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ABSTRACT

A class of stationary iterative methods for solving nonlinear equations
is constructed. This is done by an imbeddingstechnique. The local conver-
gence behaviour of these methods is investigated. Furthermore the concept
of the radius of convergence of an iterative method is introduced. This is
a measure of how far from the true solution a startingpoint is allowed to
be, the generated sequence still being convergent.

The radius of convergence of Newton's method is given. Furthermore it
is proved that all the members of a subclass of the iterative methods con-

structed here have a greater radius of convergence than Newton's method.

KEY WORDS & PHRASES: nonlinear equations, imbedding methods, stationary
iterative methods, local convergence, radius of con—

vergence.
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1. INTRODUCTION

1.1. The problem

Let X be a Hilbertspace, and F: X » X a nonlinear operator.
In this report we shall be concerned with iterative methods for solving

the equation
(1.1.1) F(x) = 0.

Suppose that x" € X is the solution of (1.1.1). A well-known method for
solving (1.1.1) is Newton's method defined by

given x, € X,

0
(1.1.2)

o = ¥ F'(xk)_]F(xk), k =0,1,..4;

where F'(x) denotes the Fréchet-derivative of F at x. However, if the start-

ing point x, is not close to x*, then the sequence {xk} defined in (1.1.2)

0 * . .
need not converge to x . In that case imbedding methods have been shown to
be more effective than Newton's method. In these methods, (1.1.1) is trans-
formed into an <nitial value problem. This is done as follows:

Given an operator K: X x X » X such that
(1.1.3) K(x,x) = 0, for all x € X.

K may be dependent on F.

Let X € X be a (bad) initial guess at x*, and define

(1.1.4) H(t,x) = (l—t)K(x,xo) + tF(x), t e [0,1], x € X.

Thus we have

H(O,XO) =0,
(1.1.5)
H(1,x) = F(x).




Suppose that H(t,x) = 0 has, for any t € [0,1], a unique solution x(t), i.e.

(1.1.6) H(t,x(t)) = 0, x(t) unique, t € [0,1].

Note that

x(0) =

|
»

0’
(1.1.7)

x(1)

n
b

Differentiation with respect to t yields
(1.1.8) H](t,x(t)) + Hz(t,x(t))k(t) = 0,

where H1 and H2 are the partial Fréchet-derivatives of H with respect to t
d

and x respectively and x(t) denotes = x(t). If

(1.1.9)  g: [0,1] > R

is a (given) real function, then (1.1.6) and (1.1.8) yield

(1.1.,10) H](t,x(t)) +H2(t,x(t))}'c(t) + g(t)H(t,x(t)) = 0, t e [0,1].
If we assume that Hz(t,x(t)) is invertible for t € [0,1] then according to

(1.1.7) and (1.1.10), the curve x(t) satisfies the following initial value

problem

- Hz(t,x(t))—][Hl(t,x(t))+g(t)H(t,x(t))], t e [0,1],

x(t)
(1.1,11)
x(0)

il
»

With rather weak assumptions about F,K,g and X solving (1.1.11) is equiv-
alent to solving (l1.1.1). (cf. [5]). Now, solving (1.1.11) with a (given)
Runge-Kutta method, the calculated approximation to x(1) = x" is X in

short X, = G(xo).




-,

Repeat this procedure, i.e. solve (1.1.11), taking X, instead of Xy

X, = G(x]), etc.
The iterating function G is determined by K,g, the Runge-Kutta method
(and of course F).

In short
(1.1.12) G(x) = G(x3K,g, "Runge-Kutta method").

The problem we are concerned with is, how the convergence behaviour of

iterating functions G of type (1.1.12) is. We first give an example.

EXAMPLE. Take

K(x,y)
g(t) =

F(X) - F(Y) s

o

Let X, € X, then

(1.1.13)  H(t,x)

(l—t)[F(x)—F(xo)] + tF(x),

and (1.1.1) is transformed into the initial value problem

1

x(t) = - F'(x(t)) F(xy)

(1.1.14)
x(0)

1]
b

, where N is a

2| —

Solving (1.1.14) with Euler's method taking a stepsize h =

natural number, then

(1.1.15a) X = Yo
where
Y0 = %0
(1.1.15b)
- - _]_ 1 —1 .
Yi - y]’._l N F (yi_l) F(xo), 1= ],-..,N-




Vs is an approximation to x(ﬁ), i=20,1,...,N.

The iterating function G is now defined by

(1.1.16a) G(x) = yN(x),

where

I
b

YO(X)
(1.1.16b)

1, -1 .
y; () =y, ) - g Fly,_x) Fx), i=1,...,N
In chapter 2 we introduce some conventions. The radius of convergence
of an iterative method is also introduced. This is a measure to indicate
how far a starting point x, of an iterative process is allowed to be from

0

* . . *
X , while the generated sequence X still converges to x . We end

02X o Xgr e
this chapter with some elementary results which will be used subsequently.

In chapter 3 we give an explicit expression of the iterating function
to be considered, in terms of F,K,g and the Runge-Kutta method.

In chapter 4 we investigate the restrictions to be imposed on K in
order to prevent the construction of iterative methods with a zero radius
of convergence.

In chapter 5, the radius of convergence of Newton's method is given.

Finally, in chapter 6 we construct a class of iterative methods whose
members all have a greater radius of convergence than Newton's method.

Test results for the methods considered here will be given in a fol-

lowing report.

2, NOTATIONS, CONVENTIONS AND SOME ELEMENTARY RESULTS

2.1. Conventions and Notations

From now on the following conventions hold:
X is a real Hilbertspace, with innerproduct (-,:), and norm Il = (°,°)%,
If A: D> X, D c X, then A'(x) denotes the Fréchet-derivative of A at x,
for x € interior (D).

Let X,,...,X

I be Hilbertspaces and X, = X, x X, x...x X_ the
n

n+1 0 1 2
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productspace. If G: D + X D cX then for x = (xl,...,xn) € interior

n+l1’ 0’
(D), Gi(x) denotes the partial Fréchet-derivative of G with respect to X,

at x, i = 1,...,n.
Let x: [0,1] > X, then x(t) denotes é%-x(t), t e [0,1].

For a formal definition of these concepts, see [1].

For x e X and p > 0, B(x,p) = {y | v € X, ly=xl < p}. Furthermore, if
V c X is a subset of X, then V denotes the closurc of V.

2.2. Iterative methods

Let
(2.2.1) G={G| G:D~>X,Dc X}

and

(2.2.2) F* = {F | F: D> X, D c X and the equation (l.1.1) has a unique

solution}.
For given F € F*, x will always denote the unique solution of (1.1.1).

Let {Gk} =G
Then

..., where G, ¢ G has domain D, < X, k = 0,1,... .

O’Gl’ k k

e D

(2.2.3) D({Gk}) = {x there exists a sequence {xk} such that x

0 | k

and Xeel = Gk(xk)’ k =0,1,...}.
For a (given) subset FO c F*¥ let

(2.2.4) My = (M | M: Fo > G-

Any sequence {M } = M_,M . with eM , k=0,1,..., is called an Zter-
0 0

P2
ative method (applicable to FO).

To any iterative method {Mk} and F ¢ FO the related Zterative process
({M, },F) is defined by




(2.2.5a) X = Gk(xk)’ k=0,1,...;
where

(2.2.5b) Gk = Mk(F), k

1l
o
M

The starting point X,

to prevent the iterative process breaking off prematurely.

