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Numerical solution of mildly nonlinear two-point boundary value problems by 

means of Galerkin's method 

by 

M. Bakker 

ABSTRACT 

This paper deals with the numerical solution of certain classes of even

order, self-adjoint, positive-definite, mildly nonlinear two-point boundary 

value problems, such as those analyzed by CIARLET, SCHULTZ & VARGA [1967]. 

The solution of the problems is approximated by piecewise polynomials of de

gree k which are m-1 times differentiable (2m being the order of the boundary 

value problem). If his the mesh width of the trial space Sh' then it is 
k+l-£ proved that the numerical solution has a global error of order h , 

£ = O, ••• ,m, and at the grid points the first m-1 derivatives have a local 
f d h2(k+l-m) I h. . . f h 1 error o or er . n two ways tis is an extension o t e resu ts 

reported by DOUGLAS & DUPONT [1972,1974]: 

(i) We prove that those results also hold for certain nonlinear problems. 

(ii) For linear, and certain nonlinear, self-adjoint, positive-definite 

boundary value problems of order 2m, we prove that superconvergence 

generally holds for derivatives up to order m-1. 

KEY WORDS & PHRASES: GaZerkin's method, miZdZy nonZinea:r> bounda:r>y vaZue 

problems, superaonvergenae. 





1. INTRODUCTION 

In this paper we begin by studying a numerical method for solving the 

nonlinear boundary value problem: 

( 1. l) x E [a,b] = I, 

( l • 2) y(a) = y(b) = 0, 

where p and fare supposed to be sufficiently differentiable and 

p(x) ~Po> 0, x EI. 

The solution of (l.l)-(1.2) belongs to the space Hb(I) n H2(I), with 

V E v(a) = v(b) = 0}, 

where DJ stands for dj/dxj. 

In the space Hm(I) we define the Sobolev inner product and Sobolev norm 

by: 

lllull 
m 

= II ull 
Hm(I) 

m 

= I 
j=O 

= l(u,u) , 
m 

(.,.) being the 1.nner product in L2(I). 

Since th1e solution y of ( l. I)-( I. 2) also satisfies the weak Galerkin 

form (with f(.,y): I ➔ R meaning f(x,y(x))): 

( 1.3) (PY', w' ) + ( f ( • , y) , w) == 0, 

it 1.s reasonable to suppose that y can be approximated in a subspace of 
I H0(I). 

DEFINITION I.I Let Pk(E) denote the set of polynomials of degree not greater 

than k restricted to the interval E c I. Let TI: a = x0 < x 1 < ••• < ~ = b be 
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a partition of I with 

h.=x.-x. 1, 
J J J-

(J.4) I.= [x. 1,x.J, 
J 3- J . 

j = J , ••• ,M, 

h = max h .• 
J 

Further we assume that n is quasi-uniform, i.e. h. ~ Ch, where C is a con
J 

stant independent of hand M. Then we define the space of kth degree piece-

wise polynomials by 

(J.5) w E Pk(I.), 
J 

j = I , ••• ,M}. 

In the following sections we will show how the solution of (l.J)-(1.2) 

can be approximated in Sh and under what conditions. Throughout this paper 

C, c1, c2, C', etc. will denote generic constants which will not be equal 

and e, e', e1, e2 , etc. will be continuous functions of x on I, not neces

sarily equal and bounded between -J and +I. 

We conclude this introduction with a lemma which we shall need through

out this paper. 

I LEMMA I.I (Poincare's inequality). Let w E H0(I); then 

llwU :s; C RnwU 0 , 
00 

llwll 0 :s; C Dnwn 0 , 

DwU 0 :s; C DwH I, 

where U • II denotes the supremum norm on I. 
00 

PROOF 

IJX 

lw(x)I = J•w'(t)dtl 
a 

:s; {fx dt}½ • {fx [w'(t)J2 dt}½ (Cauchy-Schwartz) 
a a 

X € I, 
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which proves the first inequality; the other inequalities can be proved from 

the first one. D 

2. BACKGROUND MATERIAL 

In this section we mention some properties of the operator N defined 

by (1.1) which play an important role in the uniqueness of the solution of 

(1.1)-(1.2). A great deal of this section is derived from CIARLET, SCHULTZ 

& VARGA [1967]. 

DEFINITION 2.1 The operator N defined by (1.1) is said to be striatZy mono-
I 2 tone if for any y,z € H0 (I) n H (I) the inequality 

(2. 1) 
2 (Ny-Nz,y-z) ~ C lly-zU 1 

holds. (This definition is a particular case of strict monotonicity as de

fined in CIARLET, SCHULTZ & VARGA [1969].) 

Next we define, for p(x) ~Po> O, 

(2.2) 
(pDw,Dw) 

llwll~ 

One can easily recognize that A is the smallest eigenvalue of the oper

ator -D(pD.). acting on H~(I) n H2(I). By expanding w(x) into its Fourier 

series, we obtain 

= Po (-n-)2. 
b-a 

LEMMA 2.1 Let y > -A, where A is defined by (2.2); then for any w E Hb(I) 

(2.3) flwD = {(pw',w') + y(w,w)}! 
y 

is a norm equivaZent to flwU 1• 
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PROOF We distinguish two cases: y < 0 and y ~ 0. 

(i) y ~ 0: 

( pw' , w' ) + y ( w, w) = H pw' , w 1 ) + y ( w, w) + H pw' , w 1 ) 

~ ½P0(w',w') + (y+½A)(w,w) 

2 2 
~ min(½p0 ,y+!A) llwll 1 = c1 llw!l 1. 

On the other hand 

(2.4) I ( pw ' , w ' ) + y ( w , w) I 

which proves the lemma for y ~ 0. 

(ii) y < 0: since y > -A, 

y(w,w) > -(pw',w'), 

This implies that there exists an a, 0 <a< I, such that 

y(w,w) ~ -a(pw' ,w') > -(pw' ,w'). 

