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Numerical solution of mildly nonlinear two-point boundary value problems by

means of Galerkin's method

by

M. Bakker

ABSTRACT

This paper deals with the numerical solution of certain classes of even-—
order, self-adjoint, positive-definite, mildly nonlinear two-point boundary
value problems, such as those analyzed by CIARLET, SCHULTZ & VARGA [1967].
The solution of the problems is approximated by piecewise polynomials of de-
gree k which are m—-1 times differentiable (2m being the order of the boundary
value problem). If h is the mesh width of the trial space Sh’ then it is
proved that the numerical solution has a global error of order hk+1_2,

2 =20,...,my, and at the grid points the first m~1 derivatives have a local

2(k+1- .. .
(k1 m). In two ways this is an extension of the results

error of order h

reported by DOUGLAS & DUPONT [1972,1974]:

(i) We prove that those results also hold for certain nonlinear problems.

(ii) For linear, and certain nonlinear, self-adjoint, positive~definite
boundary value problems of order 2m, we prove that superconvergence

generally holds for derivatives up to order m-1.

KEY WORDS & PHRASES: Galerkin's method, mildly nonlinear boundary value

problems, superconvergence.







1. INTRODUCTION

In this paper we begin by studying a numerical method for solving the

nonlinear boundary value problem:

(1.1) Ny = - é%-(p(x)gi) + f(x,y) = 0, x € [a,b] =1,
(1.2) y(a) = y(b) =0,

where p and f are supposed to be sufficiently differentiable and
p(x) 2 Py > 0, x € I.

The solution of (1.1)-(1.2) belongs to the space Hé(I) n HZ(I), with

HN(I) = {v | Dlv e L2(1), 3 =0,...,m},

H(D = (v | ver (D, va)=v® = o0,

where DJ stands for dJ/de.

In the space Hm(I) we define the Sobolev inner product and Sobolev norm

by:

(DJu,DJv),

I o~8

(u,V)m = (u,v) =

H(I) j=0
Tal = lul = /L,0_,
m H'(T) "

(.,.) being the inner product in LZ(I).

Since the solution y of (1.1)~(1.2) also satisfies the weak Galerkin

form (with £(.,y): I - R meaning f£(x,y(x))):
(1.3)  Gyhw)+ (L3, =0,  we H (D),

it is reasonable to suppose that y can be approximated in a subspace of

1
HO(I).

DEFINITION 1.1 Let Pk(E) denote the set of polynomials of degree not greater

than k restricted to the interval EcI. Let 7: a = Xg < Ky < e <xy = b be




a partition of I with

h., = x, - x
i i i

(]-4) IJ- = [xj-l’xj], j = ]’ ’M’
h =

max h..
J

Further we assume that 7 is quasi-uniform, i.e. hj 2 Ch, where C is a con-
stant independent of h and M. Then we define the space of kth degree piece-

wise polynomials by
- 1 .
(1.5) Sh ={w | we HO(I), W e Pk(Ij), j= 1,...,M}.

In the following sections we will show how the solution of (1.1)-(1.2)

can be approximated in S, and under what conditions. Throughout this paper

c, Cl’ C2, c', etc. willhdenote generic constants which will not be equal
and 6, 0", 61, 62, etc. will be continuous functions of x on I, not neces-
sarily equal and bounded between -1 and +1.

We conclude this introduction with a lemma which we shall need through-

out this paper.

LEMMA 1.1 (Poincaré's inequality). Let w ¢ Hé(I); then

A

lwl < c Ipwl,

A

lwl ) < ¢ lowl

hal < c Iwl |,

A

where Il .l denotes the supremum norm on I.

PROCF

X
()| |[ -w' (£)dt]
a

< { * d } * ' 2 3

< t}® o {| [w'(t)]” dt}* (Cauchy-Schwartz)
a a

< V/(b-a) - IDwl xel,
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which proves the first inequality; the other inequalities can be proved from

the first one. [

2. BACKGROUND MATERIAL

In this section we mention some properties of the operator N defined
by (1.1) which play an important role in the uniqueness of the solution of
(1.1)-(1.2). A great deal of this section is derived from CIARLET, SCHULTZ
& VARGA [1967].

DEFINITION 2.1 The operator N defined by (1.1) is said to be strictly mono-
tone if for any y,z € Hé(I) n HZ(I) the inequality

(2.1) (Ny-Nz,y-z) =2 C Hy—zﬂ?

holds. (This definition is a particular case of strict monotonicity as de-

fined in CIARLET, SCHULTZ & VARGA [1969].)

Next we define, for p(x) 2 Py > 0,
(2.2) A= inf  {PDw.Dw)
1 Il vl
weHO(I),wio 0

One can easily recognize that A is the smallest eigenvalue of the oper-
. 2 . . . .
ator -D(pD.). acting on Hé(I) n H(I). By expanding w(x) into its Fourier
series, we obtain
m 2

. 12
A 2p, inf 7 =Py 5230
vl

weHé(I)

LEMMA 2.1 Let y > —-A, where N is defined by (2.2); then for any w € Hé(I)
(2.3) ol = {(pw' ') + Y(w,i) 3

18 a norm equivalent to “w“l'



PROOF We distinguish two cases: vy < 0 and v = O.
(1) vy = 0:

(pw',w') + y(w,w) = $(pw',w') + y(w,w) + §(pw',w')

v

Ip (0" W) + (y+EA) ()

v

min(ipy,v+ih) uwuf = C nwuf.

1

On the other hand

(2.4) |(pw',w') + y(w,w)| < C, nwuf,

Cz = max(ﬂpﬂm,y),

which proves the lemma for y > 0.

(ii) y < 0: since vy > -A,
Y(w,w) > =(pw',w'), Vo€ Hé(l).
This implies that there exists an a, 0 < a < 1, such that

y(w,w) = —a(pw',w') > —(pw',w').

So

(pw',w') + y(w,w) = §(pw',w') + dy(w,w) + {(pw',w') + iy(w,w)

v

F(h+y) B2+ §(1-a) (pu' w)

v

3 (A+y) zwng + §(1-a)p, Hw'ﬂg

v

§ min(A+y,(1-a)py) Tul?,

The rest of the lemma is proved by application of (2.4). [

THEOREM 2.1 Let f(x,y) be partially differentiable in x and y and satisfy



f(X,yl) - f(xsyz)

1 2
(2.5) — 2 Y, Y,s¥, € H (I) n H(I),
v, Yy 1°72 0

with v > =\, where \ is defined by (2.2); then the operator N defined by
(1.1) acting on Hé(I) n HZ(I) 18 strictly monotone.