Given an iterative process ({Mk},F) and x. € D({Gk}), then the sequence

0

{xk} generated by x., and the iterative process ({Mk},F) is, of course de-

fined by (2.2.5).

0

Let F ¢ F, {Mk} be an iterative method applicable to FO’ G, =M (F),

k=0,1,.
Then the region of convergence S = S({Mk},F) of the iterative process
({Mk},F) is defined by

(2.2.6) S = {xo l X, € D({Gk}) and the sequen:e {xk} generated by X,
and ({Mk},F) converges to x }.

If x* € interior (S) then the iterative process ({Mk},F) is said to be

locally convergent.

Let ({Mk},F) be a locally convergent iterative process.

If a neighbourhood V of x" and a § > 0 exists such that

1. VcS§,
2. for all Xq € V the sequence {xk} generated by X and ({Mk},F)
satisfies

* %, 2
!lxk+l—x||S<5||xk—X“ , k=0,1,...3

then the iterative process ({Mk},F) is said to be locally, quadratically

convergent.

If a neighbourhood V of x" exists such that

1. Vcs,
2. for all X € V the sequence {xk} generated by X and ({Mk},F)
satisfies
* *
ka+1 -x I < ka -x I, k=0,1,...;

of (2.2.5a) should be an element of D({Gk}) in order




then the iterative process ({Mk},F) is said to be locally, monotonically

convergent.
2.3. The radius of convergence

*
Let F ¢ F .
As pointed out in the previous chapter, we are interested in iterative
methods {Mk}, such that the related interative processes ({Mk},F) generate

* . . *
sequences {xk} that converge to x , even if X, 1s not close to x .

In order to be able to compare iterative methods by this criterion, we

introduce the following definitions.

*

Let FO c F .

DEFINITION 2.3.1. For F ¢ FO and iterative method {Mk} (applicable to FO),
r({¥ },F) = suplp | B(x ,p) < S((14},F)}

is called the radius of convergence of the iterative process ({Mk},F).

DEFINITION 2.3.2. For an iterative method {Mk} (applicable to FO),

r({Mk}) = ;rel’f: r({Mk},F)
0

is called the radius of convergence of the iterative method {Mk} with

respect to FO'

It is clear that, the larger r({Mk}) is for an iterative method {Mk}, the

better the convergence behaviour will be for the iterative processes gener-

ated by it.
2.4, Stationary iterative methods
Let FO c F*.

In this report we restrict our attention to stationary iterative methods
{Mk}. This means that Mk =M, k=0,1,...




Let F ¢ FO’ {M} be a (stationary) iterative method (applicable to FO).

The operator G = M(F) is, in this connection, called an Zterating function.

It is clear that, for the iterative process ({M},F) to have a positive
radius of convergence, this process should at least be locally convergent.
The (local) convergence behaviour of the iterative process ({Mk},F) is,

of course, closely related to the behaviour of G = M(F).

The following expresses this relation

THEOREM 2.4.1. If the iterative process ({M},F) Zs locally convergent and

G = M(F) Zs continuous in a neighbourhood of X" then

G(x*) = x*.

. * . . .
This means that x 1is a fixed point of G.
* ., . .
Conversely, when x 1s a fixed point of G, we have

THEOREM 2.4.2. Let ({M},F) be an iterative process. If x' is a fixed point
of G = M(F) and "G'(x*)" < 1 then the Zterative process ({M},F) Zs locally

convergent.

PROOF. Let ¢ > 0 be such that "G'(X*)" = 1 - 2e. Then there exists ap > 0

such that
Ic(x) - G(x*) - G’(x*)(x-x*)” < ellx - x*", for any x € B(x*,p).
Hence

Ie(x) - x 1 < 16(x) - G(x7) = G'(x ) (x=x ) + 16" (x") (x-x)Il <

A

(1-e)lx - x°1I,

INA

The conclusion 1s immediate. 0




2.5. Classes of operators

In this report we restrict our attention to operators F which are

members of the following subset of F*.

Let B,y > 0 be given, then

(2.5.1) F<B,y>=(F|FeF,D=X;

F'(x) exists and IF'(x)-F'(y)l < y Ix-yl

Iy

for all x,y € X; "F'(X*)_ < R}.

Let

(2.5.2) Fi= U F<By>,
B,v>0
then the auxiliary operator K (see (1.1.3)) 1is assumed to be a member of the

following class of operators

(2.5.3) K] = {K | K: X x X x F] > X,

For all F ¢ F, the operator K(x,y;F) has the following

properties

1. K(x,x3;F) = 0, for all x ¢ X,

2. K](x,y;F) exists for all x,y € X,

3. there are 61,62 > 0 and a neighbourhood V of x such
that
HK](y,x;F) - Kl(z,x;F)H < 6]Hy - zl,
uK]<x*,x*;F) - Kl(x*,x;F)H < 8,lx - I, for all

X,¥,2 € V}.

If F ¢ Fl is given, then, for ease of notation, we shall write K(x,y) in-

stead of K(x,y;F) when no confusion is possible.
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Examples

Given F ¢ F],
1. K(x,y) = F(x) - F(y),
2. K(x,y) = F'(y) (x-y),

3. K(x,y) = x - y.

2.6. Some results from analysis

We give here three theorems that will be used subéequently.

THEOREM 2.6.1. (cf.[31). If L and M are bounded linear operators in X,

M exists and M - LI < —— |

IM

then

1

. - IM
L ! exists and L I < M

=i M-

THEOREM 2.6.2. (cf[3]). If F: D » X, D c X,D open and convex, F'(x) exists
and IF'(x)l < § for all x € D, then

IF(x) - F(y)I < slx - yl, for all x,y € D.

THEOREM 2.6.3. If F: X - X s Fréchet-differentiable in X and
I'F'(x) - F'(yI < ylx = yl for all x,y € X and some vy > 0, then

IFG) - F(y) - F' () Gyl < 3 Ix - y12,  for all x,y € X.

PROOF. This result follows from the fundamental theorem of the differential

and integral calculus (cf.[3]):
1
HJ [F'(6x+(1-08)y)-F'(y)I(x-y)del <
0
2
%ﬂx - yl“. 0

IF(x) - F(y) - F'(y) (x=-y)I

I




11

3. CLASS OF ITERATIVE METHODS

Before we construct the iterative methods to be dealt with in this

report, we define the Runge-Kutta methods to be used.

3.1. Runge—Kutta methods

Let

y(t) = £(t,y(t)), t € [a,b],

(3.1.1)

y(0) =y,

be an initial value problem to be solved, where f: [a,b] x D >~ X, D ¢ X

and Yo € D are given.

Computational methods for solving (3.1.1) approximate the analytical solution

y(t) of (3.1.1) on a discrete point set {tn | a = to St <.l < ty = b}.
Runge-Kutta methods are one-step methods, which means that, starting

from y. and t., approximations y_ of y(t ), n = 1,...,N are obtained by
0 0 n n

(3.1.2a) Yie1 = Y + hié(ti,yi;hi,f), i=20,1,...,N-1;
where
(3.1.2b) hi = ti+1 - ti, i=20,1,...,N-1,

The function ¢ is characteristic for the method. We therefore define a

Runge-Kutta method in terms of 9¢.