So 

( pw 1 , w' ) + y ( w, w) = H pw' , w 1 ) + h ( w, w) + H pw 1 , w ' ) + h ( w, w) 

~ !(A+y) 2 UwD 0 + H 1-a)(pw' ,w') 

~ ½(A+y) 2 lwH 0 + ½(I-a)p0 llw' U ~ 

~ ½ min(A+y,(l-a)p0 ) 
2 

Hwll 1. 

The rest of the lemma is proved by application of (2.4). D 

THEOREM 2. 1 Let f(x,y) be pa:r>tially differentiable in x and y and satisfy 



(2.5) 
f(x,y 1) - f(x,y2) 
-------- ~ y' 

Y1 - Y2 

with Y > -A, where A is defined by (2.2); then the operator N defined by 

(l.l) acting on H~(I) n H2(I) is strictly monotone. 

PROOF By means of partial integration, one obtains 

from which the theorem is proved by application of Lemma 2.1. 0 

We now obtain 

THEOREM 2.2 Let (I.I) admit a solution y and let f satisfy (2.5); then 

(i) y is umCque; 

(ii) y strictly minimizes the functional 

(2.6) Jb 2 
I[w] = {p(x)[w'(x)J 

a 

I over the space H0(I); 

Jw(x) 
+ 2 

a 
f(x,t) dt} dx 

(iii) y uniquely satisfies the weak Galerkin form 

(2. 7) ( PY ' , w' ) + ( f ( • , y) , w) = 0 , 

PROOF (See also CIARLET et al. [ 1967]). 

(i) Suppose z is a second solution and E = y-z; 0. Then after applying 

Theorem 2. l we get 

which is a contradiction. 

(ii) Set E(x) = w(x)-y(x), we 

5 
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I[w] - I[y] = 

Jb Jy(x)+E(X) 
= {p(x)[E'(x)J2 + 2p(x)E'(x)y'(x) + 2 f(x,t)dt} dx 

a y(x) 

Ib Jy(x)+E(x) 
= {p{x)[E'(x)J2 - 2f(x,y)E(x) + 2 f(x,t)dt} dx 

a y(x) 

Ib Jy(x)+E(X) 
= {p(x)[E'(x)J2 + 2 [f(x,t)-f(x,y)]dt} dx 

a y(x) 

Jb 2 Jy(x)+E(x) 
~ {p{x)[E'(x)J + 2 y(t-y)dt} dx 

a y(x) 

Jb 2 2 
= {p{x)[E'(x)] + y[E(x)J} dx 

a 

So 

I[y] ~ I[w], 

If there is another z € H~(I) which minimizes I[w] then 

0 = I[y] - I[z] 
2 

2-: C U y-zD I , 

from which it follows that y = z. 

~iv This has already been proved by partial integration of (Ny,w). 0 

Now, since we have proved that y minimizes the functional I[w] o~er 

H~(I) we may expect that y can be approximated by a function y 8 which mini

mizes I[w] over a finite dimensional subspace S of H~(I), just as is the 

case when N is a linear operator. We call this approximation method the 

Rayleigh-Ritz-Galerkin method. 

THEOREM 2.3 Let S be a finite dimensional subspaae of H~(I). Then there 

is a unique Ys Es whiah striatZy minimizes I[w] overs. This y 8 satisfies 

the weak GaZerkin foPm 
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PROOF See SCHULTZ [l 973]. 0 

In the next section we apply Theorem 2.3 to the space Sh as defined in 

Section 1. 

3. THE RAYLEIGH-RITZ-GALERKIN METHOD 

In the ]Previous section we have proved that the solution y of (I.1)

(1.2) can be approximated by a unique yh E Sh which minimizes I[w] defined 

by (2.6) over Sh, provided that f(x,y) satisfies (2.5). 

We first confine ourselves to the case that f(x,y) is linear in y, i.e. 

f(x,y) = r(x)y - s(x), 

In this case (I.l)-(1.2) becomes 

(3. I) 

d dy = - dx (p(x)dx) + r(x)y s(x), XE I, 

y(a) = y(b) = O. 

The weak Gal«~rkin form (2. 7) becomes 

(3. 2) (py',w') + (ry,w) = (s,w), 

and y strictly minimizes the functional 

(3.3) J [ w J = ( pw ' , w ' ) + ( rw , w) - 2 ( s , w) 

THEOREM 3.1 Let the space Sh of kth degree piecewise polynomials be de

fined by (1.5)., and let y E Hk+l(I) n H~(I) be the solution of (3.l); then 

there is a unique yh E Sh which strictly minimizes the functional J[w]., de-
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fined by (3.3), over Sh, provided r(x) ~ y >-A.This yh is uniquely deter

mined by the ii'Jeak GaZerkin form 

(3.4) 

and has the following error bounds: 

(3.5) R. = 0,1, 

(3. 6) 

where x. are the knots of the partition TT. 
l. 

i = 0, ••. ,M, 

PROOF The existence of a yh which minimizes I[w] over Sh is proved by Theo

rem 2.3, which also states that yh satisfies (3.4). The error bound (3.5) 1.s 

proved in STRANG & FIX [1973]. The error bound (3.6) is proved by DOUGLAS & 

DUPONT [1974] for r(x) = 0, but the proof can be extended to r(x) ~ y > -A. 

D 

(3. 7) 

(3. 8) 

We now return to our problem (l.1)-(1.2). We can rewrite it as follows: 

af af 
-(pu')' + - u = - y - f, ay ay 

we put it in the form (3.2) with 

af 
r(x) = ay<x,y), 

s(x) = y:f(x,y) - f(x,y). 
y 

The unique solution of (3.7) is of course u(x) = y(x). 

We now derive the error bounds for the function yh E Sh which minimizes 

I[w] over Sh. To this end we study an auxiliary variational problem. This 

method has several analogies with a method used by RUSSELL [1974] to derive 

error bounds for the collocational solution of nonlinear boundary value prob

lems. 
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LEMMA 3.l Let (l.1)-(1.2) have a soZut-ion y and Zet f(x,y) satisfy (2.5). 

