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Multipoint multistep runge-Kutta methods II: the construction of a class

of stabilized three-step methods for parabolic equations

by
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ABSTRACT

A class of multipoint three-step Runge-Kutta methods is discussed for
the numerical solution of initial value problems for systems of ordinary
differential equations y' = f(y). These systems are supposed to originate
from parabolic partial differential equations by applying the method of
semi~-discretization. In this report the discussion is concentrated on the
construction of stabilized formulas of first and second order. For this
construction a technique is discussed which makes use of the method of

linear programming.
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1. INTRODUCTION
Let

(1.1) y' = £(y)

represent a system of ordinary differential equations of which the eigen-
values of the Jacobian matrix are situated in a long narrow strip around
the negative axis. Systems of this type arise by applying the method of
semi-discretization to parabolic partial differential equatioms.

In the present report we investigate the stability of a class of m-
point three step Runge-Kutta methods when applied to such parabolic sys-

tems. This class of integration methods is defined by the scheme:

(0) _
yn+1 - Yn,
(1 = (I-b,)y_ + by + ¢ hf(y ) + A hf(y )
n+l 177n 1" n-1 1 n-1 1,0 n’’
(1.2) y(j) = (I-b.)y_+ b.y + c.hf(y_ ,) + A. hf(y ) +
: n+l 377n 3’ n-1 i n-1 j,0 n
GG-1) . ,
+ Aj’j_]hf(yn+l ), ij=2,0..,m; m = 2,
_ 3, (m) _
Ynr1 = Wy + Dy,

where Yo+ denotes a numerical approximation to the analytical solution

y(x) at x = xn+1 =X + h.

If d is set equal to one, method (1.2) is reduced to a two-step method.
This two-step method is extensively discussed in VERWER [5], where a class
of second order methods was constructed with a real boundary of absolute
stability of 1.8 mz. Unfortunately, those two-step methods are rather in-
accurate when compared with stabilized one-step methods as discussed by
VAN DER HOUWEN [4]. This inaccuracy is due to the fact that the normalized
error—constants are chosen too large.

The purpose of the simple extension of the two-step to a three-step

method is thus to develop formulas which have a similar accuracy behaviour



as possessed by the one-step formulas, without loss of the large stability
boundaries. To that end we shall require that the normalization factor for

the error-constants is equal to one, i.e. we always assume (see VERWER [51])

_ 2(d-1)
(1.3) bm = 3 .
The stability of method (1.2) is investigated for real eigenvalues,
say 8§, of the Jacobian of (1.1). For these eigenvalues the following stabil-

ity problem is discussed: determine the parameters of the scheme in such a

way that

max|amplification factor| < p(hs), hé e [-8,0], B maximal,

where p is a prescribed function with the properties p(0) = 1 and

0 < p(z) <1 for z < 0. The function p may be considered as a damping
function for the higher harmonics. Moreover, if the p-values are not too
close to one, the absolute stability region of a method will contain a
long narrow strip along the negative axis.

The stability problem is stated in section 2 for first and second or-
der methods. Higher order methods are less popular in the integration of
partial differential equations. A technique to determine an almost optimal
solution to the optimization problem stated above is discussed in section 3.
This technique makes use of the method of linear programming. Results are
given in the appendix for m < 12,

The numerical calculations have been carried 6ﬁt on a CYBER 73-28

computer using 14 significant digits.

2. STATEMENT OF THE PROBLEM
Let us apply method (1.2) to the model-equation
(2.1) y' = 8y, § < 0.

This yields the relation



(2.2) Yoer = d[S(z)yn + P(Z)yn_l] + (=d)y__,»

where S(z) and P(z) are polynomials of degree m in z = hd. We denote

zi
p;z -

W ~—8
I ~—8

i
siz , P(z) =

(2.3) S(z) =
i=0 1

1

0

The coefficients s; and P are dependent on the parameters of the scheme

(see VERWER [5]); in particular

Py = bm’ g = 1 - bm.

By substituting the second order Padé-approximation

(2.4) 1 + z + é—zz

to exp(z) into the characteristic equation

(2.5) a3 - dS(z)a2 - dP(z)a -1 +d = 0,

we are able to express the consistency conditions for orders p = 1 and 2

into the parameter d and the coefficients s; and P; (see table 2.1).
Sp *Po = s
p=1/|s -p,*p = (3-2d)/d;

1
p=2 Sy ¥ 7 Py = Py tp, = (-3/2+2d)/4;

TABLE 2.1. Consistency conditions
Let ai(z), i=1,2,3, denote the roots of equation (2.5). The stability
problem we intend to solve then reads:

PROBLEM. Let p : (-»,0] »~ [0,1], p(0) = 1 be given. Let Py = 2(d-1)/d.

Determine the coefficients s; and Ps> i=0,...,m and the parameter d, in



such a way that

max |a.(z)| < p(z), z ¢ [-B,0], B maximal,
. i
i=1,2,3

where it is assumed that p = | or p = 2.