DEFINITION 3.1.1. Let A = (Aj E) be a strictly lower triangular (m+1)x(m+1)
s

matrix. Then the general m-stage Runge-Kutta method is defined by

=

(3.1.3a) o(t,y;h,f) = KZI Am+1,£k£ ’

where
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k] = f(taY)
(3.1.3b) £-1
kp = f(t+n£h,y+h 521 Az’jkj), £L=2,...,m;
and
£-1
1. = Ap - = 2,...,m.
(3.1.3¢) np jzl 2. 2 m

The matrx A is called the generating matrix of the Runge-Kutta method,
which, obviously, completely determines the method.

For the sake of shortness we shall use the phrase "Runge-Kutta method
A" to mean "Runge-Kutta method with generating matrix A".

Moreover, given a Runge-Kutta method A = (Aj,z), then np is always
supposed to satisfy (3.1.3c). It is usual to restrict onmeself to Runge-Kutta

methods for which

(3.1.4a) YA
£=1

m+l, 0 i

(3.1.4b) np € (0,11, £ =2,...,m.

The initial value problem we want to solve is of type (1.1.11). This means
that a = 0 and b = 1 in (3.1.1). In this particular case an N x m-stage
Runge—-Kutta method g(t,y;h,f) exists with generating matrix A= (ij K)’

3

such that ;1 = , where

N
v, =¥y * 200,y451,5).

L. Nxm <
Moreover it 1s easy to see that ZK_] ANXm+1 2 =1
- b

~ -l .
nz - Zj=] )\K’j, 'e— - 2,...,Nxm.

, and ;E e (0,1], where

Therefore, as we are only interested in the Runge-Kutta approximation in

t = 1, it is no restriction to assume that in (3.1.2), N =1,
3.2. Description of the iterative methods

Let F € F], K € Kl’ g:[0,1]1 > R and a Runge-Kutta method A be given.
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Let
(3.2.1) D = {(t,x,y) | t e [0,1]; x,y € X; [(1--t)K](x:,y)+tF'(x)]_1 exists}.

For a given x. € X, let the curve x(t), defined in (1.1.6) satisfy

0
(t,x(t),xo) € D, for all t € [0,1]. Then we recall from chapter 1 that the

curve x(t) is a solution of the initial value problem

1

k(t) = = [(1-0)K, (x(£),xy) + tF' (x(t))] " x
(3.2.2) [-K(x(£) , %) +F (x(£))+g(£) L (1-£)K(x(£) , %) +EF (x(£))}7,
t e [0,1],
x(0) = Xy

Consider f: D » X,
-1
f(t’X’Y) = _[(l_t)Kl(x,Y)+F'(x)] x

(3.2.3)
[-K(x,y)+F(x)+g(){ (1-t)K(x,y)+tF(x)}]1, (t,x,y) € D.

Then (3.2.2) is equivalent to

x(t)

f(t,x(t),xo), t e [0,1],

(3.2.4)

1]
»

x(0)

The Runge-Kutta approximation x, of x(1) = X is given by

1

m
(3.2.52) % = X + ZZ] Am+]’£k£(xo)

where
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kﬂ(xO) = f(O,xO,xO)

(3.2.5b)
£-1
kﬁ(xo) = f(nz,x0+jzlkﬂ’jkj(xo),xo), £ =2,...,m.

We have written k](xo) and kZ(XO) instead of kl and kﬂ to emphasize the

dependence of k1 and kﬂ on X;.

It is clear that if we repeat this process in the way described in
chapter 1, the generated sequence {xk} might be considered as being gener-

ated by x. and an iterative process ({M},F) with iterating function G = M(F)

0
defined as

m
(3.2.6a) G(x) = x + KZI Am+1’£kz(x),
where
k() = - K (60 R,
(3.2.6b)
£-1 £-1 .
kﬁ(x) = - [(l—nK)Kl(x+jZl Az’jkj(x),x)+n£F'(x+jzlkz’jkj(x))] x
Z'jl £-1
[—K(x+jzlkﬂ’jkj(x),x) + F(x+jzlxz’jkj(x)) +
£-1 £-1
+ g(nﬂ){(l—nz)K(x+ z AK .k.(x),x)+n£F(x+ z AK k. (x))1],
j=1 »J ] i=1 »J ]
L =2, ,m

We define D(G) for G of type (3.2.6) as

(3.2.7) D(G) = {x [ X € X, in x all inverses appearing in (3.2.6b) exist}.
Obviously, the operator M depends on K,g and A

(3.2.8) M: F1 + G, M(*) = M(K,g,A;°).

From now on, for given K ¢ Kl’ g: [0,1] > R and Runge-Kutta method A,
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we shall use the phrase "M(+) = M(K,g,A;°)" to mean "M(-) = M(K,g,A;°),
where M is of type (3.2.8)".
In the next chapters we shall investigate the convergence behaviour of

iterative methods {M} where M(°) = M(K,g,A;+) for given K,g and A.

4., LOCAL CONVERGENCE BEHAVIOUR OF THE ITERATIVE PROCESSES

Let F € F].

For given K € K], g: [0,1] > R and Runge-Kutta method-A, let M(+) =
= M(K,g,A;+). Then G = M(F) is of type (3.2.6), G: D(G) - X.

It has already been observed (see Chapter 2) that the radius of conver-
gence of the iterative process ({M},F) is only positive when ({M},F) is lo-
cally convergent.

In this chapter we investigate the conditions which have to be imposed
on K in order that ({M},F) is locally convergent.

Since K ¢ K] we recall from Section 2.5 that there is a neighbourhood V

of x* and § §, > 0 such that

12 "2

HKI(y,x;F)-Kl(z,x;F)H < 6]Hy—zﬂ,
(4.1)
"Kl(x*,x*;F)-Kl(x*,x;F) < 62Hx—x*ﬂ, for all x,y,z ¢ V.

Moreover F ¢ Fl implies that there are B,y > 0O such that

IF'(x) - F'(y < ylx-yll, for all x,y € X

(4.2)
I (7 < g,
Let
(4.3) D, = {x | K(x,x3;F) is invertible}

1

and




16

(4.4)

1

Gl(x) = x-—Kl(x,x;F)_ F(x), for all x € D

1

LEMMA &4.1. If x" e interior (Dl) then Gi(x*) exists and
* * ok -1 *
G;(x )y =1~ K](x , X 3F) F'(x).

PROOF. For ease of notation we suppress the dependence of K on F. Since

*
Kl(x*,x ) 1s bounded and invertible, there is an a > 0 such that

nK](x*,x*)°‘n < . Now,
Kl(y,x)-K](x*,x*)==K1(y,x)-—K](x*,x)-#Kl(x*,x)-K](x*,x*)

so that, using (4.1),

(4.5) HK](y,x)-Kl(x*,x*)ﬂ < dlﬂy—x*" + dzﬂx—x*" for all x,y € V.

1 . *
Let p = EETE—:EET’ then Theorem 2.6.1 yields that for x ¢ B(x ,p) n V,

Kl(x,x) is invertible and

20,

(4.6) "Kl(x,x)_lﬂ

A

If P and Q are bounded, invertible linear operators on X, then

Pl - o7 = g N e-p)p7!, so
-1 -1 -1 -1
4.7) P I P I Rl R P

Let T > 0 such that sup{lF'(x)I | X € B(x*,p)} < 1, then using Theorem
2.6.2,

(4.8) IF(x)I < lx-x" for all x ¢ B(x,0).