Let r(x) and s (x) be defined by (3. 8). Let Sh be defined by ( L 5). Then 

there is a unique uh E Sh which strictly minimizes the functional J[wJ, de

fined by (3.3)., over sh. This uh is uniquely deteY'mined by the weak Galerkin 

foy,,n 

(3.9) 

and has the following error bounds: 

II y-uhll t s C hk+l-tll U 
y k+l' t = 0, I , 

(3. IO) 

ly(x.)-uh(x.)I 
2k s C h II yll k+I, 1 = 0, l , .•• ,M. 

1 1 

PROOF Direct application of Theorem 3.1 to problem (3.7). D 

We now obtain 

THEOREM 3.2 Let (I. 1)-(1.2) have a solution y and Zet f(x,y) be twice par

tially differentiable in x and y and satisfy (2.5). Let Sh be defined by 

(1.5) and let yh E Sh be the unique element which strictly minimizes the 

functional I[w] defined by (2.6) over Sh., i.e. the solution of the weak 

GaZerkin foY'm 

(3.11) 

Then yh has the following error bounds: 

llyh-yll t s C hk+l-tll II 
y k+l' t = 0, l , 

( 3. 12) 

I Yi ( X. )-y ( X. ) l 2k 
s C h lly!I k+l, i = 0,1, •.• ,M. 

1 1 1 

PROOF We apply the quasibilinear operator BQ defined by (3.11) to the solu

tion uh of (3 .. 9). If we put eh== y-uh, then, for all wh E Sh, we get after 

application of (3. 9) 
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(3. 13) 

But we also have 

BQ(uh,wh) = BQ(uh,wh) - BQ(yh,wh) 

= (p(~-yh),wh) + (f(,,uh)-f(. ,yh),wh). 

So, if we set wh = uh-yh = oh, we obtain after application of Lenuna 2.1: 

(3. 14) 
a£ 

= (poh,oh) + <ay<·,Yh+eoh) 0h' 0h) 

2 
~ (poh,oh) + y(oh,oh) ~ c Uohu 1• 

If we combine (3.13) and (3.14), then we have: 

(3.15) 

2 
$ II~ 2 00 

ay 

From (3. I 5) and (3. IO) we get 

(3.16a) II <\II 1 $ C llehll~ $ C hZk+Z 

Poincare's inequality gives 

0 ohll O 
h2k+2 2 

$ C Ayll k+ l, 
(3. 16b) 

h2k+2 2 I{\ (x) I $ C U yR k+ I • 

2 
II yU k+ 1. 

(Poincare). 



From (3.16) we get 

(3.17) 

jy(x.)-yh(x.)I ~ ly(x.)-uh(x.)I + loh(x.) I 
i i i i i 

which proves the theorem. D 

4, QUADRATURE RULES 

Let yh E Sh be the solution of (3.11). If we represent yh by 

y (x) = 
h 

N 

I 
j=l 

q. cp. (x) ' 
J J 

I I 

N T 
where {cpj}j=J is a basis of Sh, then the vector (q 1, ••• ,qN) is given by the 

nonlinear system 

N N 
( 4. I) I (pcp!,cp!)q. + (f(•, I q.cp.),cp.) = O, 

j=l i J J j=l J J i 
i = 1, ••• ,N. 

In order to solve (4.1) iteratively one has to evaluate the inner products 

and (f(•, ! q.cp.),cp.). HERBOLD & VARGA [1970] suggest to evaluate (p,1,! cp!) 
'f'i' J 

(pcp!,cp!) 
i J 

but they 

j=I J J i N 
exactly and to use an interpolatory quadrature for (f(•, I q.cp.),¢.) 

j= I J J i 
leave unsolved the problem how to evaluate (pep!,¢!). We, therefore, 

i .' 
evaluate a method for approximating both inner products, which leaves the 

error bounds from §3 unchanged. This method was developed by DOUGLAS & 

DUPONT [1974]. 

4.1. Linear boundary value problems 

We study the boundary value problem (3.1) where r(x) ~ y > -A, 

A defined by (2.2). Let TI : a= x0 < x1 < ••• < 211 = b be a partition of I 

with mesh width h. Let Sh be the space of k-th degree piecewise polynomials. 

We now introduce an approximation of(,) in the following way. 
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Let 

(4.2) 
s 

Q(f) = l w1 f(n1), 
i=I 

s 2: I, 

be an approximation off~ f(x) dx which is exact if f is a polynomial of 

degree less than 2k. Let w1 > 0, i = l, ••• ,s, and Os n1 < n2 < ••• < ns s l. 

We define 

;. n = x. I+ h. nn, 
J,~ J- J ~ 

j = l, ••• ,M; .e, = l, ••• ,s; 

s 
2 (4.3) <a, B>. = h. l w1 a(;. 1)B(;. 1), a,B E L (I.), j = I , ••• , M; 

J J i=I J' J' J 

M 
<a,B> = r <a,B> .• 

j=I J 

Clearly, <a,B> is equal to (a,B) if a*B E P2k_ 1(Ij), j = J, ••• ,M. If not, 

then the error <a B> -· (a, B) is proportional to 

THEOREM 4.1 Let<•,•> be defined by (4.3) and Zet p(x), r(x) and s(x) 

suffiaientZy smooth, p(x) 2: p0 > O, r(x) 2: y > -A, A defined by (2.2); then 

for suffiaientZy smaU h the modified weak GaZerkin fom 

(4.4) 

has a unique soZution Uh. The foZZowing bounds exist for the differenae 

between uh and the soZution of (3.5) 

Uy-Uhlt = O(hk+I-R.g R ) 
y 2k' .e, = 0, I; 

(4.5) 

2k 
Dyl 2k)' i O, ••• ,M. ly(x.)-Uh(x.)I = O(h = 

1 1 
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PROOF DOUGLAS & DUPONT [1974] gave a proof for r(x) = O, but it can also be 

proved for r(x) ~ y > -A after application of lennnas 2.1 and 4.1. D 

4.2. The nonlinear boundary value problem 

We will apply theorem 4.1 to obtain similar error bounds for the non

linear case. As in §3 we use the linearized boundary value problem (in 

Galerkin form) 

(4.6) a f 
(Pu 1 ,w' ) + ( u w) cly , 

a f 
= (y cly - f(•,y),w), 

as an auxiliary problem. In order to obtain the error bounds wanted we have 

to prove a few technical lennnas. 

