk 

the cases ii) and iii): 

l 
µ > 16;\ > 0.09, 

s > 2 + 4(0.18 - 0.01 - 4!2) > 2. 
m 

This completes the proof of Theorem 3. D 

2;\(b +2)' 
k+l 

4. COM:PUTER CALCULATIONS OF THE PAIRS (m,n) SATISFYING (I.I) AND 
n n 

(m-2) < !(m-l) . 

4; 

6; 

I. 

In this section we shall describe how we have computed 33 pairs of in­

tegers (m,n) satisfying (I.I) and (m-2)n < !(m-l)n. Up till now not a single 

such pair was known, although Erdos conjectured that there are infinitely 

many of them ([I]). 

It follows from Theorems 2 and 3 that in order to find such pairs, it 

1s sufficient to find pairs (m,n) satisfying 

3 I 3 I 
(m - 2 - l2m)log 2 < n < (m - 2 - 256m)log 2, 
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or, after some reordering, 

( 4. l) 
2m-3 2 

128mn < -n- - log 2 < 6mn· 

3 µ 
Define, as in Section 3, µ by n = (m - 2 - m)log 2. Then we have 

µ = µ(m,n) = rn(m - 10; 2 - i) and (4.1) is equivalent with 

( 4. 2) 
I 

-- < 
256 

I 
µ < 12· 

Since m > n, (4.1) implies, by (A7), that (2m-3)/n is a convergent of the 

regular continued fraction of 2/log 2. Now let pk/qk be the k-th convergent 

of 2/log 2. Suppose k is odd. Then by (A4) pk/qk - 2/log 2 > O. If, moreover, 

pk is odd, then m and n defined by m = (pk+3)/2 and n = qk satisfy (4.1) if 

and only ifµ= µ(m,n) satisfies (4.2). 

In order to compute pk and qk (k = 0,1,2, ... ), and, if appropriate, n,m 

andµ, we have used the ALGOL 60 procedures for multiple-precision integer 

arithmetic from the NUMAL-library [2]. First, the 601 partial denominators 

b0 ,b 1, ... ,h600 of the regular continued fraction of 2/log 2 were computed 

from the first 700 decimals of log 2, as given by SWEENEY [7]. The h's were 

checked by use of (A8) of the appendix; they are given in Table I below. 

TABLE I. 

The first 60! partial denominators of the regular continued fraction of 

2/log 2. So 2/log 2 = r2,J,7,l,2,l,l~ .•. J •. · 
2 
l 7 I 2 I l 3 2 4 
7 5 3 6 4 1 I 4 I l 

27 3 l I I l 4 1 3 4 
2 3 2 2 29 I 4 l 9 
I 36 10 2 2 I 
3 6 I I 27 l I 9 2 2 
l l 4 5 8 I I l 2 

65 4 I 2 2 I I 10 I 
18 4 3 l 3 3 4 3 2 JO 

2 65 I 9 5 105 21 l 3 3 
I 2 7 14 4 19 1 4 I 56 
4 6 7 I 6 5 13 l 3 5 

35 I 5 7 3 I I 2 2 5 
6 3 4 I 5 6 2 l 3 I 
2 2 2 2 242 I 6 6 4 I 
6 I l 2 2 15 7 I 2 

4 2 22 3 5 2 
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I 2 13 l 3 3 l 2 4 I 
I I 3 3 2 l 2 I l 6 
8 4 3 3 5 10 3 7 2 4 

24 6 I 2 3 9 7 4 5 
9 l 3 I 4 l 2 2 

I I 5 2 2 5 2 l8 
3 I 9 4 2 8 2 6 
6 6 3 2 2 3 
3 I 2 10 l I 14 5 
I I 9 I 14 I l 2 19 l 13 
3 5 3 l 108 I ] I I 67 

I 22 I I 3 3 2 2 
l I l 2 l 2 l J 18 

55 I 8 I 2 3 I 2 2 
I 4 8 2 7 8 13 2 4 
3 8 l 1 2 l I 99 

10 4 I 2 2 3 2 I 9 
7 2 2 31 4 2 I 
2 2 4 4 I 9 I II I 
9 I 2 l I 4 I I 21 

12 l 4 l 7 l 5 2 I l 
4 3 8 3 29 2 3 l 1 

3 4 I 8 4 21 7 8 
I 2 I 2 1 40 I 2 l 7 
2 4 2 6 98 2 30 9 
I 5 2 I I 9 I I 
7 8 I 5 6 3 l 30 
] I I 40 2 l 2 14 I 4 
3 2 4 13 2 2 1 7 l 
2 2 I I l 15 I 43 14 2. 
3 4 3 2 4 I 2 I I 2 
3 78 I 2 I 43 1 1688 2 2 
7 2 37 3 3 3 12 5 2 

