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Galerkin's method and Lobatto points

by

P. W, Hemker

ABSTRACT

An efficient implementation of Galerkin's method for the solution of a
two-point boundary-value problem is described. Using the space MO’k of con-
tinuous piecewise polynomials of degree < k, an approximation is obtained
that is pointwise accurate O(th) on a quasi uniform grid. By selecting a
particular set of basis functions in Mo’k, the resulting scheme has a
striking resemblance with collocation, but in contrast with the correspond-
ing collocation at Gaussian points, the piecewise polynomials have discon-
tinuous derivatives.

A theorem by Douglas and Dupont concerning the relation between the
degree of the quadrature rule and the pointwise error-bound is slightly

generalized in order to deal with non-symmetric operators.

KEY WORDS & PHRASES: Galerkin's method, collocation method, Lobatto
quadrature



1. GALERKIN'S METHOD AND LOBATTO POINTS
Consider the two-point boundary-value problem on [a,b]

(n Ly = =(py")' + qy" + vy = s;
PsQsT,sS € Ct+1[a,b], t 22k - 13
0 < Py S p(x) on [a,bl;

(2) y(a) = a, y(b) = B.
In this paper we construct a Galerkin method for the numerical approxima-

tion of the solution to this problem. Hence, the analytical solution y(x)

is approximated by a function yh(x) of the form

(3) v, (®) = ) 26, (x);3
1

(4) yh(a) as yh(b) = B.

Here, {¢j}?=0 is a set of continuous functions on [a,b]. The coefficients

aj are computed from the linear system

b
(5) 2 a; J p(X)¢§(x)¢i(X) + q(X)¢3(x)¢i(X) + r(X)¢j(X)¢i(X) dx =
] a b
= [ s(x)¢i(x) dx, 1 <is<M-1,
a

and the constraints (4).

The M - 1 functions {¢i}?;:

¢i(a) = ¢i(b) =0,1i=1,...,M-1. In shorthand, we write instead of eq. (5):

are a subset from {¢j}?=0 such that

(6) Z a; B(¢j,¢i) = (s,¢,), i=1,...,M1.

J
It is well known that a set {¢j}?=0 of piecewise polynomials has many com-
putational advantages. In order to define Mo’k, the space of continuous k-th

degree piecewise polynomials, we introduce a grid



{a = Xg < K S oees <X = b}. The base-functions ¢j in MO’k are selected
such that they are continuous on [a,b] and identical to zero on [a,b] ex-
cept on at most two intervals [xi—l’xi]' (This yields the band-matrix
structure in the resulting discrete operator.) On each interval fxi_l,xi?,
i=1,2,...,N, a function vy € Mo’k is a pgl{nomial of degree less or equal
to k. What particular basis functions in M’ are selected is given by
eq. (12). We will motivate this choice by the following arguments.

It has been shown by DOUGLAS & DUPONT [1974] that, if the set {¢

J
allows for discontinuities in the derivatives of the elements of Mo’k a

M
. }j=0
t

the gridpoints {xi}, the error of approximation at the gridpoints is of
order k + r, r < k, i.e.

) Iy -y (x| = 0 )

as long as y € Hr+1[a,b]. Hence, at the gridpoints we permit discontinuities
of ¢§(x).

Setting up the discrete system of equations (5) requires the evalua-
tion of a number of integrals. The integrals can be computed by the use of

a fixed quadrature rule (of degree t) on each subinterval [xi_ xi] of

]’
[a,b]. Hence, the linear system that is actually solved reads

* * *
(8) g as BT(6:,0;) = (s,0.) 7,
where B*(¢j,¢i) and (s,¢i)* represent respectively B(¢j,¢i) and (s,¢i)

modified by quadrature errors. The approximation actually obtained is
(9) Y=Y ale..
yp =L a5 o

For the selfadjoint equation (i.e. problem (1)-(2) where q(x) = 0), it has
been indicated by DOUGLAS & DUPONT [1974], that there exists a unique solu-
tion to (8), provided that the grid {a = Xy <Ky < e < xS b} is fine

enough and t 2 2k - 2. Moreover, they obtain the error-bound

(10) lyGe) - yhxp) | -0’ if y ¢ HTa,b]
and if t 2 2k - 1.



