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A comparative study of programs for solving nonlinear equations 

by 

J.C.P. Bus 

ABSTRACT 

In this report we propose a method for comparing the efficiency and 

reliability of programs for solving systems of nonlinear equations. We use 

this method for comparing a great number of existing programs. The results 

of these comparisons are given in such a way that it is easy for the user 

to decide which program he should choose for solving a given system of 

nonlinear equations. 

KEY WORDS AND PHRASES: Systems of nonlinear equations, comparison of ef

ficiency and reliability of programs. 
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INTRODUCTION 

In recent years, the testing of numerical software becomes more and 

more important. There are several reasons for this development. One is the 

creation of large user libraries of numerical programs (IMSL [32], NAG [38], 

NUMAL [39] etc.), where the need for choosing the programs to be included, 

makes testing very urgent. Another reason is the confusing variety of pro

grams in some fields of numerical mathematics, which makes it impossible for 

the unsophisticated user of numerical software to choose the right program 

for solving his problem. A lot of papers are devoted to the testing of soft-
• 

ware (HAGUE et al, [29], HILLSTROM [30], LOOTSMA [34], EINARSSON [23], HULL 

[31] etc.). However, many of the ideas suggested in the various papers are 

controversial or contradict each other. Therefore, we want to point out 

clearly the purposes of this report. In our opinion, the process of select

ing useful numerical software consists of three stages: 

- analysis of the theoretical properties of the underlying algorithms; 

- analysis of the practical performance of the algorithms; 

- analysis of programs. 

We will elucidate these three stages. 

1. Analysis of theoretical properties 

The algorithms should have a sound mathematical basis. It should be 

clear on what conditions convergence is guaranteed. 

2. Analysis of practical performance 

We are interested in two desirable properties. 

a. The work that has to be done to solve a problem. We say that an algorithm 

is more efficient than another for solving a problem, when the work that 

has to be done for solving this problem with this algorithm is less than 

for solving with the other algorithm. 

b. The capability of an algorithm to compute accurate answers to severe 

problems or to compute answers at all to such problems. This is called 

reliability or robustness. 

One should realize that the most efficient algorithm for solving rela

tively easy problems may frequently fail in solving severe problems. More

over, an algorithm that is capable of solving severe problems will usually 
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not be efficient for solving easy problems. For instance, evaluating a func

tion for all representable numbers on a computer is clearly a robust method 

for finding a solution of an equation in one variable, however, using inter

polation will be far more efficient in most cases but may fail sometimes. 

In most practical cases, the user does not know in advance whether his 

problem is relatively easy to solve. Hence, he wants to choose the algorithm 

that has both the highest probability that it solves his problem and is the 

most efficient algorithm for solving it. However, the arguments above indi

cate that these wishes are rather contradictory in most cases. Hence, the 

user has to choose the appropriate algorithm by a method of trial and error. 

The goal of this report is to tell him which algorithm is the best to try 

first and which one when the first is failing and so on. 

In performing an analysis of the relative efficiency and reliability 

of some algorithm one should have some measure for these properties. For 

many non-iterative algorithms it is easy to count the number of basic arith

metical operations (+,-,x,/) and the number of evaluations of the functions 

involved, if there are any. This gives a very practical measure of the ef

ficiency of such algorithms. Furthermore, a theoretical analysis of non-iter

ative algorithms will usually give enough information about the reliability. 

However, for iterative algorithms these problems are far more complicated. 

Although it is possible to count the number of arithmetical operations as 

well as the number of function evaluations performed at each iteration step~ 

provided that there are no iterative subprocesses, we do not know the num

ber of iteration steps needed to obtain a certain result. Therefore, we. 

have to make programs which implement the iterative algorithms in order to 

be able to get this number for a representative set of testproblems. Clear

ly, the reliability of the algorithm is measured by just counting the num

ber of failures while solving the problems of the given set. By measuring 

the efficiency, however, we feel that we should not take into account the 

failures of an algorithm, since we know that it may fail in solving rela

tively difficult problems. Therefore, it is necessary to create a set of 

relatively easy testproblems in a sense that should be specified clearly. 

This set should be used for comparing the efficiency of all algorithms. Ob

viously, the notions efficiency and reliability as used in this report are 

dependent on the sets of testproblems chosen. Selection of these sets should 
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so, but we do realize that it is still far from being ideal. 
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Finally, we want to emphasize that a measure for the efficiency of an 

algorithm should be as independent as possible of the environment in which 

the algorithm is used. Therefore, computation time is a very bad measure, 

since it depends on the running system of the computer (usually swapping 

time is added to normal computation time), on the hardware (the ratio of 

the time needed for addition and for multiplication varies from one computer 

to another), on the compiler used (see PARLETT & WANG [42]) and on many 

other things which are difficult to define precisely. 

3. AnaZ.ysis of programs 

Examples of properties that the program should satisfy are: 

a. the program should be well-structured (built up from independent modules), 

so that error detection becomes easy; 

b. stopping criteria should be such that the required results can be guar

anteed (if at all possible); some kind of error messages should be given 

when the algorithm breaks down; 

c. machine-dependent quantities should be avoided if at all possible, other

wise they should be defined explicitly and the computation should be such 

that under- and overflow is avoided. 

In this report we will be concerned with the first two stages with re

spect to the problem of solving systems of nonlinear equations, although 

the first stage is mainly restricted to giving relevant literature. 

In section I the problem is defined. In section 2 some theoretical 

background is given. Particularly, Newton-like algorithms are briefly dis

cussed. In s,ection 3 we describe the methods known and mention relevant lit

erature about convergence and stability. In section 4 we list the programs 

which are chosen for testing. We did only choose those programs of which 

an implementation in ALGOL 60 or FORTRAN is readily available from the lit

erature. We did not implement algorithms by ourselves since one of our pur

poses is to present the unsophisticated user a guide for choosing an exist

ing program :for solving his problems. 

In section 5 we define the testproblems and we propose a classification 

of these pro1blems. In section 6 we summarize the results of section l to 5 
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in some rules of thumb for the user. We give him the tools which should en

able him to classify his problem. The main part of this report, at least 

quantitatively, consists of section 7 where the numerical experiments are 

described and where the results are given in tables and diagrams. In sec

tion 8 conclusions about the efficiency and reliability of the various pro

grams are given. Here we give the user the information that is necessary to 

make a reasonable decision about which program he should choose for his prob

lem. 

Finally, the unsophisticated user is advised to examine his problem in 

the way that is advised in section 6, subsequently, to choose the program 

with the help of the conclusions given in section 8, and finally, to read 

the description of the program given in section 4 and to perform the modi

fications proposed there. Doing so, he will not be involved with theoreti

cal considerations and yet he will take advantage of the results of this re

port as much as possible. 

1. STATEMENT OF THE PROBLEM 

We consider the problem of solving a system of nonlinear equations. 

Let F denote an n-dimensional continuous (nonlinear) function of n variables, 

defined on some region DE Rn: 

( 1. l) 
n n 

F: D C R -+ R • 

Then we want to compute some vector z ED, such that 

(1.2) 
n 

F(z) = 0 E R • 

In numerical analysis, a wide variety of problems may be formulated in such 

a way that the solution of a system of nonlinear equations is required for 

solving these problems. For instance, solving a two point boundary value 

problem 

u" = f(t,u), 0 ~ t ~ 1, 

u(O) = a, u(l) = S, 

with a finite difference or finite element method gives rise to a system of 
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nonlinear equations if f(t,u) is nonlinear in u. Other problems, for which 

solving may require the solution of a system of nonlinear equations are 

elliptic boundary value problems, integral equations or two-dimensional var

iational problems (see ORTEGA & RHEINBOLDT [40]). 

Algorithms for solving nonlinear problems are usually iterative. I.e., 

given any initial approximation x0 to z, the algorithm generates a series 
00 

of approximations {xi}i=l to z, such that 

lim x. = z. 
• l. 
l. -+<x> 

It is very obvious that the choice of the initial guess may highly affect 

the convergence of the sequence {x.} to the solution vector z. Therefore, 
l. 

we give a more precise definition of the problem considered 

(I .3) 
given F: D c En ➔ En and x0 € D; 

calculate z ED, such that F(z) = O. 

We denote this problem by 

( I • 4) 

In this report we compare programs for solving problem (1.3). 

2. THEORETICAL BACKGROUND 

2.1. General theoretical considerations 

An iterative m-step method which uses the function and its first deri

vative for solving problem (1.3) may generally be defined by: 

given xo,···,xm-1' 

calculate fork= m-1,m,m+l, ••• 

(2.1.1) 

where J(x) is the so-called Jacobian matrix of partial derivatives. Speci-
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fie examples are 

(2.1.2) 

(2.1.3) 

~+I=~(~)=~ - [J(~)]-lF(~) 

-1 
~+l = tjJ(~) = ~ - [M(~)J F(~), 

(Newton's method), 

where M(~) will usually be some approximation to J(~). Most methods con

sidered in this report, including Newton's method, can be given in the form 

(2.1.3). Therefore, we will pay some special attention to these so-called 

Newton-like methods. 

A theoretical analysis of Newton's method, which is based on the New

ton-Kantorovich theorem can be found in the literature (e.g. ORTEGA & RHEIN

BOLDT [40], COLLATZ [16], RALL [45]). For this method, one can prove that 

the error in ~(x) as an approximation to the solution z satisfies: 

(2.1.4) 
2 IIHx)-zll::::: S(x,z)llx-zll , 

-I 
where S(x,z) depends on ll[J(x)J II and the norm of the second derivative of 

the function in some region containing x and z (COLLATZ [16], BUS [14]). 

Hence, provided S(x,z) is bounded (i.e. J(x) is nonsingular and the second 

derivative is bounded) the asymptotic order of convergence of Newton's meth

od is quadratic. 

However, the use of iteration formula (2.1.3) leads to the more compli

cated bound for the error in tjJ(x): 

(2.1.5) lltji(x)-zll 
-1 

::::: c 1(x)ll[J(x)J llllx-zll + 

-I 2 
+ (c 1(x)ll[J(x)J U + l)S(x,z)Bx-zll , 

where c 1(x) is a measure for the error in M(x) as an approximation to J(x) 

(BUS [14]). It is obvious from (2.1.5) that superlinear convergence of the 

method given by (2.1.3) can only be guaranteed if 

(2.1.6) for x ➔ z. 

For somewhat different treatments of the convergence analysis of methods 

as given by (2.1.3) we refer to ORTEGA & RHEINBOLDT [40] or BOGGS & DENNIS 

[ I J. 
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2.2. Nwnerioal aspeats 

Using a method as given by (2.1.3) on a computer, we are confronted 

with two kinds of problems due to the finite word length of a computer. The 

first one is that in computing M(~) as an approximation to J(~), the best 

we can obtain anyhow is a relative error which is about the same as the pre

cision of arithmetic. Hence (2.1.6) cannot be satisfied. The second problem 

is the stability of the method for solving the linear system in each itera

tion step. Using gaussian elimination for solving a linear system 

Ax = b 

we obtain an upper bound for the relative error in the solution 

(2.2.1) II oxll (A)R TxJr~K E=a 

where Eis the precision of arithmetic, K(A) = IIAIIIIA- 111 is the condition 

number of the matrix A and R is some constant, mainly depending on the or

der of the system and specific details of the method used (WILKINSON [49]). 

It is assumed that K(A) << 1/E, 

Let ~(x) be the value obtained by evaluating the right hand side of 

(2.1.3) with precision of arithmetic E. Then, we obtain for the error in 

~(x) as an approximation to z (BUS [14]): 

(2.2.2) 

where 

(2.2.3) L(x) = S(x) + (1 + S(x))c(x)ll[J(x)J-lll, 

(2.2.4) Q(x) = (I + L(x))S(x,z), 

(2.2.5) S(x) = (l+E)a(x) + E, 

a(x) and S(x,z) are given by (2.2. I), with A replaced by J(x), and (2.1. "4), 

respectively, and c(x) is a measure for the error in M(x) as a numerical 

approximation to J(x). 

Hence, using a method defined by (2.1.3) for solving problem (1,3), 
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we can not expect to obtain a numerical solution in a relative precision 

which is higher than the precision of arithmetic. Furthermore, convergence 

at all depends on the value of 

S(x,z), the convergence factor of the exact Newton method, which depends on 

the problem, 

c(x) , a measure of the error in M(x) as a numerical approximation to J(x), 

which depends on the method as well as on the problem, 

B F::J a, which reflects the condition number of the linear subproblem and 

depends on the problem as well as on the method used for solving 

the linear system. 

Anyhow, 

(2.2.6) r(x) = L(x) + Q(x)Ux-zH, 

for x in some region U, containing the solution, is the critical number 

which reflects whether a problem is easily solvable by a given method. 

If 

r(x) < 1, for x EU 

then convergence is assured for each starting point in U. Since almost all 

methods given in this report may be described by (2.1.3), we will use in 

section 5.2 the quantity 

(2.2.7) r = sup r(x), 
XEU 

where 

(2.2.8) {xo} 
n I Ux-zll :;; r(xo)}, u = u {x E E. 

r{x) = dxll + II <f> (x)-zll + L(x) II </>(x)-xll , 

for selecting problems which are easy or difficult to solve (see also BUS 

[14]). 

2.3. The influence of scaling 

It is well known that scaling of the variables may influence the be

haviour of a method for solving problem (1.3). 
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Suppose problem (1.3) is given and we introduce new variables x defined 

by 

'(2.3.1) x = Dx, 

where Dis some diagonal matrix with positive nonzero diagonal elements 

d. (i=l, ... , n). Then we obtain for the. .Jacobian matrix 
1 

d - -1 
= dx F(x) = J(x)D 

and for the tensor of partial second derivatives 

H(x) 

H .. k(x) 
1J 

= (H .. k(i)) 
1J 

1 
= -d d H. 'k(x). 

j k 1J 

aF. (x) 
1 

-I 
Hence, S(x), c(x),ll[J(x)J II and S(x,z) are all changed by scaling and there-

fore the number r may well be reduced. However, it is hard to prove such a 

statement for a specific problem. In practice, it seems best to scale the 

variables such that they all have about the same order of magnitude. Another 

reason for scaling in such a way may be that one wants to have all variables 

in about the same relative precision (see section 2.4). 

2.4. The choice of stopping criteria 

Since the methods used for finding the solution of a system of non

linear equations are iterative, we have to find some stopping criteria. 

For these methods, the most con:unonly used criteria are 

(2.4.I) 

(2.4.2) 

where t 0 , t 1, t 2 are tolerance values which should be given by the user. 

These criteria can be applied since these quantities are known in each iter

ation step. In all methods discussed in this report, the calculation of a 

new iterate is done by some kind of linear approximation of the function 

and the error in such an approximation is highly dependent on the second 
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derivative of the function. When we take a Newton-like method as an example, 

we see from (2.2.2) that 

(2.4.3) 
11~(~)-zll 

11~-zh s e: II xD + r (x) • 
11~-zll 

Hence, if the right hand side is nearly equal to 1 then the step length may 

satisfy (2.4.1) while the error in ~(xk) as an approximation to z may be al

most arbitrarily large. We see from (2.2.3) and (2.2.4) that r(x) may be 

nearly equal to 1, without llxk-zD being small, when ll[J(x)J- 111 and/or the 

norm of the second derivative is large relative to 1. Therefore, it is de

sirable to use both criteria (2.4.1) and (2.4.2) in an algorithm for solving 

nonlinear systems, although one should realize ~hat this is also not enough 

to guarantee the required precision. In order to be sure, it is necessary 

to know more about the behaviour of the function considered. 

Finally, we should point out that scaling of the variables in such a 

way that each variable has about the same order of magnitude, is desirable 

when the usual norms are used (e.g. the euclidean or maximum-norm) in (2.4.1) 

and (2.4.2) and when one wants to obtain the variables in about the same 

precision. 

3. DESCRIPTION OF METHODS KNOWN 

3.1. Newton's method and some of its modifications 

The most cominonly known method for solving nonlinear equations using 

analytical derivatives of the function is Newton's method (also called the 

method of Newton-Raphson). This method is defined by (2.1.2). However, in 

this form, it has the disadvantage that the user has to supply analytical 

expressions for the elements of the Jacobian matrix. This may be very dif

ficult or even impossible. To remove this difficulty one can approximate 

the elements of the Jacobian matrix with difference formulas. Methods ob

tained in this way are sometimes called discretized Newton methods and they 

are included in the class of Newton-like methods which are defined by (2.1.3). 

However, the approximation of the Jacobian matrix with difference formulas 

requires, even in its simplest form, at least n extra function evaluations 

(n denotes the number of variables). This appears to be inefficient, as 
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will be shown from the experimental results. A second disadvantage of using 

discretized Newton methods is that they are sometimes very sensitive to the 

step size used. In fact, this step size should be balanced in such a way 

that the truncation error and the error due to cancellation of significant 

digits by subtracting two almost equal function values have the same order 

of magnitude. However, the truncation error depends on the norm of the sec

ond derivative tensor which is usually not available. 

A second disadvantage of Newton's method, which is in fact shared with 

all Newton-like methods, is the possibility of divergence in cases that the 

Jacobian matrix is (nearly) singular for some xk. There is a simple strategy 

for avoiding an unstable behaviour when the Jacobian is only nearly singular. 

This is by using step size control. Instead of formula (2.1.2) the itera

tion is then defined by 

(3. l • 1 ) 
- -1 ~(x) = x - w(x)[J(x)] F(x), 

where the scalar w(x) determines the step length and is chosen, for in

stance, such that the method is norm-reducing in the sense that: 

(3.1.2) HF(i(x))U s HF(x)D. 

A strategy which can also deal with singular Jacobian matrices was origin

ally given by LEVENBERG [33] and MARQUARDT [35]. It can be defined by: 

(3.1.3) 
- T -1 
~(x) = x - [J(x) + A(x)J (x)] F(x), 

where A(x) ~ 0 is chosen such that J(x) + AJT(x) is nonsingular and mostly 

such that (3.1.2) is satisfied. 

A very elegant method for avoiding the problems of a singular Jacobian 

matrix is the use of the Moore-Penrose pseudo-inverse. Here the iteration 

is defined by 

(3.1.4) - + ~(x) = x - [J(x)] F(x), 

+ d . • where A denotes the pseu o-inverse of the matrix A. 

One should note that for all these methods, the solution of a linear 

system is needed or even the calculation of the pseudo-inverse. Since the 
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number of arithmetical operations needed for such calculations is of order 

n cubed, it may be inefficient for large n. 

In order to give a theoretical analysis of the given methods, one 

should realize that they are all Newton-like methods, even the one given by 

(3.1.4) if the Jacobian matrix is assumed to be nonsingular. Therefore, the 

theory in section 2 can be applied. For a detailed analysis see BOGGS & 

DENNIS [1], BUS [14] or ORTEGA & RHEINBOLDT [40]. 

3.2. Generalized secant and related methods 

The secant method for solving the equation 

f(t) = 0 E R, t E R, 

which can be defined by 

can be extended ton dimensions. Then we calculate the next iterate as the 

intersection of n hyperplanes which interpolate F(x) at given points in a 

neighbourhood of x (see ORTEGA & RHEINBOLDT [40]). 

This method can be formulated as a Newton-like method in the following 

way: 

(3.2.1) 

(3.2.2) 

(3.2.3) 

n let x, x , ..• ,x be given; 

1 n H = [x-x , ..• ,x-x J 

i be the matrix with columns x - x, 1. = l, ... ,n; then 

-I 
~(x) = x - [M(x,H)] F(x), 

where 

is an approximation to J(x). (Here e. denotes the i-th unit-
1. 

vector.) 
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Obviously, this method requires the solution of a linear system in every 

iteration step. In order to avoid this we can use [M(x,H)]-l, or rather the 

triangularized form of M(x,H), in a certain number of subsequent iteration 

steps. Such a modified generalized secant method can be defined by the super

iteration (SCHWETLICK [47]): 

(3.2.4) 

(3.2.5) 

1 n let x,x , ••• ,x be given, 

let moreover Hand M(x,H) be defined by (3.2.1) and (3.2.3) 

respectively 

then 

= x; 

fork= 0,1, ••• ,u compute 

(u+I) 
~(x) = v (x), 

where u is some fixed value which should depend on the order of 

convergence of the iteration. 

We call this a super-iteration, since u + 1 modified iteration steps are 

taken together as one step. Another useful modification of the generalized 

secant method is proposed by GRAGG & STEWART [28]. In their method the or

thogonal decomposition of the subsequent matrices M(x,H) is used. The ad

vantage is that, once this orthogonal decomposition is calculated, which 

requires O(n3) arithmetical operations, only O(n2) arithmetical operations 

are required to obtain the orthogonal decomposition of the matrix used in 

the next step. 

