

DEPARTMENT OF NUMERICAL MATHEMATICS

NW 23/76

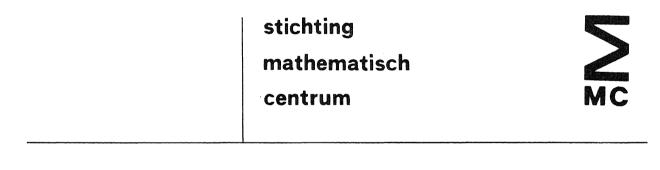
MAY

M.R. BEST & H.J.J. TE RIELE

ON A CONJECTURE OF ERDÖS CONCERNING SUMS OF POWERS OF INTEGERS

amsterdam

1976



DEPARTMENT	OF	NUMERICAL	MATHEMATICS	NW	23/76	MAY

M.R. BEST & H.J.J. TE RIELE

ON A CONJECTURE OF ERDÖS CONCERNING SUMS OF POWERS OF INTEGERS

2e boerhaavestraat 49 amsterdam

Printed at the Mathematical Centre, 49, 2e Boerhaavestraat, Amsterdam.

The Mathematical Centre, founded the 11-th of February 1946, is a nonprofit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O), by the Municipality of Amsterdam, by the University of Amsterdam, by the Free University at Amsterdam, and by industries.

AMS(MOS) subject classification scheme (1970): primary : 26A86, 10B45 secondary : 10F20 On a conjecture of Erdös concerning sums of powers of integers

Ъy

M.R. Best & H.J.J. te Riele

ABSTRACT

It is shown here that if m and n are positive integers such that $m \ge 2$ and $(1 - \frac{1}{m-1})^n \ge \frac{1}{2}$, then

(*)
$$1^{n}+2^{n}+\ldots+(m-1)^{n} \ge m^{n},$$

settling a conjecture of ERDÖS (Amer. Math. Monthly, 56(1949), p.343, Advanced Problem 4347).

Moreover, it is proved that the set M of integers $m \le x$, such that there is an integer n for which $(1 - \frac{1}{m-1})^n < \frac{1}{2}$ and for which (*) holds, has cardinality $O(\log x)$, for $x \rightarrow \infty$. The question whether M is finite or infinite is still open, but, by inspecting the convergents of the regular continued fraction of 2/log 2, we computed 33 elements of M.

KEY WORDS & PHRASES: Inequalities, sums of powers of integers, continued fractions, multiple-precision arithmetic

1. RESULTS

Consider pairs of integers (m,n) with $m \ge 2$, such that

(1.1)
$$1^{n}+2^{n}+\ldots+(m-1)^{n} \ge m^{n}.$$

For large m the sequence $(m-1)^n$, $(m-2)^n$, $(m-3)^n$,... can very closely be opproximated by a geometrical sequence. In this way it is easily verified that (1.1) can never be satisfied if $(m-1)^n < \frac{1}{2}m^n$, (cf. VAN DE LUNE [3], particularly the addendum). On the other hand it is known that (1.1) is satisfied if $(m-3)^n > \frac{1}{2}(m-2)^n$ (cf. VAN DE LUNE, 1.c.).

At first sight, numerical data strongly suggest that (1.1) is true if and only if $(m-2)^n \ge \frac{1}{2}(m-1)^n$. Indeed, VAN DE LUNE and TE RIELE [4] proved that this equivalence holds for almost all n (in the sense that the natural density equals 1). However, ERDÖS [1] had conjectured long before that (1.1) holds

- i) for all pairs (m,n) with $(m-2)^n \ge \frac{1}{2}(m-1)^n$, and moreover
- ii) for infinitely many pairs (m,n) with $(m-2)^n < \frac{1}{2}(m-1)^n$.

In this note, we prove the first conjecture.

THEOREM 1. Let m and n be integers such that $m \ge 2$ and $(m-2)^n \ge \frac{1}{2}(m-1)^n$. Then $\sum_{k=1}^{m-1} k^n \ge m^n$.

This theorem is derived as an immediate consequence of the two following theorems:

<u>THEOREM 2</u>. Let m and n be integers such that $m \ge 2$ and $n \ge (m - \frac{3}{2} - \frac{1}{12m})\log 2$. Then $(m-2)^n < \frac{1}{2}(m-1)^n$.

THEOREM 3. Let m and n be integers such that $m \ge 2$ and

$$n \leq (m - \frac{3}{2} - \frac{1}{256m}) \log 2$$
. Then $\sum_{k=1}^{m-1} k^n \geq m^n$.