Douglas and Dupont already noted that a k—-point Gauss quadrature rule is
sufficient in order to obtain the required accuracy in the errorbound (10).
However, in order to obtain an efficient algorithm we advocate the use of a
k+1-point quadrature rule.

Let 0 = 50 CEp < een < Ek = 1 be the family of base points of the
k+1-point Lobatto quadrature rule on [0,1] (see DAVIS & RABINOWITZ [19671]),
and let {WO’WI""’Wk} be the corresponding set of weights. Using the

Lobatto points {Ei} we can now introduce our basis functions in Mo’k. Set

(1) £. = x. + Ez(x.—x. ),

1,48 i-1 i Ti-1

then functions ¢ in Mo’k are defined by their values at the Lobatto points

{Ei 2}. We define our set of basis functions {¢j}?50 such that
, =

(12)

¢ik+£(€m,n) - 6im Gzn

i=2=00ri=0,1,...,N~15 ¢ = 1,...,k.

Note: It is convenient to identify ¢%£ = ¢ik+£; thus we can consider the
+ i i . .
set of Nk + 1 basis functions {¢1,2}1=0,...,N; £ =0,....k.

023 = ¢35 933 ¢3,

a=x, Xp %2 X3, *4 X5 %<
P b v
20 21 g22‘531 .
£30 £32 £33
0,3

Figure 1. Basis functions in M

If this set of basis functions {¢i 2} is used for the construction of an
9

approximation (3) and if the k+l-point Lobatto quadrature rule is used on

each interval [x;_,>x;], then the elementary contributions to the entries



of the discrete equation are

X.
1
k
1 ] ] _ v 1
(13) ;l: f p(X)¢i2(X)¢im(X)dx%(xi xi__l)nzownp(iin)d:m(éi,n)¢im(£i’n)/wm
®i-1
_] k
= (%%, ) nZO p(g; oi(E Yol (E Jw /v ;
X,
1
1 ' ' .
(14) ;,; J a(x)¢5, (Né; () dx ™ q(&; )8/ (E )3
X.
-1
X.
1
1
(15) -;n—l J r(x)¢; ()¢, (X)dx m &, (x;-x; (g, )3
X.
1~1
X.
1
1
(16) - [ 50 G R (pmxg )8 (Es)
X.
i-1

Here, v and ¢;(gn) m,n = 0,1,...,k are constants that are computed in ad-
vance. We see that the computation of the integrals involves a summation
only in (13). At the other places a simple function evaluation suffices.
Moreover, the integral (15) only contributes to a single entry in each row,
viz. the entry on the main diagonal.

Even the summation in (13) can be circumvented. Since any problem of

the form (1)-(2) can be rewritten in the same form with constant p, we can

restrict the computational scheme to this case. Hence, also the sum

k
) ¢y (E )8 (E Iw /w

=0 n” m°n" n m
is a constant number that can be computed in advance. We note that the
transformation that makes p a constant number possibly will disturb the
selfadjointness of the equation.

As will be shown in the theorem at the end of this paper, we obtain



pointwise accuracy of order 2k by the use of the k+l-point Lobatto quadra-
ture, and by the particular choice of {¢j}?§0 we overcome the disadvantage
of Galerkin's method the laborious evaluation of integrals.