LEMMA 4.1 Let y > -A, A defined by (2.2) and let <a,B> be a:n approximation 

to (a,8) which is exact if aB E P2k_ 1(Ij). Then for sufficiently small h 

is a norm on Sh equivalent to llwhlll. 

PROOF We know by lennna 2.1 that llwhll is a norm equivalent to llwhlll. We now 
2 * 2 y 

compare llwhll Y and (llwhll Y) and, therefore, estimate the differences 

(4.8) (pwh' ,wh') - <pwh' ,wh' > and (w ,w ) - <w w > • , h h h' h ' 

M 

(a); (pwh,wh) - <pwh,wi/ = ,l [ (pwh,wh)I. - <pwh,wh>J.] = 
J= 1 J 

M 

= .l [((p-pJ.)wh,wh)I. - <(p-pJ.)wh.wh>J.J + 
J=l J 

M 

+ .l p.[(wh,wh)I. <wh,wh>j] = 
J= l J J 

M 

= .l [((p-pj)wh,wh)I_ - <(p-pJ.)wh,wh>j]' 
J=l J 

where p. denotes the average value of p(x) on I .• Since on I. 
J J J 
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lp(x)-p. I sh. Ip'(;) I s h.Hp'D , 
J J J Cl> 

So 

from which we can prove the lenuna. 0 

I LEMMA 4.2 For any u,v € Ho(I) 

(4.9) 

M s 
PROOF l<u,v>I = I l h. l w1 u(;. 1 )v(;. 1 )1 

j=l J £=1 J, J, 
M s M 

s I h. I w1 1u(;. 1)1 Iv(;. 1 )1 s I h. 
j=I J £=I J' J' j=I J 

M 
= Bun UvU l h. 