1A

Moreover, Theorem 2.6.3 yields

(4.9) IFG) - F' (D) exM s Lixex"1? for all x e x.
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Using (4.5), (4.6), (4.7), (4.8) and (4.9), for x € B(x ,p) n V:

"G](X) - G](x*) - [I-—K](X*,X*)_IF'(X*)] (x—x*)ﬂ =
1

H—Kl(x,x)_lF(x)4-Kl(x*,x*)_ F' &) (x-x")Il =

HEﬁﬂ(x,x)_]-+K1(x*,x*)-]]F(x)-K](x*,x*)—l[F(x) - Fr(x) (x=x )l <

IA

2 Y *x .2
[2a (61+62)T + oc2] Ix"=xl=, 0O

Let
(4.10) D2 = {x I F'(x) is invertible}
and
G2 D2 > X,
(4.11) G, = F'(0 'F(x), for all x ¢ D,.

] ]
LEMMA 4.2. Gz(x*) exists and Gz(x*) = 1.

PROOF. According to (4.2) and Theorem 2.6.1, B(x*,zé;) c D2 and

1

Z8y

(4.12) 17" (x) "' < 28 for all x e B(x",

Now, F(x) + F'(x)(x*—x) r(x), where lr(x)l < %ﬂx-x*ﬂz for all x € X (The-

orem 2.6.3). Therefore, for x ¢ B(x*,—l—):
2By
' -1 * . -1 * 2
(4.13) IF'(x) F(x) - (x=x)I = IF"(x) r(x)l <Bylx -xI=, 0O
Let
(4.14) D3 = {x ] X € Dl and F’(G](x)) is invertible} and
G3: D3 -~ X
(4.15)
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X € D3, where p € RR.

LEMMA 4.3. If'x* € interior (D3) then Gé(x*) extsts and

Gé(x*) = -p[I —]ﬁ(x*,x*;F)_lF'(x*)].

PROOF. Again, for ease of notation, we suppress the dependence of K on F.

There are a, p, T > 0 such that (4.8) holds and for all x ¢ B(x*,p),

IF" (x)

implies that for x € B(x*,p), "F'(G](X))_
B(x" ,p) < D

-1 * ]
I < 28, HKl(x,x) I <« and"Gl(x) ; x I < T
I

HA

3 For x ¢ B(x*,p):

1

IF' (G, (%)) K(G,(x),%) + x - %1

]

MF'(GI(X))"][K](x,x)(c](x)—x) +r ]+ x - %

"—F'(G](x))_lF(x) + F'(G](x))_lr](x) +x - %0

H—[F'(Gl(x))_]—F'(x)_]]F(x) + F‘(G](x))—lrl(x)

*
+x-x 1,

where
Hrl(x)ﬂ <5 "G](x) - xI© (see Theorem 2.6.3).
G](x) -x = - K](x,x)_lF(x), so

(4.16) "G](X) - xl < a.tlhx - x*", for x € B(x*,p).

Using (4.7), (4.8) and (4.13):

A

”F'(G](x))_]K(Gl(x),x) +fx - %7

This last inequality
28. (see Theorem 2.6.1). So

Frx) TFx) +

(4.17) < [(48)2y.a12 + 28%1 + Byl Ix - x*Hz for all x « B(x*,p).

Let k: D3 > X,
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k(x) = G2(Gl(x)) for all x € D3.

Since G](x*) = x" and G;(x*) and Gé(x*) exist, k'(x*) exists and k'(x*) =
= GpME ") = T - Kl(x*,x*)-l

such that

F'(x*). Then for € > 0, there is a Py > 0

(4.18) HF'<cl<x))"F(c,<x)>— [I- K](x*,x*)-]F'(x*)](x—x*) Il <elx - x"N,

for all x ¢ B(x*,p]).
Let Py = min {p,pl}, then for x € B(x*,pz)

16,(x) - G3(x*) + plI —Kl(x*,x*)_lF'(x*)](x-x*)ll -

I

Ix - x* = F'(G,(x)) 7 [-K(C,(x),%) + pF(G,(x))] +

A

+ p[I-K](x*,x*)"F'(x*)](x—x*)u

"F’(G](x))-]K(G](x),x) rx - x4

HA

1

+

Pl 1E'(6,(0)) T 'F(G, () - [T - K G x ) TE () e I g

*, 2 *
wilx = x 17+ |pl e Ix = %I,

A

where v is the term between the square brackets in (4.17), v is independent

of e, thus the conclusion of Lemma 4.3 holds. g

The next theorem shows the dependence of the local convergence behav-

iour of the iterative process ({M},F) where M(*) = M(K,g,A;*), on K. Let

(4.19) A

[}
o
o
[
=}
o
-

N

]

and gd[O,]] - R a given function.

THEOREM 4.1. Let F ¢ Fl and K € K], then the following propositions (i),

(ii), (iii), and (iv) are equivalent.
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(1)  The iterative process ({M},F), where M(:) = M(K,gO,Az;-) 8 locally

quadratically convergent.

(ii) For any g: [0,11 ~ R, the iterative process ({M},F), where
M(+) = M(K,g,A];-) s locally monotonically convergent.

(iii) For any Runge-Kutta method N the iterative process ({M},F), where

Mb)=bM&gWAp)ismeﬂquﬁmﬁﬁmﬂycmma@%t

(iv) Kl(x*,x*;F) = F'(x*).

—
°

PROOF. We shall prove: (1) implies (iv)
2. (iv) impltes (iii)
3. (iii) implies (i)
4, (iv) implies (ii)
5. (ii) implies (iv)
Of course, this is sufficient to prove that (i), (ii), (iii) and (iv) are

equivalent.

1. Suppose proposition (i) holds and let %(x*,x*;F) # F'(x*). Let G = M(F),
where M(°) = M(K,gO,A2;°), then

G(x) = x “KJ(X,X;F)-]F(X) for all x ¢ D(G).

Since the iterative process ({M},F) is locally quadratically convergent,
there is a neighbourhood V < D(G) of x* and a § > 0 such that

2 .
le(x) - x| < olhx - x"1“ for all x e V. Hence Lemma 4.1 applies, so G'(x")

exists and
¢'(x*) = I- K1<x*,x*;F>"1F'<x*>.

As le*,x*;F) # F'(x*), some v € X, v # 0 exists such that "G'(x*)yﬂ = Liyl,

L > 0. By L, a positive p exists such that

(4.20) Ie(x) - G(x™) - G"(x™) (x-x™) < 12*4|x-x*u, for all x ¢ B(x ,p) c V.

] € (O’§§%§W) exists such that x  + ty e B(x*,o) for all

t e ro,tlj. For t ¢ [O,tlj:

Moreover, a t




£
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le(x"+ty) - G(x™) - ' (x")tyl >

> e (x")tyl - le(x™+ty) - x7I >
= Lleyl - sleyl? >
SLIyl B

_ L
= Syl

This yields a contradiction to (4.20). So (i) implies (iv).