With the formulations (3.2.2) and (3.2.5) we may again use the analy

sis of Newton-like method to obtain results about the convergence behaviour. 

However, the error in M(x,H) as an approximation to J(x) (in (3.2.2)) or 

J(v(k)(x)) (in (3.2.5)) is the most important problem here (note that His 

singular when x 1, ••• ,xn are linearly dependent). For further results about 

the stability and convergence of these methods, see GRAGG & STEWART [28], 

ORTEGA & RHEINBOLDT [40] and ROBINSON [46]. 
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3.3. Quasi-Newton methods 

One of the most remarkable Newton-like algorithms is the so-called 

quasi-Newton algorithm (DAVIDON [18], BROYDEN [7], [8], POWELL [44]). 

In this algorithm the Jacobian matrix or its inverse is approximated by a 

matrix which is updated in each iteration step with the information gained 

so far about the function. The algorithm can be defined by: 

(3.3.1) w(x) = X - Q(x)F(x), 

Q(w(x)) = Q(x) + U(x,w(x),F(x),F(w(x)),Q(x)) 

or 

(3 .3. 2) w(x) = x - [P(x)]- 1F(x), 

P(w(x)) = P(x) + U(x,w(x),F(x),F(w(x)),P(x)). 

The updating of the matrices Q and P requires no additional function evalu

ations. Clearly, the formulation given by (3.3.2) requires the solution of 

a linear system. So in this formulation the number of arithmetical opera

tions needed per iteration step is proportional ton cubed. Therefore, at 

least from a theoretical point of view, formulation (3.3.1) is preferable 

since the number of arithmetical operations needed per iteration step is 

only proportional ton squared. We can use the same analysis as for Newton

like algorithms (see BUS [14]) to obtain results about the convergence be

haviour of formulation (3.3.2) and in a slightly modified way also of for

mulation (3.3.1). However, proving reasonable bounds for the errors in Q(x) 

and P(x) as approximations to [J(x)J-l and J(x) respectively, appears to 

be a hard problem. An analysis of quasi-Newton methods is given by BROYDEN 

[9] and DENNIS & MORE [20],[21]. 

3.4. Methods of aomponent-wise approximation 

These methods can be defined by the following formula (see also ORTEGA 

& RHEINBOLDT [40]): 

(3.4.1) 
(i) _ (i) ( 1) (i-1) (i) (n) 

xk+I - g (~+1'••·,~+I ,xk , ••• ,~ ), i= 1, ••• ,n, 

k = 0,1, ••• , 
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( I ) ( n) T n ( i) n 
where~= (xk , ••• ,~ ) E

0
R and g : R ➔ R for 1. = I, •.• ,n. 

Hence, a new approximation x~I~ to the j-th component of the solution vector 

is used as soon as it is available. The choice of g. is usually based on ex-
1. 

panding the function into a Taylor series at the point 
(I) (i-1) (i) (n) T . . 

(xk+ 1, • •. ,xk+ 1 ,xk , ••• ,~ ) and neglecting second and higher order terms. 

Examples of such methods are the Gauss-Seidel algorithm and successive over

relaxation methods (see ORTEGA & RHEINBOLDT [40], section 7.4). 

A remarkable algorithm which we will also incorporate in this class is 

given by BROWN [2]. This method is based on expanding a component, say 

F(i)(x), of the function F(x) = (F(l)(x), ••• ,F(n)(x))T into a Taylor series. 

Neglecting second and higher order terms, we obtain a linear approximation 

which is equated to zero and solved for one of the variables, x(j) say. 

Subsequently, another function component is expanded into a Taylor series 

as a function of the remaining n - l variables (x(j) is substituted) and 

equated to zero again. After n such steps we obtain a new approximation to 

the solution vector. For a detailed description see BROWN [2]. He also gives 

theoretical justifications for his method and some results about the con

vergence behaviour. For further theoretical results about methods of compon

ent-wise approximation see ORTEGA & RHEINBOLDT [40]. 

3.5. Contin:uation methods 

The continuation methods (DAVIDENKO [17], BROYDEN [8], MEYER [36] and 

ORTEGA & RHEINBOLDT [40]) have a rather special place among the methods for 

solving systems of nonlinear equations, because, in fact, the problem 1.s 

transformed into a sequence of problems of the form (1.3) which might be 

easier to solve than the original problem. Let the problem [F(x) = O;x0 ;D] 

(cf. (1.4)) be given. Then this problem is replaced by the sequence of 

problems 

(3.5.1) k = l , ••• ,m, 

where z0 = x0 and zk is a solution of Pk' k = l, ... ,m. Furthermore, 

G(x,8 ) - F(x) 
m 
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and a solution of G(x,e 0) should be easy to calculate. Examples of Gare 

(BROYDEN [8], MEYER [36]) 

(3.5.2) 

or 

(3.5.3) 

where O = e0 < e 1 < ••• <em= 1. These methods are primarily designed to 

remove the difficulty of choosing a good initial guess. Hence, these methods 

are designed to be robust rather than efficient. 

Obviously, we can use any method of the preceding sections for solving 

the subproblems Pk, k = l, ... ,m. 

3.6. Additional, rema.Pks 

In practice, it appears to be almost impossible to separate the algor

ithms according to the theoretical framework given in this section. Several 

procedures known use mixtures of the methods described and quite often, the 

first step is entirely different from all others. For instance, the initial 

approximation to the inverse Jacobian used in quasi-Newton methods is usual

ly obtained with forward difference formulas and inversion. However, sununing 

up the basic tools used in the various algorithms is sufficient to make this 

report comprehensible. 

Considering the data that are required by the various algorithms, we 

can distinguish two classes: 

I. algorithms that use a Jacobian matrix whose elements are obtained by the 

evaluation of analytical expressions supplied by the user; 

2. algorithms that only require the progranuning of the function. 

In the first case, the efficiency is dependent on the ratio between the 

time needed to evaluate the function and the time needed to evaluate the 

Jacobian matrix. As will appear from our comparisons, the use of an algor

ithm that requires analytical derivatives will not necessarily be more ef

ficient than using an algorithm that requires only function evaluations. 
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4. SELECTED PROGRA..~S 

4. l • Introductory remaPks 

The goal of this report is to test those programs for solving systems 

of nonlinear equations that are available as computer programs in ALGOL 60 

or FORTRAN from the literature or well-known software libraries. The sources 

from which the programs are selected are: 

I. Collected Algorithms from CACM, 

2. Computer Journal, 

3. Computing, 

4. Mathematical Science Library [37], 

5. NUMAL, [39], 

6. Some specific papers as are given by BROWN [2], GRAGG & STEWART [29] and 

POWELL [44]. 

It should be pointed out here that we did not test programs for minimizing 

sums of squares of nonlinear functions which can also be used for solving 

systems of nonlinear equations. In our opinion this should be the scope of 

a separate test report. Furthermore, we will not consider programs that 

implement continuation methods. In fact, the program used for solving the 

subproblems that arise in these methods should be selected on the basis of 

this test report, while the choice of G(x,8) and the stepsize (cf. section 

3.5) is outside the scope of this report. Therefore, one of the programs 

(nonlinb) given by BROYDEN [8] is omitted. 

For two reasons we distinguish between programs written in ALGOL 60 

and in FORTRAN. Firstly, since arithmetical operations and elementary func

tions deliver different results in different languages, a problem defin~d 

in ALGOL 60 differs from the mathematical analogue in FORTRAN. Therefore 

the tests are not quite comparable. Secondly, we like to give the user a 

possibility to overview the field of programs which are available in the 

programming language he uses. 

The source texts of the programs are given in the appendix. In this 

report we will denote the programs to be tested by capitals. 
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4.2. Programs written in ALGOL 60 

PROGRAM A 

This program, written by Kok (see also NUMAL [39], section 5.1) is based 

on Newton's algorithm (see section 3.1). We supplied analytical deriva

tives. No step size control is performed. There are no method dependent 

control parameters in this program. In each iteration step one evaluation 

of the function, one evaluation of the Jacobian matrix and the solution 

of a linear system have to be performed. 

PROGRAM B 

This program, written by Kok, is based on Newton's algorithm with step size 

control (cf. (3.1.1)). We supplied analytical derivatives. In this algor

ithm, w(x) is chosen by successively trying the values 2-k fork= 0,1,2, ••• 

••• ,u-1, where the upper bound u should be supplied by the user. In fact, 

() 2-r h O 1'f w x = , were r = 

UF(x-s)U s UF(x)U 

otherwise, r is the minimum of u and the smallest value of k such that 

-k UF(x-2 s)U < HF(x)U 

and 

UF(x-2-(k+l)s)U ~ UF(x-2-ks)U, 

-1 
wheres= [J(x)J F(x). In this program an error exit is incorporated when 

-u int subsequent iteration steps the value of w(x) is chosen to be 2 • The 

value of the. integer t should also be given by the user. We chose u and t 

(in [6] and in [7] in the program given in the appendix) as follows: 

u = 15, t = 1. 

No other method dependent control parameters have to be set by the user. 

In each iteration step one evaluation of the Jacobian matrix and the 

solution of a linear system have to be performed. The number of function 

evaluations in an iteration step depends on the value of r in that step. 

If r = 0, then one evaluation of the function is performed, otherwise 
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r + 2 evaluations of the function are performed. 

PROGRAM C 

This program is the same as program A, except for the evaluation of the 

Jacobian matrix, which is done by approximating it with forward difference 
-4 -4 formulas with step size equal to 10 Ix U + 10 , where x denotes the ar-

gument vector. There is no difference in the source texts of the programs 

A and C since the user has to program the evaluation of the Jacobian 

matrix. In each iteration step n + 1 evaluations of the function and the 

solution of a linear system have to be performed. 

PROGRAM D 

This program is the same as program B, except for the evaluation of the 

Jacobian matrix, which is done by approximating it with forward difference 

formulas with step size equal to J0-4Dx R + 10-4• As for the programs A 

and C there is no difference between the source texts of the pro~rams B 

and D. In each iteration step a linear system has to be solved. The number 

of function evaluations in a certain iteration step depends on the value 

of r (see program B). If r = 0 then n + l otherwise r + n + 2 evaluations 

of the function have to be performed. 

PROGRAM E 

The Newton-like algorithm as given by PANKIEWICZ [41]. This algorithm is 

the same as algorithm C except for the choice of the step size, used to 

approximate the Jacobian matrix with forward differences. In fact, this 

step size should be given initially by the user and it is multiplied by 

0.1 in every step. Since choosing the step size too small may cause 

singularity of the approximation to the Jacobian matrix, we followed the 

advise of PANKIEWICZ [41] to use the given procedure repeatedly. 

As is required, we incorporated a procedure for solving linear systems. 

Furthermore we changed some minor details concerning error exits such 

that it became more convenient for our test programs. 
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PROGRAM F 

This is a program given by SCHWETLICK [47], which is based on the modified 

generalized siecant algorithm given by (3.2.5). In order to be able to 

deal with zero vectors, we incorporated in our program stopping criterion 

(2.4.2) and r1eplaced the statements: 

g:= y[k] x eps 

and 

if abs (h) > abs (eps) x abs (g) 

by 

g:= y[k] x eps + eps x eps 

and 

if abs (h) > abs (epsxg) + abs (eps) 

We chose eps == 0.0001. This value is used as a step length to obtain the 

matrices Hand M(x,H), (in fact xi is chosen to be x + eps x ei, where 

ei denotes th1e i-th unit vector). Furthermore the value of pivot is 

chosen equal to the precision of computation (i::::1 10- 14). This value is 

used to check whether or not the matrix H (cf.(3.2.1)) is singular. 

In each (super-) iteration step of this algorithm the solution of a 

linear system is required and at least n + 1 (cf.(3.2.5)) evaluations 

of the function have to be performed. 

PROGRAM G 

This program, given by DULLEY & PITTEWAY (22], is based on the generalized 

secant algorithm (formula (3.2.2)). As is required, we incorporate a 

procedure for solving linear equations (Bus, NUMAL [37], section 

3.1.1.1.1.1.3). The value of the control parameter initstep, which is 

used as a step length in the same way as eps is used in program F, is 

chosen equal to 0.0001. 



In each iteration step of this algorithm the solution of a linear system 

is required and one evaluation of the function is required. 

We tested two versions: 

pro~ram Ga: the program given by DOLLEY & PITTEWAY [22] with the minor 

changes described above; 
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program Gb: the same program but with the change incorporated, which is 

proposed by VANDERGRAFT & MESTENYI [48]. 

PROGRAM H 

This program is given by BROYDEN [8] (procedure nonZina) and is based on 

the quasi-Newton algorithm defined by (3.3.1). Initially, an approximation 

to the inverse Jacobian matrix is obtained by using the updating formula 

with fixed steps along the coordinate axis. We like to point out here that 

this requires 3n3 multiplications, while normal inversion of a forward 

difference approximation to the Jacobian matrix would only require n3 

multiplications (neglecting lower order terms). So it seems to be rather 

inefficient to use the method in the form proposed by Broyden. 

In the source text that we used, we chose the step size in the initializing 

phase relative to the value of the arguments: 

We used a version which is converted for use with the software library 

NUMAL [39]. 

After the rather expensive initializing. phase the number of arithmetical 

operations per iteration step is only proportional ton squared. 

Furthermore n + 1 evaluations of the function have to be performed in the 

initializing phase and one in each iteration step. 

PROGRAM I 

This program is based on the method of component-wise approximation given 

by BROWN [2] (see also section 3.4). The source text that we use is al

ready adapted to our,software library NUMAL [39]. Apart from some details, 

such as adding absolute tolerances where only relative tolerances were 

used, it is equivalent to the source text given by BROWN [2]. 
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In this program, difference approximations to the elements of the Jacobian 

matrix are made with a step size equal to 0.001. Furthermore, instead of 

supplying some procedure for calculating the vector function F(x), one 

should supply a procedure that calculates the i-th component of this vec

tor F(x), for given i {l~i~n). 

Furthermore it is advised to define the function in such a way that its 

linear components come first. 
4 . The number of multiplications needed per iterative step is 0.25 n, where 

lower order terms are neglected, and the number of function-component 

evaluations equals (n2+3n)/2 in each step. For a more up to date im

·plementation of this method see program O. 

4.3. Programs wr>itten in FORTRAN 

PROGRAM J 

This is the program, based on Newton's method, which is available in the 

MSL [37] software library as routine NEWI. The Jacobian matrix is approxi

mated with forward difference formulas and there is a possibility of incor

porating step size control. The step size control is done in terms of a 

fraction of the norm of the current solution vector. In fact, the step 

vector is multiplied repeatedly with the factor 

min(E/(S2/(Sl+0.001))!, I) 

until (3. 1.2) is satisfied. Here S2 denotes the norm of the current solu

tion vector squared, SI is the norm of the step vector squared and E is 

the so-called maximum fractional change allowed. When Eis chosen large 

enough, no step size control is done. 

As was suggested in the manual, we changed the statement 

RATIO= SQRT(S2/SI) 

in 

RATIO= SQRT(S2/(S1+0.001)), 

in order to be able to deal with the zero vector as initial guess. 



We tested this program for two values of E: 

Program Ja: E = 10100 , so that no step size control can occur; 

Program Jb: E = 0.18, a value suggested in the manual, such that step 

size control should work as well as possible. 
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For both programs the solution of a linear system is required in each 

iteration step. Furthermore, without step size control, n + 1 evaluations 

of the function have to be performed in each iteration step, with step 

size control this number may be more. 

The source text of this program is not given in the appendix since it is 

not free for publication. 

PROGRAM K 

This program is given by GRAGG & STEWART [28], and is based on the 

generalized secant algorithm. The matrices appearing are kept as products 

of orthogonal matrices (see section 3.2). We made two changes to the 

source text as given by Gragg and Stewart. The first one is on line 3000 

of subroutine SSM which reads in our program: MCEPS = 1.E-14 since 

the precision of computation on the computer used is about that value. 

The second one is the correction of a small programming error on line 

3200 of subroutine SSM which should read: OUTBND = NN + 3. 

The program has the feature to deal directly with linear function compo

nents. We did not use this feature for the general tests. 

The user has to provide n + I starting guesses of the solution vector. 

Since in our problems only one initial guess is given we generate them 

automatically as follows: 

(4.3. l) 
, k = I, •.• , n. 

Wh d h . ' . . 1 (k) h k h . ere x0 enotes t e given initia guess, x O t e -t starting guess 

for the program, e(k) the k-th unit-vector ands some fixed value. We do, 

in fact, consider two programs: 

Program Ka: s = 0.5; 

Program Kb: s = 0.001. 
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For both programs, Householder orthogonalisation of two n-th order matri

ces (see WIU:INSON [50]) is necessary initially, which requires 8n3 /3 

arithmetical operations (neglecting lower order terms).The iteration 

steps require only O(n2) arithmetical operations. The number of function 

evaluations needed per step may vary from 1 up ton. We do not give the 

source text that we used, since it is fully given by Gragg and Stewart, 

apart from the two small corrections mentioned above. 

PROGRAM L 

This program, which is available in the MSL [37] software library is based 

on the generalized secant algorithm given in section 3.2 (formula (3.2.2)). 

As in program K, the user has to provide n + l starting guesses, which are 

chosen according to formula (4.3.1) withs= 0.5. 

In each iteration step the solution of one or two linear systems is re

quired.(There is a recovery scheme in cases the matrix appears to be 

singular.) In each iteration only one evaluation of the function is per

formed. The source text of this program is not free for publication. 

PROGRAM M 

This program, which 1s available in the MSL [37] software library is based 

on the quasi-Newton algorithm defined by (3. 3. 2). In each iteration step 

the solution of a linear system and one evaluation of the function has to 

be performed. The source text is not available for publication. 

PROGRAM N 

This program is given by POWELL [44] and is basically an implementation 

of a quasi-Newton method as defined by (3.3.1). A version of this program 

1s also available in the NAG [38] software library. Here, this method 

1s combined with the steepest descent method for minimizing IIF(x)II and 

with Newton's method with forward difference approximations to the 

Jacobian matrix. Initially, and in some iteration steps, the approximation 

to the inverse Jacobian matrix is (re-)set by inverting the forward dif

ference approximation to the Jacobian matrix. Hence, initially and in 

some iteration steps, the number of arithmetical operations is O(n3) (ne

glecting lower order terms). In all other steps it is proportional to n2 . 
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The number of function evaluations needed in a particular step depends on 

what kind of step it is. 

The value of the control parameter DMAX is chosen to be equal to 10. 

DMAX controls the changes in the variables and is used in an error condi-

tion. For the 

Program Na: 

Program Nb: 

control parameter 

DSTEP = 10-4 

DSTEP = 10-7 • 

DSTEP we tested two values: 

DSTEP is used as a step size for the forward difference approximation, but 

also for controlling the updating of the approximation to the Jacobian ma

trix. We used the source text given by Powell except for the change of 

line 0092 where the call of subroutine MBOIB for solving a linear system 

is replaced by a call of the subroutine INVERS from the MSL [37] software 

library. 

PROGRAM 0 

This program is obtained from the University Computer Center of the Uni

versity of Minnesota and is based on the method of component-wise approxi

mation of BROWN [4]. A FORTRAN-version of this algorithm which is the same 

as we used is available in the IMSL [32] software library. 

The program has the same properties as program I. In the program the value 

for the step length to calculate the forward difference approximations to 

the elements of the Jacobian matrix has been given the value 10-8 • 

We tested the program for two different values for the step length: 

Program Oa: steplength 10-4 

Program Ob: steplength 10-8• 

Furthermore we used an absolute tolerance value in the stopping criterion 

in order to be able to solve problems with the zero-vector as a solution. 

4.4. General rema.rks about the programs selected. 

Although it is desirable that both stopping criteria (2.4.1) and 

(2.4.2) are used in a program for solving systems of nonlinear equations, 

almost none of the programs given in this section meets these require

ments. In our opinion it is not too hard to incorporate these criteria. 

However, we did not do so for testing, partly to reduce the possibility 

of making errors, partly because different norms are induced by the 
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various programs, so that they would not be equivalent after all. 

Finally we give in table 4.1 the work that has to be done by the 

various programs in the initializing phase, A. say, as well as per ite-
1 

ration step, A say. In fact, we give the number of multiplications needed 
s 

in the initializing phase and per iteration step. Since, these numbers 

will usually depend on the number of variables n, we denote A. and A as 
1 S 

functions of Ill and only give the highest order term. 
2 However, if the highest order term is of order n, we neglect all. 

For program F, A denotes the work per super-iteration and for program L, 
s 

we assume that: one linear system is solved per iteration step. 