a, a, • J 
J=l 

s 

s 
I w lluH llvll = 

£=I 
£ Cl> a, 

LEMMA 4.3 Let p(x) ~ pO > O, af/ay ~ y > -A. Then the weak modified 

GaZer-kin fom 

(4.10) 

~~~~•~•;••••w«Wf"•=•m'1/'1f~m~"••••'WW{'' 

,. 

□ 



has a unique solution yh with the error bounds 

Q,=0,I; 

(4.ll) 

i = 0, l , ••• ,M. 

PROOF Follows immediately from theorem 4.l with r(x) = af/ay(x,y) and 

S(x) = y 3f/3y - f(x,y). 0 

15 

THEOREM 4.2 Let p(x) ~ pO > O, fy ~ y > -A. Then, for sufficiently small 

h, the nonlinear modified Galerkin form 

(4.12) 

has a unique solution zh E Sh which differs from the solution y of 

(1.1)-(1.2) by the following bounds 

k+l-Q. 
~Ch llyll 2k, £ = O, I; 

(4.13) 

1.=0, ••• ,M. 

PROOF The same method is used by which theorem 3.2 was proved plus the 

technical lemmas from this section. Let yh be the solution of (4.10) and 

put Eh= y - Yh, oh= zh - yh. Then analogue to (3.13) we get 

a2f 2 
= l<-e--2<•,y+e'E:h)E:h,wh>I ~ 

ay 

But also, if we put wh = oh, then after application of lemma 2.1, we obtain 

<py' 0 1 > + <f(•,yh).oh> = · h' h , 

(4.15) 
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Combination of (4.14) and (4.15) gives after application of (4.11) 

(4.16a) 

2k 2 
C h D yff Zk. 

From (4.16a) we get, applying Poincare's inequality 

(4.16b) 

whence we can prove (4.13). 

The uniqueness can be proven from lemma 4.1. D 

4.3. Lobatto quadrature 

Now that we have proved that the use of a sufficiently accurate quadra

ture does not change the order of accuracy of Galerkin's method, let us give 

some examples of such quadratures. A well-known example is the k-point 

Gauss-Legendre quadrature which integrates polynomials of degree less than 

2k exactly. We want, however, to spend special attention to another kind of 

quadrature with the same order of accuracy, namely k+I - point Lobatto 

quadrature (see also HEMKER [ 1975] and ABRAMOWITZ [ 1964]). It is given by 

£ = l , ••• , k-1 , 



where tt are the zeros of P~(t) on (-1,+l), Pk(t) being the k-th Legendre 

polynomial. The weights wt are uniquely determined by the requirement that 

I 

= J f(x) dx, 

0 

whenever f i:s a polynomial of degree less than 2k. We give Lobatto points 

and weights fork= 1,2,3. 

k = (trapezoidal rule); 

k = 2 (Simpson's rule); 

k = 3; 

o, 5-15 5+15 
1 ' no = nl = 10' nz = IO' n3 = 

5 
WO = w3 = 12' w l = w2 = IT· 

The great advantage of Lobatto quadrature is that we can let the 

points~- coincide with the noda.Z points of Sh (see also HEMKER [1975]): 
J,t 

any member of Sh is entirely determined by the values at the points ~j,t" 

In the next section we will derive an efficient algorithm to solve (4.12) 

using Lobatto quadrature. 

5. SOLUTION OF THE NONLINEAR SYSTEM 

In this section we derive an algorithm to solve (4.12) using Lobatto 

quadrature. 

5.1. The nonlinear system 

Let TI a=x0 < x1 < ••• < ~ = b be a quasiuniform partition of [a,b]. 

17 
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We renumber the knots xi as follows: x0, ~, x2k•••,~• We now define the 

interior mesh points xjk+t as follows: 

(5. 1) j = O, ••• ,M-1; t = l, •• .,k-1. 

kM-1 
We now define a basis {•j(x)}j=I of Sh by the requirement 

(5.2) •. (x.) = o .. , 
l. J 1.,J 

Now, if we fill in•· 1.n (4.12), we get 
l. 

But, since 

we get after application of (5.1) and (5.2) 

<f(•,zh), •. > = W. f(x.,zh(x.)), 
l. l. l. l. 

where W. is a constant weight determined by 
l. 

= (h. +h. 1)w0 , 
J J-

Now, if we represent zh(x) by 

kM-1 
zh(x) = l 

j= l 
q. •. (x), 

J J 

::;; i,j::;; kM-1. 

i = l , ••• , Mk- I • 

j = I , • • • , M; t = I , ••• , k- I ; 

j = I , ••• , M-1 • 

then T 
(q1,q2,·••,qkM-l) is determined by the nonlinear system 

(5.3) Aq + F(q) = o, 
where 
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a .• = <pep! , cj> ! > ' i,j = l, ••• ,kM-1; 
l.J 1. J 

F .. = w. f(x.,q.), i = 1 , ••• ,kM- l. 
JL 1. 1. 1. 

(5.3) is iteratively solved by means of the Newton-Raphson method (see e.g. 

ORTEGA & RHEINBOLD [1970]): 

(5.4) 

J 
11 

n = 0, ••• , 

af (n) =(a .. + W. o .. ~ (x.,q. )). 
1.J 1. l.J ay 1. 1. 

This method converges quadratically to the solution of (5.3) provided that 

llq(O) - qll is small enough. 

Since cj> .. (x) vanishes outside the segment to which x. belongs, the 
1 1. 

matrix A has the following structure: 

(5.5) 

I ... * I 

I 

: k X k : I 

• I 

. -·+-----;:, 
.:_ ..:_ :_·_: .!~ * I 

1 (k+ 1) 1 
I 

x(k+l) 1 
I _.J __ _ 

* '*I \.:.: - - - - ,_ 

0 

I 
I 
I 

0 

r~-------:-i 
-- -l-*J ..... *, 

1 : (k+l )x 1 
I • 

: : (k+ l) 1_ ~:-- __ _ 

'-*- - - - - !_~• •.... * 
I 

I 

I : 

Since the Jacobian of (5.3) is only nonlinear in the main diagonal, updating 

of J can be done very easily. Iteration scheme (5.4) can be performed by 

subroutines using symmetric band matrices. 

In the following sections we will discuss the questions how acurrately 

(5,3) should be solved and how to find initial guess for (5.4). 
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5.2. Solution strategy 

Since the solution of (5.3) is itself an approximation of the solution 

of (1.1)-(1.2), which is of O(h2k) if i = O(mod k) and of O(hk+l) otherwise 

it has no sense to solve (5.3) more accurately. At the other hand, since the 

approximation error itself is not known, it is hard to decide whether or not 

the iteration is to be stopped. We first prove the following 

LEMMA 5.1 Let zO E Sh be an initial guess for the solution zh of (4.12); 

then the sequenae of funations {Z0 ,z 1, ••• ,zn,···} E Sh defined by 

(5.6) 

aonverges qaudratiaaZZy to ~, provided II zh - zOH O is small enough. 