3. A SOLUTION TECHNIQUE

Define a=p& and substitute into equation (2.5). This yields a cubic

equation in &:

(3.1) 03e3 - asp?e® - dppg - (1-d) = o.
Let
(3.2) R
. =
which maps the interior of the unit circle |[£| = 1 into the half-plane

Re(n) < 0. Substitution of (3.2) into (3.1) yields a cubic equation in n:

3 2
(3.3) agn +an” +an+a;= 0,
where
ay = p3 + dSp2 -dpp +1 -4,
3 2
a, = 3p7 + dSp” + dPp - 3(1-d),
(3.4)
3 2
a, = 3p” = dSp~ + dPp + 3(1-d),
a; = p3 - dSp2 - dPp - (1-4d).

Sufficient conditions for the roots of (3.1) to lie inside or on the
unit circle can be obtained by applying the Routh-Hurwitz criterion to
(3.3) (see LAMBERT [3]). These conditions read:



(3.5) a; > 0, i=20,...,3; a,a, - aja, > 0.
Observe that without the equality signs conditions (3.5) are necessary for
the roots of (3.1) to lie inside the unit circle.

In terms of S, P, d and p conditions (3.5) give:

3
_ d-1-o0"
pS P > 3
3
pS + P > 3(]—dép_ 3p
3(d-1) - 3p>
(3.7) -pS + P > &
3
g - l-d-o0"
pS P > I
2 6
l-dg,p,Ud) -p
2 A
p dp

The problem stated in section 2 thus reads:

Let the function p be given and let Py = 2(d-1)/d. Determine the para-
meter d and the coefficients s; and Pss compatible to an imposed order of
accuracy, in such a way that (3.7) is satisfied for z ¢ [-8,0], B maximal.

The idea is now to discretize the variable z on an interval [-8,0],
i.e. we define the points zj = -jAz, Az = B/N, j =1,...,N, N prescribed,
and to replace the five conditions (3.7) by a set of 5N inequalities which
are linear provided that the parameter d is fixed beforehand. If B < B,

a feasible solution for this linear set of inequalities must exist. Such

a feasible solution is easy to determine by using a linear programming
method. If B > B8 and N large enough, no feasible solution will exist. Sum-
marizing, once the optimal value for d is known, B can be approximated as
accurate as possible by solving a sequence of linear programming problems.

Before describing the linear programming approach in detail we first
expand the polynomials S and P in Chebyshev polynomials in order to prevent
numerical difficulties for higher values of m. Let B be given. For
z € [-B,0] we expand:

m

- 2z _ - 2z
p, T, (1 + —E—)’ S(z) = ) 5, T, (1 + ?),

m
(3.8) P(z) = )
k=0 =0



where Tk(z) = cos(marccos z). Define
i
t.. = —('i—.T.(Z)
1] qzt 3 z=1

According to ABRAMOWITZ & STEGUN [1] (formulas 15.1.1, 15.2.2 and 15.4.3)

we have

-
0
o

1,

(3.9) t.

i2G2-D...Gg3a-n?

1.3...(2i"']) 4 1=1’-..,J.

By means of relation (3.9) the coefficients Si and pi are expressed as

;0o ;o
2 Z- Pt 2 Z S, tep
k=1 _ k=1 .
(3.10) p; = ~ , s, = —7 , i=0,...,m.
i!B i!B
Let
222
(3.11) le = Tk<l + —§—> .
Then for z = z, and Py = p(zz) conditions (3.7) read:
m _ _ d-1- Dg
L= Typby * 0Ty sy = do
k=0 '3 3
m 3(1-d) - 3p
Z T 1_) +p. T . s 2 %
2k k 272kk - dp ?
k=0 . L 3
m _ _ 3(d-1) - 302
(3.12) L Toby = 0Tl = B >
k=0 2 3
m _ _ 1 -d - Py
kZO T TPk T TSk 2 dog
m (1—d)2 - p6
) T P, + l-dp g 5 2
Lo torPr 2 ak°k A
k=0 p2 dp2

Because the actual calculations are performed with the coefficients Ei and
Ei’ we also have to transform the relation Py = 2(d-1)/d as well as the

consistency relations. By means of (3.10) the relation Py = 2(d-1)/d is



transformed into

m

(3.13) )
k=0

b, = 2(d-1)/d.

The transformed conditions of consistency are given below:

? _

bt 5, = 1

| o Kt Sk
? 22 15 . 212 - _3- 2
k:O\_ /k E k d ’

(3.14) e I T T T

) B ad 2alal-n) -, (alain) . 272
p=2| 1l G- +—F )T )%="a -

k=0 B 3B 3B

Next we define the vector
- - - - T
(3.15) X = [po,...,pm, so,...,sm] ,

and we assume that B, d and N are fixed. Then, inequalities (3.12) for
2 =1,...,N, relations (3.13) and (3.14) constitute a linear system of in-

equalities of the type
(3.16) AX 2 C,

where A represents a (5N+ 4+ 2p) * (2m+ 2) matrix, and where C is a
5N + 4 + 2p-vector of righthand sides.