Up till now not a single pair (m,n) satisfying (1.1) and $(m-2)^n < \frac{1}{2}(m-1)^n$ was known. The theorems 2 and 3 suggest however how to con-

struct such pairs: n/m must be a good approximation to log 2. More precisely, every pair (m,n) which satisfies the Diophantine inequality

(1.2)
$$\frac{1}{128mn} \le \frac{2m-3}{n} - \frac{2}{\log 2} < \frac{1}{6mn}$$

satisfies (1.1) and $(m-2)^n < \frac{1}{2}(m-1)^n$.

By use of the convergents of the regular continued fraction of 2/log 2 we found 33 examples of such pairs, the smallest one being

$$m = 1 12162 60233 52385 n = 77745 19157 29368.$$

It seems a hopeless task to prove that (1.2) has infinitely many solutions, thus settling Erdös's second conjecture, since (1.2) is not essentially weaker than the conditions in the conjecture (cf. section 5).

In this report, some results from the theory of continued fractions are used. They are listed in the appendix.

2. PROOF OF THEOREM 2.

Suppose $m \ge 2$ and $n \ge (m - \frac{3}{2} - \frac{1}{12m})\log 2$. If m = 2, then $n \ge \frac{11}{24}\log 2$, so $n \ge 1$, hence $(\frac{m-2}{m-1})^n = 0 < \frac{1}{2}$. If m = 3, then $n \ge \frac{53}{36}\log 2$, so $n \ge 2$, hence $(\frac{m-2}{m-1})^n \le (\frac{1}{2})^2 = \frac{1}{4} < \frac{1}{2}$. If m = 4, then $n \ge \frac{119}{48}\log 2$, so $n \ge 2$, hence $(\frac{m-2}{m-1})^n \le (\frac{2}{3})^2 = \frac{4}{9} < \frac{1}{2}$. Now let $m \ge 5$. Put $\ell = m - 1$. Then $\ell \ge 4$ and

$$n \ge (\ell - \frac{1}{2} - \frac{1}{12(\ell+1)})\log 2 > (\ell - \frac{1}{2} - \frac{1}{12\ell})\log 2.$$

Hence

$$\left(\frac{m-2}{m-1}\right)^{n} = \left(\frac{\ell-1}{\ell}\right)^{n} = \exp\left(n \log\left(1 - \frac{1}{\ell}\right)\right) <$$

$$< \exp\left(\left(\ell - \frac{1}{2} - \frac{1}{12\ell}\right)\left(-\frac{1}{\ell} - \frac{1}{2\ell^{2}} - \frac{1}{3\ell^{3}} - \frac{1}{4\ell^{4}}\right)\log 2\right) =$$

$$= \exp\left(-\left(1 + \frac{1}{24\ell^{3}} - \frac{11}{72\ell^{4}} - \frac{1}{48\ell^{5}}\right)\log 2\right) =$$

$$= \exp(-(1 + \frac{1}{144\ell^5} (6\ell^2 - 22\ell - 3))\log 2) < \exp(-\log 2) = \frac{1}{2}.$$

This completes the proof.

3. PROOF OF THEOREM 3.

In this section we shall put $\lambda = \log 2$ and $S = \sum_{k=1}^{m} \left(\frac{k}{m}\right)^n$. Now Theorem 3 states that

 $S \geq 2$

provided that

$$n \leq \lambda (m - \frac{3}{2} - \frac{1}{256m}).$$

In order to prove this, we need some identities concerning the functions f. defined by

$$f_j(u) = \sum_{k=0}^{\infty} k^j e^{-ku}$$
 (u > 0, j = 0,1,2,...).

<u>LEMMA</u>. We have $f_j = -f'_{j-1}$, for $j = 1, 2, \dots$ If $x = e^{-u}$ then

$$f_{0}(u) = \frac{1}{1-x}, \quad f_{1}(u) = \frac{x}{(1-x)^{2}}, \quad f_{2}(u) = \frac{x \cdot x}{(1-x)^{3}},$$

$$f_{3}(u) = \frac{x+4x^{2}+x^{3}}{(1-x)^{4}}, \quad f_{4}(u) = \frac{x+11x^{2}+11x^{3}+x^{4}}{(1-x)^{5}},$$

$$f_{5}(u) = \frac{x+26x^{2}+66x^{3}+26x^{4}+x^{5}}{(1-x)^{6}}, \quad f_{6}(u) = \frac{x+57x^{2}+302x^{3}+302x^{4}+57x^{5}+x^{6}}{(1-x)^{7}},$$

$$f_0(\lambda) = f_1(\lambda) = 2$$
, $f_2(\lambda) = 6$, $f_3(\lambda) = 26$ and $f_4(\lambda) = 150$.

PROOF. Straightforward.

REMARK. The coefficients in the polynomials occurring above are the Eulerian numbers (cf. RIORDAN [6]).