PROOF By means of partial integration, one obtains

Ny =Ny,5¥ 7Y, = (P(y7¥,) "5 (37y) ") + (EC,y )£ ,7,5),5,7Y,)

v

— ] — | — -
Py "5 (3,750 ") + Y(y,79,5¥,77,)»
from which the theorem is proved by application of Lemma 2.1. [J

We now obtain

THEOREM 2.2 Let (1.1) admit a solution y and let f satisfy (2.5); then
(i) y s unique;
(ii1) y strictly minimizes the functional

b 9 w(x)
(2.6) I[w] = f px)[w'(x)]” + 2 J f(x,t) dt} dx
a

a

over the space Hé(I);

Gii) y uniquely satisfies the weak Galerkin form
1
(2-7) (PY'sW') + (f(-9Y)aW> =0, w € HO(I)-
PROOF (See also CIARLET et al. [1967]).
(i) Suppose z is a second solution and € = y-z # 0. Then after applying
Theorem 2.1 we get

0 = (Ny-Nz,e) = C uguf > 0

which is a contradiction.

(i1) Set e(x) = w(x)-y(x), w € Hé(I); then




I[w] - I[y] =
b 9 y(x)+e(x)
= J {p(x)[e"(x)]” + 2p(x)e'"(X)y"(x) + 2 [ f(x,t)dt} dx
a y(x)
b 2 y(x)+e(x)
= J {p(x)e'"(x)]1" - 2f(x,y)e(x) + 2 f f(x,t)dt} dx
a y(x)
b 9 y(x)+e(x)
= J {px)[e'"(x)]” + 2 J [f(x,t)-f(x,y)]dt} dx
a y(x)
b 9 y(x)+e(x)
> J {(p(x)[e"(x)]” + 2 J y(t=-y)dt} dx
a y(x)
b 2
= J {p(x)[e'"(x)]1” + yle(x)]17} dx
>clel? 0

So

Iyl < Ilwl, Ww e Hé(I).

If there is another z ¢ Hé(I) which minimizes I[w] then
2
0= I[y]l - 1I[z] 2C Hy—zﬂl,

from which it follows that y =

@ii) This has already been proved by partial integration of (Ny,w). [

Now, since we have proved that y minimizes the functional I[w] over
H (I) we may expect that y can be approximated by a functlon'ys which mini-
mizes I[w] over a finite dimensional subspace S of H (I), just as is the
case when N is a linear operator. We call this approx1mat10n method the

Rayleigh-Ritz-Galerkin method.

THEOREM 2.3 Let S be a finite dimensional subspace of Hé(l). Then there

18 a unique Yg € S which strictly minimizes 1[w] over S. This g satisfies

the weak Galerkin form




(Pyéswé) + (f(eyys) :WS) = 0, WS € S.

PROOF See SCHULTZ [1973]. O

In the next section we apply Theorem 2.3 to the space Sh as defined in

Section 1.

3. THE RAYLEIGH-RITZ-GALERKIN METHOD

In the previous section we have proved that the solution y of (1.1)-

(1.2) can be approximated by a unique Yy € S. which minimizes I[w] defined

h
by (2.6) over Sh’ provided that f(x,y) satisfies (2.5).

We first confine ourselves to the case that f(x,y) is linear in y, i.e.
f(x,y) = r(x)y - s(x).

In this case (1.1)=(1.2) becomes

d

" ix (p(X)gi) + r(x)y = s(x), xel,

(3.1)
y(a) = y(b) = 0.

The weak Galerkin form (2.7) becomes

(3.2)  (py'w) + (yw) = (W), woe B(D),
and y strictly minimizes the functional

(3.3) Jlw]l = (pw',w') + (xw,w) - 2(s,w)

over Hé(I).

THEOREM 3.1 Let the space Shkof’kth degree piecewise polynomials be de-
fined by (1.5), and let y ¢ H +I(I) n Hé(I) be the solution of (3.1); then

there s a unique Y € S, which strictly minimizes the functional Jlw], de-

h



fined by (3.3), over Sh’ provided r(x) 2 v > -A. This Y 18 uniquely deter-

mined by the weak Galerkin form
(3.4) (pypswp) + (rypsw) = (s,w), w, €S,

and has the following error bounds:

(3.5) by-y, 1, < ¢ 0 Mg

2y oy

(3.6) ly(x)-y, (x;)] <Ch K+1°

where x, are the knots of the partition m.

PROOF The existence of a Yy which minimizes I[w] over Sh is proved by Theo-
rem 2.3, which also states that Y1 satisfies (3.4). The error bound (3.5) is
proved in STRANG & FIX [1973]. The error bound (3.6) is proved by DOUGLAS &
DUPONT [1974] for r(x) = 0, but the proof can be extended to r(x) = vy > —-A.
g

We now return to our problem (1.1)-=(1.2). We can rewrite it as follows:

—(pu')' + 3f 23 O _
(3.7) (pu')' + 5y u 3y £,

i.e., we put it in the form (3.2) with

r (x) %(x,y),

(3.8)

s(x) y—g—f;(x,y) - f(x,y).

The unique solution of (3.7) is of course u(x) = y(x).

We now derive the error bounds for the function ¥y, € Sh which minimizes

I[w] over S, . To this end we study an auxiliary variational problem. This

h
method has several analogies with a method used by RUSSELL [1974] to derive
error bounds for the collocational solution of nonlinear boundary value prob-

lems.



LEMMA 3.1 Let (1.1)-(1.2) have a solution y and let f(x,y) satisfy (2.5).
Let r(x) and s(x) be defined by (3.8). Let Sh be defined by (Y.5). Then

there is a unique u €S
fined by (3.3), over S

form

which strictly minimizes the functional Jlwl, de-

This u

he h 18 uniquely determined by the weak Galerkin

TN T4 - @t
(puh’wh) + (ay(asY)uhsWh) (

(3.9) By

('sY)y_f(-’Y) ’wh)s Wh € Sh’
and has the following error bounds:

¢ n¥ Ay

IA

ﬂy—uhﬂz K+l
(3.10)

¢ nZ¥iyl

IA
[ N
]

ly(Xi)‘Uh(Xi)l k+1°

PROOF Direct application of Theorem 3.1 to problem (3.7). [

We now obtain

THEOREM 3.2 Let (1.1)-(1.2) have a solution y and let f(x,y) be twice par-
tially differentiable in x and y and satisfy (2.5). Let S, be defined by
(1.5) and let Yy € Sy be the unique element which strictly minimizes the
functional I[w] defined by (2.6) over Sh’ Z.e. the solution of the weak

Galerkin form

- v 1 =
(3']]) BQ(yh’wh) - (Pyh3wh) + (f("yh)’wh) 0, Wh € Sh
Then Yh has the following error bounds:
by, ~yl, < c BTy L e =0,
(3.12)
2k .
th(xi)—Y(xi)' <Ch H}’“k_”, 1=0,1,...,M.