TABLE 4. l 

Size of magnitude of A. and A relative ton 
1 S 

PROGRAM A. A 
1 s 

A - ¼n3 

B - ½n3 

C - ½-n3 

D - ½-n3 

E - ½-n3 

F - !.n3 
3 

G - ½n3 

H 3n3 -
I - ¼n4 

J - ½-n3 

K 8 3 -;-n 

L - ¼-n3 

M - ½n3 

N n3 sometimes n3 

0 - l 4 4n 



27 

5. CLASSIFICATION OF PROBLEMS AND SELECTION OF TESTPROBLEMS 

5.1. Classification of pPobZems 

We consider the class 'Y of all problems of the form ( 1 .4). When we 

measure the efficiency of a program for solving some problem from class 'Y 

we may distinguish the following three characteristics which influence 

this efficiency. 

a. The degree of difficulty for solving. 

b. The number of variables of the problem. 

c. The computational effort of an evaluation of the function, i.e. the 

number of basic arithmetical operations needed to evaluate the function. 

Before defining precisely these characteristics we like to point out why 

the first characteristic is important. It is obvious that it is desirable 

to know in advance whether a problem is easily solvable or not. However, 

the degree of difficulty also depends on the method used and, in practice, 

it is very hard, or even impossible, to measure it before solving the 

problem. Hence, a classification according to this characteristic will, 

in general, not be very helpful to the user. However, it is extremely im

portant for comparing the efficiency of the various programs. Since none 

of the programs for solving nonlinear systems is such that it solves all 

problems from class 'Y we have to take into account that the programs 

tested fail sometimes. Therefore we have to decide whether a failure is 
due to a difficultly solvable problem or to bad progrannning of the method. 

If the problem appears to be difficultly solvable then it makes no sense 

to draw from this failure the conclusion that the program is inefficient, 

for then all programs will appear to be inefficient. Clearly, we need a 

precise definition of the notions easily solvable and difficultly solv

able. Although several definitions are possible we choose one which is 

based on the fact that all methods considered in this report can be de

fined as Newton-like methods in some way or another, and which appears to 

be convenient. In fact, we use as a model-method the Newton-like method 

defined by (2. 1.3), where M(~) is calculated with forward difference ap

proximations. For this method we can compute an upper bound for the error 

in M(x) as an approximation to J(x), by calculating the second derivative 

and using the mean value theorem. Hence, for this method we can calculate 



28 

an upper bound for the number r (cf. (2.2.7)) of a certain problem. (For 

more details and an example see BUS [14].) When this upper bound appears 

to be less than 1, then, obviously, the problem is easy to solve by this 

Newton-like m1ethod. However, we do not use this number 1 so rigorously, 

because we made a lot of choices and sometimes, crude estimates. There

fore, we end up with the definition: 

DEFINITION 5. 1 • 1 

A problem is easily so"lvab"le when the number r, given by (2.2.7), for this 

problem and for Newton's method with forward difference approximations to 

the Jacobian matrix, has an order of magnitude about 1 or less. 

Otherwise the problem is difficu"lt"ly so"lvab"le. 

We will denote the class of easily solvable and difficultly solvable 

problems with superscripts e and d respectively. So ,e denotes the class 

of easily solvable problems, ,d the class of difficultly solvable problems. 

As far as classification according to the number of variables is 

concerned, wi? distinguish between small and large problems, where the 

choice of the bound, n = 15, is a matter of practical experience. 

The last classification quantity is induced by the fact that for 

most programs tested the number of basic arithmetical operations needed 

to perform one iteration step is not neglectable relative to the number 

of arithmetical operations needed to evaluate the function when the func

tion is not too complicated. Therefore, neither the number of function

evaluations, nor the number of iteration steps is a good measure for the 

efficiency of the programs. We should use a combination of these two 

quantities, which depends on the expensiveness of the function. For small 

problems we use only a distinction between cheap and expensive functions 

where it is mainly a matter of feeling how to classify a certain problem. 

For large problems, however, we can relate this quantity to the number of 

variables n. When we express the number of arithmetical operations needed 

to evaluate a function as a polynomial inn and we assume that an8 is its 

leading term, where Sis some integer, usually equal to 1,2,3 or 4 and 

a is some real, then we distinguish between: 



very cheap problems 8 = I , 

cheap problems 8 = 2, 

expensive problems 8 = 3, 

very expensive problems 8 ~ 4. 

Combining this with classification according to the size we obtain the 

following classification of problems in the class 'l'e of easily solvable 

problems: 

'l': 1 small (nS15), cheap and easily solvable problems; 

'l':2 small (nS15), expensive and easily solvable problems; 
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e 'l'tl large (n>15), very cheap (8=1) and easily solvable problems; 

e 'l't2 large (n>l5), cheap (8=2) and easily solvable problems; 

e 'l't3 large (n>15), expensive (8=3) and easily solvable problems; 

e 'l't4 large (n>15), very expensive (8~4) and easily solvable 

problems. 

We obtain analogously for the subclass 'I'd of difficultly solvable problems 

the classes: 

5.2 Definition of testproblems 

We have chosen a number of testfunctions known from literature. 

Most of them are used with several initial guesses, since it depends 

highly on the choice of the initial guess, whether a problem is easily 

solvable or not. 

5.2. I (BROWN [3]). 

F. (x) 
J. 

= - (n+ I) 

n 
- I + TT 

+ x. + 
J. 

x .• 
j=l J 

n 

I 
j=] 

x., 
J 

i = 2, •.• ,n; 
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Initial guess: 

Order 

Solutions 

xi = 0 • 5 , i = 1 , • • • , n • 

n = 2 , 3, 5 , 10, 15 and 25 • 

x. = 
1. 

(i = 1 , ••• , n) ; 

for instance for n = 5, approximately: 
T 

X = (-0.579, -0.579, -0.579, -0.579, 8.90) • 

Rema.Pks: All function components are linear except for the first one. 

5.2.2 (BROWN [3]). 

2 = x 1 - x2 - 1, Fl (x) 

F2 (x) = (x1 --2) 2 + (x2 - 0.5) 2 - 1. 

Initial guess: O. 

1. 

2. 

3. 

T (0. I, 2) , 
T (2, 0.5) , 

(-1, I.5)T, 
T (1, 0.99) • 

Solutions (1.54634288, l.3911763l)T, 

(1.06734609, 0.139227667)T, 

approximately. 

5.2.3 (FREUDENSTEIN & ROTH [26], BROWN [3]) 

F1(x) = - 13 + x1 + ((-x2 + 5)x2 - 2)x2, 

F2 (x) = - 29 + x1 + ((x2 + l)x2 - 14)x2• 

Initial guess: · o. (15, -2)T, 

1 • (-5, O)T, 

2. (-5., 3)T, 

3. T (0, 2.24) , 

Solution (5, 4>1. 

5.2.4 (CARNAHAN, LUTHER & WILKES [15], BROWN & CONTE [5]) 

F1(x) = 0.5 sin (x1x2) - x2/(4TI) - x1/2, 

F2(x) = (1 - l/(4TI)) (exp(2x1) - e) + ex2/TI - 2ex1• 



Initial guess: 

Solutions 

o. (0.6, 3/, 
T 1. (0.4, 3) • 

T (0.5, 7f) , 

(0.2994487,2.836928)T, approximately, 

(1.604571, -13.36290)T, approximately. 

5.2.5 (BROWN & CONTE [5]) 

5.2.6 

Fl (x) = 3x 1 + 2 2 x2 + x3 - 3, 
F2(x) -3x + = 1 
F3(x) = 25x1x2 

Initial guess: 

Solutions 

(BROWN [3]) 

2 5x2 + 2x 1x3 - 1 ' 

+ 20x3 + 12. 

T (0, o, 0) • 

(0.2900523, 0.6874306, -0.8492385)T, 

(!. 1, -0.8, 0.5)T, approximately. 

Fl (x) 
2 - 2x + 1 ' = xi 2 

F2 (x) 2 = XI + 2x2 

Initial guess: 

Solutions 

- 3. 

T o. (0, 1) , 
T I. ( -0 . 5 , I) , 
T 2. ( I , -0. 5) , 

T 3. ( I , -0. 24) . 
T (1, I) , 

(-1.402680, l.483683)T, approximately. 

5.2.7 (PO~IBLL [44]) 

F 1(x) = 10000x1x2 - I, 

F 2(x) = exp(-x 1) + exp(-x2) - 1.0001. 

Initial guess: 

Solution 

0. (0, l)T, 

I. (0, -l)T. 
T (1.098 -5, 9.106) , approximately. 

1 0 

Remark: This problem is badly scaled. 

31 
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5 • 2 • 8 (POWELL [ 44]) 

FI (x) = x 1 - I, 

F2(x) = XIX2 - I. 

Initial guess: 

Solution 

5.2.9 (BROYDEN [ 8]) 

FI (x) = IO(x2 -

F2 (x) = I - xi. 

Initial guess: 

Solution 

5 • 2 • I O ( BROYDEN [ 8]) 

Initial guess: 

Solution 

5.2.11 (POWELL [44]) 

F 1 (x) = x 1 , 

F2 (x) 

Initial guess: 

Solution 

o. 
I. 

2. 

( I ' 

2 
xi) 

o. 
( I ' 

o. 
I. 

( I , 

0. 

I. 

2. 

3. 

(0, 

T (-I, 2), 
T (- I , -2) , 

T 
(0.01, O) • 

I) T. 

(-1.2, T 1.0) • 

I) T. 

(-1.2, T I. 0) , 

(- I • I) T. 

I l. 

(3, I)T, 
T (0, I) , 

T (-I, I) , 

< -o. 9, o. 24 l. 
ol. 



5.2. 12 (POWELL [43]) 

FI (x) 2(x1 + IOx2) + 40(x1 
3 = - x4) ' 

FzCx) 20(x1 + l0x2) + 4(x2 - 3 = 2x3) , 

F3(x) 3 = IO(x3 - x4) - 8(x2 - 2x3) , 
. 3 

F4(x) = -IO(x3 - x4) - 40(x1 - x4) • 

Initial guess: T (3, -1, 0, I) • 

Solution (0, O, O, O)T. 

Remark: Thei Jacobian matrix has only rank two at the solution. 

5.2. 13 (DEIST & SEFOR [19]) 
6 

F. = I cot Us. x.), i 
1 j=I 1 J 

j=,i 

wherei 131 = 0.02249, 132 = 

134 = 0.02000, 135 = 

Initial guess: x. = 75.0, 
1 

= 1, ... ,6, 

0.02166, 13 3 = 0.02083, 

0.01918, 13 6 = 0.01835. 

i= 1, ... ,6. 

Solution (121.850, 114. 161, 93.6488, 62.3186, 

41.3219, 30.5027)T, approximately. 

5.2. 14 (FLETCHER [24]) 

Chebyquad, a function defined by the ALGOL 60 program given by 

FLETCHER [24]: 

Order: n = 2, 3, 4, 5, 6, 7 and 9. 

Initial guess: x. = i/(n + I), 
1 

1 = I, ... ,n. 

For reasons of brevity we omit the solution vectors. 

5.2. 15 (GHERI & MANCINO [27]) 

Fi = 13nxi + ( i - ¥) Y + 

n 
l [z .. (sina(ln(z .. )) 

• I 1J 1J J= 
j=,i 

where z .. 
1J 

. , 
1 

+ 1. ' 
J 

a 
+ cos ( ln ( z .. ) ) ) J , 

1J 

i,j = l, ... ,n. 

i = I , ••• n, 
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Order 

Initial guess: 

where 

n = 

x= 

10, 20, 30, so. 
-F(O) (.c+K) 

ZcK 

K =en+ (a+ l)(n - 1) and 

c = en - (a+ l)(n - 1). 
We distinguished between the following cases: 

o. a = 5 , e = 14 , y 

1 • a = 4 , e = 7 y , 
2. a = 7 e = 17 y , , 

= 3 . , 
= . , 
= 4 

A solution for n = 50 of case o is given by GHERI & MANCINO [27]. 

5.2.16 (FLETCHER & POWELL [25]) 

F(x) = e - (As(x) + Bc(x)), 

where A and Bare n x n matrices, whose elements are generated as 

random integers between -100 and +100, s(x) and c(x) are n-vectors 

such that: 

s(x) = (sin(x1), sin(x2), ••• , sin(xn))T and 

T c(x) = (cos(x1), cos(x2), ••• , cos(xn)) • 

e is * a vector, calculated as follows. Let x be a vector, whose elements 

are generated as random numbers between -n and +n, then 

* * e = As(x) + Bc(x ). 

Order 

Initial guess 

n = 10, 20, 30, 4U. 

* x + 0.01 o, where the elements of o are random 

* numbers between -n and +n and x as used for 

calculating e. 
Solution x*, as used for calculating e. 

5.2.17 (BROYDEN [II]) 

2 , 2 F.(x) = (k1 + k2x.)x. + I - k3 l (x. + x.), 
1 1 1 jd. J J 

1 

where Ii= {k k 1 i, max(l,i-r 1)sks min(n,i+r2)} 

and rl, r2, kl, k2 and k3 are given integers. 

Order: n = 20, 30. 



Initial guess: x. = -1, i = 1,2, ••• ,n. 
1 

We distinguish between the following cases: 

o. rl = 3 , r2 = 3 kl = k2 = k3 = . , , 

I • rl = 5 , r2 = , kl = , k2 = , k3 = 

2. rl = 5 r2 = 5 kl = 2 k2 = k3 = . , , , , , 

3. rl = 3 r2 = 2 kl = 3 k2 = 2 k3 = . , , , , 

4. rl = 4 ' 
r2 = 4 kl = 2 k2 = 5 k3 = .. , , 

For reasons of brevity we do not give the solution vectors. 

Remark: The Jacobian matrix of this function is a band matrix with lower 

band width rl and upper band width r2. 

5.2. 18 (BROYDEN [II]) 

F . ( x) = ( 3 - kx. ) x. + I - x. 1 - 2x1. + 1 , 
1 1 1 1-

i = 2, ••• ,n-1, 

F1(x) = (3 - kx 1)x1 + 

F (x) = (3 - kx )x + n n n 

where k is a given integer. 

Order: 

Initial guess: 

n = 5, 10, 20, 30, 40. 

x. = -1, i = I, 2, ..• ,n. 
1 

We distinguish between the following cases: 

O. k = 0.1 , 

I. k = 0.5 

2. k = 2.0 

For reasons of brevity we do not give the solution vectors. 

Remark: The Jacobian matrix of this function is a tridiagonal matrix. 

In the sequel we will denote a given testfunction by a triple 

(p,n,c), where p denotes the last number of the subsection in which it 

is defined (I up to 18), n the number of variables (i.e. the order of 
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the problem) and c the starting point or case. For instance, testfunction 

(18,20,1) denotes the testfunction given in 5.2.18, with order 20 and 

fork= 0.5. 
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5.3. CZassifiaation of test;probZems 

We classify our testproblems according to the same rules as 

given in section 5.1. However, the data that we derive from our prac

tical experience (the number of function-evaluations and iteration 

steps) is independent of the expensiveness of the function. Hence, we 

do not have to distinguish between cheap and expensive problems, this 

would only be necessary if we use computation time as a measure. 

We obtain four sets of testfunctions. 

e Set T1 

d Set T 
s 

d 
Set TR, 

(1,2,0) , (2,2,0) , (2,2,2) , 

(4,2,0) , (4,2,1) , (6,2,1) , 

(8,2,0) , 

(15,10,k) , k = 0,1,2, 

(18,n,k) , n = 5,10 and k = 0,1,2. 

(15,n,k) , n = 20,30,50 and k = 0,1,2, 

(17,n,k) , n = 20,30 and k = 0,1,2,3,4 , 

(18,n,k) , n = 20,30 and k = 0,1,2 , 

(l8,40,k), k = 1,2. 

(1,n,0) n = 3,5,10, 

(2,2,1) , (2,2,3) , 

(3,2,c) , C = 0,1,2,3, 

(5,3,0) , 

(6,2,c) C = 0,2 , 

(7,2,c) , C = 0,1 , 

(8,2 ,c) , c = l ,2 , 

(9,2,0) , 

(10, 2, c) , C = 0, 1 , 

(11,2,c), C = 0,1,2,3 , 

(12,4,0) , (13,6,0) , 

(14,n,0) , n = 2,3,4,5,6,7,9 , 

(16,10,0). 

(1,n,0) n = 15,25, 

(16,n,0) n = 20,30,40 

(18,40,0) • 
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e e Although all problems of sets Ts and Tfl are easily solvable in the 

sense of dE~finition 5.1.1., it is not certain that all problems of sets 

T~ and Tt are difficultly solvable since we calculated rather crude upper 

bounds for the number r (cf.(2.2.7)) and it may be possible that r is 

small enough although we could not prove it. However, the given distinc

tion is sufficient for our purpose. 

as a test set for the classes of functions 4': 1 and 4':2 , T: for 
\1/e d 111 e d 1 1 Td f 111 d d III d d Td f ,. fl 3 an , fl 4 , an ana ogous y s or , s I an , s 2 , an fl or 

u,d d 11/d 
1 fl3 an 'fl4° 

F~rthermon~, T: and T~ are used for testing the efficiency, while T: and 

T fl are used for testing the reliability. 

6. RULES FOR USERS 

In this section, we give some rules of thumb for the non-specialist 

user of algorithms for solving systems of nonlinear equations. In fact, 

we summari~:e the results of the preceding sections, in such a way that the 

user is able to classify his problem. After that, it appears from the con

clusions of section 8 which algorithm will most likely solve his problem. 

6. l . Information avai lab Ze 

Theoretically, the use of numerical approximations to the Jacobian 

matrix will always slow down convergence to the solution (see BUS [ 14]). 

However, in practice the use of forward difference approximations to the 

elements of the Jacobian matrix will usually give as good results as 

evaluation of the analytical expressions. In fact, it depends on the 

smoothness of the function and the choice of the step length in the for

ward difference formula (see section 3.1). 

If analytical expressions for the Jacobian matrix are available, 

then the user should compare the number of arithmetical operations re

quired for evaluating the function and the number of arithmetical opera

tions required for evaluating the analytically given Jacobian matrix. 

It dE~pends highly on the ratio between these numbers, whether it is 

efficient to use analytical expressions for the calculation of the 
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Jacobian matrix. A final ruling on this point, based on experimental re

sults, will be deferred to the conclusions in section 8. 

6.2. The size of the problem 

The number of variables, i.e. the order of the nonlinear system, 

and the number of arithmetical operations required for evaluating the 

function, defines the size of the problem. The user should decide in 

which of the classes defined in section 5.1, his problem has to be placed. 

6. 3. Special .features of the problem 

It may be possible that the way in which the problem is formulated, 

will give some preference for one algorithm above another. 

Properties that should be noted are: 

a. are some or most of the function components linear; 

b. is the evaluation of one component of the function independent 

of evaluation of the other components or has a lot of work to 

be done for all components together. 

Conclusions about the effect of these properties on the efficiency and 

reliability of the algorithms are given in section 8. 

6. 4. SolvabiUty of the problem 

If the user can derive an upper bound for the value of r as de

fined by (2.2.7), it may considerably simplify the process of choosing 

the right algorithm. If this number is less than I or its order of 

magnitude is about l, then he should choose the most efficient algorithm. 

However, if the order of magnitude of the number r is about 1/ e: or more, 

where E: denot,es the precision of computation, then he might prefer the 

most reliable algorithm. 

Unfortunately, for most practical problems, it is not possible to give a 

reasonable estimate of the number r. Since all algorithms may fail on se

vere problems, the best we can advise is, once the problem is classified 

according to the rules 6. l up to 6.3, one should choose the most efficient 

algorithm for this problem. If it fails in solving the problem, then 



a more reliable algorithm can be used subsequently. 

6.5. Scaling of the variables 

In practice, it appears to be desirable to scale the variables 

in such a way, that their order of magnitude is about the same (see sec

tion 2.3). 

6.6. The stopping criteria and soUPce text to be used 
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When one chooses a program according to the conclusions given in 

section 8, one should use the source text, which is given in appendix, or 

one can use the source text to which is referred. 

However, in the last case, one should incorporate the changes mentioned 

in section 4. In either case the conclusions are based on the values for 

the input parameters as given in section 4. 

Concerning the stopping criteria, the user is advised to incorporate both 

criteria (2.4.1) and (2.4.2) when it is not done already. 

6.7. Interpretation of results 

The user should be cautious in interpreting his results. Neither 

a small norm of the function, nor a small step length in the last 

iteration step does necessarily imply a small error in the approximate 

solution vector. Validation of such statements can be done only if an 

estimate of the value of r (cf.(2.2.7)) is known. 

7. EVALUATION OF NUMERICAL EXPERIMENTS 

7.1. The method of evaluation 

7.1.1 Evaluation of the relative efficiency. 

As is already pointed out in the introduction and in section 5.1, 

we use a set of easily solvable testproblems for comparing the efficiency 

of the various programs. In fact, we use the sets T: and T:. We say that 

a program is reasonable if it solves all easily solvable testproblems. 