To prove the theorem, it suffices to consider $n = \lfloor \lambda(m - \frac{3}{2} - \frac{1}{256m}) \rfloor$. 1) We have:

$$S = \sum_{k=0}^{m-1} (1 - \frac{k}{m})^{n} \ge \sum_{k=0}^{\ell} \exp(n \log(1 - \frac{k}{m})),$$

1) By $\lfloor x \rfloor$ we mean the greatest integer less than or equal to x.

where $\ell < m$ may be chosen arbitrarily. Since for $0 \le x < 1$:

$$\log(1-x) = -\sum_{k=1}^{\infty} \frac{x^{k}}{k} \ge -x - \frac{x^{2}}{2} - \frac{x^{3}}{3} - \frac{x^{4}}{4(1-x)} ,$$

we have

$$S \ge \sum_{k=0}^{\ell} \exp(n(-\frac{k}{m} - \frac{k^2}{2m^2} - \frac{k^3}{3m^3} - \frac{k^4}{4m^3(m-\ell)})) =$$

=
$$\sum_{k=0}^{\ell} \exp(-kt - k^2 \epsilon - k^3 \eta - k^4 \theta)$$

where $t = \frac{n}{m}$, $\varepsilon = \frac{n}{2m^2}$, $\eta = \frac{n}{3m^3}$, and $\theta = \frac{n}{4m^3(m-\ell)}$.

Defining
$$\rho = \sum_{k>\ell} e^{-kt}$$
, we have

$$\begin{split} & S \geq \sum_{k=0}^{\infty} \exp(-kt - k^{2}\varepsilon - k^{3}\eta - k^{4}\theta) - \rho \geq \\ & \geq \sum_{k=0}^{\infty} e^{-kt}(e^{-k^{2}\varepsilon} - (k^{3}\eta + k^{4}\theta)e^{-k^{2}\varepsilon}) - \rho \geq \\ & \geq \sum_{k=0}^{\infty} e^{-kt}(1 - k^{2}\varepsilon + \frac{1}{2}k^{4}\varepsilon^{2} - \frac{1}{6}k^{6}\varepsilon^{3} - k^{3}\eta - k^{4}\theta) - \rho = \\ & = f_{0}(t) - \varepsilon f_{2}(t) - \eta f_{3}(t) + \frac{1}{2}\varepsilon^{2}f_{4}(t) - \theta f_{4}(t) - \frac{1}{6}\varepsilon^{3}f_{6}(t) - \rho. \end{split}$$

Now define v by $n = \lambda(m-v)$, so $v = m - n/\lambda$. Since

$$\lambda(m - \frac{3}{2} - \frac{1}{256m}) > n > \lambda(m - \frac{3}{2} - \frac{1}{\lambda} - \frac{1}{256m}),$$

it follows that

$$\frac{3}{2} + \frac{1}{256m} \le v < \frac{3}{2} + \frac{1}{\lambda} + \frac{1}{256m} < 2.95 + \frac{1}{256m},$$

hence

$$\frac{3}{2} \leq v \leq 3.$$

Now assume m > 700, and choose ℓ = 5 log m. Then by the lemma we have

$$\begin{split} \lambda > t &= \frac{n}{m} = \lambda(1 - \frac{v}{m}) > \lambda(1 - \frac{3}{700}) > 0.69, \\ \varepsilon &= \frac{\lambda}{2m} - \frac{\lambda v}{2m^2}, \qquad n = \frac{\lambda}{3m^2} - \frac{\lambda v}{3m^3} < \frac{\lambda}{3m^2}, \\ \theta &= \frac{\lambda(1 - \frac{v}{m})}{4m^3(1 - \frac{\ell}{m})} < \frac{\lambda}{4m^3(1 - \frac{5}{10g}\frac{700}{700})} < \frac{0.27\lambda}{m^3}, \\ \frac{1}{2}\varepsilon^2 > \frac{\lambda^2}{8m^2} - \frac{\lambda^2 v}{4m^3} > \frac{\lambda^2}{8m^2} - \frac{0.52\lambda}{m^3}, \qquad \frac{1}{6}\varepsilon^3 < \frac{\lambda^3}{48m^3} < \frac{0.01001\lambda}{m^3}, \\ \rho < \frac{e^{-\ell t}}{1 - e^{-t}} < \frac{m^{-3.45}}{0.49} < \frac{\lambda}{m^3}, \\ f_4(t) < f_4(0.69) < 154, \qquad f_6(t) < f_6(0.69) < 9670, \\ f_0(t) &= f_0(\lambda) + \frac{\lambda v}{m} f_1(\lambda) + \frac{\lambda^2 v^2}{2m^2} f_2(\xi) > 2 + \frac{2\lambda v}{m} + \frac{3\lambda^2 v^2}{m^2} \qquad (t < \xi < \lambda), \\ f_2(t) &= f_2(\lambda) + \frac{\lambda v}{m} f_3(\lambda) + \frac{\lambda^2 v^2}{2m^2} f_4(\xi) < 6 + \frac{26\lambda v}{m} + \frac{154\lambda^2 v^2}{2m^2} < \\ < 6 + \frac{26\lambda v}{m} + \frac{333}{m^2} \qquad (t < \xi < \lambda), \\ f_3(t) &= f_3(\lambda) + \frac{\lambda v}{m} f_4(\xi) < 26 + \frac{154\lambda v}{m} < 26 + \frac{321}{m} \qquad (t < \xi < \lambda), \end{split}$$