2. Suppose
(4.21) Kl(x*,x*;F) = F'(x7).

Let A = (A
2

M(*) = M(K,gO,A;°). For ease of notation we suppress the dependence of K on

j) be an m-stage Runge-Kutta method. Let G = M(F), where

F.
Now, let DO = X and
G.: D, >~ X,
(4.22) o0
GO(X) = x, for all x € DO'
With n, = 0, define for ¢ = 1,...,m
= -— 7 . . -
(4.23) D2 {x | X € Dz_],[(l nl)K](GZ_](x),x) + nzF (Gl—l(x))] is in
vertible},
and
G:D -»X
(4.24) Lok 2

GQ(X) = x +.z A

-1 L+1

k. f .
,; J(X), or all x € Dz

Note that Gm = G.
We shall prove by induction the following proposition:

For £ = 1,...,m there exist Pys0y > 0 such that

*
a. B(x ,pz) c DQ.
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b. kz(x) = —F'(x)_lF(x) + rg(x), where ﬂrﬁ(x)" < ozﬂx—x*ﬂz for all
X € B(x*,pz).

\
c. k (x*) = -1,
2

k](x) = x - nzK](x,x)_lF(x) for x € D,.

Let 2 = 1: G](x) = x + I

A1
a, Since F ¢ Fl and K ¢ K] there exists a neighbourhood V of x* and

6],52,B,y>0 such that (4.1) and (4.2) hold. Now, using (4.5) and (4.21),

(4.25) 1K, Ge,x) = F' (=) < (8,45,) Ix=x"Il for all x e V.
Let

_ * * 1 * 1
(4.26) p] max{p l B(X ,p) < B(X ’28(614‘62)) nVn B(X :2B.Y)}’

then from Theorem 2.6.1 it follows that both KI(X’X> and F'(x) are invertible

and

(4.27) qux,x)']ﬂ 28 and "F'(x)_lﬂ < 28, for all B(x*,pl).

A

This implies that B(X*,pl) c D].

b. Let x ¢ B(x ,p ), then

kGO + B TR = K0 - BT IR
Using (4.21),

K, (y,%) = F'(x) =K(y,x) - K(x",x") + F'(x") - F'(x),
thus (4.2) and (4.5) imply that

(4.28) Ik, (y,%) = F' Gl < (5,%y) lx-x*1 + Glﬂy—x*ﬂ,
for all x,y € B(X*,p]).

Let T > 0 be such that sup{lF'(x)l | X € B(x*,pl)} < 1, then (4.8) holds for
0 =p- Then, using (4.7), (4.8), (4.27) and (4.28),




(4.29) "k](x) + F'(X)—IF(X)" < (26)2(6]+62+y)rlﬂx—x*“2.

2
So, let o, = (2B) (51+52+Y)Tl-

c. Obviously,k](x*) = 0. So using (4.26), for x ¢ B(x*,pl)

ley(x) = & (x7) + (x=x )1 <

1 -
< 1-F (0 TF@ + ex D+ o Ixex1
. * ‘ * 1 *
Since B(x ,pl) c B(x ,EE;), (4.13) holds for x e B(x ,p]), so

"k](X) —kl(x*) + (x-x)I <

< (By+cl)ﬂx—x*ﬂz, for all x € B(X*,p])-

1
Therefore,kl (x*) = -1,
So for £ = 1 the proposition holds.

Now, suppose that for j = 1,2,...,%-1<m the proposition is true.

°, satisfy (4.26) which is no restriction. Since

2-1
GQ-](X) = x + jZ] Ag’jkj(x), for all x ¢ D, ;>
and
k%(X*) =-I, o= 1,...,0-13
' x) exi e ()1 isap
GQ_I(X ) exists and Gﬁ—l(x yh =1 - n, - So, there is a Py s
0 < 52 < min {p.}, such that
= i=l,0..,0-1 ]
I B *yo * Uk Uk
GQ—I(X) Gz_l(x ) G%-l(x ) (x—x ) < nzﬂx x I,
for all x ¢ B(x ,pz).
Therefore,

*
IG,_, (0-x"1 =

Let
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I, . (x) -

-1 ") - G;_l(x*)(x—x*) + G;_I(X*)(x—x*)" <

GR—I

Hx-x*H, for all x ¢ B(x*,gz)

HA

By (4.2), (4.5) and (4.21) we have

IE(I=n K Gy (x),%) + nyF' (6, ) I-F' (xDI ¢
< (1-n2)[52ux-x*u+5luc2_l(x)-x*u]+nzynx-x*u,

for all x € B(x*,gl).

. . 1 .
With P, = mln{pl’ZBE(I—HQ)(6]+52)+n2Y]}’ Theorem 2.6.1 yields that

[(l—nQ)Kl(Gl_l(x),x)+n£F'(G2_1(x))] is invertible and
(4.30) "[(I"nz)KI(Gl_](x),x)+n2F'(Gl_1(x))]_1" < 28 for all x ¢ B(x*,pl).

Therefore, B(x*,pl) c DZ'
*
b. For x € B(x ,pl):

1

k,(x) + F'(x) F(x) =

= ~[(1-IK, (6, (x),3)+n,F' (G, (x)]

[-K(Gy_ | (x),x)+F (G, _ | (x))+gy(n ) {(1-n )K(G,_, (x),x)+n F(G,  (x))}]+

+ P (x) R x).
From Theorem 2.6.3 it follows that
K(G, (x),x) = K, (x,x)[G, ,(x)- T+s (x) Ig x)I < 61"@ —xl?
g—1(x)»x @06, ()% RCIPILER x)h < - 2—1(x) > LN
Thus

R(G,_; (x),%) = (K Ge,x)=F' () 1[G, (x)=x] + F' (x)(G,_, ()=x) + 5, (x)

[Kl(x,X)-F'(X)]fGl_l(X)-XJ +

+

2-1
v _nt -1 ~
F'(x) jZ] kz,j[ F'(x) F(X)+rj(x)] +8 (%)
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2-1
= - . - ~
nF(x) + [K (x,x)-F' (x) 1[G, (x)-x] + jzl YN ICRR N OR
Hence, using (4.28) and observing that
(4.31) 16, )=xll = 16, _| G)=x"+x"~xl < 2lx-x'l,
we see that

K(G,_, (x),%) = -n F(x) +5,(x),
Hsl(x)H < [(6]+62+y)2 + jZ] IAl’jloj+26l]ﬂx—x .

According to Theorem 2.6.3,

F(G,_;(x)) = F(x) + F'(x)[G,_ (x)-x] + Ez(x),
Is, GOl ;—;—IIGQ_](X)-xIIZ. '
Thus
-1 _ N
F(Gz—l(x)) = F(x) + F'(x) jzl Az,j[_F'(x) F(x)+rj(x)] + SZ(X)’

and therefore

F(GJL—I(X)) = (l-nQ)F(X) +5,(x),
(4.33) -1
*, 2
Hsz(x)ﬂ < [j=1 ]AQ,jl0j+2Y] lx-x"11-.
Now, let
(4.34) A(x) = [(l'nl)KﬁGh_](X),X) + ﬂQF'(Gg_l(X))],

then HA(x)-]" < 28 (see 4.30), and

ITa(x) = F'(x)I < (]-nl) HK](GQ_](X),X) - F'x)I +

+n, IF'(6,_ () - F' (0,




26
So, using (4.28) and (4.30)

Ia(x) - F' ()l < (l—nl)[(62+y)“x—x*" + élﬂcz_](x)—x*ﬂj +
(4.35) -
+ n,QY"GQ,-l(X)_X*" < [1—n£)(251+52+7) + 2nzyj||x—x*l| .