Let p denote some easily solvable problem of the form (1.4). Let R 

be some program for solving problems of the form (1.4) and let the number 
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of iteration steps ns' the number of function evaluations~ and the number 

of evaluations of the Jacobian matrix nJ, which are needed for solving pro

blem p by program R, be obtained experimentally. Then, the total amount of 

work which has to be done by program R in order to solve problem p can be 

defined by: 

(7.1.1.1) 

where A. and A denotes the work done in the initializing phase and per 
1 S 

iteration step respectively (cf. section 4.4) and AF and AJ denote the 

work needed to evaluate the function and its Jacobian, respectively. 

Hence, we say that program R is more efficient than program Q for solviµg 

problem p if 

A(R,p) < A(Q,p). 

Note that, for reasonable programs, we may assume that the numbers n, n_ . s t· 

and nJ are finite, since pis easily solvable (compare section 5.1). 

Clearly, formula (7.1.1.1) is not very useful for our purpose since 

we should solve the problem before we can compute A(R,p) and we like to 

know the efficiency of a program for solving some problem before we do 

actually solve it, in order to be able to choose the most efficient pro

gram. Therefore we will define the notion "expected relative efficiency". 

Let~ be some class of easily solvable problems and suppose Tis a repre

sentative set of testproblems from the class~. Let, moreover, 6 be a 

class of reasonable programs for solving problems from class~. Then we 

obtain experimentally the number ns, ~ and nJ for all programs R € 6 

and all problems p €~-Therefore, we obtain 

A(R,p) for all R € 6 and p € ~, 

provided Ai, As, AF and AJ are known. 

Then, the expected relative efficiency of program R € 6, for solving a 

problem of class~ is defined to be: 
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(7. J. J.2) 

where t denotes the number of testproblems in T. Obviously, there remains 

the problem of measuring Ai, As, AF and A3 • As we did before, we will ex

press them in basic arithmetical operations (additions plus multiplications) 

(see section 4.4). 

Since AF and A3 are usually related, we express this relation by 

(7. I. J.3) 

We will use only rough estimates for the quantities AF, Ai and As since 

precise values are highly dependent on the way of programming. How we 

estimate these values depends on the kind of problems that are involved. 

We distinguish between the classes of easily solvable problems defined 

in section 5. I. 

Class ~e 1• The quantities A., A and AF are all small for all programs and 
s l. s -----all problems in this class. Hence, the expected relative efficiency is 

always acceptable. Therefore, the approximated expected relative effi

ciencies of all programs for solving a problem of class ~e are defined sl 
to be equally high: 

(7.1.1.4) 

for all RE~, where~ is some set of reasonable programs, c is some value 

between O and I and the bar above E denotes that it is an approximated 

value. Note that the quantity in (7.l.1.4) does not depend on a set of 

testproblems. In fact, only the reliability of a program is important 
e 

if one wants to solve a problem of class ~sl' 

e Class ~s2 • For these problems we may neglect As and Ai relative to AF. 

Hence, we may approximate A(R,p) by: 

(7.1.1.5) 
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We obtain: 

(7.1.1.6) I max(A(Q,p)) · 
Qd:1 

e e e e 
Classes ~£l' ~£ 2 , ~£3 and ~£4 , For the problems we express AF as a func-

tion of the number of variables n and neglect lower order terms 

(cf. section 5.1). 

(7.1.I.7) 
(3 

a.n' 

for some integer (3 and real a.. For the quantities A. and A we use the 
1. s 

approximations given in table 4.1. Doing so we obtain for PET: 

(7. 1 • 1 • 8) A(R, p) [n /3 + (3-3 3 for R {A,B}, = (nF+ynJ)a.n ]n, E s 

(7.1.1.9) A(R,p) [n /3 + (3-3 3 for RE {C,D,E,F,G,J,L,M}, = a.nFn ]n , s 

(7.1.1.10) A(H, p) = [3 (3-3 3 
+ cmFn ]n , 

(7.I.I.11) A(R,p) [n n/4 (3-3 3 for RE {I,O}, = + a.nFn ]n, s 

(7.I.1.12) A(K,p) [8/3 (3-3 3 = + a.nFn ]n, 

A(N,p) 
I (3-3 3 (7.I.1.13) = [ I + n + a.°Fn ]n , s 

where n denotes the number of iteration steps that the Jacobian matrix 
s 

is reset to the inverse of the forward difference approximation. 

Using (7. 1. I. B) up to (7. I. I. 13) we obtain the approximate expected re

lative efficiEmcy similarly to (7. 1. 1 .6), where the set of testproblems 

is chosen to be T:. 

7.1.2. Evaluation of the reliability 

In order to obtain a measure for the reliability we use the set Td 

of testfunctions. The reliability of a program is simply obtained by 

counting the number of failures when solving problems of the testset. 

Let~ be some class of difficultly solvable problems and let T be a re

presentable set of testproblems from <I>, then the reliability of a program R 

.. 
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for solving a problem of class I is defined to be 

(7.1.2.1) Z(R,T,I) l 
= t x (number of problems p ET which are solved 

successfully), 

where£ is the total number of testproblems in T. We distinguish between: 
d d a. the reliability for small problems: Z(R,T ,'¥ ) ; 
s s 
d d b. the reliability for large problems: Z(R,T2 ,'¥2); 

c. the reliability for all problems: Z(R,Td ,'¥d). 

7. l • 3. Gene:ral remarks 

All eixperiments reported 1.n the next sections are carried out on a 

CDC Cyber 73 computer, with precision of arithmetic of about 14 digits. 

The values of the control parameters used are reported in section 4, where 

the programs are described. In the tables we give the numbers ns, nF, n3 
I 

(programs A and B) and n (program N). These are the smallest numbers, so 
s 

that the euclidean norm of the function vector is less than some threshold. 

We chose this threshold I0-7 for the small testproblems (n:::;; 15) and 10-6 

for the large testproblems (n > 15). The testing on the convergence behav

iour of the various programs and on special features of some programs 1.s 

reported in section 7.3. 

7.2. Effici'.ency experiments 

As is: already mentioned in section 4.1, we distinguish between 

programs written in ALGOL 60 and those written in FORTRAN. The results 

of the ALGOL 60 programs for small and large problems are listed in the 

tables 7.1 and 7.2, respectively, and those of the FORTRAN programs in the 

tables 7.3 and 7.4. Concerning programs I and O, we assume that we may say 

that n evaluations of function components are equal to one evaluation of 

the function vector, so that °Fis equal to the total number of function 

component evaluations divided by n. For program L, we did in fact give 

the number of linear systems solved instead of n. In many iteration steps 
s 

of this program two linear systems are solved because of some recovery 

scheme. However, since the solution of a linear system is the bulk of 
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Problem A 

p n C n ~ s 

1 2 0 1 2 

2 2· 0 24 25 

2 2 2 9 10 

4 2 0 4 5 

4 2 I 5 6 

6 2 1 6 7 

8 2 0 2 3 

15 10 0 3 4 

15 10 I 3 4 

15 10 2 3 4 

18 5 0 3 4 

18 5 1 3 4 

18 5 2 4 5 

18 10 0 4 5 

18 10 I 4 5 

18 10 2 4 5 

TABLE 

e 
Experimental results for small problems of set T s 

B C D 

nJ n ~ nJ n ~ n ~ s s s 

1 1 2 1 1 4 1 4 

24 8 17 8 27 76 8 33 

9 8 13 8 8 25 7 26 

4 4 5 4 4 13 4 13 

5 3 9 3 5 16 3 15 

6 5 10 5 6 19 5 20 

2 2 3 2 2 7 2 7 

3 3 4 3 3 34 3 34 

3 3 4 3 3 34 3 34 

3 3 4 3 3 34 3 34 

3 3 4 3 3 19 3 19 

3 3 4 3 3 19 3 19 

4 4 5 4 4 25 4 25 

4 4 5 4 4 45 4 45 

4 4 5 4 4 45 4 45 

4 4 5 4 4 45 4 45 
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7. 1 

and all programs in ALGOL 60 

E F Ga Gb H I 

n °F n °F n °F n °F n °F n °F s s s s s s 

I 4 1 4 9 12 l 4 3 6 1 2.5 

IO 31 9 28 9 12 13 16 12 15 6 15 

8 25 5 17 1 I 14 12 15 23 26 9 22.5 

4 13 3 IO 7 IO 6, 9 7 10 4 IO 

5 16 3 IO 25 28 I l 14 IO 13 10 25 

6 19 7 21 10 13 17 20 10 13 8 20 

2 7 2 8 4 7 2 5 3 6 1 2.5 

3 34 I 15 5 16 4 15 4 15 3 19.5 

3 34 I 15 6 l 7 4 ]5 4 15 3 19.5 

3 34 l 16 6 ] 7 4 15 4 15 3 19.5 

3 19 2 20 9 IS 6 12 6 12 3 12 

3 19 2 20 9 15 6 12 6 12 4 16 

4 25 3 26 9 15 9 15 9 15 4 16 

4 45 2 40 15 26 9 20 9 20 4 26 

4 45 2 37 17 28 7 18 8 19 4 26 

4 45 2 38 12 23 10 21 9 20 4 26 
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Problem A 

p n C n ~ nJ n 
s s 

15 20 0 3 4 3 3 

15 20 1 3 4 3 3 

15 20 2 3 4 3 3 

15 30 0 3 4 3 3 

15 30 1 3 4 3 3 

15 30 2 3 4 3 3 

15 50 0 3 4 3 3 

15 so 1 3 4 3 3 

15 so 2 3 4 3 3 

17 20 0 3 4 3 3 

17 20 1 4 5 4 4 

17 20 2 4 5 4 4 

17 20 3 5 6 5 5 

17 20 4 5 6 5 5 

17 30 0 4 5 4 4 

17 30 1 4 5 4 4 

17 30 2 4 5 4 4 

17 30 3 5 6 5 5 

17 30 4 5 6 5 5 

18 20 0 5 6 5 4 

18 20 1 4 5 4 4 

18 20 2 4 5 4 4 

18 30 0 5 6 5 4 

18 30 1 4 5 4 4 

18 30 2 4 5 4 4 

18 40 1 4 5 4 4 

18 40 2 4 5 4 4 

1) norm of function only 710-s 

B 

~ nJ 

4 3 

4 3 

4 3 

4 3 

4 3 

4 3 

4 3 

4 3 

4 3 

4 3 

5 4 

5 4 

6 5 

6 5 

5 4 

5 4 

5 4 

6 5 

6 5 

8 4 

5 4 

5 4 

8 4 

5 4 

5 4 

5 4 

5 4 

TABLE 
results for large problems of 

C D 

n °F n °F s s 

3 64 3 64 

3 64 3 64 

3 64 3 64 

3 94 3 94 

3 94 3 94 

3 94 3 94 

3 154 3 154 

3 154 3 154 

3 154 3 154 

4 85 4 85 

4 85 4 85 

4 85 4 85 

5 106 5 106 

5 106 5 106 

4 125 4 125 

4 125 4 125 

4 125 4 125 

5 156 5 156 

5 156 5 156 

5 106 4 88 

4 85 4 85 

4 85 4 85 

5 156 4 128 

4 125 4 125 

4 125 4 125 

4 165 4 165 

4 165 4 165 

; 2) norm of function only 2 10-6 ; 
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7.2 
e set T JI, and all programs in ALGOL 60 

E F Ga Gb H I 

n ~ n ~ n ~ n ~ n ~ n ~ s s s s 'S s 

3 64 1 25 6 27 4 25 4 25 3 34.5 

3 64 1 25 6 27 4 25 4 25 3 34.5 

3 64 1 27 6 27 5 26 5 26 3 34.5 

3 94 1 36 7 38 5 36 5 36 3 49.5 

3 94 1 36 6 37 4 35 4 35 3 49.5 

3 94 1 37 7 38 6 37 5 36 3 49.5 

3 154 1 56 7 58 4 55 4 55 3 79.5 

3 154 1 56 6 57 4 55 4 55 3 79.5 

3 154 1 57 7 58 5 564) 5 56 3 79.5 

3 64 2 71 8 29 8 29 6 27 4 46 

4 85 2 71 19 40 8 29 7 28 4 46 

4 85 2 71 8 29 8 29 7 28 4 46 

5 106 2 73 15 36 14 35 13 34 5 57.5 

5 106 2 73 )I D 11 D 13 34 5 57.5 

3 94 I 74 7 38 7 38 6 37 4 66 

4 125 I 74 22 53 9 40 7 38 4 66 

4 125 2 105 9 40 9 40 8 39 4 66 

5 156 2 106 15 46 14 45 13 44 5 82.5 

5 156 2 106 16 D 16 D 13 44 5 82.5 

5 106 2 79 24 451) 13 34 l 1 32 5 57.5 

4 .85 2 71 21 422: 9 30 8 29 4 46 

4 85 2 71 1 1 32 10 31 8 29 4 46 

5 156 3 148 12 D 9 D 13 44 5 82.5 

4 125 2 105 22 523: 11 42 8 39 4 66 

4 125 2 105 11 42 11 42 8 39 4 66 

4 165 1 97 23 64 12 53 9 50 4 86 

4 165 1 97 1 l 52 11 52 8 49 4 86 

3) norm of function only 510-6 4)norm of function only 210-6 
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TABLE 

Experimental results for small problems 

Problem Ja Jb Ka Kb L 

e n C n nF n °F n °F n nF n °F s s .s s s 

1 2 0 1 4 8 25 1 4 1 4 20 24 

2 2 0 8 27 24 73 8 13 12 18 2 D 

2 2 2 8 27 32 97 18 22 12 16 65 63 

4 2 0 4 13 4 13 9 12 7 11 18 16 

4 2 1 3 13 4 15 10 13 9 12 4 D 

6 2 1 5 18 6 19 7 10 8 12 14 11 

8 2 0 2 7 50 T 2 5 3 7 5 8 

15 JO 0 3 34 3 34 5 16 4 18 8 15 

15 JO 1 3 34 4 45 6 19 4 23 8 15 

15 10 2 3 34 3 34 5 18 4 24 10 16 

18 5 0 3 19 5 31 6 14 5 15 13 18 

18 5 1 3 19 4 25 8 14 6 15 13 18 

18 5 2 4 25 5 31 36 D 8 19 19 21 

18 10 0 4 45 8 89 10 25 9 33 21 32 

18 10 1 4 45 4 45 13 27 7 28 17 30 

18 10 2 4 45 5 56 61 T 8 30 23 33 



7.3 

p 
of set T- and all programs in FORTRAN 

:s 

M Na Nb 

ns- nF n-' n °F n' n . °F s s s s 

9 12 1 7 10 1 7 10 

15 18 1 I 1 14 l 1 1 14 

17 20 1 I I 15 1 11 14 

7 10 1 8 12 l l 1 14 

6 12 I 11 15 1 l l 14 

10 13 l 9 12 1 9 12 

15 22 I l 1 14 I 1 1 14 

4 15 1 4 16 1 4 15 

6 l 7 1 4 16 1 4 15 

5 16 I 5 17 1 5 16 

8 14 1 8 15 1 8 14 

6 12 l 6 13 I 6 12 

10 16 I IO 19 l 9 15 

13 24 1 12 25 l I l 22 

9 20 1 9 22 1 9 20 

1 1 22 1 12 28 l l I 23 

49 

Oa Ob 

n nF n °F s s 

1 2.5 2 5 

6 15 6 15 

9 22.5 9 22.5 

4 10 4 10 

18 45 13 33 

8 20 8 20 

1 2.5 2 5 

2 13 3 19.5 

3 19.5 3 19.5 

3 19.5 3 19.5 

3 12 3 12 

3 12 3 12 

4 16 4 16 

4 26 4 26 

4 26 4 26 

4 26 4 26 
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Problem Ja Jb 

p n C n ~ n ~ s s 

15 20 0 3 64 3 64 

15 20 I 3 64 5 106 

15 20 2 3 64 4 85 

15 30 0 3 94 3 94 

15 30 I 3 94 3 156 

15 30 2 3 94 4 125 

15 50 0 3 154 3 154 

15 50 I 3 154 5 256 

15 50 2 4 205 4 205 

17 20 0 4 85 4 85 

17 20 I 4 85 4 85 

17 20 2 4 85 4 85 

17 20 3 5 106 6 127 

17 20 4 5 106 5 106 

17 30 0 4 125 4 125 

17 30 I 4 125 4 125 

17 30 2 4 125 4 125 

17 30 3 5 156 6 187 

17 30 4 5 156 5 156 

18 20 0 4 86 9 190 

18 20 1 4 85 4 85 

18 20 2 4 85 4 85 

18 30 0 4 126 9 280 

18 30 1 4 125 4 125 

18 30 2 4 125 4 125 

18 40 I 4 165 4 165 

18 40 2 4 165 4 165 

TABLE 
Experimental results for large problems 

Ka Kb L 

n ~ n nF n ~ s s s 

5 27 4 38 8 25 

7 31 4 44 8 25 

6 30 5 44 10 26 

5 38 5 62 8 35 

7 42 4 64 8 35 

6 40 5 62 10 36 

6 60 5 99 8 55 

6 59 5 106 8 55 

7 62 5 105 10 56 

26 62 7 40 15 69 

10 I T 7 41 15 49 

23 60 9 47 14 69 

82 166 14 61 29 56 

36 93 15 58 27 75 

28 82 7 58 15 99 

65 180 7 61 17 70 

26 79 I 1 73 16 100 

151 T 14 93 29 76 

115 T 17 98 23 103 

90 T 10 51 45 T 

37 106 8 49 17 50 

107 201 9 55 23 53 

60 187 14 80 50 T 

101 T 9 70 17 70 

124 T 1 1 75 23 73 

48 D 10 94 19 91 

208 T 12 IOI 21 92 



7.4 
e of set TR, and all programs in FORTRAN 

M Na 

n nF n n nF s s s 

5 26 1 4 25 

6 27 1 4 26 

6 27 I 5 27 

5 36 1 5 37 

7 38 1 4 35 

7 38 I 6 38 

5 56 1 5 57 

7 58 I 4 55 

7 58 I 6 58 

6 27 I 8 31 

7 28 I 8 30 

8 29 1 8 30 

14 35 I 17 45 

14 35 I 17 46 

6 37 I 7 39 

8 39 I 8 40 

8 39 I 9 42 

14 45 I 17 55 

14 45 1 16 53 

11 52 1 15 35 

9 30. 1 10 32 

10 31 I 10 34 

18 49 1 18 51 

10 41 I 12 46 

10 41 1 10 43 

10 51 1 12 56 

10 51 l 10 53 

Nb Oa 

n n n· n nF n 
s s F s s 

1 4 25 3 34.5 3 

I 4 25 3 34.5 3 

1 6 27 3 34.5 3 

1 5 36 3 49.5 3 

1 4 35 3 49.5 3 

I 6 37 3 49.5 3 

1 5 56 3 79.5 3 

I 4 55 3 79.5 3 

I 6 57 3 79.5 3 

1 7 28 4 46 4 

1 8 29 4 46 4 

1 8 29 4 46 4 

I 14 35 4 46 5 

1 13 34 5 57.5 5 

I 7 38 4 66 4 

I 8 39 4 66 4 

I 8 39 4 66 4 

1 14 45 4 66 5 

I 14 45 5 82.5 5 

1 15 36 5 57.5 5 

I 10 31 4 46 4 

I 9 30 4 46 4 

I 18 49 5 82.5 5 

1 10 41 4 66 4 

I 10 41 4 66 4 

1 1 1 52 4 86 4 

1 10 51 4 86 4 

!3!Bt/0THEEK MA.THEMAT!SCH CENrnUM 
-AMSTERDAM--
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Ob 

nF 

34.5 

34.5 

34.5 

49.5 

49.5 

49.5 

79.5 

79.5 

79.5 

46 

46 

46 

57.5 

57.5 

66 

66 

66 

82.5 

82.5 

57.5 

46 

46 

82.5 

66 

66 

86 

86 
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the work per iteration step, it is convenient to count the solution of a 

linear system as an iteration step. In the tables the capital D means that 

the program diverged and is terminated by some error exit, T means that 

the program i:s terminated because the number of function evaluations be

came too high. It is clear from table 7.2 that program G is not a reason

able program :for solving large functions, since it failed to solve some 

easily solvable problems and other problems were not solved in the preci

sion required. For the same reasons we see from tables 7.3 and 7.4 that 

the programs Land Ka are not reasonable at all for solving nonlinear 

systems, whil1e program Jb should not be used for small problems. This re

sult for program Ka is rather surprising. We feel that the starting guesses 

in program Ka should give better results than those given in program Kb. 