PROOF We apply the quasibilinear operator B
of (3.9). If we put e

defined by (3.11) to the solu-

Q
= yu, then, for all w, ¢ S

tion u h h

h
application of (3.9)

h ., we get after




(3.13) BQ(uh’Wh) = (Pul;,wl;) + (£(. ,uh) swh)

= (e 03 + ECu) = £CL3) )

T PR 14
2
_ a2 9T f '
= ( eeh ;;5(.,y+e eh),wh).

But we also have

BQ(uh,wh) = BQ(uh,wh) - BQ(yh,wh)

(pCup=y)swp) + (£C,u)=£(.,y, )W ).

So, if we set Wy T Uty s dh, we obtain after application of Lemma 2.1:
(3.14) B (u,68) = (p&!,6!) + (2L(.,y. +66.)5.,5 )
: Q  h’'h >“h 9y *">’h " "h’ 'h’'h

[\

2
7 1)
(P8],60) + ¥(8,,8,) = C b8 17

If we combine (3.13) and (3.14), then we have:

2 2 a%f
(3.15) C Héhﬂl < IBQ(uh,6h)l < I(—eeh ;;f("y+e'eh)’6h)!
< uéfiu I(e2,16.1)] < (b-a) M le 12 15 I (Poincaré)
= 3y2°° h’'"h = ho hl ’

From (3.15) and (3.10) we get

2k+2 I 2

2
(3.16a) 5 <cClels<Ch yie, -

Poincaré's inequality gives

sl <cn®%ap? |
h O k+1
(3.16b) 2k+2 2
16,1 < ¢ n? gl

T
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From (3.16) we get

k+1-2 2 2k+2
“y—yhul < lly—uhllg + Huh yh“l < C1 Hy"k+! h + C2 "y“k+1 h
(3.17)
ly(xi)-yh(xi)l < Iy(xi)—uh(xi)i + ldh(xi)l
2k 2k+2 2
< C1 h "y“k+l + 02 h Hka+1,

which proves the theorem. [J

4, QUADRATURE RULES

Let Yy € S, be the solution of (3.11). If we represent Yh by

h

2

yh(X) = JZ] Qj ¢J(x)s

. . T . .
where {¢j}?=l is a basis of Sh’ then the vector (ql,...,qN) is given by the

nonlinear system
(4.1) Z(P¢ LY +<f<,Z 4,65),8;) = i=1,...,N,
=] j=1

In order to solve (4.1) iteratively one has to evaluate the inner products

(p¢ ¢ ) and (£(-, q ¢ ), ¢: ). HERBOLD & VARGA [1970] suggest toNevaluate

9

(p¢ ,¢ ) exactly a%d to use an interpolatory quadrature for (f(° ,_z q ¢ ) ¢)

but they leave unsolved the problem how to evaluate (p¢l,¢1) We,Jtherefore,
evaluate a method for approximating both inner products, which leaves the
error bounds from §3 unchanged. This method was developed by DOUGLAS &
DUPONT [1974].

4.1. Linear boundary value problems

We study the boundary value problem (3.1) where r(x) = vy > -A,
A defined by (2.2)., Let w : a = X, < X € een < Xy = b be a partition of I
with mesh width h. Let Sh be the space of k~th degree piecewise polynomials.

We now introduce an approximation of (,) in the following way.




12
Let
S
(4.2) QE) = [ w, f(ny), s 21,
£=1

be an approximation of fé f(x) dx which is exact if f is a polynomial of

degree less than 2k. Let W > 0, % = 1,.0.58, and 0 < Ny <Ny < ees <n < .
We define
gj’g’ =xj_l +hj nﬂ,’ j = l""’M; ’Q‘= 1,.-.,8;
7 2
(4.3) <a,8>j = hj RZ] WZ a(Ej’g)B(Ej’Z), a,B € L (Ij), 3= 1,00.,M;
M
<a,8> = z <a’8>,.
j=1 ]

Clearly, <a,B> is equal to (a,B) if axB € P (Ij), j = 1,e..5M. If not,

2k-1
then the error <a B> - (a,B) is proportional to

M
2k, . 2k
1 By IDT (@8]

. € interior(I.)’
j=1 ] ( J)

THEOREM 4.1 Let <-,+> be defined by (4.3) and let p(x), r(x) and s(x)
suffictently smooth, p(x) 2 Py > 0, r(x) 2y > =\, A defined by (2.2); then
for sufficiently small h the modified weak Galerkin form

(4.4) <pU',wh

b > + <rUh,wh> = <g,w, >, w, € S

has a wnique solution Uh' The following bounds exist for the difference

between UR and the solution of (3.5)

k+1-2

“ y-Uhn 9 O(h " Y" 2k.) 9

(4.5)
2k

]

IY(xi)-Uh(xi)l O(h Zk)’ i = O"“’M'
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PROOF DOUGLAS & DUPONT [1974] gave a proof for r(x) = O, buf it can also be

proved for r(x) =2 y > =\ after application of lemmas 2.1 and 4.1. [J

4,2, The nonlinear boundary value problem

We will apply theorem 4.1 to obtain similar error bounds for the non-
linear case. As in §3 we use the linearized boundary value problem (in

Galerkin form)
of of 1
(4.6) (Pu' ’W') + (E&' u:W) = (Y '5';,' - f("Y) :W)’ w € HO(I):

as an auxiliary problem. In order to obtain the error bounds wanted we have

to prove a few technical lemmas.

LEMMA 4.1 Let y > -A, A defined by (2.2) and let <o,B> be an approximation
to (a,B) which is exact if aB € PZk—l(Ij)' Then for sufficiently small h

*
"whﬂY = {<pwé,w'> + y<w ,wh>}

h

s a norm on S, equivalent to "wh"l.