Since the integrals in (13)-(16) have been divided by Vs there is a
striking resemblance with the collocation method, as far as the discretiza-
tion of q(x) y'(x), r(x) y(x) and s(x) are concerned. Hence we compare our
method with collocation at Gaussian points (cf. DE BOOR & SCHWARTZ [19731)
which method attains accuracy of order O(th) by collocation at only k
points on each interval [xi—l’xi]' The order of the resulting linear sys-—
tems are the same for both collocation at Gaussian points and Galerkin at
Lobatto points, since in the latter method each internal gridpoint X, is

a Lobatto-point on [x._ J. The Galerkin scheme

»X.] as well as on [x.,x.
1°71 1’7i-1 .
has the additional advantage that the discrete operator B (¢j,¢i) is sym—
metric if the analytical operator is (i.e. if q(x) = 0). In contrast with
the Galerkin method collocation requires an approximating function "yh"
that has a continuous derivative. This can be considered as an advantage
if the solution y is a smooth function and if y' should be approximated,

but it is a disadvantage if y varies rapidly.

Computational remark: The system (8) consists of N+ 1 (k+1)x(k+1)-blocks

on the main diagonal, with a single entry overlap between each two neighbor-
ing blocks. This can be used to reduce the system to tridiagonal form during
its construction; each time when a (k+1)x(k+1)-block is computed the k-I

inner rows and columns of this block can be eliminated.

2. A SUPERCONVERGENCE THEOREM

In the following theorem we prove that, also for a non-symmetric,
strongly coercive operator B, a (2k-1)-th degree quadrature rule is suffi-

ciently accurate to obtain the pointwise errorbound in eq. (10).

THEOREM. Let the operator B be strongly coercive, i.e. let B satisfy

Jo >0 Vve Hé[a,b] cﬂvlf < |B(v,v)|



and let the grid {a = X <X <.l <xp = b} satisfy the uniformity condi-
tion

=
It

- < 1 -
max (xi xi_]) < A min (xi X

i=1,...,N i=1,...,N

-1

If the solution of the problem (1)-(2) is approximated by ya (cf.
eq. 9), which is a pilecewise polynomial of degree k, and if B*(-,-) and
(-,-)* are computed by a quadrature rule of degree t, then the pointwise
errorbound

Iy(5;) = iG] = 0™

holds, Zf t 2 2k = 1 and 2f h <s sufficiently small.

PROOF. *) Let G(x,£) be Green's function corresponding to the operator L
and let Vh be the space of all continuous k-th degree piecewise polynomials
on the grid {a = Xy <X < ... <X = b}. Let Gi denote Gi = G(xi,-), then

for all v € Vh

IA

]B(yh-y;,Gi-V)l + lB(yh,V) - B*(y;,V)I + IB(y;,V) - B*(y;,V)l

* * * * *
< K"yh-yh"1 e, —vl, + | (s,v) = (s,v)7| + IB(yh,V) - B (yh,V)I

On the space of functions that have finite norms in HIEa,bj and

Ht+l[x. ,X.1, 1 =1,2,...,N, we introduce the norm f -l defined by
i-1°71 myk
1212 = § o bal? :
™k N Hx._,x.]
i=l,.00, 1o1°%;

Note that IlzllTr k= !zﬂk if z € Hk[a,b] and that, by the Cauchy-Schwartz

b4
inequality
*)

Throughout the proof C denotes'a gemeric constant, that means that it
is a constant of which the value may be different on each appearance.

BIBLIOTHEEK MATHEMATISCH CENTRUM
e e—AMSTERDAM—



LEL Ivh K < ﬂsﬂ'IT o vl
i Hm[xi_],xi] H [xi_l,x.]

It is also easily verified that, if k 2 1,

Ivi . B¥N < ¢l
™ o™

& = C lvﬂ] for all ve V, .

> 1 h

By means of the newly defined norm we obtain the following errorbounds
b
(18) | (s,v)=(s,9) 7] ;,I | (sv)-T(sv) [dx = ) I | (sv)-1(sv) |dx

i
a I.
i

Sc Z [ IDt+l(sv)|dx . pt!
i

I.
1

t+]-jsl IDjv‘dx.ht+1

IA

C |D

i I[. j=0,...,t+1
1

t+1

IA

c 7 e,  aplu, n
i,] L°(1,) L7(1,)

t+1

IA

C z isl il X h
i H (Ii) H (Ii)

t+1
C 'Suw,t+l ﬂvﬂw’k h .