This is affirmed by the fact that for many problems the recovery scheme 

built in program K is used to obtain a new set of starting guesses when 

using version Kb. Probably, there are some small programming errors in the 

code published by GRAGG & STEWART [28]. Another simple conclusion that can 

be derived from tables 7,3 and 7.4 is that the number of function evalua

tions as well as the number of iteration steps, needed by program Jb for 

solving the given problems is always greater or equal to those, needed by 

program Ja. For this reason and for the one given above, we will also con

sider program Jb as not reasonable. These conclusions will also be justi

fied by the r1eliability tests given in section 7. 3. 

Using the results given in tables 7,1 up to 7,4 we will now calcu

late the valu1es for the approximate expected relative efficiency of the 

various procedures for solving the problems from the various classes. 

For this calculation we use the notions and formulas from section 7,1. 

7 .2. I. Effici1ency for solving small cheap problems 

As is already stated in section 7.1, we define the approximated 

expected relative efficiency of all reasonable programs for solving pro

blems of clas:s '¥: 1 equally high (cf.(7.1.1.4)). Only the reliability of 

the various programs is important if one wants to solve these problems. 
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7.2.2. Efficiency for solving small expensive problems 

In order to evaluate the right hand side of (7.1.1.6) we should know 

the value of y (see (7.1.1.3)). In table 7.5 we give the approximated ex

pected relative efficiency of the various reasonable ALGOL 60 programs for 
e solving problems of class ~s2, for some typical values of y. Since for all 

FORTRAN programs the value of y is equal to zero, we can give the required 

results in table 7.6 independent of y. 

In our notation 6A means the set of reasonable ALGOL 60 programs: 

(7.2.2.1) 6A = {A,B,C,D,E,F,Ga,Gb,H,I} 

and 6F denotes the set of reasonable FORTRAN programs: 

(7.2.2.2) 6F = {Ja,Kb,M,Na,Nb,Oa,Ob}. 

TABLE 7 .5 

I~ A B C D E F Ga Gb H I 

I 0.4 0.4 0.9 0.9 0.9 0.7 0.6 0.5 0.5 0.6 

2 0.5 0.5 0.9 0.9 0.9 0.7 0.6 0.5 0.5 0.6 

5 0.8 0.8 0.8 0.8 0.7 0.6 0.6 0.4 0.4 0.5 

n/2 0.6 0.6 0.9 0.9 0.9 0.7 0.6 0.5 0.5 0.6 

n 0.9 0.9 0.9 0.9 0.9 0.7 0.6 0.5 0.5 0.6 

2n 1.0 0.9 0.6 0.5 0.5 0.4 0,4 0.3 0.3 0.4 

T,i\BLE 7 .6 

Ja Kb M Na Nb Oa Ob 

0.9 0.6 0.6 0.6 0.6 0.6 0.6 
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As an immediate result of table 7.5 we see that programs A or B (Newton's 

method with analytical Jacobian) is only preferable above other algorithms 

if y is small (about 1). 

Furthermore, programs C, D and Ja (Newton's method with forward difference 

Jacobian) are not efficient. 

7.2.3. Efficiency for solving large very cheap problems 

To evaluate the approximated expected relative efficiency of the 
e reasonable programs for solving problems of class f 11 we substitute the 

values for ns, nF and nJ given in tables 7.2 and 7.4 in the expressions 

(7.1.1.8) up to (7.1.1.13) where 8 = 1. However, since the first term with

in the brackets of these expressions is of order 1 or more and the second 
I 2 . 

term is of order °F n we can neglect the second term for large n. 

Doing so, we obtain with the use of a formula similar to (7.1.1.6) the re

sults given in tables 7.7 and 7.8. These results are independent of a and 

y since they only appear in the terms that we neglected. 

Since the programs Ga and Gb are considered to be not reasonable for solv

ing large problems, we will drop them and use the set l::i.A of reasonable pro

grams in ALGOL 60, where 

(7.2.3.1) l::i.A = {A,B,C,D,E,F,H,I}. 

TABLE 7.7 

A B C D E F H I 

0.05 0.05 0.05 0.05 0.05 0.02 0. 1 1 

TABLE 7.8 

Ja Kb M Na Nb Oa Ob 

0.05 0. 1 0. 1 0.05 0.05 1 1 



Clearly program Fis the most efficient program in ALGOL 60 and the pro~ 

grams I in ALGOL 60 and O in FORTRAN are relatively very inefficient for 

solving large very cheap problems. 

7.2.4. Efficiency for solving large cheap problems 
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As in section 7.2.3 we substitute the values for ns, nF and n3 , given 

in tables 7.2 and 7.4, in the expressions (7.1.1.8) up to (7.1.1.13), where 

a= 2. However, we can no longer neglect the second term in these expres

sions since nF is usually of order n. Therefore, substituting n and a, 

there still remain two parameters a and y (see (7.1.1.7) and (7.1.1.3) 

respectively). In table 7.9 we list the values for the approximated expec

ted relative efficiencies of the programs in ALGOL 60 for some typical· 

values of a (a=I,20) and y (y=l/n, I,n). Since y = 0 for all programs in 

FORTRAN, the results for these programs, given in table 7.10 depend only 

on a. 

TABLE 7 .9 

, for R E AA and some typical values of y and a 

a X A B C D E F H I 

I 1 /n 0.06 0.06 0.2 0.2 0.2 O. I 0.2 1 

1 1 0.06 0.06 0.2 0.2 0.2 o. 1 0.2 I 

I n 0.2 0.2 0.2 0.2 0.2 0. I 0.2 1 

20 1/n 0. I 0. 1 I l I 0.6 0.4 0.9 

20 1 0. I 0. I I 1 I 0.6 0.4 0.9 

20 n I 1 1 I I 0.6 0.4 0.9 

TABLE 7. 10 

, for RE AF and some values of a 

~ Ja Kb M Na Nb Oa Ob 

I 0.2 0.2 0.2 0.09 0.08 1 I 

20 I 0.6 0.4 0.4 0.3 0.8 0.9 
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It is easily seen from table 7.9 that Newton's method with analytical de

rivatives (programs A and B) is the most efficient method as long as evalu

ation of the Jacobian matrix is about as expensive as one evaluation of the 

function or cheaper. In all other cases, program F (if a=l) or program H 

(if a=20) is preferable when a program in ALGOL 60 has to be chosen. 

From table 7.10 we see that the most efficient FORTRAN program is program 

Nb, for both values of a. 

7.2.5. Efficiency for solving large expensive problems 

In a similar way as in section 7.2.4 we obtain the results given in 

table 7.11 and 7.12. For this class of functions B = 3 (cf.(7.1.1.7)) is 

substituted. 

TABLE 7.1 I 

, for R e: !::.A and some typical values of a and y. 

a 1K A B C D E F H I 

I ] 0. 1 0. ] 1 ] 1 0.6 0.4 0.8 
] n 1 ] 1 1 I 0.6 0.4 0.8 

20 1 0. I o. 1 ] 1 I 0.6 0.3 0.5 

20 n I ] ] ] 1 0.6 0.3 0.5 

TABLE 7.12 

, for Re: !::.F and some values of a 

~ Ja Kb M Na Nb Oa Ob 

I ] 0.6 0.4 0.4 0.3 0.8 0.8 

20 I 0.6 0.4 0.4 0.4 0.5 0.5 

As for large cheap problems (section 7.2.4) we see that programs A and B 

(Newton's method with analytical derivatives) are superior above the other 

programs in ALGOL 60 as long as the evaluation of the Jacobian matrix is 

about as expensive as one evaluation of the function or cheaper. Otherwise 

program His preferred. The programs Mand N are the most efficient 
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programs in FORTRAN. 

7.2.6. Efficiency for solving large very expensive problems 
-

In calculating the approximated expected relative efficiencies of the 

various programs for solving problems of class f~4 we may simplify the ex

pressions (7.1.1.8) up to (7.1.1.13) by neglecting the first term within 

the brackets relative to the second since a= 4. Therefore, the results do 

not depend on a. For the programs in ALGOL 60 we give the results, for 

y = 1 or n, in table 7.13. For the programs in FORTRAN, where y = 0 for all 

programs, the results are given in table 7.14. 

TABLE 7 .13 

, for RE ~A and some values of y 

~ A B C D E F H I 

I 0. I O. 1 I I I 0.6 0.3 0.5 

n I 1 I I I 0.6 0.3 0.5 

TABLE 7. 14 

Ja Kb M Na Nb Oa Ob 

1 0.6 0.4 0.4 0.3 0.5 0.5 

Again we.see that the programs A and Bare superior as long as the evalua

tion of the analytical Jacobian is about as expensive as one evaluation of 

the function. Otherwise, program His the most efficient program in 

ALGOL 60. The programs N and Mare the most efficient programs in FORTRAN. 

7.3 ReZiahiZity experiments 

Since the reliability of a program, defined by (7.1.2.1), is inde

pendent of other programs we do not have to distinguish between programs 

in ALGOL 60 and FORTRAN when we calculate the reliability. As is mentioned 

in section 4.1 and 7.1.2 we use the set Td of testfunctions to measure the 
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TABLE 

Experimental results for testproblems 

Problem A B C D 

p n C n n.F n nF n ~ n nF s s s s 

l 3 0 6 7 5 I l 6 25 5 26 

l 5 0 17 18 6 1 7 l 7 103 6 47 

l IO 0 2 D 12 51 2 D 12 171 

1 15 0 2 D 2 D 2 D I D 

l 25 0 2 D 2 D I D I D 

2 2 l I D I D 18 55 6 34 

2 2 3 14 15 6 20 14 43 6 32 

3 2 0 42 43 4 D 56 169 4 D 

3 2 I 22 23 5 D 65 196 5 D 

3 2 2 5 6 4 8 6 19 4 16 

3 2 3 16 17 4 14 16 49 4 22 

5 3 0 7 8 6 13 7 29 6 31 

6 2 0 6 7 5 IO 6 19 5 20 

6 2 2 100 T 3 D 67 T 3 D 

6 2 3 l I 12 6 18 1 I 34 6 30 

7 2 0 12 13 70 367 12 37 70 507 

7 2 1 16 16 4 D 14 43 4 D 

8 2 I 2 3 2 D 2 7 2 D 

8 2 2 2 3 9 47 3 10 9 65 

9 2 0 2 3 15 71 2 7 15 IO 1 



7. 15 

d 
of set T and programs in ALGOL 60 

E F Ga 

n n· n ~ n nF s F s s 

6 25 6 25 4 D 

20 133 2 D 4 D 

1 D 2 D I D 

I D 2 D 1 D 

I D 2 D 1 D 

8 25 16 48 1 D 

7 22 19 58 12 15 

25 D 8 25 98 T 

30 D 25 D 98 T 

5 16 5 16 9 12 

12 37 2 D 98 T 

7 29 7 29 27 31 

6 19 7 21 12 15 

26 D 7 D 16 19 

9 28 11 33 62 D 

12 D 10 31 23 26 

1 1 D 12 37 26 29 

2 7 2 8 4 7 

2 7 2 7 2 5 

2 7 2 6 5 8 

I) norm of function only 8.4 10-3 
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Gb H I 

n . ~ n ~ n ~ s s s 

3 1: 7 10 14 6 18 

1 D 9 15 17 68 

J D 56 D 76 T 

I D 37 D 83 T 

I D 4 D 1 D 

1 D 97 T 6 15 

11 14 1 7 20 6 15 

98 T 97 T 1 1 27.5 

98 T 97 T 40 T 

9 12 I 1 14 6 15 

15 18 97 T 7 17.5 

18 22 13 17 7 21 

8 1 I 0 I 6 15 

55 D 97 T 12 30 

63 D 33 36 12 30 

24 27 26 29 12 30 

26 29 70 73 13 32.5 

2 5 3 6 1 2.5 

2 5 4 7 1 2.5 

3 6 3 6 2 5 
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TABLE 

Problem A B C D 

p n C n n n n n nF n nF s F s F s s 

IQ. 2 0 6 7 100 T 9 28 44 T 

10 2 l 2 3 100 T 8 25 44 T 

1 I 2 0 15 16 15 16 14 43 14 43 

1 1 2 1 13 14 13 14 13 40 13 40 

1 I 2 2 15 16 4 D 15 46 4 D 

l I 2 3 17 18 3 D 17 52 3 D 

12 4 0 19 20 19 20 19 96 19 96 

13 6 0 6 7 6 7 6 43 6 43 

14 2 0 - - - - 4 13 4 13 

14 3 0 - - - - 4 17 4 17 

14 4 0 - - - - 6 31 5 31 

14 5 0 - - - - 5 31 5 34 

14 6 0 - - - - 8 D 5 39 

14 7 0 - - - - 6 D 6 59· 

14 9 0 - - - - 4 D 5 D 

16 10 0 8 9 8 9 8 89 8 89 

16 20 0 100 T 7 13 96 T 7 153 

16 30 0 6 7 6 7 6 187 6 187 

16 40 0 7 8 7 8 7 288 7 288 

18 40 0 5 6 4 8 4 3) 165 4 168 

2) norm of function only 2.010-5 

3) norm of function only 3.610-4 

4) norm of function only 1.010-4 
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7.15 (continued) 

E F Ga Gb H I 

n ~ n nF n nF n ~ n ~ n ~ --s s s s s s 

9 28 7 21 98 T 98 T 97 T 28 70 

9 28 5 17 98 T 98 T 97 T 24 60 

14 43 13 44 24 27 22 25 22 25 13 32.5 

13 40 I I 37 6 D 142 17 18 21 13 32.5 

15 46 13 42, 21 24 23 26 23 26 13 32.5 

21 67 16 51 6 D 20 23 20 23 I l 27.5 

20 !06 16 81 6 D 4 D 27 32 57 T 

6 43 4 32 15 22 14 21 0 I 8 36 

4 13 4 12 I 1 14 5 8 5 8 4 10 

5 21 3 13 8 D 6 10 7 1 l 4 1 2 

7 36 5 25 17 22 12 17 9 14 4 14 

7 D 4 27 53 D IO 16 9 15 6 24 

3 D 2 D 3 D 18 25 31 38 7 31. 5 

4 D 2 D 44 D 14 22 13 21 5 25 

l D 2 D 3 D 3 D 20 30 5 D 

6 67 2 D I D I D 16 27 7 45,5 

26 T l D 1 D ] D 18 39 86 T 

6 187 2 76 1 D I D 21 52 90 T 

25 T 2 D l D ! D 24 65 75 T 

5 206 2 D 324; 73 6 D 15 56 5 107.5 
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Problem Ja 

p n C n ~ s 

1 3 0 6 26 

1 5 0 7 49 

1 10 0 10 121 

1 15 0 50 T 

1 25 0 1 D 

2 2 1 16 58 

2 2 3 6 29 

3 2 0 50 T 

3 2 I 50 T 

3 2 2 4 14 

3 2 3 4 20 

5 3 0 6 27 

6 2 0 5 18 

6 2 2 25 204 

6 2 3 6 26 

7 2 0 33 169 

7 2 1 40 275 

8 2 1 13 102 

8 2 2 5 24 

9 2 0 10 53 

TABLE 

Experimental results for testproblems 

Jb Ka Kb L 

n ~ ns ~ n ~ n 1\, s s s 

32 134 12 23 10 20 12 D 

50 T 10 23 7 22 45 T 

50 T 16 49 5 26 35 T 

50 T 16 60 6 38 24 T 

50 T 1 D 1 D 1 D 

6 19 8 11 10 16 14 11 

7 22 8 12 8 12 20 14 

50 T 66 T 75 T 12 D 

50 T 29 41 78 T 14 D 

15 46 8 13 13 19 2 4 

18 55 8 12 I 1 19 20 16 

29 117 23 28 15 22 66 60 

8 25 I 4 10 . I 5 6. D 

50 T 8 I I 12 16 22 D 

9 28 7 10 8 12 22 19 

18 55 23 43 20 37 14 D 

50 T 25 46 25 46 7 D 

50 T 7 10 6 10 5 8 

31 94 4 7 4 8 20 20 

35 106 2 5 7 10 6 D 
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7.16 

d of set T and programs in FORTRAN 

M Na Nb Oa Ob 

' n' n 1\- n n °r n '1\- n 11F n 11F s s s s s s s 

21 31 I 8 12 1 8 12 6 18 6 18 

31 51 1 9 15 I 9 15 17 68 1 7 68 

42 84 1 9 20 1 9 20 50 T 1 D 

40 T 1 10 26 I 10 26 50 T 1 D 

28 T 1 10 36 1 10 36 1 D I D 

9 12 1 8 11 I 8 11 6 15 6 15 

10 13 1 9 13 I 9 12 6 15 5 12.5 

83 T 8 47 D 8 47 D 10 25 10 25 

83 T 2 23 D 2 23 D 19 47.5 19 47.5 

18 30 1 12 15 1 12 15 6 15 6 15 

22 30 1 12 16 1 12 15 7 17.5 7 17.5 

76 T 1 I I 16 I 12 16 7 21 7 21 

10 13 1 10 14 I 10 J3 6 15 6 15 

83 T 1 13 16 1 13 16 7 17.5 2 5 

13 16 1 9 13 I 9 12 I 1 27.5 2 5 

31 46 1 114 1 I 7 I 132 135 12 30 7 D 

78 151 2 50 D 2 50 D 1 I 28 8 D 

83 T 3 95 D 3 95 D 1 3 2 5 

83 T 2 4 8 2 4 8 l 3 2 5 

19 32 1 24 27 1 24 27 2 5 3 8 
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TABLE 

Problem Ja Jb Ka Kb L 

p n C ns nF ns 1\- ns ~ n ~ ns ~ s 

10 2 0 so T so T 87 T 87 T 8 D 

10 2 I so T so T 85 T 85 T 9 D 

1 1 2 0 15 46 so T 19 34 23 41 4 D 

1 1 2 1 13 40 26 79 20 37 19 36 2 D 

I l 2 2 28 205 so T 20 36 23 41 17 D 

l l 2 3 27 174 so T 22 39 21 38 2 D 

12 4 0 19 96 31 156 35 71 29 62 56 76 

13 6 0 6 43 7 so 20 32 15 33 68 D 

14 2 0 4 13 4 13 6 11 6 12 19 16 

14 3 0 4 I 7 4 l 7 l l 19 6 13 26 24 

14 4 0 5 28 5 27 21 33 9 16 47 57 

14 5 0 4 26 4 26 27 43 l 1 19 70 T 

14 6 0 5 37 6 43 35 55 15 28 46 51 

14 7 0 6 54 5 44 2 D 19 36 4 D 

14 9 0 24 355 26 341 l D 25 48 l D 

16 10 0 3 34 3 34 21 40 6 17 30 26 

16 20 0 3 64 3 64 52 93 6 28 100 T 

16 30 0 3 94 3 94 83 162 7 40 100 T 

16 40 0 4 165 4 165 160 T 35 17 I 100 T 

18 40 0 4. 166 9 370 131 T 13 10 I 100 T 
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7. 16 (continued) 

M Na Nb Oa Ob 

n n n' n n n' n n n n n n 
s F s s F s s F s F s F 

83 T I 97 T I 97 T 16 40 15 38 

83 T I 97 T I 97 T 17 42.5 16 40 

83 T 4 134 140 4 125 131 13 32.5 10 D 

20 23 I 151 154 I 152 155 13 32.5 10 D 

83 T 3 1 1 D 3 I I D 13 32.5 IO D 

83 T I 185 188 I 179 182 I 1 27.5 8 D 

29 34 I 57 66 I 78 83 45 T 50 T 

14 35 I 30 38 I 30 37 6 27 6 27 

6 9 I 5 8 I 5 8 4 10 4 10 

6 10 I 7 13 I 8 14 4 12 4 12 

10 18 1 I l 19 l 9 14 4 14 12 42 

10 16 1 I 1 20 I 9 15 5 20 5 20 

12 28 1 31 41 I 29 36 4 18 ' 4 18 

15 31 I 19 30 l 17 25 4 20. 4 20 

22 44 I 28 41 l 31 41 6 36 5 30 

6 I 7 I 7 21 I 7 18 3 19.5 3 19.5 

5 26 I 6 28 l 6 27 3 34.5 3 34.5 

6 37 I 8 41 I 8 39 4 66 3 49.5 

8 51 1 9 51 I 9 50 7 150.5 7 150.5 

19 60 I 21 65 1 20 61 5 107.5 5 107.5 
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reliability and we distinguish between the reliabiltiy for small problems 
d d d d (Z(R,Ts,Ws)), for large problems (Z(R,T1 ,w1)) and for all problems 

(Z(R,Td,wd)). In order to be able to calculate these values we give in 

table 7.15 and'7.16 the resuits of the programs in ALGOL 60 and FORTRAN re

spectively for the set of testproblems Td. 

Besides the notation that is also used in the tables 7.1 up to 7.4 the 

capital I in these tables means that the program is already terminated in 

the initializing phase because of a singular Jacobian matrix. 