(4.32), (4.33) and (4.34) then yield

k, () + F'G0) 7RG =
= -AG) T I F() - 50 + (1mn)IF() + 5,00 +
+ () {(1=n ) (= FT (0T F(x)+s | (), ((1=n OF' ()7 F () +s, oM+
+F (0 R =
= [-aG) T+ P IR +

+ A6 T T (=14g(n) (1= ))s, )+ (148 (1, )n )s, (0 1.

Let vy and v, be the terms between the square brackets in (4.32) and (4.33)

respectively. We recall that a 1 >0 exists such that IF(x)l < THx—x*H, for
all x ¢ B(x ,p,). Then, using (4.7), (4.27), (4.30), (4.32), (4.33) and
(4.35),

e, (x) + F'(x) FG)I <
< {28 %0 (1-n ) (26 +6,4y) + 2n y]T +

+ 2)0]=1 + g(n)(=n)[v, + |1 + g(nl)nllvzj}ﬂx—x*ﬂz.

Therefore, for j = & proposition b holds.

c. It follows that for x ¢ B(X*’pl) a 02 > 0 exists such that

kl(x) = —F'(x)—]

2
F(x) + r,(x), vhere It ()l < cgﬂx-x*ﬂ
Obviously, kg(x*) = 0, so that

I, (x) - kl(x*) + (x=x)I

IA

< I-F'(OF(x) + (x-x)1 + ozﬂx-x*ﬂz for all x ¢ B(x",p,).
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Since B(x*,pﬁ) c B(x*,pl) c B(x*,ié;), (4.13) holds for x ¢ B(x*;pz), thus

Hkl(x) - kz(x*) + (x—x*)ﬂ < (By+ol)ﬂx—x*"2, for all x ¢ B(x*,pl).

Therefore kz(x*) -I and the proposition is proved.

. . 1 *
Now, with p = mln{pl,...,pm,igy}, for x ¢ B(x ,p),
m . m
= - — \J
G(x) =x+ ) Am+],£kl(x) x - F'(x) F(x) + ) Am+],£rg(x).
=1 =1
So, (4.13) yields
* -1 * m
~ - = - -
IG(x) x | I-F'(x) F(x) + (x-x ) + lzl Am+l,£rl(x)"
< 6ﬂx—x*H2,
o * 1 *
where § = By + z lkm+l,2|62' For x ¢ Vl = B(x ,ES-) n B(x ,p), we have

2=1

* *
IG(x) - x I < fIx=x"1,

hence, for all Xy € V], the sequence {Xk} generated by x, and ({M},F), re-

0

. . * . .
mains 1n VP converges to x and satisfies

* *, 2
ka+l-x I < Gﬂxk—x =, k=0,1,...

Therefore, (iv) implies (iii).
3. It is obvious that (iii) implies (i).

4. Suppose K;(x*,x*;F) = F'(x*).

Let g:[0,1] - R. Then proposition (iii) holds for gy = & since (iv) implies

(iii). Therefore the iterative process ({M},F), where M(:) = M(K,g,Al;-) is
locally, quadratically convergent. So, there is a neighbourhood V of x" and
§ > 0 such that for all Xy € V, the sequence {xk} generated by X, and

. o * * *2

- | - = S
({M},F) satisfies x > i and "Xk+l x | < 6"xk x 14 for k = 0,1,2,
Thus for Xy € B: (x, SJ n V the sequence {xk} generated by X, and

. . * * *

({M},F) satisfies X > X and "xk+1 -x | < ka -x 0, k=0,1,....

So (iv) implies (ii).
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5. Suppose proposition (ii) holds and let
(4.36) K, (x",x7) # F'(x)

Again, we have suppressed the dependence of K on F. Let

(4.37) D1 = {x | Kl(x,x) is invertible}
and

G]: D] - X,
(4.38)

G,(x) = x - Kl(x,x)_]F(x).

For gyt [0,1] » R, gl(t) =0 for all t ¢ [0,1], let G, = M(F), where

: DZD(GZ). Proposition (ii)

implies that x~ e D(Gz), so Kl(x*,x*) is invertible. According to (4.32)

there is ay ¢ X, y # 0, such that I[I - Kl(x*,x*)—lF'(x*)]yH = Llyl, . > 0.
Now, let g2:[0,1] -~ R, such that p = (l+g(1))L - 1 > 0. For G = M(F),

Where M(') = M(K:gzal’\];.),

M(.) = M(K,gl,A]p). Then one easily verifies that D

G(x) = x = F'(6 (1)) [-K(6,(x),%) + (I+g,(1))F(G, ()],

for all x ¢ D(G).

Proposition (ii) implies that x* ¢ interior (D(G)), so Lemma 4.3 applies

for D3 = D(G) and G3 = G, therefore G'(x*) exists and
R Xk =]k
G'(x") = =(l1+g(1))[1 - KI(X ,Xx ) F'(x)].
*
Now, there is a neighbourhood V of x such that

“G(X) - X*" < “x—x*“ for all x ¢ V.

Let t1 > 0 be such that for all t « [O,tl], x* + ty € V. Then for all

t e [O,t]]:
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le(x +ty) - G(x*) - 6" (x")tyl >

(1+g(D)Lltyl = leyl =

v

pltyl.

This yields a contradiction, so (ii) implies (iv). [

As a direct consequence of Theorem 4.1 we have

THEOREM 4.2. Let F € F] and K € K] then the following propositions (i) and

(i1) are equivalent:

(1) K (x,x5F) = F'(x).

(ii) For all g:[0,1] > R and any Runge-Kutta method A, the iterative pro-
cess ({M},F), where M(+) = M(X,g,A;*) is locally quadratically conver-
gent.

PROOF. The result immediately follows from the equivalence of proposi-

tions (iii) and (iv) in Theorem 4.1. 0

Examples of K € Kl that satisfy the condition K](x*,x*;F) = F'(x*) for

F ¢ Fl are

1. K(x,y;F) = F(x) - F(Y)’
2. K(x,y;F) = F'(y)(x-y).

]
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5. RADIUS OF CONVERGENCE OF NEWTON'S METHOD

Let K ¢ Kl be defined by K(x,y; F) = F(x) - F(y), where x, y € X and
F e F]; let g: [0,1] - R, where g(t) = 0 for all t € [0,1]; let A be a

Runge=Kutta method, where

()

Consider the iterative method {M}, where M(-) = M(K,g,A;*). For F ¢ F], the

iterating function G = M(F) is defined by

G: D(G) - X,
(5.1)

G(x) = x - F'(x) 'F(x), for all x ¢ D(G).

Therefore {M} is Newton's method.
Now, let B, vy > 0. In order to calculate the radius of convergence of
Newton's method, we first have to prove some lemma's.