As already observed we are only interested in the existence or non-
existence of a feasible solution to (3.16). Thus, it is allowed to con-

sider the following linear optimization problem:
. T
(3.17) min B'X

subject to

(3.18)
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where Xi denotes the i-th component of X and B represents an arbitrary

2m + 2-vector. The solution to (3.17) - (3.18) is of course a feasible solu-
tion to (3.17), provided such a solution exists. The reason for stating
problem (3.17) - (3.18) will be clear from the following argument. In order
to satisfy (3.7) for arguments z between points zj it will be necessary to
choose large values for N. As a consequence, the number of constraints is
much greater than the number of variables. From a practical point of view
it is therefore more convenient to consider problem (3.17) - (3.18) as the

dual problem of the primal problem

(3.19) max CTY

subject to

(3.20)

and to solve problem (3.19) - (3.20). The dual solution of this problem is
the primal solution of problem (3.17) - (3.18), provided it exists. The
time needed to solve (3.19) - (3.20) numerically is much smaller than the
time needed for solving (3.17) - (3.18). The relation between both problems
is given by the following theorem (see GASS [21]):

THE DUALITY THEOREM: If either the primal or the dual problem has a finite

optimum solution, then the other problem has a finite optimum solution and
the extremes of the linear functions are equal. If either problem has an

unbounded optimum solution, then the other problem has no feasible solution.

The next step is to describe the determination of the parameter d and
the boundary 8. For one-step and two-step methods we have the relation

(3.21) 8 ~ Km?,

where K is a constant, We shall assume that for our problems such a rela-
tion also holds. This assumption has been corroborated by practical experi-

ments. Thus the idea is to determine a constant K by a numerical search



program for low values of m, m = 2, 3 and 4 say, and after that to solve
one linear programming problem for each m with a prescribed B = sz.
The numerical search, performed for m = 2, 3 and 4, is very simple and
can be described as follows: the components of the vector B has been set
equal to 1. For N, the number of gridpoints, we have chosen 30 * m. Next,
for a sequence of d-values, where 0 < d < 2, a sequence of linear problems
(3.19) - (3.20) has been solved by performing bisection on B in such a way
that B is estimated within a relative accuracy of 0.01. For the linear pro-
gramming problems we used the IMSL-routine ZX3LP. This routine is very easy
to use and is suited for our purpose as it delivers the corresponding dual
solution. Moreover, it yields error messages in case no feasible or bounded
solution exists. We need these messages for the bisection process.
The damping function p(z), used in the actual calculations, is defined
by
1, -1.5 <z <0,
(3.22) p(z) =
0.85, z £ -1.5,

The results of the numerical search are:

5.15 * m,

1.375, B

p=1, d
(3.23) 9
2.29 * m".

p = 2, d = 0.775, 8

With these values for d and B the coefficients s; and p; were determined
for m < 12. We restricted the m-values to m < 12, for we have to take into
account the internal stability behaviour of the integration method. Emanat-
ing from a machine precision of 14 or 15 digits, higher values of m cannot
be accounted for (see VERWER [5]). The corresponding s; and p; are listed
in the appendix. In the appendix we have also given a figure of the absolute
stability region{z | z e C, max!ai(z)l <1, i=1,2,3} for some values of m and p.
The problem stated in section 2 was solved by discretizing the con-

tinuous variable z. As a consequence, the condition
Ial(z)l < p(2), i=1,2,3,

is not necessarily satisfied for all z € [-8,0]. The true damping factor
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(3.24) Prax = . WaX lai(z)], z e [-B,-1.5],
i=1,2,3

is approximately given in table 3.1. It is clear that Pax 0.85 if N » =,

m p=1 p=2
2 0.85 0.85
3 0.85 0.87
4 0.86 0.88
5 0.86 0.85
6 0.86 0.89
7 0.87 0.86
8 0.86 0.90
9 0.86 0.87
10 0.88 0.88
11 0.88 0.92
12 0.87 0.91

TABLE 3.1. p
max

From table 3.1 we see that P ax becomes larger with m. Thus, for higher
values of m very large values of N are necessary if one applies the tech-
nique described above with an equidistant z-grid. In order to circumvent
this problem we suggest for high values of m the following approach. First-
ly, apply the technique using an equidistant grid with N not too large,

N = 10 * m say. This yields a number of points where P ax is too large.
Secondly, apply the technique using a finer grid near these points. By
using a finer grid in a neighborhood of these critical points, it is pos-—
sible to apply the linear programming approach for relatively high values

of m.

In the near future we intend to publish numerical results of three-
step methods, possessing error and stepsize control, of which the parameters

are chosen as suggested in VERWER [5], section 4.
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