PROOF If one substitutes $i(x) in (5.6), one obtains scheme (5.4) which 

converges quadratically if D zh -zOH 6 is small enough. D 

We now outline the following strategy (see also Russell): 

(i) Take an initial guess for zO; 

(ii) Iteration scheme (5.6) is performed for pieaewise Zinear functions, 

i.e. k = I, until two subsequent iterates have a sufficiently small 

difference, say at n = I; 

(iii) if k = I, the process has been finished; 

if k > I, then one can use ZI as an initial guess for scheme (5.6) or 

(5.4) by interpolating at the interior knots; since zh - ZI is of O(h2), 

iteration scheme (5.4) has to be performed once if k = 2 and twice if 

k = 3 or 4, in order to obtain the error bound (4.13). 

5.4. Work estimate 

In this section we briefly report how much work it costs to solve (5.3) 

by means of the Newton-Raphson method. We follow the strategy described in 

§5.2. 
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At the beginning the matrix A= (p~~,~~) has to be evaluated fork =1, 
l. J . 

which costs M + 1 evaluations of p(x). Then iteration scheme (5.4) is per-

formed I times. The cost of each iteration is 

(i) updating of the Jacobian and the righthand side which' costs M + 1 eva-

luations of f(x,y) af 
and ay(x,y). 

(ii) solution of an (M-1)-dimensional linear system with a symmetric positive 

definite tridiagonal matrix. 

After an initial guess has been obtained this way, the matrix A= ((p$~,$~)) 
l. J 

has to be reevaluated fork> l. This costs (k-l)M extra evaluations of p(x). 

One now has to perform scheme (5.4) once if k = 2 and twice if k = 3 or 4. 

The cost of each iteration is 

(i) kM - I evaluations of f(x,y) and kM - l evaluations of :;(x,y); 

(ii) the solution of a (kM-1) dimensional linear system with a positive de-

finite (2k+l)-diagonal matrix of the form (5.5). 

If k = 2, the solution of the 5-diagonal system can be simplified by elimi

nating the components with odd index beforehand. This so called static con

densation is made possible by the special structure of the Jacobian. 

All together the amount of work needed for the Galerkin solution of 

(I.I) - (1.2) is 

(i) kM + 1 evaluations of p(x); 

(ii) I times the solution of an (M-1)-dimensional tridiagonal linear system; 

(iii) I(M+l) + Ik(kM+I) evaluations of f(x,y) and :;(x,y), with 1 1 = O, 

12 = I, 13 = 14 = 2; 

(iv) Ik times the solution of a (kM-1) dimensional linear system with (2k+l)

diagonal matrix of the form (5.5). 

6. GENERALIZATIONS 

In this chapter a few generalizations of problem (l.l) - (1.2) are 

sketchily discussed. 

BlBLIOTHEEK MATHEMATISCH Cfl\!TRU\li! 
--AMSTERD.AM--
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6.1. The nonsynmetric case 

In the previous sections the righthand side was expressed in x and y 

only. As a result the Jacobian matrix of the nonlinear system (5.6) was 

symmetric. We now study the problem 

y"(x) = f(x,y(x),y'(x)), X € I, 

(6. 1) 

y(a) = y(b) = Q. 

We suppose that f is sufficiently smooth in its three variables. 

LEMMA 6.1 The nonlinear operator N defined by Ny= -y" + f(x,y,y') is 

strictly monotone, i.e. (Ny-Nz,y-z);?; cly-zHi, y,z E: H~(I), if 

(6.2) of d of 
oy - I dx oy' ;?; y > - A' X € I. 

2 
1• nf H Dwll O 2 

A = 1 ·- = +(....:!!...) • wE:H!(I) U 02 b-a 
-1) w 0 

PROOF We put y - z 

obtains 

1 
= o, y, z E: H0 (I). Then, after partial integration, one 

(Ny-Nz, y-z) = 

= lo'U~ + (f(•,y,y') - f(•,z,z'),o) = 
2 af 

= Ro'Ro + (oay<•,y+eo,y'+eo'),o) 

+ (o'!;,c•,y+eo,y'+eo'),o) = 

= Uo'D~ + <[!; - Id~ :;,Jc•,y+e,o,y'+~,o')o,o) 

~ no'•~ + yl ol~ ;?; en ol f. 
The last inequality is proved by lemma 2.1. D 

By the same techniques used in §§2-4 one can prove that, provided (6.2) 

holds, the respective Galerkin solutions of 

rm rm· w,w•••=,m ,imv·m .... ··11J11J1····-·•-cs-, ®'.IW.71111W'~7"'·901J1 pr·7111w··71y 

" 
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(6. 3) 

and 

(6. 4) 

are unique and have the error bounds (3.6) - (3.7) and (4.5) respectively. 

Furthermore, one can prove, using the techniques from §5 that the sequence 

{Z0 ,z 1, ••• } generated by 

(6.5) 

= ~( • Z Z I ) Z + ~ ( • Z Z f ) Z f f ( 2 2 I ) ay • n, n n ay I , n' n n - • ' n. n ,wh >' 

converges quadratically to the solution of (6.4). 

6.2. Higher order problems 

In this section we want to show that the results from §§3-5 can be ex

tended to higher order self-adjoint boundary value problems with pure 

Dirichlet conditions. We therefore define the following 2m-th order self

adjoint boundary value problem 

(6. 7) 

m 
Ly= l (-l)Q,+1 

Q,=0 
x E [a,b] = I; 

where pQ,(x) (£=0, .•. ,m) are supposed to be sufficiently smooth and pm(x) ~ 

~ ~> o. 

The purpose of this section is to show that the properties of the 

Galerkin approximation of the solution to (I.I) - (1.2) can be generalized 

form> 1. To this end we define 
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m R. R. 
u,v € ir;;(I); B(u,v) = l (p1D u,D v), 

R.=0 

(6.8) A 
inf B(u 2u) . = 

UE~(I) 
2 ' UuD 0 

m I m R. H0 (I) = {u u E H (I) ; D u(a) = O, R. 

CIARLET et al. [1967] prove that the solution y of (6.7), if it exists, 

strictly minimines the functional 

b w(x) 

(6.9) I[w] = B(w,w) +2 f [ f f(x,t)dt]dx 

a a 

m over H0 (I) and satisfies the weak Galerkin from 

(6.10) B(y,w) + (f(•,y),w) = O, 

At a given partition n 

S~,m as follows 

(6.11) 

a= x0 < x 1 < ••• < xm = b, we define the space 

One easily sees that k ~ 2m - 1. This space is a generalization of the 