1
LEMMA 5.1. If F ¢ F <B,y> and x ¢ B(x ,By) then F'(x) is invertible and

IF o —8
T 1-Bylx-x"1l
PROOF. Since F ¢ F <B,y>, we have ﬂF'(x*)—l" < B and for all x « B(X*,E%D:

"F'(x)—F'(x*)"gy"x—x*H < % . Therefore, Theorem 2.6.1 applies, thus proving

this lemma. [J

1
LEMMA 5.2. For F ¢ F je,y> let G be defined by (5.1), then B(x ,By) < D(G),

and for all x e B(x",8Y),

Byl x—x 12
2(1-gylx-x"1)

IG(x)-x"I

HA

PROOF. According to (3.2.7), D(G) = {x|F'(x) is invertible}. So from Lemma
5.1. it follows that B(x ,By) c D(G). Since F ¢ F <B,y>, from Theorem 2.6.3

it follows that for x e X:
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0 = F(x*) = F(x) + F'(x)(x*-x) + r(x), where lr(x)l Yx - x4

A

N

Thus £ B(x" )
us for x e B(x , g

Ix = F'(x) 'F(x) - x°1 = 1F'(x) el

Byl x-x"12
2(1-gylx-x"1)

. -1
Now, using Lemma 5.1, we obtain IF'(x) r(x)l <

This completes the proof. [J

THEOREM 5.1. The radius of conbergence of Newton's method with respect to
. 2
F<B,y> s T8y -

PROOF. 1. We first prove that the radius of convergence of Newton's method

with respect to F<B,y> is not less than 3%; .

Take an arbitrary F ¢ F<B,y>, and let G = M(K,g,A;F). G is thus de-
fined by (5.1).
- €

For any €, 0 < € < %3 set a(eg) =
- + 2¢

Note that 0 < a(e) < 1. According to Lemma 5.2, it follows that for any
x € B(x (2-: )'J—)
’BEBY’
2
Bylx—x1% _ 3°F

7 S 5 lx-x"1 = a(e) lx-x"1l .
T 2(1-Byllx-x"1) — 2(1_(3“_3))

(5.2) le(x) - x|

Now, for any x. € B(X*’§%7)’ there is an ¢ > 0 such that

0
= % 2 1

X, € B(x ,(3“'6)@;). (5.2) shows that the sequence {Xk}, generated by x

and ({M},F) satisfies

0

I, = %1 g [a(@) T Ix =% » 0 (o),

So, the radius of convergence of Newton's method with respect to F is not

2
less than §§? .

Since F ¢ F<B,y> was arbitrary. it follows that the radius of conver-
gence of Newton's method with respect to F<B,y> is not less than 3%7 .
2. In order to prove that the radius of convergence of Newton's
method with respect to F<B,y> is 3%;3 we show that an F ¢ F<B,y> and an

X € X exist,
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such that on _— =<§§? and the sequence {xk} generated by x

= X, T e

4
1 . .
a. If X = IR with innerproduct (x,y) = xXx.y, then define

o and ({M},F)

satisfies x, = x

0 2

1 1

6: R* > R
(
1 1
—_— ’ for x > —
2%y By
lx-lxz, for0<x<L
(5.3) o(x) =< P 2 = = By .
1 2 1
EX*-%X, for—W:x<0
1 1
— s for x < - — .
28%y By
(5.4) o' (x) ] < %-, for all x ¢ Hi].

It is easily verified that 0 is the unique solution of ¢(x) = 0,

"¢'(O)_l" =B and l¢"(x) - ¢" (M < ylx - yl for all x,y € X. Therefore,
¢ e F<B,y>.

2
Now take Xy = ggvgzthen the sequence {xk} generated by X, and ({M},F)
satisfies X, = - 3y ° X, = 36y’ etc.

b. If X is an infinitely dimensional Hilbert space, then a subset B of X
exists such that the following three statements hold (cf. [1]1):
For all u,v € B-we have (u,v) = 0 if u # v, (u,v) =1 if u = v.
For any x ¢ X, the set BX = {u ] ue B, (u,x) # 0} is countable.
Assuming that, for x ¢ X, Bx contains an infinite number of u (otherwise
extend Bx with u ¢ B for which (u,x) = 0), let n - U be an enumeration of

the set Bx’ then
oo
X = X,u )u
EECHNER

and

s,
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Now, for x ¢ X, let B_ = {u_} and set a_ = (x,u ), n = 1,2,... . Then
X n n n

(5.5) x= ) au .

n=1

N
Define FN(x) = E ¢(an)un, where ¢ is defined by (5.3). According to (5.4)

n=1

1 : 2

and Theorem 2.6.2, |¢(an)| < Elanl. Thus, for m > 0, "FN+m(x) - FN(X)“ =

N+m

= ) [¢(an)]2 + 0 (N»=). Therefore, {FN(X)} is a Cauchy sequence. Let
n=N+1

F(x) = lim FN(X). Then

(5.6) F(x) = ) ¢(a du_.

n=1
F(x) is independent of the enumeration of Bx' We shall prove that F ¢ F<B,y>.

. . * * *
i. F(x) = 0 has a solution x = 0. Let y € X be such that F(y ) = 0

0
and y* # 0. Let B _ = {v_} and y* = E B v_. Then F(y*) = E ¢(R )v and
: * n S, nn n n

< n=1 n=1
0=IrEHI%Z =7 [¢(sn)]2. Thus ¢(8 ) = 0, n = 1,2,... . This implies
=1
that Bn =0, n=1,2,... . Therefore, y* = 0 which yields a contradiction.

ii. Let x € X.

For h ¢ X, let B UB = {un}, x= ) au and h = ) hnun. Set
n=1 n=1
N
ANh = Z ¢'(an)hnun, then for m > 0,
n=1
N+m N+m
2 2.2 1 2
A, h-ARI“= 7 [¢"( )] hl<— ] hil->0 ().
N+m AN n=N+1 n n = 82 n=N+1

Th i . = 11 = ! . i
us {Anh} is a Cauchy sequence. Let Ah = 1lim ANh z ) (an)hnun A is
. . N n=1

independent of the enumeration of BX U Bh.

We shall prove that A = F'(x).
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IF(x+h) - F(x) - AnlZ =

7 y v 1 2
anl ¢(o_+h Ju - nzl ¢(a Ju, - nzl ¢'(a Dh u I =
M z {¢(an+hn) - ¢(an) - q)l(an)hn}un"z

n=1

oo ' 2
nzl loCa +h ) = ¢(a ) = ¢'(a dh_|
o 2

Y, 2
Z] [3h ]

A
&~
=
~

For h € X,

2 _ 2 1 v .2 1 2
Ianl < = ¥ [¢'(a Dh 17 < — Z ht = — Inl®,

n=1 B” n=1 B
For h],h2 € X, let B, U Bh U Bx = {vn}. X = Z ann and hj = Z hj,ﬁvn’
1 2 =1 n=1
j = 1,2. Then for real numbers 61, 62,
= ' =
A(6]h1+62h2) nZI ¢ (Bn)(elh],n+62h2,n)vh
= ' v
e] Z ¢ (Bn)hl,nvn * 82 z ¢ (Bn)hZ,nVn
n=1 n=1
= SlAh] + 82Ah2.
Therefore, A is a bounded linear operator in X and A = F'(x).
iii. Let X,y,h ¢ X and BX U By U Bh = {un}. X = Z au ,y = z Bnun

n=1 =1

and h = z h u .
nn
n=1
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Then

ICE'(x) - F'(y)Inl?