As is seen in table 7.15 we do not give experimental results of programs 

A and B for solving the problems (14,n,O), n = 2,3,4,5,6,7,9. For these 

problems, the analytical Jacobian matrix is not available. Therefore, we 

give the reliability of the programs Cup to O, which is measured with all 

problems in Td, in table 7.17. Furthermore, the reliability of all programs 

measured with the problems in Td except for the problems (14,n,O), 

n = 2,3,4,5,6,7,9, are given in table 7.18. 

We use the notation: 

(7.3.1) Td = Td, {(14,n,O), n = 2,3,4,5,6,7,9}. 

S. d d h Td T-d 1·s 11 ' t f ince we o not preten tat or rea ya representative se o 

functions for testing the reliability we do only give one significant fig

ure in the tables 7.17 and 7.18. From the results given in these tables, 

we can draw some simple conclusions. 

The statement, given in section 7.2, that the programs Ga, Gb, and L can 

not be considered as reasonable programs is affirmed by these results. 

Their reliability is only 0.5 or less, i.e. for at least half of the pro

blems of Td these programs fail. Furthermore, the programs B, D and Jb 

(Newton's method with some kind of step size control) are considerably less 

reliable than its equivalent without step size control (programs A, C and 

Ja, respectively). Since step size control is incorporated to increase 

the reliability, we must conclude that this goal is not attained and that 

these programs are not useful. The conclusion that program Ka is not use

ful is not affirmed by the figures, but as we mentioned already, the be

haviour of program Ka is not clear to us and we feel that there are some 

small programming errors in the code published by GRAGG & STEWART [28]. 



R Z (R Td '¥d) 
's' s 

C 0.8 

D 0.7 

E 0.7 

F 0.7 

Ga 0.4 

Gb 0.6 

H 0.7 

I 0.9 

Ja 0.9 

Jb 0.6 

Ka 0.9 

Kb 0.9 

L 0.4 

M 0.7 

Na 0.8 

Nb 0.8 

Oa 0.9 

Ob 0.7 

TABLE 7.17 

reliability of programs 

d d 
Z(R,T.Q,,1¥.Q,) 

0.5 

0.8 

0.5 

0.3 

0.2 

0.2 

0.8 

0.3 

0.8 

0.8 

0.5 

0.8 

0.2 

0.8 

1.0 

1.0 

0.8 

0.8 

Z(R,Td,'¥d) 

0.8 

0.7 

0.7 

0.7 

0.4 

0.5 

0.7 

0.8 

0.9 

0.7 

0.8 

0.9 

0.4 

0.7 

0.8 

0.8 

0.9 

0.8 

There is another conclusion that can be derived from the tables 7.17 and 

7.18. Comparing the figures for the program Owe must conclude that pro

gram Oa is to be preferred. Hence, the step length used in the forward 

difference formulas to approximate the elements of the Jacobian matrix 

should not be chosen as small as 10-8 if the machine precision is about 

10-14. To summarize we may say that the ALGOL 60 programs A,C,D,E,F,H and 

I are useful where A,C and I are the most reliable programs; furthermore 

the FORTRAN programs Ja,Kb,M,N and Oa are useful, where only program Mis 

considerably less reliable than the other programs. 
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R 

A 

B 

C 

D 

E 

F 

Ga 

Gb 

H 

I 

Ja 

Jb 

Ka 

Kb 

L 

M 

Na 

Nb 

Oa 

Ob 

TABLE 7. 18 

reliability of programs 

Z(R Td 'I'd) -d d Z(R,Td,'l'd) 
' s' s Z(R,TR.,'l'R.) 

0.9 0.7 0.8 

0.6 0.8 0.6 

0.9 o.s 0.8 

0.6 0.8 0.7 

0.7 o.s 0.7 

0.7 0.3 0.7 

0.4 0.2 0.4 

o.s 0.2 0.4 

0.6 0.8 0.6 

0.9 0.3 0.8 

0.8 0.8 0.8 

0.5 0.8 0.6 

0.9 o.s 0.8 

0.9 0.8 0.9 

0.3 0.2 0.3 

0.6 0.8 0.6 

0.7 1.0 0.8 

0.7 1. 0 0.8 

0.9 0.8 0.9 

0.7 0.8 0.7 

7.4 Experiments about aonvergenae berzaviour and speaial features 

of the programs 

7.4.1. Convergence behaviour 

For the programs Cup to I in ALGOL 60 and Ja,Ka,Kb,M,Na,Nb,Oa in 

FORTRAN we give some diagrams to show the progress of the iteration as a 

function of the number of function evaluations. These diagrams are only 

illustrations of the performance of the various programs and, in fact, 
e e only for the classes of functions 'l's 2 and 'l'R. 4 where the work done per 

iteration step can be neglected, these diagrams are illustrations of the 
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relative efficiency. Nevertheless, the diagrams are typical as illustra

tions of the behaviour of iterative methods for solving nonlinear systems. 

The symbols used in these diagrams are explained by the following reference 

tables. 

programs in ALGOL 60: 

A 

D 

* 
X 

◊ 

0 

programs in FORTRAN: 

0 

0 

* z 
0 

):( 

* 

program C 

program D ; 

program E 

program F ; 

program Ga; 

program Gb; 

program H 

program I ; 

program Ja; 

program Ka; 

program Kb; 

program M; 

program Na; 

program Nb; 

program Ob. 

One can see from these diagrams, that, once convergence starts, it is 

going fast (superlinearly or even quadratically). 

Furthermore, there appears to be no reason to expect that one program is 

is more efficient to obtain the solution in a high precision than another 

program. The same holds if only low precision is required. 
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Hence, as long as the precision is not too high, relative to the round

off error in the function and/or its Jacobian, the efficiency of the pro

gram. is not influenced by the precision required. 

7.4.2. Special properties and features 

The use of most programs is about the same. The user should provide 

the function an.d sometimes its Jacobian matrix, the precision required and 

sometimes some controlling parameters. For most programs the function has 

to be programmed such that for a given argument vector the whole function 

vector is calculated. However, the programs I and O require the programming 

of the function such that only one component of the function vector is cal

culated for a given argument vector. This may have severe consequences for 

the efficiency of programs I and O when the evaluation of one component is 

almost as expensive as evaluation of the whole function vector. 

An advantage of the programs I and O, which is induced by the underlying 

algorithm, is that solution of problems for which part of the function 

components are linear can be done relatively very efficient if the function 

components are ordered in the right way. We will illustrate this feature 

by the following example. 

If we reorder the function components in problem {l,n,O) (see section 

5.1.1) such that the first (n-1) are linear and the last one is non

linear, thus: 

n 
F. {x) = (n+l) + x. + I x. , i = 1 , ••• ,n - 1 , 

1 1 J n j=l 
F (x) = - 1 + TT x., n j=l J 

then, this problem is solved by the program I and O and solution is re

markably efficient. The difference between solving problem {l,n,O) and its 

reordered analogue with the programs I and Oa is illustrated by table 7.19. 



~ 
~ 
~ 
~ 
0 

2 

3 

5 

10 

15 

25 

TABLE 7.19 

Influence of reordering function components 

such that linear ones come first for the 

programs I and O and problem (1,n,0) 

program I program Oa 

normal reordered normal reordered 

n nF n nF n nF n ~ s s s s 

1 2.5 4 10 1 2.5 4 10 

6 18 5 15 6 18 5 15 

17 68 5 20 17 68 6 24 

76 T 6 39 50 T 7 46 

83 T 7 63 50 T 7 63 

1 D 7 98 1 D 7 98 
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The reason for this behaviour is that in the reordered case the linear 

components are treated first so that a much better approximation to the 

solution is used by the time that the nonlinear component is approximated. 

All other programs use a method of vector-wise approximation so that re

ordering does not influence the behaviour of the program. 
However, program K has a mechanism for treating linear components 

apart. The user may define the problem function as an underdetermined linear 

system together with an underdetermined system of nonlinear equations. For 

program K the number of nonlinear equations has to be at least two. The re

sults of using this mechanism for problem (l,n,0) are given in table 7.20. 



84 

$-1 
(I) 

"Cl 
$-1 
0 

3 

5 

10 

15 

25 

TABLE 7. 20 

Influence of the use of the feature 

for linear components in the programs 

Ka and Kb for problem (l,n,O) 

program Ka program Kb 

normal with feature normal with 

n nF n nF n nF n s s s s 

12 23 5 10 10 20 5 

10 23 8 16 7 22 5 

16 49 6 13 5 26 5 

16 60 8 16 6 38 5 

1 D 7 14 1 D 5 

feature 

°F 

1 1 

12 

12 

12 

12 

Clearly, the reliability of the programs I, Kand O is influenced by the 

use of these f,eatures. When we assume that the user takes full advantage 

of these features, then we should do the same if we compute the reliability 

of these programs and we should replace the values for the programs I, Ka, 

Kb and Oa in table 7. 17 by those given in table 7.21. We see from this 

table that program Oa is fully reliable if we give only one significant 

digit for thes,e values. In fact, it failed only once by solving 40 diffi

cultly solvabl,e problems. As is seen from table 7.16 it failed to solve 

problem (12,4,0). This problem has a singular Jacobian matrix (rank 2) at 

the solution. 

TABLE 7. 21 

Reliability for some programs if special features are used. 

Z(R Td 'I'd) d d Z(R,Td ,'fd) R 's' s Z(R,Ti,'!'i) 

I 0.9 0.5 0.8 

Ka 0.9 0.7 0.8 

Kb 0.9 1 0.9 

Oa I I I 



The last remark about the behaviour of the programs which is induced by 

the experimental results is concerning the failure detection of the pro

grams. Most of the programs do only generate an error exit if the matrix 
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of the linear system appears to be (numerically) singular. Sometimes, step 

size control (program Band D) or a resetting mechanism (program N) gives 

a possibility to detect divergence or convergence to a stationary point 

which is no solution, so that an error exit can be generated. However, we 

see from thi~ tables 7.15 and 7.16 that rather often the program has to be 

terminated by the user by choosing some upper bound for the number of func

tion evaluations. Sometimes, this facility is built in in the program, so 

that the best results obtained so far are given as output, however, in 

other cases the user himself should build in a jump out of the program by 

progrannning the function in such a way, which is very undesirable. 

In either case, the user has to choose some upper bound on the number of 

function evaluations or iterations without having any reasonable idea about 

it, since this depends heavily on the method used and the problem to be 

solved. 

We feel that good failure exits are essential for a good program, 

however, we do not judge the given programs on this criterion in this 

report. 

8. CONCLUSIONS 

8. I. General. remarks 

As we mentioned before, the method of choosing a program for solving 

a system of nonlinear equations will usually be a method of trial and 

error as long as we do not know whether the problem is easily solvable. 

However, with the results given in section 7 we feel that we can give 

the user reliable information about what program he should try first and 

if it fails what will be the best to try subsequently and so on. We dis

tinguish between the six classes of problems '¥sl' '¥sZ' '¥Q.I' '1',e,Z' '1'£ 3 
and '¥£4 defined in section 5.1 and we assume that the user is not able to 

determine whether his problem is easily solvable or not. Our method of 

choosing is as follows: 
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-first of all drop all programs that are not reasonable (see 

section 7.1); these are the programs B,D,Ga,Gb,Jb,Ka,L and Ob; 

-then the most efficient program in ALGOL 60 and FORTRAN is chosen; 

if two programs are equally efficient, then the most reliable is 

chosen; (we use Z (R,Td, 'I'd) from tables 7. 18 and 7. 21) ; 

-as the next choice we take the next efficient program whose relia

bility is higher than the reliability of the program that is chosen 

first (for both ALGOL 60 and FORTRAN); 

-we repeat this process until we do not have any choice any more; 

-we will not use program C if program A can be used more efficiently 

and vice versa, since these programs are the same, except for the 

use of an analytical or approximated Jacobian matrix. 

Hence, we obtain for a certain class of problems a sequence of programs 

in ALGOL 60 and in FORTRAN. So, all the user has to do is to determine in 

which class his problem should be placed, to read the conclusions given 

about this class and to try and solve his problem with the programs in the 

order given. Only if he is not interested in efficiency he should choose 

the last program of the sequence of programs in the language he uses, 

since this is the most reliable one. 

The conclusions are based on the assumption that the user makes use of 

the features of some programs mentioned in section 7.4.2 if one or more 

of the function components are linear. 

Furthermore, it is obvious that we assume that the programs are 

used in the form as described in section 4. 

To simplify our conclusions we do not distinguish between programs Na 

and Nb. There is always a slight preference for program Nb. 

For convenience we say that a aheap Jacobian is available if the user can 

supply analytical derivatives of the function and the evaluation is about 

as expensive as one evaluation of the function or cheaper. Furthermore, 

we formalize the notation of the sequences of programs as follows: 

a semicolon between two programs means that one should try first the 

program mentioned before the semicolon and if it failed then one should 

try the program behind the semicolon; an or-symbol (v) between two pro

grams means that there is no preference between these two programs, 



the user should try one of them. So we end up with the following conclu

sions for the various classes of problems. 

8.2. Solving small cheap problems (~sl in section 5.1) 

Programs in ALGOL 60: Av C v I , 

where A can only be used if analytical derivatives are available. 

Programs in FORTRAN: Oa. 

8.3. Solving small expensive problems (~s 2 in section 5.1) 

Programs in ALGOL 60: 

if a cheap Jacobian is available then: A, otherwise: H; I. 

Programs in FORTRAN: Oa. 

8.4. Solving large very cheap problems (~£I in section 5.1) 

Programs in ALGOL 60: Av C; I , 

where A can only be used if analytical derivatives are available. 

Programs in FORTRAN: Ja; Oa. 

8.5. Solving large cheap problems (~£2 in section 5.1) 

Programs in ALGOL 60: 

if a cheap Jacobian is available then: A, 
otherwise: 

if a (defined by (7.1,1.7)) is about I or less then: F C , 

otherwise: H; F; I. 

Programs in FORTRAN N Kb ; Oa. 

8.6. Solving large expensive problems (~£3 in section 5.1) 

Programs in ALGOL 60 : 

if a cheap Jacobian is available then: A, 

otherwise, if a is about l or less then: H; F I , 

otherwise H; I. 
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Programs in FORTRAN: 

if a. is about 1 or less then: N; Kb; Oa, 

otherwise: N; Oa. 

8.7. Solving large very expensive problems (~t4 in section 5.1) 

Programs in ALGOL 60: 

if a cheap Jacobian is available then: A, 

otherwise: H; I. 

Programs in FORTRAN N; Oa. 

8.8. General aonalusions 

We see that the following programs in ALGOL 60 are useful for having 

available (for instance in a software library): 

A, C, F, H, I. 

Except for A and C (both Newton's method) they are based on different types 

of algorithms. Program Fis based on the secant algorithm, program Hon the 

quasi-Newton algorithm and program I on a method of component-wise approxi

mation. As far as programs in FORTRAN are concerned it is sufficient to 

have available: 

Ja, Kb, N, Oa. 

Here again we have Newton's method (Ja), a secant method (Kb), a quasi

Newton method (N) and a method of component-wise approximation (Oa). 

The comparison of the programs in ALGOL 60 indicates that it might be use

ful to have a FORTRAN-version of program A. 

Furthermore it should be noted that translation of the programs K 

and Nin ALGOL 60 may change the picture and the modifications in Oare

lative to its analogue in ALGOL 60, program I, seems to be worth while. 
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APPENDIX 

In this appendix we give source texts of some programs which have 

been changed with respect to the text given in the references. Some of 

them are already adapted to the software library NUMAL [39]. Some other 

programs are changed. We give these texts, mainly to show what source 

texts are tested. Therefore, source texts of programs which are not 

changed by us, can be found in literature and we did not list those here. 

Furthermore the source texts of the subroutines NEwr (program J), NONLIQ 

(program L) and QNwr (program M) from the MSL software library are not 

listed since they are not available. 

Since some of the programs in ALGOL 60 make use of procedures de

clared by code numbers, we will give a short explanation of their perfor

mance. Detailed descriptions and source texts are given in NUMAL [39]. 

real, proaedUPe vecvec(l,u,shift,a,b) ; 

vecvec delivers the inner product of the vectors given in 

a[l:u] and b[l+shift: u+shift]. 

real, proaedUPe matvec(l,u,i,a,b) ; 

matvec delivers the inner product of the vector given in 

b[l :u] and the row-vector given in a[i:i,1:u]. 

rea 7, proaedUPe tamvec(l,u,j,a,b) ; 

proaedUPe 

procedure 

proaedUPe 

tainvec delivers the inner product of the vector given in 

b[l:u] and the column-vector given in a[l:u,j:j]. 

dupvec(l,u,s,a,b) ; 

dupvec duplicates the vector given in b[l+s u+s] to a[l:u]. 

elmvec(l,u,s,a,b,x) ; 

elmvec adds x times the vector given in b[l+s u+s] 

to the vecor given in a[l:u]. 

elmcolvec(l,u,j,a,b,x) ; 

elmcolvec adds x times the vector given in b[l:u] to the 

column-vector given in a[l:u,j:j]. 



pr>oaedure gsssol(a,n,aux,b) ; 

gsssol solves the linear system of order n, whose matrix is 

given in a[l:n,l:n] and whose right-hand side is given in 

b[l:n]. The solution is overwritten on b[l:n]. The matrix 

elements are overwritten. In the auxiliary array aux one 

should give in aux [2] the precision of arithmetic and in 

aux [4] some controlling parameter (advised value 8). The 

rank of the matrix is delivered in aux [3]. 
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The parameter lists of the tested procedures in ALGOL 60 are made as uni

formly as possible. The parameters have the following meaning: 

n 

X 

f 

funct 

jacobian: 

order of system; 

the initial guess as input and the solution as output 

the functionvector; on exit the functionvector at the calcu

lated solution 

a boolean type procedure; 

boolean proaedu.r>e funct(n,x,f) ; the parameters have the same 

meaning as above and the program is terminated if the proce

dure delivers false for some argument vector; 

a procedure for calculating the Jacobian matrix 

pr>oaedu.r>e jacobian(n,x,f,jac,funct) 

the Jacobian matrix is delivered in jac[l:n,l:n] 

the other parameters have the same meaning as above 

in some auxiliary array to provide tolerance and values for 

control parameters (input) ; 

out some auxiliary array in which some by-products are delivered; 

For the programs E up to I out [5] # 0 means that no solution 

is found; for the programs A up to D out [6] F 6,4 means that 

no solution is found. 