14 2 3 I I 2 47 14 14 l 
I l 1 7 2 21 I I l 1 
3 1 2 I 15 2 6 5 6 3 

24 I I l 4 7 5 1 2 
9 1 526 I l 5 I I 6 6 
1 2 5 3 I 4 3 12 
2 4 2 2 3 3 I 
4 8 l I 12 10 2 l 
2 6 6 14 3 5 I l 15 

89 5 2 3 13 3 2 2 l 10 

Next, fork= 0,1, ... ,599, the exact integer values of the nominator pk 

and the denominator qk of the k-th convergent pk/qk of 2/log 2 were computed 

by use of the relations (Al) of the appendix. In case of odd k and odd pk 

the value ofµ= µ(m,n) = µ((pk+3)/2,qk) was computed. In Table 2 below 

the odd values of k ~ 599 are listed for which pk is odd and for whichµ 

satisfies (4.2). For all these values of k the numbers m = (pk+3)/2 and 

n = qk satisfy (I.I) and (m-2)n < !(m-l)n. For reasons which will become 
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dear soon. also the corresponding values of b, 1 are inciuded 1n this tah!e. 
K+' 

TABLE 2. 

Odd values of k for which pk 1s odd ;rnd \, satisfie:l (L,.. ~). (i, is rounded tu 

five decimals). 

k b 
k+! 

35 0.02388 29 

39 0.06676 9 

41 0.01927 36 

57 0.07266 9 

77 0. 06805 lO 

89 0. 06600 lO 

i 91 0.0!087 65 

I 9s o.oo6ss 105 

!157 0.08313 7 
I 

!163 0.03168 22 

1195 0.06865 l0 
I 

k b i 

k+l 
2 li 0.06792 9 

255 0.06420 lO 

261 0.03473 19 

267 0.03549 19 

299 0.03870 18 

313 0.07763 8 

317 0.05315 !3 

321 0.08067 8 

369 0.03335 21 

399 0.07507 8 

431 0.08035 8 

---·--·-·•' -~---··--- _____ ,, ___ __, 
k µ bk+ Jj 

439 0.02296 30 ; 

443 0.01758 40 

447 0.04750 !4 

453 0.05180 13 

467 0.01639 43 

481 0.00913 78 

485 0.01612 43 

497 0.05776 12 

507 0.05!20 14 

575 0.06678 10 

583 0.04983 i4 

In Table 3 below we have listed the decimal representations of the num­

bers n and m corresponding to the cases k = 35,39,41 and 57 of Table 2. The 

integers n and m corresponding to k = 583 (our largest computed case) are 

302-digit numbers. Their first and last five digits are given by 

n = 19305 •.. 16252, m = 27852 ... 10488. 

TABLE 3. 

Pairs of integers (m,n) satisfying(!. I) and (m-2) 0 < !(m-l)n, corresponding 

to the cases k = 35,39,41 and 57 of Table 2. 

k = 35 n = 77745 19157 29368 

m = 12162 60233 52385 

k = 39 n = 140 89409 20558 57794 

m = 203 26720 78995 391361 
' 

k = 41 n = 1526 22308 86i9! 71207 

m = 2201 87448 l24ii 15228 

k = 57 n = 5 45458 11706 25883 69110 39145 

m = 7 86929 72049 88279 15993 33820 
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The next theorem provides a partial check of Table 2. 

THEOREM 4. Let k(25) and pk be odd. If bk+! satisfies 

(4.3) 

then m and n satisfy (4. !). 

PROOF. In Table I we see that bk< 9 for Os k ~ 20. Hence we certainly may 

assume that m > 700, so that 0.69 < n/m < log 2 (cf. the proof of Theorem 3). 

Now by the right hand inequality of (AS) and since bk+! 2 9 we have 

I 
log 2 < ---2 5 -9-n-2 < 

bk+lqk 

2 

On the other hand, we have 

-I -84_nm_l_o_g_2 > I 28nm • 

Hence m = (pk+3)/2 and n = qk satisfy the inequalities (4.l). D 

5. DISCUSSION. 

The main results of this note are Theorem l and the 

pairs of integers (m,n) with rn 2 2, (m-2)n < ½(m-l)n and 

proved however remained the following assertions. 

list of examples of 
m-1 L kn 2 mn. Un-
k=l 

i) The density of the integers m occurring in these examples is zero. 

ii) There actually are infinitely many examples. 

iii) The examples listed are smallest possible. 