 $f_4(t) > f_4(\lambda) = 150.$

Substituting all these estimates in the estimate for S, we obtain:

$$S > 2 + \frac{2\lambda\nu}{m} + \frac{3\lambda^2\nu^2}{m^2} - (\frac{\lambda}{2m} - \frac{\lambda\nu}{2m^2})(6 + \frac{26\lambda\nu}{m} + \frac{333}{m^2}) - \frac{\lambda}{3m^2}(26 + \frac{321}{m}) + (\frac{\lambda^2}{8m^2} - \frac{0.52\lambda}{m^3})150 - \frac{0.27\lambda}{m^3}154 - \frac{0.01001\lambda}{m^3}9670 - \frac{\lambda}{m^3} >$$

$$> 2 + \frac{2\lambda\nu}{m} + \frac{3\lambda^2\nu^2}{m^2} - \frac{3\lambda}{m} - \frac{13\lambda^2\nu}{m^2} - \frac{167\lambda}{m^3} + \frac{3\lambda\nu}{m^2} - \frac{26\lambda}{3m^2} - \frac{107\lambda}{m^3} + \frac{75\lambda^2}{4m^2} - \frac{78\lambda}{m^3} - \frac{42\lambda}{m^3} - \frac{97\lambda}{m^3} - \frac{\lambda}{m^3} = 2 + \frac{\lambda}{m}(2\nu-3) + \frac{\lambda}{m^2}(3\lambda\nu^2 - (13\lambda-3)\nu + \frac{75\lambda}{4} - \frac{26}{3}) - \frac{492\lambda}{m^3}.$$

Since $3\lambda v^2 - (13\lambda - 3)v$ is a monotonically increasing function of v for $v \ge \frac{13\lambda - 3}{6\lambda} = 1.445...$, we derive from $v > \frac{3}{2}$:

$$S > 2 + \frac{\lambda}{m}(2\nu-3) + \frac{\lambda}{m^2}(\frac{27\lambda}{4} - \frac{39\lambda}{2} + \frac{9}{2} + \frac{75\lambda}{4} - \frac{26}{3}) - \frac{492\lambda}{m^3} =$$
$$= 2 + \frac{\lambda}{m}(2\nu-3) + \frac{\lambda}{m^2}(6\lambda - \frac{25}{6} - \frac{492}{m}).$$

Now define μ by $\nu = \frac{3}{2} + \frac{\mu}{m}$, so $\mu = (\nu - \frac{3}{2})m$. Then $\mu > \frac{1}{256}$ and

$$S > 2 + \frac{\lambda}{m^2} (2\mu + 6\lambda - \frac{25}{6} - \frac{492}{m}) > 2 + \frac{\lambda}{m^2} (2\mu - 0.007784 - \frac{492}{m}) > 2 + \frac{\lambda}{m^2} (0.00028 - \frac{492}{m}) > 2,$$

if $m > 2 \times 10^7$.

Thus we have proved Theorem 3 in case $m > 2 \times 10^7$. For $m \le 700$ the theorem has been checked by direct (computer-) verification. Hence we may assume 700 < $m \le 2 \times 10^7$.

First suppose $\mu \geq \frac{1}{4\lambda}$. Then

$$S > 2 + \frac{\lambda}{m^2}(2\mu - 0.007784 - \frac{492}{m}) > 2 + \frac{\lambda}{m^2}(0.72 - 0.01 - \frac{492}{700}) > 2.$$

Hence we may assume moreover that $\mu < \frac{1}{4\lambda}.$ But then by the definition of $_{\rm V}$ and $_{\mu}\text{:}$

$$\mu = (\nu - \frac{3}{2})m = (m - \frac{n}{\lambda} - \frac{3}{2})m = (\frac{2m-3}{n} - \frac{2}{\lambda})\frac{mn}{2},$$

hence

$$0 < \frac{2\mathrm{m}-3}{\mathrm{n}} - \frac{2}{\lambda} = \frac{2\mu}{\mathrm{mn}} < \frac{1}{2\mathrm{mn}\lambda} < \frac{1}{2\mathrm{n}^2}.$$

This implies that (2m-3)/n is a convergent of the regular continued fraction of $2/\log 2$ (see the appendix, (A7)). There are only three convergents p_k/q_k which come into consideration, i.e., for which $p_k/q_k - 2/\log 2 > 0$, p_k is odd and 700 < m $\le 2*10^7$:

i) $2m - 3 = p_9 = 2291$, $n = q_9 = 794$, m = 1147, $b_{10} = 4$; ii) $2m - 3 = p_{13} = 1206321$, $n = q_{13} = 418079$, m = 603162, $b_{14} = 6$; iii) $2m - 3 = p_{15} = 31668469$, $n = q_{15} = 10975455$, m = 15834236, $b_{16} = 1$. Here b_1 is the i-th partial denominator of the regular continued fraction of 2/log 2. (The first 601 b's are given in Table 1 of Section 4).