Since the given texts are not really intended for use, but only to vali

date our conclusions and to show what changes are made to the original 

source texts, we assume that the short description above will be suffi

cient. 
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•COMMENT•. ~EWTDNS_ME!HOD, PROGRAM A OR CJ 
•PROCEDUR~• PRQGRAM,A(N, X, F, FUNCT, JACOBIAN, IN, OUT)t 
•VALUE" N, ~INTEGER•.Nt 
•ARRAY" x. ·'· JN, our, 
•BOO~EAN•. !PRQCEDURE~ ,uNCTJ 
•PROCEDURE• JACOBIAN, 

•BEGIN" •jNTEG!R• TEXT, IT, lTMAX, FEYAL, PEVALMAXI 
"REAL• R~,.RELTOLPAR, ABSTOLPAR, ABSTOLRES, STAP, NORMXJ 
~BOOLE~N•_TEIJTHft . . . . 
•ARRAy• JAC[l1N + t,llNJ, SOLtl t "ll, AUX[l I '7Jt 

•R!AL~•PRO~EDURE~ VECVECCL, U, SHi;T, A, B>1 •CODE" 34010t 
•PROCiDURi~ DUPV,c(L, u, s. A, 8)1 •coo,• 11010, 
~PROC~OURE~ ELMV~CfL, U, S, A, B, ~>• •CODE• l40l0J 
•PROCEDURE• GSSSDL(A, N, AUX, B)t •CODE• 342121 

"B00LE4N••Pff0CEDURE" LOC.fUNCT(N, x. Flt 
~VA~U£~ Nt.•iNTEGJR" Nt.•A~R~Y• X,.Ft 
•B!GlN• LDC FUN~TI• TEST TH,a• FUNCTCN, X, F> 
. ~AND• T!IT TM,, FEVALi ■ FEVAL ♦ 1 
•END• LDC FUNCTt 

tTMAxi, FEVALMAXi• INJ4Jt 4uxt2Ji• N • iNroJ,. 
AUXt4is• ~· ~ELTnLPARg ■ INt1l ** z, ABSJDL~•R·• tN[ZJ ** z, 
A81T9LRESa ■ _X~C31 ** z, TEXT••,, TEST THFa• •TRUE", 
ITAPlf OUTf tl •• r,uu,1 i• 0UTr71 a• o, 
FUNCTc~, X, t9L)t RN1• V~CVEC(l, N, o, SOL, SOL)t 
OUTtJJ U,SQ!fTCRNq FEVAL&•. 19 . 
•FOR• n1" ~• IT.+ 1 "WHILE" IT c ■ ITMAX "AND• 

_ ,rEV6L.c.FFVALHAX •oo• 
•B!G?~~ ~UTJ,Jl•.I'• JACOBtANCN, X, SOL, JAC, LoCrUNCT>, 

•1,• •~oy• T~JT THr •THEN" 
•BfGlN~ T~XT11 lt •GO TO• FAIL •END•t 
GsasoLcJAC, U· AU><, s0Ll1 . 
"IE".•u•rJJ 'N "THEN"•BEGIN" T[XTt• 11 "GO TO" FAIL "END"I 
ST4P1f VECVEClJt N, O, SOL, SOL>t 
N09~X11. VE~VEtCl, N, O, X, X)t. 
11 1F~ IJA~ > R!LTOLPAR *.NORHX t ABSTOLPAR 

_ •OR~ tT • ! ~AND 11 ITAP > 0 •T~EN• . 
"BEilN! tLHVEr.Cl, N, O, X, SOL, • 1)1 FEVALI• FEVAL + lt 

!?,~ •~OT•.f~NCTCN, X, Fl "THEN" 
•9JGIN 11 TEJTJ• 2, •Go TO• FAIL "FND"s 
RNt ■ VECVEr.(1, N, O, F, F)1 ~1'" R~ c■ _A,STOLRES •T~EN". 
~BEGI~• TEXTJ• 41 IT~AXa• IT.•END" 
•~LI~" oUPyEC(t, N, O, SOL, F) 

"END" lTiRATJ~N AND TESJS "ELSE" 
•!EGlN• TEXTI ■ •r ITHAX1• IT "E~D" 

•ENO" OF ITERATloNIJ 

FAIL g 
OUTtlJJ• SQRT(STAP>, l;)UT[2Ja• SQRTCRN)r OlJT[IUt ■ FEVALJ 
OUT ,.J t • TEXT I OIIT [151 1111 AUX t]J t OUT [qJ u AUX [i_;J 

•END• PROi;RAH At 



"COMMENT". ijEWTONS METHOD WITH STEP SIZE CONTROL, PROGRAMS 8 ANO o, 
•PROCEQURE•.~RQG~AM R(N, X, F, FUNCT, JACOBIAN, IN, OUT)y 
•VALUE" Nt •INTEGER•_Nt 
•ARRAY" x,.F. JN, our, . 
•BOO~£AN". ~PRQeEDVRE~ FUNCTs 
"PROCEDURE• JACOBIAN, 

"BE'.GJN" tiiNTEG!8" I, .J, INR, HIT, TEXT, 
IT, IJMAX, JNRHA~, TIM, FEVAL, FEVALMAX1 
"R!AL• RHO, REil. RES2. RN. RELTOL,AR, ABSTOLPAR, ABSTOLRES, 

ST~P, NQRHXI • _ 
"800LE~N•_co~y. yE~TTHF, DAMPING o~, . 
11 ARRAV 11 JAC(UN • 1,tBNJa PR, F'U2, SOLfl I NJ, AUX[1 J 7Js 

•R!AL~•PRO~EDURE~ VECVECCL. U, SHI~T• A, B>t "CODE" 340101 
"PROCEDURE~ DUPVfCfL, u, s. ,, 8)1 •coo,• 11030, 
•PROC[DURE" ELMVFC~L, U, S, A, B, X)1 "CODE" l4020s 
"PROCEDURE" GSSSnL(A, N, AUX. B)s •cODf" 342321 

11 BOOLEM""•PBOCED11R!" Loe FuNCT<N, ,c, ,., , 
•VALU'" N,. "lNTEG~R" Nt "ARR~Y" X,.Fs 
"BEGI~• ~DC FUNCT&• TEST JHFS• FUN~TCN, X, 1> 
. "ANO" TEST THFt FEVAL;u FEVAL ♦ 1 
11 ENO" LDC ,uNcT, 

ITMAXi, FEVALHAXi• lNJ4JD AUXCZli~ N * lN[OJ1. TI~g: INC7Ji 
AUXt4ia• ~· RELTnLPAR3c INr1J !* i, ABSTOLPAR:• IN(2] ** 2, 
A8STO~RE81u IN[lt ** lt INRHAX1• I~t&l t 
DUPVfcCl, N1 9• !!R, X)t .• 
TEXTJs St_MJTa• a, TJST THFa•.•TRu,•, . 
RESza, STAP1• OUT,(lJJ• OUTCSJs• 0UT[7JI• or 
FUNCTc~, x. s9L)1 RNsq V~CV~t(l, N, o, S9L, SOL)J 
PUTt3J1a,SQ~T(RN\J FEVAL1• 18 DAMPING ONB ■ •F~LSE 11 s 
"FOR" ITI ■ l, IT+ 1 "WHILE" lT <• ITMA,c "AND" 

.. FEij~~-c.F~VALMAX "DQ" 
8 8EGiij" ourc,11, ITB JACOBIANCN, X, SOL, JAC, LOCFUNCT)J 

"IF" •.,TF;ST.T~F •THEN" 
"BEGIN~ TfXTa1 3J "GO TO• FAIL "END"t 
GS3$0LCJAC, ~• AUX, SOLlJ 
"If'" A!JXJ3l .fl ~ 11 THEN• . 
"B!GJNw Tixra, ls •Go To• FAIL "ENO", 
STA~••~VECVECrJ, N,.O, JOL, 80L>1 
RHgn ,, _NQRM)'a• VECVECO, N, 9• x, x>, 
"IF~ 8tA~.> R£LTOlPAR *~NO~MX + A88TOLPAR 

•OR~ IT a! •~N0 11 STAP ~ 0 "THfN 11 
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•BE;IN~~FQ~• jN~I• O,_I~R ♦ 1 
•WHJL~••IF• JNR ■ .l •THEN• DAMPING ON "OR• RES2 > ■ RN 
. •~L$t~: CONV "ANO• (RN c• RfSi "OR" RESZ < RESl) "DO" 
•B!GJN~•C~M~ENT" DAMPING sro,, WHEN 

RO> Rl •AND• Rl c■ Rl (B!ST RESULT IS x1, R1) 
wti~ xi• XO~ 1 * ox~ ii ■ 1, .s. ~25, .125, ETC. 
,Hos, RHO/?• "IF" INR > O "THEN" 
•BEGIN" R[Sll• REsz, DUPVEC(l, N, o, F, FU2)J 

DAMPjNG ONi• INR > 1 
~,No~, , . 
•FOR" I•• 1 "STEP• 1 •UNTIL" N "D0" 
• PRriti• Xtil ~RHO* 30L[I1a . 
JEIT THF&• FUNtT(N, PR, FUZ>r FEVALI ■ FEVAL + 1, 
•IF" "Nnr• TEST THF "THEN" 
~BEGjN• .. re:xril!l lS •GO T0 11 FAIL _•ENo•, 
RtSla• VECVEC(1, N, 0, FUZ, FU2>, cONVi• INR >a INRMAX 

11 EN~"-DAMPj~G OF STEP VECTOR, 
•IF' 11 CONY 11fHEN 11 
11 8E~IN""C0ijH!NT• RESIDUE CONSTANTa MIT~= MIT t lr 

•IF" MIT c TIM "THEN• CONVa ■ "FALS~• 
"END" "ELSF" HITi ■ 01 
~IF'• i~R > j •THEN• . . . 
"BfGI~• RHQ1 ■ RHO* 21 [LMVtC(t, N, O, X, SOL,• RHO)s 
. ~~1• RE~lt "lF• INR > 2 11 THfN" OUT[7JI• IT 
•END••£LSE• 
11 BEGIN• DUPVECCl, N, O, X, PR)t R~ia RFS2r 

DUPVEC(t, N, o, F. FUl) 
"END"• 

"IF" RN, c ■ .4,STOLRES •T~EN• 
•BEGIN• TfXTI ■ 41 ITMAXI• IT •END••ELSE" 
"IF" CONY iiANO• INRHAX > 0 •THEN• 
"BEQI~" TE~Ti• St IT~AX~• It.•END• 
"ELIE" OUPVECCl, N, o, SOL, F) . 

"END" !TIRATinN WITH DAMPING ANO TESTS "ELSE• 
•BEGIN• T!XTi ■ bJ RHOi~ 11 ITMAXi• tT •END" 

•END• OF IT!RATioNSa 

FAIL I , 
OUTtlJ J• fDRTCSTAf>) * RHOs OUT[ZJ i, SQ,T(RN>t OUTECIJ i• FEVALt 
OUTt•J 1• T!ICT 1 011Tt8l I ■ AUX tJJ t OUT (CJJ U AUX [5J 

nfNDii ll'ROi.RAM B1 



•COMMENT• DISCRETIZED.NEWTON METHOD OF PANKIEWICZ, PROGRAM Er 
•PROC!OURE• PRQGRAM ErN, x, F, FUNCT, l~, our,, 
•VALUE" N•~•INJ!GER" NJ "ARRAY" X, ,, I~, our, 
•BOOLEAN• ~PRDC!OURE".FUNCT1 . 
•COMMENT• ~LGOijlTMM 318 FROM CACM ev w. PANKIEWICZ, ALGOR 378 SOLVES 

A SY$T£~ OF NONLINEAR fQUATIONSt 
•BEGIN" . 

"REAL" •PRDC!DURE• V[CVEC<L,U,8,A,B)t "CODE" 340101 
"INTEGER" "PROCEDUIJEii N?ELXN. (N, H, ,i, fPS, Y, z>, 
"VALUE• N, ij, w, EPSI "INTEGER" Nr "REAL" M, w. EPSs 
"ARRAY~ y, l• 
"BEGIN• •INTEGER" M, I, K3 "REAL" ALPHA, Rs "BOOLEAN" 81, e2, 

11 ARRiv• A ti i N, 1 a N t 1l, V Ct i NJ, AUXUi7l, 

•PROcEDUIJE~. GSSAOL <A, N, AUX, B)t 
11 CODE" 14n2a 

•PRO~EQU~! 11 .GAU~3 (U, A, i)t "lNt!GER".Us •ARRAY" A, VJ 
•BEGIN". •Jt:ITEGE,• I, J; 11 UUUY 11 HA. [1 I U, i I UJ, HY [1 i Ul f 

"fOR" i1• l ~ST~P• 1 "UNTJL" U •00" 
11 BEl;tN" ,HY. tTJ •• A U, _U + 1J J 

"FO6" Js•wl "STEP" t •UNTIL" U 
. "P.O"_HA U, Jll~ AH, JJ, 

"END"t.AUXlZta• ••to, AUXt4J•• 8t 
G1iso~(HA, u. AUX, HY), . 
"lF" .. AU~ t)J .. c U "TH!N• •GOT0 11 ERRORS 
11 fOR" ta ■ 1 11 STEP" 1 "UNTIL" U •DO" V [I) i• HY [Il 

"fNDRJ 
"PROctDUR!" rccx,F)t 
"ARRAY" X, F1 
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"BEGJ~" CNTlf CNT t 11 
"IF" C~T • l~ J4J "THE~• 
"eEGI~•~NtiLr~•· • 4t •GOTP• ENO "FND"• 
"IF" FUNCT (N, X, F) •THtN• 
•~oroii ALARH 

•~ND~ FC1 
Mas Of . . 

POCZATEKI lht ■ •TR11E•1 FC<Y,Z)J 
11 FOR~ lit i •ST~r• t_•UNJIL" N "00" 
•BEG!~" A U, N .. + 1] a• Rs ■ Z UJ I Ri• ABS (R)t 

Bjaa Bl "ANO• RC EPSJ 
"ENO•t 
•IF• 81 "THEN" •GOTO• KONIECt 
•FoR~ 1i ■ .i •STEP" 1 11 UNJtL" N •oo• 
11 BEG1N".R1, Y tJlt Y ru,. R + Ht FC CY, z1, 

"FOR" 1<1• 1 •STEP" 1 "UNTIL" N •DO" A CK, IJ t• Z [KJ J 
Y UJ i ■ R 

"!ND• 1 
GAUS~ (N, A, V)i ALPHA~• ts 
•FOR• Ii ■ i •STfP 11 1 •UNTIL" N •oo• ALPHAi ■ ALPHA• V CIJ, 
"IF" ALPHA ■ 0 •THEN" "GOTO" ALPH1 ALPHA1• H / ALPHAJ 
"FOR•.Ii9 j •STF.P" 1 "UNTIL" N 
•~o• v. lIJ •• y rIJ • V Ul * ALPHA, Hi ■ "" • w, 
Hu M,+ 1J .• 
•GOJ0 11 PQCZ+TEKt 

KONlE~1.NlE~I~1• H1 •GOTO" ENO1 
ALARMJ ~IELJNJ ■ • !I •GOTO• ENDJ 
ERRO~a ~IELI~1•.• ~• •GOTO• ENDJ 
ALPHa NJELtN, ■ • )t 
ENDI our l4J u H t OUT [4] J 
"END" NIELINe 

•INTEG~R~ TEL, CNT: ITTJ 
OUTt4J1,or 
TEL,• e~r•• o, . 

REPEAT I ITTI ■ NIELIN tN, IN [CJJ. IN tlOJ, IN Ct), X, F) r 
TELi• T~L + i, . 
"lF" ~IJT • ~ 2 •o~• ITT ■• 3) 11 ANO 11 TEL cl 
"THEN• ~GQTQ 11 .. REPE!TI . 
"lF• ITJ, o ~T~!N! OUT [5Ja ■ 0 11 ELS!" OUTt5Ji ■~ITTt 
OUT t1J1• SQRT JVECVEC Cl, N, o, X, ¥>>1 
OUT UJ ·• IQRT cVEt:VEC Ct, N, 0 1 F, F))J OUT Cll I ■ CNT1 
OUT t•la ■ T~L 

•EN0 11 PROGRAM Ee 



"tOMMENT 11 MOOzFIEO GENERALIZED SEC~NT METHOD. PROGRAM F1 
~PROCEDURE" P~QGRAM.FcN, .. X. F, fUNc:T. IN. OUT)r 
"VALUE" NJ "INTEGER" Nt "ARRAY" x, F. IN, our, 
"BOOLEAN" "PRot~OURE~ FUijCTg • • 
ncOMMENTn ALGoRITHM_tz F~OM COMPUTING BY H._SCH~ETLICK, 
ALGOR 12 SOLVES A SVSTEM OF NON LINEAR fQUATIONSr 
11 BEGIN 11 

nPROCEDURE; FU (N,X,FA)J "VALUEn N; 11 !NTEGER" NJ 
"ARRAY" X,if1 ·,-
118EGIN0 CNya,CijT+1t _ . 

"lF 11 iNT > JN[4l 11 THEN 11 "~EyIN" OUT[5JBIBL!p "GOTO"_LLI "END 11 r 
"IF" FuNCTcN.X,FA1 "THEN" "BEGIN" OUT[5t 1=•, "GOTO" LU "END"1 

"END 11 FU; . _ . 
nREAL" 11 PRoCEDURf 11 VEr.VfCCL,U,S.A,e>: 11 CODE 11 34O10r 
11 REAl. 11 RESa ~IN!fGE~" C"lT,n,x, 11 ARIUVii "f [tiNJ, 
ttSWITcH" o1v1•L1~_~2,~Lis 
"PROCEDURE~ REGULA(D,FU,EP5,PIVOT,IMAX) TRANSi CX,Y) EXITi CDIV)f 
"VAI.UE" O,rPS.PIVOT,IMAXB 
"INTEGER" o,IMA~t 
NREAI." EPSaPIVar, 
"ARRAY" X,te . 
11 PROCEDUREn FU, 
"SWITCH" Diva ' 
11 BEGIN" "INTEGER• i,J:K,L,P,Q,NR,KMAXu 

"REAL• G4HJ . 
"6001.EAN~ TUTt .. . . 
"ARRAY 11 _F,FJUDJ ,DEi.TA O 19, 1 UJl t 
11 INTEGEa~ 11 AR~~V 11 PERM[trD]a 
"~OMMENT~ BfSTI~MUNG V9N KMA~J 
Kgm Oy ~1111 9! C.pr !,NC1.o\80lH8~l/Dr 
"lrOR" K1111 K+t 11 WHI1 E11 G >111 H 11 00" 
"BEGINj Him ~j Gia LN((SQRT(~K~2) • 5~5) t K+l) • o.S)/(KtD) 
"END~ Kj_ 
10,~xu is•Ze 
FUCD,X,EH • 
•COMMENT" triRATIONfBEGINN1 
•~OR 11 L1, l NSTEP"_l WUNTIL" IMAX "00" 

BIBllOTHEEK MATHEMATISCH CENTRUM 
--AMSTERDAM--

IO I 
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"BEGIN" "COMMENT" RERECHNUNG DER STEIGUNG DELTA1 
"F'ORi Kia D nST~P" •1 "UNfIL" 1 "DO" 
"BElii':'" GilJ Y [Kt ~ ~ tKJ t X tl<J i• V [KJ J 

Fvco.x.fF)J TtSTllll "TR~E"J 
CORRa "~OR" J1•_1 11 STfP" t "UNTIL" 0 "D0" 

"BEGIN" Hps FF'[Il • FUJI 
"lf"_AijS(~) t ABS(Gl • ABS(H) "THEN" 
"BEGIN" "rOHMENT" KORREKTUR VON Xs 

~ IF'" • .. TUT "Tl;iEN" 
"~EGIN 11 OUTt@JJ•Ls 11 ;0TO" OlVCtt "END"J 
G1•VJK1 * EPS ♦ ~f:'S * EPSt X[Kl1•X[KJ-G; F'U(D,x,n, 
X [10 u V [Kl S TEST s• 11 f'ALSE" J "GOTO" CORR 

"ENO" KORR~KTUR1 . 
. D~LTA[l,Kls• H/Gs FrIJa• Fl"Ul 

"tND" I 
11 ENDn K1 
"COM~EN!w QR~IEr,KZERLEGUN~ VON DELTAJ . 
"111'01<!~ KJs 1 ~STf"P" 1 ."UNTIL" D. "00 11 l'ERlil [Kl 1::: KB 
"l"ORw Pt ■ 1 11 STFP 11 i "UNTIL" D•1 11 D0 11 

11 BE<;iN 11 .. Hi, o, .. 
wroR 11 ~t•,P !STEP" 1 "UNTIL" D "00" 
"e!GIN 11 Gt• ABS(DELTACK,PJ)J 

nz;w G > H "THEN" 
"~!GiN" H;a Gt Qia K "END" 

"~~D" FIVOTSVCHEt 
"11"" H,c ABS!PJVOT) 1 TijEN 11 

"&~GIN" OUT CqJ &~LB 11 GOT0 11 DIV [iJ "F.ND", 
1118U P!~M[GIJ,9 Hg• 1/DELTAtCl,PJs. . 
"FOR" Kps l 11 S'l'EP" 1 "UNTIL" 0 "00 11 F'F[KJg:s DELTACQ,KJJ 
Ji•D• . . . . 
"FOR" ta•Q 11 1TfP 11 •1 "VNTIL" ~ ~00" 
"BEGlN" 11 tF" I,Q "'l'H!N" 11 GOT0 11 WflTERt 

"Fp~~ Ki,1.•STEP" 1 "UNTIL• P•l "00" 
DJLHCJ,K1.1111DELTAU.KJ r 
Gu QELTArJ,Pl 1111 DEl,.Utl,Pl * Hr 
"'QR.~ 1<1• ~+1 "STEP~ 1 "V~TiL" D "00 11 

DELTA[J,Ktgss DELTAt~ 1 1<J • Fll"[KJ • Gr 
P~R~[Jl n PfRMCIJ w Jaa J•t, 



WEITERI "!ND" IJ 
"f0R 11 _ICpt 1 •STEP" 1 "UNTlL" D 11 00 11 DELTA [P,KJ i• FF tKJ t 
PtRM re1 n NR. 