space Sh in the §§2-5. In the sequel we denote this space by Sk,m. 

We now approximate y by minimizing I[w] over Sk,m, which approximation is 

given by 

(6.12) 

In order to get error bounds for yh, we first confine ourselves to linear 

boundary value problems, i.e. to problems of the form 

(6.13) 

Lu 

·~•··~.-=······~···-"-~ 

$ 

= -s(x), X € I 

R.=O, ••• ,m-1. 



km The Galerkin approximation~ ES' of u is given by the formula 

(6.14) 

THEOREM 6.1 Let u E Hk+l(I) n ~(I) be the solution of (6.13) and let 

~ E sk,m be the solution of (6.14). Let the symmetPia bilineaP opePatoP 

B : ~(I) x ~(I) + 1R be bounded and stPongly coePcive, i.e. 

(6.15) 

w E ~(I); 

25 

Then (6.14) has a unique solution and the error function ~(x) = (u-~)(x) 

has the following bounds 

(6.16) 

R, = o, ... ,m; 

ID R, ( )I <_ Ch2(k+l-m) u n • 
eh xj u k+l' R. = O, ••• ,m - l; j = l, •.• ,M - 1. 

PROOF: The uniqueness follows directly from the strong coercivity of B. The 

first error bound is proved in STRANG & FIX [1973]. In order to derive the 

second error bound, we introduce the Green's function of (6.13) (see also 

DOUGLAS & DUPONT [1974] and CODDINGTON & LEVINSON [1955]), i.e. the unique 

solution of 

-L~ G(x,O = O, ~ EI \ {x}; 

~ = a,b; R. = O, ••• ,m - l. 

(G(x, •) ,Lu) m 
= u(x), u E H0 (I), x EI. 
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This Green's function has the following properties 

(i) 

(ii) 

(iii) 

G(x,•) E H2m-l(I) n H;(r) ; 

G(x,~) = G(~,x), (x,t) EI x I; 
t k+l k+l m 

DX G(x,•) EH [a,x] n H [x,b] n Ho(I), t=O, .•. ,m-1. 

t k+ I k+ l . .m Now since D G(x.,•) EH [a,x.] n H [x.,b] n .tL0 (I), j = 1, ••• , M; 
X J J J k 

t = O, .•• ,m - I, this function can be approximated by a wh ES ,m such that 

(see CIARLET & RAVIART [1972]) 

.£, 
IID G(x.,•) - w II 

x J h m 

(6.17) 

11•112 n = 
1T' "' 

t = 0,1, •.•. 

Since for any u E ~(I) one can write 

B(u, G(x,•)) = u(x), 

.£, 
D ◄=h (xj) 

= B(•=h,wh) 

It follows from (6.15) and (6.17) that 

IDleh(x.) I E Cllehll infk 11D.£, G(x. •) - w II :::; C hk+l-mllull 1 * 
J m S ,m x J ' h m k+ 

WhE 

k+l-m t * Ch IID G(x.,•)11 kl 
X J 7T, + 

Since 11D.£. G(x .. , • )II k 1 is bounded, the second error bound has also been 
X J 1T, + 

proved □. 
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Now that superconvergence at the knots has been established for higher 

order problems, it can be shown that the results of §§3-5 can be generalized 

in the following ways. 

THEOREM 6.2 (Generalization of theorem 4.1). Let <a,S>, defined by (4.2) 

and (4.3) be an approximation of (a,S) which is exact if aa € P2k-2m+l(Ij), 

J = l, ••. ,M. Then, if his small enough, the weak Galerkin foPm 

(6.18) 

has a unique solution zh and for the error function eh= u - zh (u is the 

solution of (6.13)) the error bounds (6.16) hold. 

af THEOREM 6.3 Let ay(x,y) ~ y > -A, A defined by (6.8). Then, both (6.10) 

and (6.12) have a unique soltion y and yh, respectively. For the error 

function eh= y - yh the bounds (6.16) hold. 

* af THEOREM 6.4 ,.Let B (zh,wh) be defined by (6.18) and let 0y<x,y) ~ y > -A. 

Then, if his small enough, the Galerkin form 

(6.19) 

has a unique solution with error bounds (6.16). 

THEOREM 6.5 Let z0 € sk,m be an initial guess of the solution of (6.19) 

and let the conditions of theorem 6.5 hold, then the sequence of functions 

{z0 ,z 1, ••• } generated by 

* af B (Zn+l'wh) + <-(• Z )Z w > = ay 'n n+l' h 
(6.20) 

converges quadratically to the solution zh of ( 6. I 9), provided that U zO - Zh ff 

is small enough. 
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Since accurate proofs of these theorems would mainly consist of copying 

§§3-5, we just outline them. 

PROOF of theorem 6. 2 Analogue to DOUGLAS & DUPONT [ 1974] we prove for 

oh= uh - zh (the solution of (6.14) and (6.18), respectively) 

B(oh,oh) = IB(~,oh) - B(zh,oh)I s 

$ l<s,oh) - <s,oh>I + IB*(zh,oh) - B(zh,oh)I. 

k+l-m) from which it can be proved that llohll = O(h and hence it can be 
k+ 1-R- m 

proved that llohllt = O(h ), for R- = O, ••• ,m-l. This is done by proving 

that llohllt s ChllohllHl' t = O, ... ,m- L 

R, 
The errors D oh(xj) at the knots xj are given by 

IDR-oh(x.) I = jB(oh,DR-G(x.,•))I = 
J X J 

= IB(oh,D~G(xj,·)-wh) + B(oh,wh)I $ 

s IB(oh,D~G(xj,·)-wh)I 

+ I (s,wh) - <s,wh>j 

+ IB*(zh,wh) - B(zh,wh)I. 

By taking wh such that 

II ff~G(x., • )-whll 
X J m 

one obtains the error bounds (6.16), since one can prove that all three 
2(k+l-m) 

term are of order h (see also DOUGLAS & DUPONT [1974]). O 

PROOF of theorem 6.3 m One can prove that for any u,v E H0 (I) the inequality 

B(u-v,u-v) + (f(•,u) - f(•,v),u-v) 2:: Cllu-vll 2 
m 

holds, which proves the uniqueness of the solutions of (6.10) and (6.12). 

The error bounds (6.16) are obtained by comparing yh with the Galerkin 



solution 'ii E Sk,m of 

c)f 
B('ii,wh) + <ay<•,y)'ii,wh) = 

= <:!<•,y)y - f(•,y),wh), wh E Sk,m, 

which has the same error bounds (6.16) □. 

PROOF of theorem 6.4 One can prove that if his small enough for any 

'ii'vh E Sk,m the inequality (we set oh= 'ii - vh) 

holds, which proves the uniqueness. The error bounds (6.16) are obtained 

by comparing zh with the solution 'ii of the form 

which has the error bounds (6.16) O. 

PROOF of theorem 6.5 N km Let{~.}. 1 be a basis of S ' • If we set 
'1'1 1= 

N 
I q.cj>. <x>, 

i=I 1 1 

and apply (6.19) for cj>., i = 
1 

-+ -+ -+ 
A q + F(q) = 0 

* A= (B (cj>.,cj>.)) 
1 J 

l, ••• ,N, we obtain the nonlinear system 

-+ N 
F = ((f(•, l q.cj>.),cj>.)). 

j=l J J 1 

29 