The first assertion was proved by VAN DE LUNE and TE RIELE [4] by a 

different approach. An even stronger result follows from the next two the­

orems: 

THEOREM 5. Let for each integer m 2 2 the real number n be defined by 
( n n 3 l -! m-2) = ½(m-1) . Then n = (m - 2 - (12 + o(J))m )log 2 form ➔ 00 • 

THEOREM 6. Let for each integer m 2 2 the real nwnber n be defined by 
mtl n n 3 25 -I 

l k = m. Then n = (m - - - (- - 3log 2 + o(l))m )log 2 form+ ro, 
k= J 2 12 
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The proofs of the Theorems 5 and 6 run very similar to those of Theor­

ems 2 and 3 (except for the technical details), and will be omitted there-· 

fore. From Theorems 5 and 6 we derive: 

PROOF. For all m t:: M: 

so 

3 l -! 3 
(m - -2 - (-.:;-+ o(l))m )log 2 < n < (m - 2 I~ 

_l ( 25 - 6log 2 
nrn 6 

2m-3 
+ o(l)) < 

n 

Hence, for all sufficiently large m EM, we have 

kn >mn)1 .. ) . 

25 -I 
( l 2 - 3 log 2 + o ( l) )m ) log 2. 

so that (2m-3)/n is a convergent of the regular continued fraction of 2/log2 

(by (A7)). Now with increasing k the nominator and the denominator of the 

k-th convergent of a regular continued fraction do not increase slower than 

the Fibonacci sequence (cf. (Al) with bk = I). From this, the theorem follows 

easily. D 

From Theorems 5 and 6 it also follows that the second assertion - the 

only unsettled part of Erdos's conjecture - is very hard to prove. If ii) 

were true, it would follow that for each E > 0 there are infinitely many m 

and n such that 

or 

(m 
3 
2 

2 
257mn < 

I - l 3 
( 12 + r)m )log 2 < n < (m - 2 

2m-3 2. ------< n log 2 
l/6+2.: 

mn 

l 
257m)loe 2, 

which means that there are infinitely many partial denominators bk of 2/log 2 

satisfying 7 $bk$ 185 (compare 4.l and 4.3). And this is, although quite 
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probable, very hard to prove. 

As to the assertion (iii), we only mention that we are convinced that 

our examples are the smallest possible ones, and that it may be proved by 

establishing effective forms of Theorems 5 and 6 (like Theorems 2 and 3, but 

all estimates to the other side), leaving out only a reasonable number of 

cases to be checked directly. 

APPENDIX. SOME RESULTS FROM THE THEORY OF CONTINUED FRACTIONS. 

Some results from the theory of continued fractions, used in this re­

port, are listed here. They can all be found, explicitly or implicitly, in 

the second chapter of [5]. 

Let a be some irrational number. The regular continued fraction 

b + 
0 b + 

I b 2 + ••• 

of a is denoted by [b0 ,b 1,b 2 , ••. J. 

ak =bk+ 

bk+! + bk+2+ ... 

(k = 0, I , 2, ..• ) • 

The numbers b. are called the partial denominators of the regular continued 
l 

fraction of a. By pk/qk (k = 0,1,2, ... ) we shall denote the k-th convergent 

[b0 ,b 1,b2 , ... ,bk] of (the regular continued fraction of) a. We have 

(Al) 

Furthermore, fork= 1,2, ... , 

(A2) 

(A3) 

Moreover 
' 

(A4) 

k = 0, l , 2, ... , where 

= ] ' 

= o. 
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- a = 

hence 

This equality implies the well-known inequality 

(AS) 1 pk I 
-q-=-~-(b_k_+_l_+_2_) < qk - a < 

but also the sharper inequality 

(A6) 

and so on. 

(A7) If the rational number p/q satisfies 

I 
< --2, 

2q 

then it is a convergent of a. 

(k = 0 , I , 2 , ••• ) , 

q;(bk+l + bk+Z+l + b:+I) 

(k = 0, 1 , 2, ••• ) 

(A8) If two real numbers a.0 and a. 1 coincide in the first n partial denomin­

ators of their regular continued fractions, then so do all real numbers 

inbetween a.0 and a. 1• 
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