PROOF We know by lemma 2 1 that ﬂwhﬂ is a norm equivalent to ﬂw ﬂ . We now
compare Hw " and (Hw I ) and, therefore, estimate the dlfferences
(4.8) (pwh,w ) - <pwh,wh> and (wh,w ) - W sW >
M
R | N N Ty = LI - =
(a); (pwp,wi) = <pwp,wi> jzl[(pwh,wh)lj <Py W5 ]
M

= 21[((13 p. )wh,wh)IJ - <(p-p. )wh.wh> 1+

+ ZIPJ[(wh,Wh)IJ - <wh9w > ]

= - ¥ 7 - - ¢ 7

where P; denotes the average value of p(x) on Ij. Since on ij
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lpG)-p;| < hylp"(®)] < hj“p'“°° ,

we geAt
M
? ? - 7 ] ] ¥ 7 7 7 =
I(pwh,wh) <pwh,wh>| < jzlhjﬂp ﬂw {wh’wh)lj + <wh,wh>j}
= 2hlp'l Iw'1? < 2nlp'l W 12,
© "h0 © " h
ok N ok, 2
b); (Wh’wh) - <wh,wh> = O(h -g (D (wh)]x=£. ¢ I.) =
J=1 ] ]
M 2 M
_ 2k k _ 2k~-1 Ko p2 .y _
= 0(h .Z (D vile, « 1.) = 0(n .ZIU) w17 )
i=1 ] J i=1 ]
2k-1 2 " 2
= 0(h A = 0(h } b 1 ) = 0(hlw I7).
j=1 H(I.) j=1 H (I.)
j j
So

l(PWI;,W}'l) + Y(wh’wh) = <PW1;9W;1> - Y<Whawh>| <

TRk 2 2
< C1 hilp ﬂm wh i + C2 hllwhll1 < C3 hﬂwhﬂ‘,
from which we can prove the lemma. [J
LEMMA 4.2 For any u,v € Hé(I)
(4.9) <upvol < (bma)lul | Ivl_ < (b=a)?tul Ivl .
M s
PROOF |<u,v>| = I.Z B; Z wp u(Es V(e I s
=1 =1
M E ? s
< z h. w lu(E., DIlIv(g. )] < h Z w Ilullml!v"°° =
521 o= A TIE 3,2 j=1 J =1 2
M s 2
= lul _Ivl_ jzl hj z£1 w, = (b-a)lull _Ivl_ < (b-a) Huﬁ]ﬂvﬂl. 0

LEMMA 4.3 Let p(x) 2 Py > 0, 3f/3y 2 vy > =A. Then the weak modified
Galerkin form

(4.10) <pY',wﬂ> + <nyh’wh> = <yfy - £(*,y),w, >, W € Sh’
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has a unique solution Yy with the error bounds

: - kt+1-2
ly, -yl = 0(h S APRR

(4.11)

e
[l

2k
|yh(xi)"Y(Xi)i o(h “yﬂ2k) s 0,1,...,M,

PROOF Follows immediately from theorem 4.1 with r(x) = 3f/3y(x,y) and
S(x) =y 3f/3y - £(x,y). 0O
THEOREM 4.2 Let p(x) = Py > 0, £ 2y > -A. Then, for sufficiently small

y
h, the nonlinear modified Galerkin form

€ S

(4.12) <p2',W'> + <f(':zh)sw > =0, Wh h?

h h

has a wnique solution z, € Sy which differs from the solution y of

(1.1)=-(1.2) by the following bounds

k=20

IA

ly-z, 1, Ch "

(4.13)

IA

2 .
|(y=2,)(x;)| < C h kuyn2k , i=0,...,M

PROOF The same method is used by which theorem 3.2 was proved plus the

technical lemmas from this section. Let Yy be the solution of (4.10) and

put &y = y - yh, 6h = zh = Y- Then analogue to (3.13) we get

2
9 f 2
l<py[,wi> + <€(e,y,),w >| = I<-6-g?-(-,y+6'eh)eh,wh>l <
Bzf 2 2 2
1]
< H—-Eﬂm |<€h,wh>| <C uehum Ilwhl!oo <C “Ehuluwhnl'
oy
But also, if we put w_ = § , then after application of lemma 2.1, we obtain

h h’

<pyﬁ’6£> + <f("yh)’6h> =

(4,15) = <pwé,5é> + <f(o,yh),ah> - <pzé,§h> - <f(-zh),6h> =
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<p6£,6£> + <f(-,wh) - f(-zh),6h> 2

v

<p8l, 81> + <8, ,8,> 2 cnahﬂf.

h’>"h

Combination of (4.14) and (4.15) gives after application of (4.11)

2 2

(4.16a)

A

2 2k, a2
uahﬂl < cllehll1 <Ch ﬂyﬂ2k.

From (4.16a) we get, applying Poincar@&'s inequality

2k, .2
18,1, < ¢ h™Uyl7, ;5
(4.16b)
2ky 02
6, G| < ¢ hlyls

whence we can prove (4.13).

The uniqueness can be proven from lemma 4.1. [J

4.3. Lobatto quadrature

Now that we have proved that the use of a sufficiently accurate quadra-
ture does not change the order of accuracy of Galerkin's method, let us give
some examples of such quadratures. A well-known example is the k-point
Gauss-Legendre quadrature which integrates polynomials of degree less than
2k exactly. We want, however, to spend special attention to another kind of
quadrature with the same order of accuracy, namely k+l - point Lobatto
quadrature (see also HEMKER [1975] and ABRAMOWITZ [1964]). It is given by

k
Q(f) = ) w, £(n,);
k o=0 2 L

G
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where t, are the zeros of Pﬁ(t) on {~1,+1), Pk(t) being the k-th Legendre

polynomial. The weights w_  are uniquely determined by the requirement that

L

k 1
z w f(n ) = f f(x) dx,
im0 * P

whenever £ is a polynomial of degree less than 2k. We give Lobatto points

and weights for k = 1,2,3.

k = 1 (trapezoidal rule);

k = 2 (Simpson's rule);

Yo 3720 ¥ 2 - T2°

[

The great advantage of Lobatto quadrature is that we can let the
points gj 9 coincide with the nodal points of S (see also HEMKER [1975]):

2
any member of S

h is entirely determined by the values at the points Ej .
b

In the next section we will derive an efficient algorithm to solve (4.12)

using Lobatto quadrature,

5. SOLUTION OF THE NONLINEAR SYSTEM

In this section we derive an algorithm to solve (4.12) using Lobatto

quadrature.