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This nonlinear system can be iteratively solved by the Newton-Raphson algo

rithm (see ORTEGA et al.) 

(6.21) n = O, ••• , 

which converges quadratically to q provided the Euclidean norm lfq(O) _qll is 

small enough. If one applies (6.20) for~., i = l,~•6,N, one obtains (6.21). 
l. +(Q) -+ 

Since Uz0-zhllO is equivalent to the Euclidean vector norm lfq -qll, iteration 

scheme (6.20) converges quadratically to zh if llz0-zhll is small enough □. 

7. NUMERICAL EXAMPLES 

In this paragraph we give three examples of nonlinear two-point boun

dary value problems with Dirichlet boundary conditions. They were solved 

on a CDC CYBER 73/28 computer. 

Example I. 

Y" = ey, x E [0 I] ' . 
( 7. I) 

y(0) = y(I) = 0. 

This classical example (see e.g. CIARLET et al. [1967], DE BOOR & SWARTZ 

[1973] and WEISS [1974]) has the analytic solution 

(7. 2) 

(i) 

y(x) = C 
2 tn ----- + tn 2, 

.£.ex-½) cos 
2 

c = I .336055695. 

In order to test the superconvergence at the knots we work as follows: 

[0,1] is partitioned into 4, 8 and 16 segments I. of equal length, 
J 

respectively; 

(ii) for M = 4,8,16 and k = 1,2,3 

we define 

max jy(x.) - Zk M(x.) I, 
. I M I 1 ' 1 
1= , ••• ' -



where zk,M E Sh is the solution of 

(7 .3) 

<a,S> defined by (4.l)-(4.3). 

In the following table we list the quantities 

(a) 

(b) 

k = 1,2,3; M = 4,8,16 ; 

.Q,n(ek,M I ek, 2M) 
in2 k = 1,2,3 M = 4,8 ; 

· c( 1) 2k h ld h h . 1 2k since ek,M ~ M , rk,M sou ave t e approximate va ue • 

TABLE I; maximum errors and ratios for problem l. 

k = 1 

1 • 98 

ll • 27 I 0-4 

II. 99 

k = 2 

2.8710-6 

3.98 

3.99 

k = 3 

5.94 

6.09 
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For each value of M three iterations of scheme (5.4) were needed to obtain 

the solution of (7.3) fork= 1. 

This problem has been treated by several other authors. 

(a) CIARLET et alii [ I 96 7] solved (7. I) by minimizimg the functional 

I[w] = f([w'(x)J 2 + 2ew(x))dx 
0 
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over the space H~(I) n Pil), i.e. the subspace of H~(I) consisting of poly

nomials of degree not greater than N (N ~ 2). This method gives for this 

example good results (e.g. a supremum error of 5.03 10-8 for N = 6) but gene

rally leads to ill-conditioned nonlinear systems. 

(b) DE BOOR I~ SWARTZ [1973] solved (7. I) by collocation at sixth order 

Lobatto points, using twice differentiable Hermite quintics. They used a 

uniform grid 7T : x0 < x 1 < ••• < \i· For M = 4. they found (with ye the collo

cation solution): 

max ly(x.)-y (x.)j = 2.0 10-9, 
1 C 1 i=l,2,3 

which is about the same as e3 , 4 from table I. 

(c) WEISS [1974] applied collocation at sixth order Lobatto points to solve 

the problem 

y' = z 

{ z' = eY, x EI, y(O) = y(l) = 0. 

He also used a uniform grid. For M = 3 he found 

max 
i= I, 2 

ly(x.)-y (x.) I = 2.66 10-9, 
1 C 1 

which is also slightly greater than e3 , 4 fron table I. 

Exarrrp le 2 • 

XE [0,J] 

y(0) = y(I) = 0 ; 
(7 .4) 

A= .Q.n 
l+e 

2 , B = £n2. 

This problem has the analytic solution 
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(7 .5) 

Let TI: 0 = x0 < x1 < ••• < xm be a uniform partition of I for M = 4,8,16 and 

let Zk,M E: Sh be the solution of 

(7.6) p(x) = 1 X 
+ e ; 

f(x,y) = exp(y+Ax+B), 

where<•,•> is defined by (4.1) - (4.3). 

As with problem 1, we list the quantities ek,M and rk,M. 

TABLE II; maximum errors and ratios from problem 2. 

k = 1 k = 2 k = 3 

1.99 4.01 6.00 

2.00 4.00 6.25 

1.6710-9 

Two iterations of scheme (5.4) were needed to solve (7.6) fork= I, when 

we took Z~O~ = O. , 
Since no numerical results were known from the literature for this pro

blem, no comparison with other problems was made. 
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Example 3 

iv 3 6 y - 2y" + (y) = - 12cos2x + sin x, XE [0,TI] 
(7. 7) 

y(O) = y'(O) = y(TI) = y'(TI) = o. 

The analytic solution is y = sin2x. A uniform grid O = x0 < ••• <~=TI 

was made for M = 4,8,16. The solution of (7.7) was approximated in the space 

Sk, 2 by the solution zk,M of 

(7. 8) 

where <a, S> is an approximation of (a, S) which is exact if aS E P 2k_/Ij), 

j = I, ... ,M. To that end we use k-point Lobatto quadrature. 

Besides ek,M and rk,M we define fork= 3,4,5 and M = 4,8,16. 

max jy'(x.)-Zk' M(x.)j, 
"I MI 1 ' 1 1= , ••• , -

k = 3,4,5 M = 4,8, 16 

= tn(ek /ek, 2 ) . 
tn2 ' k = 3,4,5 M = 4,8. 

The results are given in table III. 



TABLE III; maximum errors and ratios of problem 3 

k = 3 k = 4 k = 5 

ek,4 4.8210-3 2.9210-4 9. 11 10-6 

rk,4 4.98 6. 17 8.27 

' ek,4 1.9410-2 1.1410-4 9.3710-6 

I 

rk,4 4. 13 5.91 8.26 

ek,8 1.5310-4 4.0410-6 2.9610-8 

rk,8 4.33 6.04 9. 17 

I 

l\:,8 1.1110-3 1.9010-6 3.0610-8 

I 

rk,8 4.03 5.99 9.02 

ek, 16 7.5810-6 6.1510-8 5.12 10-11 

I 

ek, 16 6.7610-5 2.9910-8 5.9010-11 

Starting with Z~~~ = 0 as an initial guess for the solution of (7.8) it 

took four Newton-Raphson iteration steps to solve (7.8) fork= 3. 
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4 Since nz3 ,M-yll 0 = 0(h ), only one further iteration step was needed to solve 

(7.8) fork= 4,5, using z3 Mas an initial guess. Fork= 3 we used piece-
. H . b' b, . f Sk, 2 h . . . 1 d h wise ermite cu ics, as a asis or • Eac iteration step invo ve t e 

solution of a (2M-2)-dimensional linear system with positive definite penta-

diagonal matrix (see STRANG & FIX [1973]). 
Since no numerical results were known from the literature for this pro-

blem, no comparisons were made. 
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