IA

Here I denotes some interpolation operator from Ht+1[a,b] into the set of
piecewise polynomials of degree less or equal to t on [a,b]l; 1T is such that
each polynomial of degree < t remains unchanged. For each t-th degree quad-
rature rule a Il exists, such that
1 1
[ f(x)dx ~ ) w, £(€,) = [ (nf) (x)dx.
0 t 0
By theorem 5 from CIARLET & RAVIART [1972] we know that

t+1 t+l=m
ul

Il u=~Tul < k() Ip h

wP*%a,b] w20ra,b]



if u € Wt+1’P[a,b], l <p<e, 0sSsms<t+ 1.

Analogous to inequality (18) we obtain

+ lgl +1xl }

* *, *
- <
(19) lB(Yh9V) B (yh’v) | < C{npﬂ t+1],0 t+l,o
w (1) w

wt+l,w(I)
* t+1

Aypl e s I o B

In eq. (17), if h is small enough, v can be selected such that

k

k+1 .
[N vﬂ] < Ip G"n,O h~ and Ivlﬂ’k < BGi v!ﬂ’k + uGi“w,k < 2IGillk

In order to complete the proof of the lemma we now have to show that

ﬂyh—y;"1 < ¢ b* and that ﬂy;ﬂw’k is bounded by a constant independent of T,

if h is small enough.

By the definitions of y;, (-,~)* and B*(',-) we have for all v ¢ Vn

(200 Blyypew) = (5,9) = (5,7 + B (yp,v) - Byp,v)

IN

[(s,9)=(s,m)"| + IB(y, ,v)=B" (y},")|

t+1 * t+l
i .
<8 ﬂvﬂn’k h + P nyhﬂn,k V"n,k h
. * o o
Taking v = yh A we have by the coercivity
2 t+l * t+]
I
(21) cﬂvﬂl < |B(v,v)| £ S Ilvll"’k h + P nyhu“,k v _— h
t+2-k * t+2-k
< C.S Ivﬂ] h + C.P "yh"n,k Hvﬂl h
Hence
* * t+2-k
-y 0. < {c.s +cC.p.ly h
(22) o lyh v, b {c.s + C.P v n,k}
t+2-k * t+2-k
< {c. Ply 1 h + C.P Iy -y I h
< {C.S + C.P yh n,k} Yy Yh ™,k
t+2-k Lk t+3-2k
< {C.S + C'Puyhlw,k} h + C.P ||yh y'hlll h v

If t + 3 - 2k > 0 then



t+3-2k N

o-CPh 0

if h is small enough and

t+3~-2k t+2-k

(23) 0 < (c—C.Ph ) nyh-y;u] < {C.s + C.Ply,|

iﬂ,k} h

Since in the norm ﬂ'ﬂﬂ K the Galerkin solutiom y, converges to the solu-
9

tion y

1) | - = - i
uyhlﬂ,k < |yuw’k + ly yhlﬂ,k ﬂyﬂk + Iy yhu“,k <2 ﬂylk

if k is small enough. Hence, in order to obtain convergence for h - 0,

t 2 2k - 2 is necessary. Moreover, if t 2 2k - 2

* k
(24) ﬂyh—yhn] < Ch
and
* *
(25) Pyl = Waloe # 1oyl i < 2 Iyl i < 4 Ivly

if h is small enough.

From the inequalities (17), (18), (19), (24) and (25) it now easily
follows that

* 2k
th(xi) - yh(xi)l <Ch

provided that t = 2k = | and h is small enough. Since, by theorem 1 in
DOUGLAS & DUPONT .[1974]

Iy, (xp) = y(xp) | < € K

if k is small enough, the lemma is completed by combining both inequalities.
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