5.1. The nonlinear system

Let 7 : =Xy < Xy <.l <X, T b be a quasiuniform partition of [a,b].
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We renumber the knots x; as follows: xo, xk, XZk""ka' We n?w define the

interior mesh points xjk+2 as follows:

(5.1) xjk+2 = xjk + hj+l n, = £j+l,2’ J = 04000,M1; 2= 1,...,k-1,
We now define a basis {¢ (x)} ] of Sh by the requirement

(5.2) ¢i(xj) = Gi,j’ 1 <i,j < kM-1.

Now, if we fill in ¢; in (4.12), we get
<Pz;1’¢i> + <f(',zh)’¢i> = 0’ 1= l,...,Mk—l.

But, since

M k
<E(+,2,),6,> =j£l b Z vy (B g0z (B5 D)8, (8, 1),
we get after application of (5.1) and (5.2)
<f(-,zh),¢i> = Wi f(xi,zh(xi)),
where Wi is a constant weight determined by
w(j—l)k+£ = hj v, s J=1l,000,M;5 2 =1,...,k"13;
W&k = (h -fh )wo, j=1ls...,M1.

Now, if we represent zh(x) by
kM-1
z (x) = . 9. (x
L) jzl a5 ¢;(0),

then (q],qz,...,qu_])T is determined by the nonlinear system

(5.3) Aq + F(Q =

where
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[
L]

i3 <P¢£’¢3> > i,] = 1,000,kM-13

L]
[l

e
i

wi f(Xi,qi), = lsco',kM_!o

(5.3) is iteratively solved by means of the Newton—Raphson method (see e.g.

ORTEGA & RHEINBOLD [1970]):

Jn(E(“) _ E(n+i)) - AE(n) + f(a(n)), n= 0,000,

(5.4)

_ of (n)
I = (ay+ W 84 5y (xhqy

)).

This method converges quadratically to the solution of (5.3) provided that

Hg(o)-aﬂ is small enough.

Since ¢i(x) vanishes outside the segment to which 3] belongs, the

matrix A has the following structure:

— 1
- Sk
: |
k x k 0
A
h e e -
I L 1
'o(k+1) I
! |
Cx(er1)
G
: |
(5.5) :
TR
I (k+1)x !
[ .
pierl)
Wk _ o bLkie .-k
[ .
0 koK
| )

Since the Jacobian of (5.3) is only nonlinear in the main diagonal, updating
of J can be done very easily. Iteration scheme (5.4) can be performed by
subroutines using symmetric band matrices.

In the following sections we will discuss the questions how acurrately

(5.3) should be solved and how to find initial guess for (5.4).
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5.2, Solution strategy

Since the solution of (5.3) is itself an approximation of the solution
of (1.1)=(1.2), which is of 0(h%¥) if i = O(mod k) and of 0(h**!) otherwise
it has no sense to solve (5.3) more accurately. At the other hand, since the
approximation error itself is not known, it is hard to decide whether or not

the iteration is to be stopped. We first prove the following

0
then the sequence of functions {ZO,Z],...,Zn,..,} € Sh defined by

LEMMA 5.1 Let Z, € S be an initial guess for the solution z, of (4.12);

' v of Ty =
PZoyp ¥yt <3y("zn)zn+l’vh> -

(5.6)

- of -
= <3y("zn)zn f(.,Zn),vh> > Vp € Sh

converges qaudratically to z,, provided "zh_ZO“O is small enough.

PROOF If one substitutes ¢i(x) in (5.6), one obtains scheme (5.4) which

converges quadratically if "zh—ZO"6 is amall emough. [J

We now outline the following strategy (see also Russell):

(i) Take an initial guess for ZO;

(ii) Iteration scheme (5.6) is performed for piecewise linear functions,
i.e. k = 1, until two subsequent iterates have a sufficiently small
difference, say at n = I;

(iii) if k = 1, the process has been finished;

if k > 1, then one can use Z_ as an initial guess for scheme (5.6) or

I

(5.4) by interpolating at the interior knots; since z, - ZI is of 0(h2),
iteration scheme (5.4) has to be performed once if k = 2 and twice if

k = 3 or 4, in order to obtain the error bound (4.13).

5.4. Work estimate

In this section we briefly report how much work it costs to solve (5.3)
by means of the Newton—Raphson method. We follow the strategy described in
§5.2.
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At the beginning the matrix A = (p¢ ,¢ ) has to be evaluated for k =1,
which costs M + 1 evaluations of p(x). Then iteration scheme (5 4) is per-

formed I times. The cost of each iteration is

(i) wupdating of the Jacobian and the righthand side which costs M + 1 eva-
luations of f(x,y) and (x,y)
(ii) solution of an (M-1)~- dlmen31ona1 linear system with a symmetric positive

definite tridiagonal matrix.

After an initial guess has been obtained this way, the matrix A = ((P¢i,¢[))
has to be reevaluated for k > 1. This costs (k—I1)M extra evaluations of p(x).
One now has to perform scheme (5.4) once if k = 2 and twice if k = 3 or 4.

The cost of each iteration 1is

(i) kM - 1 evaluations of £(x,y) and kM - 1 evaluations of %%(x,y);
(ii) the solution of a (kM-1) dimensional linear system with a positive de-

finite (2k+l)-diagonal matrix of the form (5.5).

If k = 2, the solution of the 5-diagonal system can be simplified by elimi-
nating the components with odd index beforehand. This so called static con—

densation is made possible by the special structure of the Jacobian.

All together the amount of work needed for the Galerkin solution of
(1.1) - (1.2) is

(i) kM + 1 evaluations of p(x);

(ii) I times the solution of an (M-1)-dimensional tridiagonal linear system;

(iii) I (M+1) + Ik(kM+I) evaluations of f(x,y) and %é(x,y), with Il =0,
I,=1,I;=1,=2;

(iv) Ik times the solution of a (kM—-1) dimensional linear system with (2k+1)-

diagonal matrix of the form (5.5).

6. GENERALIZATIONS

In this chapter a few generalizations of problem (1.!) - (1.2) are

sketchily discussed.