Case i) has been verified directly.

Since, by (A5) of the appendix,

$$\mu > \frac{n^2}{2\lambda} \left(\frac{2m-3}{n} - \frac{2}{\lambda}\right) = \frac{n^2}{2\lambda} \left(\frac{p_k}{q_k} - \frac{2}{\lambda}\right) > \frac{n^2}{2\lambda} \frac{1}{(b_{k+1}+2)q_k^2} = \frac{1}{2\lambda(b_{k+1}+2)}$$

we have in the cases ii) and iii):

$$\mu > \frac{1}{16\lambda} > 0.09,$$

so that

$$S > 2 + \frac{\lambda}{m^2}(0.18 - 0.01 - \frac{492}{m}) > 2.$$

This completes the proof of Theorem 3. \Box

4. COMPUTER CALCULATIONS OF THE PAIRS (m,n) SATISFYING (1.1) AND $\frac{(m-2)^n < \frac{1}{2}(m-1)^n}{(m-2)^n}$.

In this section we shall describe how we have computed 33 pairs of integers (m,n) satisfying (1.1) and $(m-2)^n < \frac{1}{2}(m-1)^n$. Up till now not a single such pair was known, although Erdös conjectured that there are infinitely many of them ([1]).

It follows from Theorems 2 and 3 that in order to find such pairs, it is sufficient to find pairs (m,n) satisfying

$$(m - \frac{3}{2} - \frac{1}{12m})\log 2 < n < (m - \frac{3}{2} - \frac{1}{256m})\log 2$$
,

or, after some reordering,

(4.1)
$$\frac{1}{128mn} < \frac{2m-3}{n} - \frac{2}{\log 2} < \frac{1}{6mn}$$

Define, as in Section 3, μ by $n = (m - \frac{3}{2} - \frac{\mu}{m})\log 2$. Then we have $\mu = \mu(m,n) = m(m - \frac{n}{\log 2} - \frac{3}{2})$ and (4.1) is equivalent with

(4.2)
$$\frac{1}{256} < \mu < \frac{1}{12}$$
.

Since m > n, (4.1) implies, by (A7), that (2m-3)/n is a convergent of the regular continued fraction of 2/log 2. Now let p_k/q_k be the k-th convergent of 2/log 2. Suppose k is odd. Then by (A4) $p_k/q_k - 2/log 2 > 0$. If, moreover, p_k is odd, then m and n defined by m = $(p_k+3)/2$ and n = q_k satisfy (4.1) if and only if $\mu = \mu(m,n)$ satisfies (4.2).

In order to compute p_k and q_k (k = 0,1,2,...), and, if appropriate, n,m and μ , we have used the ALGOL 60 procedures for multiple-precision integer arithmetic from the NUMAL-library [2]. First, the 601 partial denominators $b_0, b_1, \ldots, b_{600}$ of the regular continued fraction of 2/log 2 were computed from the first 700 decimals of log 2, as given by SWEENEY [7]. The b's were checked by use of (A8) of the appendix; they are given in Table 1 below.

TABLE 1.

The first 601 partial denominators of the regular continued fraction of $2/\log 2$. So $2/\log 2 = [2,1,7,1,2,1,1,...]$.

2								۵۳۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵	
1	7	1	2	1	1	1	3	2	4
7	5	3	6	4	1	1	4	1	1
27	3	1	1.	1	1	4	1	3	4
2	3	2	1	2	29	1	4	1	9
1	36	1	1	10	1	2	ì	2	1
3	6	1	1	27	1	1	9	2	2
1	1	4	5	8	1	1	1	2	1
65	4	1	1	2	2	11	10	1	1
18	4	3	1	3	3	4	3	2	10
2	65	1	9	5	105	21	1	3	3
1	2	7	14	4	19	1	4	1	56
4	6	7	1	6	5	13	1	3	5
35	1	5	7	3	1	1	2	2	5
6	3	4	1	5	6	2	1	3	1
2	2	2	2	242	1	6	6	4	1
6	1	1	2	2	15	1	7	1	2
1	4	2	22	3	5	1	1	1	2