"fND11 P,Q~EIECK7£RL£GUNG1 
11 COM~!Ny 11 tT~FE~lT!RATlONt _ 
"'OR~ X•i..o .. 11 UfP~ I "UNTIL" 101AlL"D0" 
11 IIEl;1N" .. "IE'" J ll' 0 "THEN" FU(Q,Y,F)t 

"fOR" ~••.l !STEP• 1 "VNTI~" 0 11 D0 11 

"BEGIN" Ja• PERMJKJs FFtKJa• F[JJ 
~iN0 9 _ K1 ,P!R~UTATION DER R!CHT[N 8ElTEt 
"COHM!~T" !L!MlNATION DER R!CHT~N 8E!TE1 
~~OR" ~••.2 ~STEP 9 1 "UNTIL" 0 11 00 11 

"a!GIN 11 Ha• ,,r,1, 
"FQ~• Ki•.1 "STEP" i "UNTIL" P•t 11 00 11 HI• H • D!LTAtP,KJ 

. * . Ff: [K J r FF CPJ I• H 
"(ND~ ll!t 
"FOR• Pa• D ~STEP" ~t •UNTIL• t •00 11 

•i!GlN~_,Hif FFJPJs . _ 
11 11'0~" Kaa_P+! ~ST[P 11 1 "UNTIL" D "DD" Hin H•DELTAtP,Kl 

. *.Ff[KJJ FFEPta• H/DELTACP,PJ 
11 JND 11 P, ELlMlNATlON DER R!CHT!N SE!Tft 
"tO~M[NT~.•eeRUC~TESTJ . 
Ris,,s~,TcVEf.V[C(1,D,O.F,F))f TESTS• RES<• INC11, 
"FOR! ~••. t !!fTEP 11 1, 11 UNTIL~ D 11 00 11 • • 
11 8!(;?~! Hs• FF tKJ I Gr• X (KJ •• y [l<J' Ga• V [KJ .. G•Hf 

11 IF 11 AB,(H) » ABS(EPS * G) + ABS(EPS) "THEN" 
_ T~~f~• ~FiLSE" 

"fij[>•_t<,. . . 
11 JF 11 T!fT 11 T~!N 11 •GOT0 11 SCHLUSS 

11 [ND11 l, STUFENTTERATIONJ 
"END" l,t _ _ 
OUTt4JltL~1t ~90Tp" DlV[JJy 

SCH~USSa OUT[~J1 ■SQRT(VEeV!C(1,D,O,F,F)>r OUTt4J i•L 
11[NI)• lll!GULAJ 

11 FOR~ Ii• i "IT(P~ RUNTIL" N "00" 
Y[I]IIJ xu1 *fl+ INj8J) + INt8lf CNTi• o, 
REGULA(N, FU, tNCBJ, YNCOJ, INt4J, X, Y, DlV)t 

_OUT(St~~ o, ~~oio" LQi 
L1, OUTC5lJ• 1' •GOfO~ Lg1 
Lz, DUTC5l ,• ~• ~QDTO" L,r 
Ll, OUT t5J •• :St 11 GOT0 11 L9 I 
L4t OUTttll• s,;IRT(VECVECtl, N, 0, v, Y))t OUT[3Ji• CNT 
11 EN0 11 PROGRAM Fr 
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"COMMENT• MET~OD o, DULLFY AND PITTEWAY, BASED ON GENERALIZED SECANT 
METHOD, PROGR&M G1 . _ 
"PROCEDURE" PROGRAM G(N, X, F, FUNCT, IN, OUT)t "VALUE" Nr "INTEGER"~, 
•ARRAY" x, F,_lN, .ovT, ·~QOLEAN" ·~ROCEDUR[" FUNCTr 
•BEGIN• •REAL• •PROCEDURF• VECVEC(L, u, t, A, R)r •cOoE 11 34010, 

•PROCEDUR£~.,,C;, X)r "ARRAY" F, XJ 
•BEGIN• "!f." F.U~CJCN 4 X, F) •THEN• 

•BE~lN? 0uyr5Ja• 51 •GOTO• fXT •ENO•, 
CNTa ■ 'NT t p. •I~• CNT > IN l4l "THEN" 
"BE~IN• OUTfSla• 41 •GOTO• EXT "ENO" 

•ENI)• ,c, 

•INTEGER• cNT, COUNTr •ARRAY" ACCESTtti~Jr 

•PROCEDURE• NDINVT(~UNCTIONS,INITSTEP,ERROR,CYCLES,X,F,ACClST,N)J 
•VALUE" Nt "PROCEDURE• PUNCTION81 "REAL" INITSTEP,ERRORJ 
•INTEGER• fYCLEl,Nr •&RRAY• X,F,ACCEST1 
•BEGIN• •RJ·L• WORK,SUMSQRES,PREVRESt 

"INTEGER~ I,,11 
•BOOLEAN• swrT,~• •· . . 
"ARRAY" PREVFtt1NJ.COPYDELFttaN,11NJ,DELX,DELFt11N,11N+ll, 
AUX t1 i ?p . _ . 
•PROCE9u~,~.GSIOL<&,~,AUX,B)r ~CODE• 342321. 
AUXIZla~••tOJ AUXtqJ1•81 COUNT1•0t SUM8QRE8r•t"30s 
FUNCTlONl(eRJV'••>•-
•FOR• ii•$ ~STEP• 1.•UNTIL• N •oo• 
•8!GIN•.~tI1,, xr11 + INITST!Pt 

FUNCJIO~Sff,~>1. - . . 
"'OR!,,. 1.•ST,.P~ l •UNTJL" N •oo• 
•IEGJN• DtLF,[l,JJ1• ,rJJ • PRrv,tJJJ 

•cOHMfNT" IF_THE REMAR~ OF VA~OERGRAFT AND MESZTENYI SHOULD 
Bf INCO~P9RATED, THEN THE LAST STATEMENT SHOULD START WITH 
o,LF C,J, IJ f ■ • I 
DJLXU,JJ 1 ■ Of 

•!NO~.OIFfER,NCIN$ INITIAL PO?Nft 
DtLXjl,111• INITSTEPt xru .. , XU) • IflllTSTE~, 

"ENO" ltTTING UP TME INITIAL MATRIX OF POINTSt 



ITERATEi . 
SWITCH If "TRUE" 1 
PR!VR~Sa ■ 8UMSQRE6t 

TRYAGAINs 
11 FOR• Ii, 1 "STEP" l 11 UNTlL" N 11 00 11 

"BEGIN" H; tJJ i ■ P,FtEIIF[IJ'. 
11 FOR 11 Ja ■ .i 11 STFP" 1 "UNTIL" N 11 00 11 COPVOELF[l,JJ1 ■ DELF[I,Jl 

"ENO• COPYING DELF FOR DESTRUCTIVE USE IN PROCEDURE EQNSOLVEs 

GSSOL(CQ~VD{ll;, N, AlllC, F) I II IF• AUX Ul cN "THEN" 11 G0T0" INL INE t 
SUMSQREf 11. o ~ 
"FOR• Ia• l ~sTiP" 1 •UNTIL" N 11 00• 
11 BEGIN•"w0,K1! Q1. . 

11 FOR11 JI ■ 1 •STFP" l 11 UNTIL" N "DO" 
HORKi• WORK ; Dll'LXU,JJ tr FCJJ B ACC!STUJ is WORKJ 
X fl J t • X JI J ♦ WORK B 
SUHSgREla■ .fUMSaRIS ♦ HOR~* WORK 

"ENO".CALCULATJON nF NEXT POINTJ 
COUNTa• COUNT+ lJ 
FUNCTIO~S(F,X)1. . . 
"l'" COUNT> CYCLES 11 THEN 11 "BEGIN• OUT[SJ1 ■ 3J "GOTO" EXIT "END"r 
11 IF 11 SUHSQ~E$ ~ERROR• ERRO~ 11 AND 11 

(ER~oR >_O_ •9R 11 _SUHSQRES > PREVRUJ 11 THEN" 
"8EGIN 11 OUT[Sl1 ■ 01 11 GOT0 11 EXIT 11 END•s 
11 FOR 11 Ii• i.~ST£P• i. 11 UNTIL 11 N •DO• 
11 BEGIN11 WORK1 ■ F[I1 • PREVF£IJ1 

PREVfUli• F(IJ.i . . 
•FOR~ Jt ■ N 11 tTF.r~ !1 "UNTIL" 1 ~00 11 

11 BEG_IN 11 l)ELUlr.Y+IJ 1• D!LX tJ,JJ ,. ACCEST UJ r 
D(LFfl,J+1l I• DELFU,Jl • WORK. 

11 fNO~ C~L~UltTlpN OF NEW 0I,FERENCES1 
DELX(l,!Jf ■ !AC~ESTtlJJ 
DfL,rI,tJa, ~WO~K 

"END" MQVlNi.POINTS UP ONE PLACE lN TABLESt 
"GOTO• 1TERAT[1 

INLINEi 
11 ,oR• Ii• 1 "fTEP" 1 •UNTIL" N 11 D0 11 

•l!GIN• .OELXJI.N>i, DELXJI,N+1Js 
Dl!LF JI,NJ If DELF, U,N+lJ 

•END" 9I8iAR0JNG Al TERNATIVE POINTa 
9WtTCH1,_ S~JTCHJ . 
"I'" SWITCH "THEN• OUT[5Ja ■ 1 "ELSE• "GOTO" TRYAGAINJ 

(lITI 
•END• NOINvTs 

~NTi• OJ.NoiNvji;c, lblltJ, IN(2J,.JNECIJ, JC,;, ACCEST, N>, 
EXT& ou,r,1 •• _,QRTCVECV~ec1, N, o, ACCEIT, ACC($T))r 

OUTt3J1e CNTJ OUTt2JI ■ SQRTCVl!CVEC(t, N, O, F, F)Js 
. OUTtGJ i• COUNT 

11 fND 11 PROGRAM GJ 

)05 



106 

"COMMENT• QUAsr;NEWTON METHOD o, 8ROYDIN, PROGRAM Hr 
nPROCEQURt• PRQGRAM M(N, X, ,, FUNCT, tN, OUT)r 
•VALUE" N, "INTEGER" Nr "ARRAY• x, ,. IN, our, 
•BOOLEAN• •PROCEDURE" FUNCTJ 
"8EGJN 1 •jNTEG!~" I,_J, FCOUNT, MAXF, !RR, IT1 

1 R!AL~.s~. TOLRE!, RELTOL, ,e,TOL, R~S, 
•ARRAx• Y, P, Yt11NJ, HCl1N,l1NJ1 
"SWITCH" LABEL•• LBl, LB2, LB3, LB4, ~es, 
•REAL• •PROCEDURF" VECVECCL, U, S, A, B)r "CODE" 340101 
•REAL• •PROeEDUR~• MATVEC(~, U, I, A, 8)1 "CODE" 34011f 
•REAL• •PRQCEDURF" TAHVEC(L, U, I, ~• B)J "CODE" 340t2r 
•PROC[DURE~ DUPVFCCL, u, s. A, B>, •coo,• 11010, 
"PROC[DURE" ELMVFCCL, U, S. A, B, X)I "CODE• 340201 
•PROCEDURE• ELMCOLVECCL, U, I, A, B, X)r •CODE" 140221 

•PROC~DURE• JTEPrTP1, TP2)t •VALUE" TPt, TP2r 
•INT!GER".TPl, TP,21 . 
•BEGIN• "l~!EGER• Is "REAL~ see, •ARRAY" SBlliNJs 

ELHVECfl• N, 0, X, P, 1)1 
DuPVEGft, N, 04 V, F>J FUNCTCN, X, Flt 
FcOUNTf ! FCOIJNT + l J 
D~PVEC~l• N, 0, Y, F)J. 
E"MVEcc,. N, .. O, v, V, •1>r 
"f0R" Ir• 1.•STEP" J "UNTIL" N •DO" 
"BEGIN" see,. SB[IJ1• MATVEC(l, N, I, H, v>, 

VtIJi• SAB • P[Il 
"£1!'0" I. 
S&1•VECVEC(l~ N, o, se. P)t 
~IF" s~.• 0 ~THEN• •GOTO" LABEL(TP2Jt 
•r,OR 1 . t111. 1 •STEP" 1 "UNTIL" N •DO• 
!LMCOLVECCl, N, I, H, V, •TAMV~C(l, N, I, H, P 
) / SA) 

•END".,JTEe1 
RELTOLIII IN[llf ,esTOLi• INt2Jt TOLRESi ■ JN[l], 
MUP"if IN[4JI _ . . . . 
,uNCTcN, x, ~)I ~COUNT•• 1l IT•• ERR1• o, 
•FOR"-~•• t ~STEP" 1 "UNTIL• N "DO" 
"B!Giti" ~tI}I• o, Htl,IJ1• 11 , 

"~OR•~•• I+ 1 "STEP" l "UNTIL" N "00" 
HU,JU ■ ti<J!IJ 1• 0 

~END" lt:'ITIAI.IAZATIONJ . 
~FOR• %1•.S ~STE~• l "UNTIL" N "DO" 
"B!GI~~ ~rrt•• "•b * ABS(Xtil) ♦ "•lOJ STEP(5, 4)s 
. P UJ 111 o . . 
•E~D•_~ALt~L.TJON OF INITIAL ITERATION ~ATRIXt 

REPEAT I ITH• I! ~ 11 .. 
"FOR" II• t "STEP" 1 "UNTIL" N "DO" 
P[IJ j" eMA,tVEtC1: N, I, H, F>J 
STE~CJ, 2lf •. 
RES1•.SQRf(V~CVE~C1, N, O, F, F))1 
"l'" SQRTcY~tV!C(1, N, 0, P, P)) c 
SQRTCV!CVECCt,. Np Q, X, X)1 * RELTOL t ABSTOL "ANO" 
RES c TOLR!S •THFN" •GOTO" EXITJ 
"l'".FCOUNT c MAxF •THEN" •GOTO• REPEATs 

LB11 ERRf ■ 11 ~GOTO" EXlTt 
LB2& ERRf ■ 51 ~GOTO" EXITt 
LBJ1 ERRfa 21 ~GOTO" EXITJ 
Leo, ERRJs ~· "GOTO" EXIT, 
LBS1,ERR1~_1p "GOTO" EXITJ. 
EXIT1 OUTC)ll!,SQRT(VECVECq, ~, 0, P, P))t OUTl2JS• RESr 

OUT(]) •• FCOUNT1 OUTC4l :• IT, OUT c•n •• ERR 
"END" PROc;RAM Ms 



•cDHH,NT~ BROWNS M!TH00 or COHPDN[NT•WIS! APPROXIMATION, 
PROGft~H h.. _ . . . 
•PROCrQURt•"PROGRAH ICN, x. ,., ,ucoM, JN, OUT)1 
•VALUr• ~•-•INTEQ[R• Nr !ARRAY• x. rA, IN, our, 
~BOOLiAN~ •PRDCEQURE• ,ucDMJ .. 
•CDMM~NT• ~~GORl~HM 316 FROM CACM BY K.M. BROWN, 
_ ALiD~.11• SOLV!S A SYSJfH Or NON LlN!AR !QUATJONSJ 
"BEGI~• •tNJ!GER~ I,J,K,M,ITEHP,JIUB,KMAX,KPLU8,TALLV,TIM,CNT, 

MtXJT 1 JRR, FHAXJ 
"REAL• ,,H,HOL0,,PLUS,D!RHAX,T!ST,,ACTOR,PT,HCOE,Xl,TM, 
R~LTOL, ~BITOLt . . . . 
"JNTEGrR~ •A,RAY• ~9INTEREl1~,t1~J,JIUBtt1NJ1 
"ARRAY• TEHP.PARTtt1NJ,CDEll1N,11N + tle 

•itAL• •PROC!DURE•.VECYEC(L, U, 11 A, 8)1 "CDOE• 34010t 
~eROCfDURE• ~UPVECCL, u, a, A, a,, •CODE• 310301 
•eRo~rDURf;W n~VECCL, '='• s, A, .. a. X)J •cooE• 340l0J 
•~~0CE9U,~• ~ACK lUBITtK)B •YALU!• Kr •INTEGER• KJ 
•atGJ~• !INTfG!R• KH,K'A~,Jsua, •REAL" XKHAXJ 

~rPA~ KHJ• ~.•STEP•. l •VNTIL• l ~oo• 
•B!GJN• ~MA~•~ ISUBCKH •. tJ1 XKHAXa ■ 01. 

~FOR~ J1• KH."ITEP" 1 •UNTIL" N "D0• 
•BEGTN" JfUBI ■ POJ~TERlKM,JJ1 

WKHAXs• XKMAX ♦ eortKH • i,JSUBJ * XCJSUBJ 
•END!J . 
X(KMAXJ1• XKHAX ♦ CO[tKH • t,N + tJ 

~ENO• 
"ENO• !ACK SIIBSTI 

~eROCEDV~t• THEORFU(N, K, x, F>1 "VALUE" N, K1 
•1NT'G'R~ ij,_ K, •R~AL" Fe "ARRAY~ Xt 
•a!G~ij• CNT1, C~T t lf •IF• CNT ~ F~AX "THEN" 

"IEGIN• ,RRa• lr •GOTO• EXIT "END"t 
tiz!'•. ir FUCOHCN, K, .X, F) iiTHEN 11 

-~EGIN• ~RR~• ii •coTo• EXIT "FND~, F'ACKJ~• F 
"!ND• THEORf'IIJ 

RtLT9Li1 iNttlt ABSfOLi• INtlJe . 
,~AXR• JNt9lt HAXIT1• IN(QJ • l I Ni ERR&• cNTa• o, 
"fOR~ ~1,.• A "~TEP" 1."UNTlL~ MAX JT "D0" 
•e!GIN" •FOR• JI• 1 •&TEP" l •UNTIL" N "DO" 

PQINjERJ;, JJi• J, . I 

•FDR• Ka~ 1 •ST~P• 1 •UNTIL• N 11 00" 
"BEGIN• ~lF• K > 1 •THEN 11 BA~K SU8STCK>t 

.• T~EQ!FU(N 1 K,~,F)r FACTDR1s 11 •31 
AGAIN& T!LL. Va• OJ. . 

•FOR• It• K •STEP• 1 •UNTIL• N 1100• 
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"BEGiN" ITEMP~a POINT!RtK,IJ1 HOLD~• X[ITE~Pls 
Hi• FACTOR* HOLOt •IF" H • O "THEN" Ht•.FACTORs 
~tlTEMPti• HOLD t ~, 
~I'" K > 1 "THEN" SACK SUBST(K)r 
~H~ORFU(N,~,x,,P~US)t 
PT1• PARTEITEHPJ&• (FPLUS • FJ / Ht 
~tITEMPJi• HOLDS . 
•IF" ABS(F /PT)> "10 "THEN" TALLY&• TALLY+ 1 

"END•t 

~IF".TALL Yi~• K "iHEN" 
•BEGJN" FACTOR1•,F~CTQR * 101 

•IF" FACTOR> .5 •TH!N" 
•BEGIN• ERRi• 49 •OOTO" EXIT •END"t 
"GOTO" AGAiN 

~lND• 1 . . 
"IF" K • N "TH!N" 
"BEGjN• "l~• A9JCPT) • 0 "THEN" . 

•BEGJN 11 !R!1• ,, 11 SOTO" EXIT •END"t 
.. ~COE1• Ot KHAX1• ITEMPt "GOTO" END K 
"END•t 
KMAXs, POI~TtRIK,K1J DtRHAXi• ABS(PARTEKHAXJ)1 
K~LUfa ■ .K + 11 
~FOR~ ?a• K ~LUI "ITEP" l "UNT!L".N "00" 
"BEGTN" JSUB1• POINTER(K,lls TEST1 ■ ABS(PART(JSUBJ)r 

•IF" TEST c DERMAX "THEN" 
P,OINTEREKPLUS,JJi,JSUB •ELSE" . 
•B!GIN" 9ERMAX1• T!STJ POINTER[KPLUS,Ila• KMAXJ 

KMU1• JSUB 
•END" 

~tNQii1 
11 IF" D!RHAX • Q "THEN• 
~BEG~N"_ERRi ■ ls "GOTO" EXIT 11 END•1 
%$UBJKJf• KMAX1 HCOE1, Ot 
~FOR~ Js ■ KP~US 1 STEP 11 l 'UNTIL" N ~DO" 
•a!GJN" JSUB& ■ ~OINTERtKPLUS,JJr PT1• PART[JSUBJ r 

eoEt~,JSUBJa~ •PT/ PART[KMAXJ1 
.. ~COE1• HCOE +PT* X[JSUBJ 
•~ND!t . 

END Ks HC0£1• CO!tK,N + lJi ■ (HCOE • F) / PART[KMAXJ ♦ 
X (KHUJ 

•~ND• KJ, . _ 
Xj~~AXJ1 ■ .HCOE1 "lf." N > 1 •THEN" BACKSUBST(N)r 
"tF• H.1.• 1 "THEN• "GOTO! JU~P, 
E~~vtcc1. N, 0, TEMP, x, •l)t 
•1,~_SQR~cvE,VEcc1, N, 0, TEMP, TEMP))< 
.QRTCVEC~ECCl, N, o, X, X)) • RELTOL + ABSTOL 
~T~!N• •~QTO" EXIT1 

JµMP, DUPVECtl, N, 0, TEMP, X)t 
"r~D~ ~• • 

EXITi OVTllJ,• 'QRT(VECVEC(1 1 ~, 0, TEMP, TEHP))I 
ouTCJJ ,. CNT,,/ Nt OUTt$l 8111 ERR1 
QuTt4JI ■ •IF• ERR ■ 0 •THEN" M + 2 "ELSE" M + l 

'END• PROGRAM I1 