BIBLIOTHEEK MATHEMATISCH CENTRUM
—AMSTERDAM ——
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6.1. The nonsymmetric case

In the previous sections the righthand side was expressed in x and y
only. As a result the Jacobian matrix of the nonlinear system (5.6) was

symmetric. We now study the problem

Yx) = £y ),y (X)), x eI,
6.1)
y(a) = y(b) = 0.

We suppose that f is sufficiently smooth in its three variables.

LEMMA 6.1 The nonlinear operator N defined by Ny = -y" + f(x,y,y') is
strictly monotone, i.e. (Ny-Nz,y-z) 2 cﬂy—zﬂ%, V52 € Hé(I), if

of d of
(6.2) 3y ia 3y" >y > = A, x e I.
2
Il Dwll
A= inf Dw 0 _ T (2

wely (D 2 R

PROOF We put y —z =6, y, 2z € HS(I). Then, after partial integration, one

obtains

(Ny-Nz, y-z) =

navug + (£Co,y,y") - £(,2,2"),8) =

]

2 of
H6’H0 + (63;(-,y+66,y'+66'),6)

+ (a‘%—ﬁ-.(-,y+ea,y'+ea'>,a) -

of d of
Sy " Hax 01 1(5340,6,5'46,6')6,0)

2 2 2
16"l + ylsly > clely.

'l
I ﬂo + ([

v

The last inequality is proved by lemma 2.1. [J

By the same techniques used in §§2-4 one can prove that, provided (6.2)

holds, the respective Galerkin solutions of
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(6.3) (ypowp) + (ECLy,yp),w) = 0, W€ S
and
(6.4) <zg,wé> + <f(s,zh,zﬁ),wh> = 0, W € Sh

are unique and have the error bounds (3.6) - (3.7) and (4.5) respectively.

Furthermore, one can prove, using the techniques from §5 that the sequence
{2,,2,,...} generated by
v ] é_f_. ] af. TN T =
<Zn+1’wh> * <3y( ’Zn’zn)zn+l * 5§£ ’Zn’zn)zn+l’wh>
(6.5)

E ® 1 —a—£ ) v LI e 4
ay( ’Zn’zn)zn + ay,( ,Zn,Zn)Zn £( ,Zn,Zn)Jﬁ1>, W € S
converges quadratically to the solution of (6.4).

6.2. Higher order problems

In this section we want to show that the results from §§3-5 can be ex-
tended to higher order self-adjoint boundary value problems with pure
Dirichlet conditions. We therefore define the following 2m-th order self-

adjoint boundary value problem

m L L
Ly = ] (n*"! —d'g, (PQ(X)d—%) = £(x,y), x e [a,b]l =1;

(6.7)
Dgy(a) = DZy(b) =0, £=0,...,m1,

where pl(x) (2=0,...,m) are supposed to be sufficiently smooth and pm(x) >

> Dx> 0.

The purpose of this section is to show that the properties of the
Galerkin approximation of the solution to (1.1) = (1.2) can be generalized

for m > 1. To this end we define
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v L2 m
B(u,v) = } (p,D°u,Dv), u,v e Hy(I);
2=0

(6.8) p= inf Efﬂ;gl ;
ueHO(I) lu 0
HO(D) = {ufu ¢ B(D) ;D*u(a) = D*u(®) = 0, £ = 0,..., m - 1}

CIARLET et al. [1967] prove that the solution y of (6.7), if it exists,

strictly minimines the functional

b w(x)
(6.9) I[w] = B(w,w) +2 J L I f(x,t)dt]ldx
a a

over Hg(I) and satisfies the weak Galerkin from

(6.10) B(y,w) + (£(*,y),w) = 0, w e Hy(D).

At a given partition m : a = Xg < Xp < .ee< X = b, we define the space

Sﬁ’m as follows

k,m - m R : . _
(6.11) S {w, | v € Bo(Ds wp € B(T0), 1,...,M}.

One easily sees that k 2 2m - 1. This space is a generalization of the

space S, in the §§2-5. In the sequel we denote this space by Sk’m.

h
We now approximate y by minimizing I[w] over Sk’m, which approximation is
given by
(6.12) B(y, ,w,) + (£(*,y.),w,) =0 W, € Sk’m.

h’"h >’h’’"h ? h
In order to get error bounds foryh, we first confine ourselves to linear

boundary value problems, i.e. to problems of the form

Lu

-s(x), =xel;

(6.13)

p*uca) = p*ub) = 0, 2

]
o

..e,m'l.
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The Galerkin approximation u € Sk’m of u is given by the formula

(6.14) B(uh,wh) = (s,wh)

THEOREM 6.1 Let u € Hk+](I) n Hg(l) be the solution of (6.13) and let
e S5 be the solution of (6.14). Let the symmetric bilinear operator
B : HS(I) x Hg(I) + R be bounded and strongly coercive, ©.e.

|B(u,v)| < ¢ lul_Uvl_; u, v e B(D;

(6.15)

2 2
Clwl < B(w,w) < Clwl 5 we Hg(l);

Then (6.14) has a unique solution and the error fumction eh(x) = (u—uh)(x)
has the following bounds

k+1-2
Hehﬂz < Ch Hqu+l,

(6.16)

'3 2(k+1-m) .
ID eh(xj)l < Ch “u“k+l’

PROOF: The uniqueness follows directly from the strong coercivity of B. The
first error bound is proved in STRANG & FIX [1973]. In order to derive the
second error bound, we introduce the Green's function of (6.13) (see also

DOUGLAS & DUPONT [1974] and CODDINGTON & LEVINSON [1955]), i.e. the unique

solution of

_Lg G(x,&) = 0, Eel \ {x};

82

— G(x,£) = 0, &E=a,b; £ =0,...,m ~ 1.
13

(G(x,*),Lu) = u(x), u e Hg(l), xe I,

L =0,.0.om =13 3 =1,...,M~ 1.
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This Green's function has the following properties

1) exe) ¢ BTN 0 HN(D)
(ii) G(x,8) = G(E,x), (x,E) e I x 1T ;
(iii) DY e(x,*) « B a,x] 0 B x,b] 0 HND, 2=0,...m- I
Now since Dz G(x.,°) € Hk+][a,x.] n Hk+l[x.,b] n Hm(I),
X 3 ] | 0
e S

lyeeey, M

J:
k,m such that

2=0,...,m - 1, this function can be approximated by a W
(see CIARLET & RAVIART [19721])

2 k+1-m, 2
HDx G(xj, ) Wh"m < Ch IIDx G(xj, )H"’

k+1
(6.17) o
2 2
"."n,l = .Z el . , 2 =0,1,...
j=1 H™(I.)
J
Since for any u e Hg(I) one can write
B(u, G(x,°)) = u(x),
A .
D eh(xj) is represented by
pe (x.) = B(e_, D* G(x.,*)) =
h "3 ®h’ “x i’
_ . 2 R k,m
= B(Lh,wh) + B(eh,Dx G(xj, ) wh), W € S .