1 8 24 1 3 6 3 1 3 1 1	2 1 6 9 1 1 6 1 19 5 1	13 3 1 1 5 9 1 1 1 3 22 1	1 3 2 3 2 4 3 2 14 1 1 2	3 2 5 1 1 1 1 1 1 108 1 1	3 1 10 3 1 2 2 2 2 10 1 1 1 3 2	1 2 3 9 4 5 8 1 1 2 1 3 1	2 1 7 1 2 2 2 1 19 1 1 1	4 1 2 4 2 18 6 3 14 1 1 2 1	1 6 4 5 2 1 1 1 5 13 67 2 18
155 1 3	1 4 8	8 1 1	1 8 1	2 2 1	3 7 2	1 8 1	1 13 1	2 2 99	2 4 1
10 7 2	4 2 2	1 2	2	2 31	3 1	2 4	1 2	9 1	1
9 12	1 1	4 2 4	1 1 1	4 1 7	1 1 1	9 4 5	1 1 2	11 1 1	1 21 1
4 1 1	3 3 2	8 4 1	3 1 2	29 8	2 4	3 21	1 7	1	1 8
2	4 5 8	2 2	2 1 1	1 6 1	40 98 1	1 2 9	2 30 1	1 9 1	7 1 1
7	8 1 2	1 1	5 40	1 2	1	6 2	3 14	1 1	30 4
3 2 3	2 2 4	4 1 3	13 1 2	1 1 4	2 15 1	2 1 2	1 43 1	7 14 1	1 2 2
3 7 14	78 2 2	1 37	2 3 1	1 1	43 3	1 3	1688 12	2 5	2 2
14 1 3 24	2 1 1	3 1 2	1 7 1	1 2 15 ·	2 21 2	47 1 6	14 1 5	14 1 6	1 1 3
9	1 1	1 526	1	1 1	4 5	7 1	5 1	1 6	2
1 2	2 4 8	5 2 1	3 2 1	1 3	4 3	3	1 1 2	12	1
2 4 2 89	6 5	6 2	14 3	12 3 13	10 5 3	1 1 2	2 1 2	1 15 110	1 1 1

Next, for k = 0,1,...,599, the exact integer values of the nominator p_k and the denominator q_k of the k-th convergent p_k/q_k of 2/log 2 were computed by use of the relations (A1) of the appendix. In case of odd k and odd p_k the value of $\mu = \mu(m,n) = \mu((p_k+3)/2,q_k)$ was computed. In Table 2 below the odd values of k \leq 599 are listed for which p_k is odd and for which μ satisfies (4.2). For all these values of k the numbers m = $(p_k+3)/2$ and n = q_k satisfy (1.1) and $(m-2)^n < \frac{1}{2}(m-1)^n$. For reasons which will become

9

clear soon, also the corresponding values of b_{k+1} are included in this table.

TABLE 2.

Odd values of k for which \textbf{p}_k is odd and μ satisfies (4.2). (μ is rounded to five decimals).

k	μ	b _{k+1}	k	μ	b _{k+1}	k	μ	b _{k+1}
35	0.02388	29	211	0.06792	9	439	0.02296	30
39	0.06676	9	255	0.06420	10	443	0.01758	40
41	0.01927	36	261	0.03473	19	447	0.04750	14
57	0.07266	9	267	0.03549	19	453	0.05180	13
77	0.06805	10	299	0.03870	18	467	0.01639	43
89	0.06600	10	313	0.07763	8	481	0.00913	78
91	0.01087	65	317	0.05315	13	485	0.01612	43
95	0.00685	105	321	0.08067	8	497	0.05776	12
157	0.08313	7	369	0.03335	21	507	0.05120	14
163	0.03168	22	399	0.07507	8	575	0.06678	10
195	0.06865	10	431	0.08035	8	583	0.04983	14

In Table 3 below we have listed the decimal representations of the numbers n and m corresponding to the cases k = 35,39,41 and 57 of Table 2. The integers n and m corresponding to k = 583 (our largest computed case) are 302-digit numbers. Their first and last five digits are given by n = 19305...16252, m = 27852...10488.

TABLE 3.

Pairs of integers (m,n) satisfying (1.1) and $(m-2)^n < \frac{1}{2}(m-1)^n$, corresponding to the cases k = 35,39,41 and 57 of Table 2.

_			 		-					
k	=	35	n	=				77745	19157	29368
			m	=			1	12162	60233	52385
k	=	39	n	=			140	89409	20558	57794
			m	=			203	26720	78995	39136
k	=	41	n	=			1526	22308	86191	71207
			m	=			2201	87448	12411	15228
k	=	57	n	=	5	45458	11706	25883	69110	39145
			m	H	7	86929	72049	88279	15993	33820
_			 							

The next theorem provides a partial check of Table 2.