It follows from (6.15) and (6.17) that

2 . 2 k+1-m

. I ) - < :

|D eh(xJ)I e Cle Il 1nfk’mHDx G(xj, ) = wl <Ch bl
wheS

k+l-m, 2
*Ch "Dx G(xj’ )"w,k+l

Since HDi G(xj,e)llTr 1 is bounded, the second error bound has also been

skt
proved [I.
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Now that superconvergence at the knots has been established for higher
order problems, it can be shown that the results of §§3~5 can be generalized

in the following ways.

THEOREM 6.2 (Generalization of theorem 4.1). Let <a,B>, defined by (4.2)
and (4.3) be an approximation of (a,B) which is exact if aB € P2k-2m+l(lj)’
j=1,...,M. Then, ©f h iZs small enough, the weak Galerkin form

* T [ )
B (Zh,Wh) = Z <pyD7z, ,D w, > =
2=0
(6.18) m
= <s,w >, W e s,
has a unique solution z, and for the error function e, T u Tz (u is the

solution of (6.13)) the error bounds {(6.16) hold.

THEOREM 6.3 Let %g(x,y) 2y > =\, A defined by (6.8). Then, both (6.10)
and (6.12) have a unique soltion y and Yp2 respectively. For the error
function S A the bounds (6.16) hold.

THEOREM 6.4 . Let B*(zh,wh) be defined by (6.18) and let %%(x,y) >y > -A.
Then, if h is small enough, the Galerkin form

* k
(6.19) B (zh,wh) + <f(',zh),wh> = 0, W € i

has a unique solution with error bounds (6.16).

THEOREM 6.5 Let Z, € s©B e an initial guess of the solution of (6.19)

and let the conditions of theorem 6.5 hold, then the sequence of functions
{zgszy5--- } generated by

* of _
B (zn+]’wh) + <$( ’Zn)zn+l’wh> =

(6.20)
=2z - £,z ), w5, v €S
ay)nn ,n, ’h

k,m

converges quadratically to the solution z, of (6.19), provided that UZO-ZhH

18 small enough.
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Since accurate proofs of these theorems would mainly consist of copying

§§3-5, we just outline them.

PROOF of theorem 6.2 Analogue tc DOUGLAS & DUPONT [1974] we prove for

Gh =u -z (the solution of (6.14) and (6.18), respectively)

B(8,58,) = IB(uh,Gh) - B(zh,ah)l <

S I(S’(Sh) - <S,6h>l + IB*(Zh’Gh) - B(Zh’Gh)l’

from which it can be proved that “Gh“m = 0(hk+1—m) and hence it can be
proved that "Ghﬂz = O(hk+l_£), for £ = 0,...,m=1. This is done by proving
that Hahﬂk < ChHGhH2+l, £ =0,...,m—-1,

The errors DZSh(xj) at the knots xj are given by

L L
|D 6h(xj)l = lB(Gh,DxG(xj,-))I =

2
|B(8,, D6 (x5 )=w) + B(8,wp)| <

L
< lB(dh,DxG(xj,=)-wh)|
+ [ (sow) - <s,wh>|
+ lB*(zh,wh) - B(zh,wh)l.

By taking wy such that

£ L k+1-m
"DXG(Xj’ ) wh"m < CquG(xj’ )";w,k+l h ?

one obtains the error bounds (6.16), since one can prove that all three

2(k+1-
term are of order h ( m) (see also DOUGLAS & DUPONT [1974]). 0O

PROOF of theorem 6.3 One can prove that for any u,v ¢ Hg(I) the inequality

B(u-v,u-v) + (£(*,u) = £(+,v),u-v) > Cllu—vllli

holds, which proves the uniqueness of the solutions of (6.10) and (6.12).

The error bounds (6.16) are obtained by comparing Yy with the Galerkin
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solution u € Sk’m of

of _
B(uh,wh) + (55(.’y)uh’wh) =
= (g—f;(-,y)y - ECLy)w ), W€ Sk’m,

which has the same error bounds (6.16) [J.

PROOF of theorem 6.4 One can prove that if h is small enough for any

k,m . . _ _
W v, € S the inequality (we set Gh =u, vh)
B*(5,,6,) + <E(+,u) - £(+,v.),6 > = cls 12
h’°h e Yo% 2 Y %

holds, which proves the uniqueness. The error bounds (6.16) are obtained

by comparing z, with the solution ug of the form

h

B () + SoCeuyduy > =

of k,m
= <5§(',y)y - f('sy)’w >y wh e § s

‘which has the error bounds (6.16) [I.

PROOF of theorem 6.5 Let {¢i}i§1 be a basis of Sk’m. If we set
N
2, (x) = ] q.4.(x),
i=1
and apply (6.19) for ¢i, i=1,...,N, we obtain the nonlinear system

A= (BT(4;,60)
> N
F = ((f('s_Z qj¢j):¢i))-

j=1
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This nonlinear system can be iteratively solved by the Newton-Raphson algo-
rithm (see ORTEGA et al.)

6.2 3 @®-3) = g™ v F@™), a0,

. . > . . >(0) >, .
which converges quadratically to q provided the Euclidean norm llq' ’'-qll is

small enough. If one applies (6.20) for ¢i’ i=1,...,N, one obtains (6.21).

Z(O)

>
Since I1Z -z I . is equivalent to the Euclidean vector norm | -qll, iteration

0 "h O

scheme (6.20) converges quadratically to z, if HZO-zhH is small enough [J.

h
7. NUMERICAL EXAMPLES

In this paragraph we give three examples of nonlinear two-point boun-
dary value problems with Dirichlet boundary conditions. They were solved
on a CDC CYBER 73/28 computer.

Example 1.

y'" = ey , X € [0,1].
(7.1)
y(0) = y(1) = 0.