THEOREM 4. Let $k(\geq 5)$ and p_k be odd. If b_{k+1} satisfies

 $(4.3) 9 \le b_{k+1} \le 182$

then m and n satisfy (4.1).

<u>PROOF</u>. In Table 1 we see that $b_k < 9$ for $0 \le k \le 20$. Hence we certainly may assume that m > 700, so that 0.69 < n/m < log 2 (cf. the proof of Theorem 3). Now by the right hand inequality of (A5) and since $b_{k+1} \ge 9$ we have

$$\frac{p_k}{q_k} - \frac{2}{\log 2} < \frac{1}{b_{k+1}q_k} \le \frac{1}{9n^2} < \frac{1}{9n \times 0.69m} < \frac{1}{6nm}.$$

On the other hand, we have

$$\frac{p_k}{q_k} - \frac{2}{\log 2} > \frac{1}{(b_{k+1}+2)q_k^2} \ge \frac{1}{184n^2} > \frac{1}{184nm\log 2} > \frac{1}{128nm}.$$

Hence $m = (p_{\mu}+3)/2$ and $n = q_{\mu}$ satisfy the inequalities (4.1).

5. DISCUSSION.

The main results of this note are Theorem 1 and the list of examples of pairs of integers (m,n) with $m \ge 2$, $(m-2)^n < \frac{1}{2}(m-1)^n$ and $\sum_{k=1}^{m-1} k^n \ge m^n$. Unproved however remained the following assertions.

i) The density of the integers m occurring in these examples is zero.ii) There actually are infinitely many examples.iii) The examples listed are smallest possible.

The first assertion was proved by VAN DE LUNE and TE RIELE [4] by a different approach. An even stronger result follows from the next two theorems:

<u>THEOREM 5</u>. Let for each integer $m \ge 2$ the real number n be defined by $(m-2)^n = \frac{1}{2}(m-1)^n$. Then $n = (m - \frac{3}{2} - (\frac{1}{12} + o(1))m^{-1})\log 2$ for $m \ne \infty$. <u>THEOREM 6</u>. Let for each integer $m \ge 2$ the real number n be defined by $m\overline{2} = \frac{1}{k} k^n = m^n$. Then $n = (m - \frac{3}{2} - (\frac{25}{12} - 3\log 2 + o(1))m^{-1})\log 2$ for $m \ne \infty$. The proofs of the Theorems 5 and 6 run very similar to those of Theorems 2 and 3 (except for the technical details), and will be omitted therefore. From Theorems 5 and 6 we derive:

THEOREM 7. Let

$$(m - \frac{3}{2} - (\frac{1}{12} + o(1))m^{-1})\log 2 < n < (m - \frac{3}{2} - (\frac{25}{12} - 3\log 2 + o(1))m^{-1})\log 2$$

so

$$\frac{1}{nm}(\frac{25}{6} - 6\log 2 + o(1)) < \frac{2m-3}{n} - \frac{2}{\log 2} < \frac{1}{nm}(\frac{1}{6} + o(1)).$$

Hence, for all sufficiently large m ϵ M, we have

$$0 < \frac{2m-3}{n} - \frac{2}{\log 2} < \frac{1}{2n^2},$$

so that (2m-3)/n is a convergent of the regular continued fraction of $2/\log 2$ (by (A7)). Now with increasing k the nominator and the denominator of the k-th convergent of a regular continued fraction do not increase slower than the Fibonacci sequence (cf. (A1) with $b_k = 1$). From this, the theorem follows easily. \Box

From Theorems 5 and 6 it also follows that the second assertion - the only unsettled part of Erdös's conjecture - is very hard to prove. If ii) were true, it would follow that for each $\varepsilon > 0$ there are infinitely many m and n such that

$$(m - \frac{3}{2} - (\frac{1}{12} + \epsilon)m^{-1})\log 2 < n < (m - \frac{3}{2} - \frac{1}{257m})\log 2$$
,

or

$$\frac{2}{257mn} < \frac{2m-3}{n} - \frac{2}{\log 2} < \frac{1/6+2\varepsilon}{mn},$$

which means that there are infinitely many partial denominators b_k of 2/log 2 satisfying 7 $\leq b_k \leq$ 185 (compare 4.1 and 4.3). And this is, although quite

probable, very hard to prove.

As to the assertion (iii), we only mention that we are convinced that our examples are the smallest possible ones, and that it may be proved by establishing effective forms of Theorems 5 and 6 (like Theorems 2 and 3, but all estimates to the other side), leaving out only a reasonable number of cases to be checked directly.

APPENDIX. SOME RESULTS FROM THE THEORY OF CONTINUED FRACTIONS.

Some results from the theory of continued fractions, used in this report, are listed here. They can all be found, explicitly or implicitly, in the second chapter of [5].

Let α be some irrational number. The regular continued fraction

$$b_0 + \frac{1}{b_1 + \frac{1}{b_2 + \cdots}}$$

of α is denoted by $[b_0, b_1, b_2, \dots]$. $\alpha = [b_0, b_1, \dots, b_{k-1}, \alpha_k]$ implies that

$$\alpha_{k} = b_{k} + \frac{1}{b_{k+1} + \frac{1}{b_{k+2} + \cdots}}$$
 (k = 0,1,2,...).

The numbers b_i are called the partial denominators of the regular continued fraction of α . By p_k/q_k (k = 0,1,2,...) we shall denote the k-th convergent $[b_0, b_1, b_2, \dots, b_k]$ of (the regular continued fraction of) α . We have

(A1)
$$\begin{cases} p_k = b_k p_{k-1} + p_{k-2} & p_{-1} = q_{-2} = 1, \\ q_k = b_k q_{k-1} + q_{k-2} & p_{-2} = q_{-1} = 0. \end{cases}$$

Furthermore, for $k = 1, 2, \ldots$,

(A2)
$$p_k q_{k-1} - p_{k-1} q_k = (-1)^{k-1}$$
, and

(A3)
$$q_k/q_{k-1} = [b_k, b_{k-1}, \dots, b_2, b_1].$$

Moreover,

(A4)
$$\frac{p_k}{q_k} < \alpha \text{ if } k \text{ is } \frac{\text{even}}{\text{odd}}.$$

From $\alpha = [b_0, b_1, \dots, b_k, \alpha_{k+1}]$ it follows that $\alpha = \frac{\alpha_{k+1} p_k + p_{k-1}}{\alpha_{k+1} q_k + q_{k-1}}$, so that $\frac{p_k}{q_k} - \alpha = \frac{p_k q_{k-1} - q_k p_{k-1}}{2^2 q_k q_{k-1}}$

$$\frac{\pi}{k} - \alpha = \frac{\pi}{q_k^2(\alpha_{k+1} + q_{k-1}/q_k)},$$

hence

$$\left|\frac{\mathbf{p}_{k}}{\mathbf{q}_{k}} - \alpha\right| = \frac{1}{\mathbf{q}_{k}^{2}(\mathbf{b}_{k+1} + [0, \mathbf{b}_{k+2}, \mathbf{b}_{k+3}, \dots] + [0, \mathbf{b}_{k}, \mathbf{b}_{k-1}, \dots, \mathbf{b}_{1}])}$$

This equality implies the well-known inequality

(A5)
$$\frac{1}{q_k^2(b_{k+1}+2)} < \left| \frac{p_k}{q_k} - \alpha \right| < \frac{1}{q_k^2b_{k+1}}$$
 (k = 0,1,2,...),

but also the sharper inequality

(A6)
$$\frac{1}{q_{k}^{2}(b_{k+1} + \frac{1}{b_{k+2}} + \frac{1}{b_{k}})} < \left| \frac{p_{k}}{q_{k}} - \alpha \right| < \frac{1}{q_{k}^{2}(b_{k+1} + \frac{1}{b_{k+2}^{+1}} + \frac{1}{b_{k+1}^{+1}})} (k = 0, 1, 2, ...)$$

and so on.

(A7) If the rational number p/q satisfies

$$|\frac{\mathbf{p}}{\mathbf{q}}-\alpha| < \frac{1}{2\mathbf{q}^2},$$

then it is a convergent of $\boldsymbol{\alpha}.$

(A8) If two real numbers α_0 and α_1 coincide in the first n partial denominators of their regular continued fractions, then so do all real numbers inbetween α_0 and α_1 .

ACKNOWLEDGEMENT

The authors like to thank Prof. R. Tijdeman for his valuable suggestions, which gave rise to several improvements.

14

REFERENCES

- [1] ERDÖS, P., Advanced Problem 4347, Amer. Math. Monthly, 56(1949), p.343.
- [2] HEMKER, P.W. (editor), NUMAL, a library of numerical procedures in ALGOL 60, vol.1, section 1.4, Mathematisch Centrum, Amsterdam, 1975.
- [3] VAN DE LUNE, J., On a conjecture of Erdös (I), Mathematical Centre, Amsterdam, Report ZW 54/75.
- [4] VAN DE LUNE, J. & H.J.J. TE RIELE, On a conjecture of Erdös (II), Mathematical Centre, Amsterdam, Report ZW 56/75.
- [5] PERRON, O., Die Lehre von den Kettenbrüchen, Leipzig, Teubner, 1929.
- [6] RIORDAN, J., An Introduction to Combinatorial Analysis, New York, 1958.
- [7] SWEENEY, D.W., On the computation of Euler's constant, Math. Comp., 17(1963), pp.170-178; corrigendum in Math. Comp., 17(1963), p.488.