This classical example (see e.g. CIARLET et al. [1967], DE BOOR & SWARTZ
[1973] and WEISS [1974]) has the analytic solution

2 fn ————— + 2n 2,

cos %(x—%)

]

y(x)

(7.2)
= 1.336055695.

0
1]

In order to test the superconvergence at the knots we work as follows:

(i) [0,1] is partitioned into 4, 8 and 16 segments Ij of equal length,

respectively;
(ii) for M = 4,8,16 and k = 1,2,3
we define
ek’M = max IY(xl) - Zk,M(xi)l’
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where zk,M € Sh is the solution of
' 1 =
(7.3) <Zk,M’wh> + <exp(Zk’M),wh> 0, W € Sh’

<0a,B> defined by (4.1)-(4.3).
In the following table we list the quantities

(a) e M k=1,2,3; M=4,8,16 ;

fn(e e )
k,M/ "k,2M
®) 1y HSeE L k= 1,235 M= 4,8
3
since e £3 C(-l-)2k T should have the approximate value 2k.
k,M M > "k,M

TABLE I; maximum errors and ratios for problem 1.

k =1 k = 2 kK = 3
e 5.03, -4 2.87,,-6 2.49 -9
T4 1.98 3.98 5.94
e 8 1.27, -4 1.82, -7 4.04 =11
T8 1.99 3.99 6.09
16 3.19,,°5 1.14,,-8 5.91,,-13

For each value of M three iterations of scheme (5.4) were needed to obtain
the solution of (7.3) for k = 1.

This problem has been treated by several other authors.

(a) CIARLET et alii [1967] solved (7.1) by minimizimg the functional

1
I[w] = f([w'(x)]2 + 2ew(x))dx
0
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over the space HS(I) n PN(I), i.e. the subspace of Hé(I) consisting of poly-
nomials of degree not greater than N (N > 2). This method gives for this
example good results (e.g. a supremum error of 5.0310-8 for N = 6) but gene-

rally leads to ill-conditioned nonlinear systems.

(b) DE BOOR & SWARTZ [1973] solved (7.1) by collocation at sixth order
Lobatto points, using twice differentiable Hermite quintics. They used a

uniform grid = : Xy K| <eel< Xy For M = 4.they found (with y, the collo-

cation solution):

._max Iy(xi)—x:(xi)| = 2.010-9,
i=1,2,3

which is about the same as €3 4 from table I.
b

(c) WEISS [1974] applied collocation at sixth order Lobatto points to solve

the problem
y' =z
{ z' = ey, x e I, y(0) = y(1) = 0.

He also used a uniform grid. For M = 3 he found

max Iy(xi)—yc(xi)| = 2.6610-9,
i=1,2

which is also slightly greater than e3 4 fron table I.
b

Example 2.

d d
E;((l+ex)a§) = exp(y+Ax+B), x ¢ [0,1] ;

y(0) = y(1) =0 ;

(7.4)

A= %n 1%9 , B = %n2.

This problem has the analytic solution
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(7.5) y = tn(1+e’) - Ax - B

Let m: 0 = X, < X, Seee< X be a uniform partition of I for M = 4,8,16 and

let Zk,M € Sh be the solution of

1 v o = .
<kaJ4’wh> + <f( ’ZkJ4)’wh> 0, Wy € Sh 5
(7.6) p(x) =1+ ex;
f(x,y) = exp(y+Ax+B),
where <+,*> is defined by (4.1) - (4.3).
As with problem 1, we list the quantities ede and rk&I'

TABLE II; maximum errors and ratios from problem 2,

k =1 k=2 k =3
e, 4 1.7010—4 4.2910—7 7.6410—11
rk’4 1.99 4.01 6.00
ek,8 4.2810—5 2.68]0—8 1.19]0—12
rk,8 2.00 4.00 6.25
ek,]6 1.0710~5 l.6710-9 l.57lo~14
Two iterations of scheme (5.4) were needed to solve (7.6) for k = 1, when
we took Zéai = 0.

Since no numerical results were known from the literature for this pro-

blem, no comparison with other problems was made.
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Example 3

ylv - 2y" + (y)3 = - 12cos2x + sin6x, x e [0,7] ;
(7.7)

y(0) = y'(0) = y(m) = y'(m) = 0.

The analytic solution is y = sinzx. A uniform grid 0 = Xy <eee< Xy =T

was made for M = 4,8,16. The solution of (7.7) was approximated in the space
k,2 .
S by the solution Zk,M of

3
" " 7 7 -
<Zk,M’wh> + 2<zk,M’wh> + <Zk,M’Wh> =

(7.8)
k,2

= <sin6x—]2c052x,w >, W € S

where <a,B> is an approximation of (o,B) which is exact if aB EPZk-B(Ij)’

j=1,...,M. To that end we use k-point Lobatto quadrature.

Besides ek,M and rk,M we define for k = 3,4,5 and M = 4,8,16.

eL,M - max IY'(xi)_zﬂ,M(xi)l’ k = 3,4,5; M-=4,8,16 ;
i=1, ,M-1
¢n(e! Je! )
' = k k,2 _ _
rk,M Ln2 ’ k = 3,4,5 ’ M= 4,8

The results are given in table III.
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TABLE III; maximum errors and ratios of probtem 3

k=3 k =4 k=5
ek’4 4.8210—3 2.92]0—4 9.1110-6
rk’4 4,98 6.17 8.27
eé’4 1.9410—2 1.14]0—4 9.37]0—6
r£’4 4.13 5.91 8.26
ek,8 1.53]0—4 4.0410—6 2.96]0—8
rk,8 4.33 6.04 9.17
ei’s 1.1110—3 1.90]0—6 3.0610-8
ri,s 4.03 5.99 9.02
ek,16 7.58]0—6 6.1510-8 5.1210—11
e£’16 6.7610—5 2.9910—8 5.9010—11

(0)

Starting with Z = 0 as an initial guess for the solution of (7.8) it

took four Newtoiigaphson iteration steps to solve (7.8) for k = 3.
Since "23’M~y"0 = 0(h4), only one further iteration step was needed to solve
(7.8) for k = 4,5, using Z3,M as an iEi;ial guess. For k = 3 we used piece-
wise Hermite cubics, as a basis for S >°., Each iteration step involved the
solution of a (2M-2)-dimensional linear system with positive definite penta-
diagonal matrix (see STRANG & FIX [19731).

Since no numerical results were known from the literature for this pro-

blem, no comparisons were made.
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