1] (4" - ¢'(Bn)}hnunH2
=1

S \ 2.2
I [¢'(a) - ¢"(8 )1

n=1

| A I
<
N
~
~~
Q
|
o
N’
=l

| A
=

N
—
o~ 8
~

QR

|

jos]
~

N
——
—
o~ 8
=y
=S
—

v2x - yI2 Inl?,

Therefore IF'(x) - F'(y)l < ylx - yl for all x,y € X.

iv. Let h € X, and B, = {u }, h = Z h u . Then
n nn

I I I
U = v = — = e ' = v 1
F'(0)h Z ¢'(O)h u_ N g hu =2 h SoF'(0) =4I, thus F'(0) is
n=1 n=1
invertible and F'(0) ' = BI. This implies that I¥'(0) 'l = 8.

Thus F ¢ F<B,y>.

2
Now, for u ¢ B, let Xg = 3py u. Then the sequence {xk} generated by X
2

and ({M},F) satisfies: x X u, etc. Where X is infinitely

2
1T T3y Y F2 T 3By
dimensional, this completes the proof.

c. If X is finitely dimensional, then we can show by a similar method as
part b of the proof that an F € F<B,y> and an x

0
such that the sequence {xk} generated by X, and ({M},F) satisfies

X, Iz - x*I = -2 ist
€ X, Ixy - x 3gy> oxist,

X, =X, =X, T s.. » U
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6. ITERATIVE METHODS WITH A GREATER RADIUS OF CONVERGENCE

Let B,y > 0.

In this final chapter we present a class of iterative methods (appli-
cable to Fl) whose menbers all have a greater radius of convergence with
respect to F<B,y> than Newton's method.

Let m be an integer, m > 2. Wpseessw are real numbers satisfying

w, € 0,1), i=1,...,m1;

(6.1)

Let A = (AR .) be an (m+1) x (m+1) strictly lower triangular matrix, such

that

)2 L for & = 2,...,mtl;

9

(6.2) -1

Azwj = wj(l-izlxz’i), for j = 2,...,m; % = j+1,...,m+l.

2-1
LEMMA 6.1. For A = ()\2 j) defined by (6.1) and (6.2), let ng = z Ay 5
b j=] b

for & = 2,...,m+1. Then

nz e (0,1), for £ = 2,...,m;

and

PROOF. We prove this lemma by mathematical induction.
If 2 = 2, then n, = AZ,I =0, According to (6.1), n, € (0,1).
Suppose that for j = 2,...,%1 < m+] the conclusion holds. According
to (6.2),

(6.3) IR PP £ e P
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-1 2-1
g =g U L A D LAy = ey r (e Ong
]= j=1
Now, if £ < m+l, then wy_| € (0,1), and since we assumed that Mg € 0,1,
we obtain n, € (0,1). If 2 = m+l then according to (6.1), wy_y = 1. This im-
plies that Noel = 1.

This proves this lemma. [ )

Thus, A = ()\2 j) satisfies (3.1.4) and it may therefore be considered
b
as a generating matrix of an m-stage Runge-Kutta method.
Let K ¢ K1 be defined by
(6.4) K(x,y;F) = F(x) - F(y), for all F ¢ Fl and x,y € X.

Let

g: [0,1] » R,

(6.5) g(t) ]—l—t for t ¢ [0,1),

1l
—
.

g(t) 1, for t

For F e F<B,y>, consider G = M(F), where M(*) = M(K,g,A;*). Then,

G: D(G) - X,
(6.6a) m
G(x) = x + Z Am+l . kg(x) for all x € D(G),
=1 ’
where
k() = -F () F),
(6.6b)

=1 .
“F'(x+ ) 2 . k.(x) 0 x
=1 253 ]

kz(x)
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-1 2-1
1
- .k. - k.
[F(x) + = {Q nx)(F(x-szl A3k () - FG) + nRF(x-ij] LTI
2-1 . 2-1
= - v .k.. k. s ,Q,=2’,,,, .
L jzl M, yf ) Pl .Z] M, 385 ) "
If we define for all x € D(G),
yl(x) = X,
(6.7) 2-1
= + r, .k, s L =2,...,m+l;
v, (x) = x _Z] 2,555 () m
J -
then, with n, = 0,
1 =1
(6.8) k,(x) = - T:;;-F'(YQ(X)) F(y,(x)), % =1,2,...,m.
LEMMA 6.2. The following relations are true:
(6.9a) G(x) = ym+l(x), for all x € D(G),
where
y](X) =X,
(6.9b) -1
= _ 1 -
v, (®) =y, (¥ -w, F'(y,_ () F(y,_;(x)), ¢ oMl

PROOF. We only have to prove that for all x ¢ D(G),

y,(x) =y, (%) - wz—lF'(yz—l(x))—lF(yz-1(X))’ L= 2,...,m+l,

For all x ¢ D(G), according to (6.2), (6.6b) and (6.7),
¥, = x + 2, k60 = x -0 F (v, 60 F(y, ().

Thus, for £ = 2, the relation to be proved is true.

Now, for £ = 3,...,m*+l, according to (6.3) and (6.7), for all x ¢ D(G)

-1
X) = X + A, ko (x
y, (x) J_Zl PLANC)

sx Z e, 585 Ay kg
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=Y ) A kg ()

Using (6.2), (6.3) and (6.8),

ST LIMACY

F'(y,_, ) F(y,_ (x)

= T F(y, )Ry, ()

R:j -

-wz_]F'(yz_l(x))-lF(yg_l(X)).

This proves the lemma. [J

Thus, G = M(F) might also be conceived as being defined by (6.9).
Iterative methods {M}, such that for all F ¢ F], G = M(F) is defined by
(6.6) (or, equivalently, by (6.9)), will be investigated in this chapter. To

that end we need some lemma's.

LEMMA 6.3. Let x € X, and suppvse that
1. F e F<B,y>.

2. real numbers x and o exist such that

a) aKY < 3.
b) F'(x) is imvertible and IF'(x) 'l < «
c) "F'(x)—lF(x)H < a.

Then

lv-x*1l < o, where v = x - F'(x) 'F(x).

PROOF. The conclusion is a direct consequence of the well-known Newton-
Kantorovich theorem (cf [2] and [3]). O

LEMMA 6.4. If x,y,z2,u € X, z = wx + (1-w)y for an w ¢ R, then

lz-ul? = whx-ul? + (1-0) ly-ul? - w(i-w) Ix-ylZ,
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PROOF. 1. Observe that

lz—ul 2 = I w(x-u) + (I—w)(y-U)“z
= (w(x-u)+(1-w) (y-u), w(x-u)+(l-w)(y-u))
= Ix-ul? + (1-w)? ly-ul? + 20(1-0) (x-u,y-u).
2. lx=ylI? = I (x-u) - (y-u)I?

((x-u)-(y-u), (x—u)-(y-u))
lx-ul? + ly-ul? = 2(x-u,y-u).

Therefore,
2(x-u,y-u) = lx-ul? + ly-ul? = Ix-yl?2.

Together with the first part of the proof, this proves the lemma.

Let w € (0,1). Define

. 1 w
¢ [O’BY) + [0,*),

w

2 2
(l—w)c2 + wz[——élg———] for o € [O,—l—o

(6.10) Cw(O) = I_Z(I-B'YU)J ’ 287 ?
¢ (o) = (1-w) 2, w[———ElgE— i - w(l'w)r—l—(l‘s )]2
w'9) = o [ 2(1-By0) [ 28y ve 1
1 1
for o € [5@?’@?}

Let the function gw be defined by

1
E : [O:_—) g [09°°);
(6.11) w By |
£ (o) = vt (o) , for all o € [0,—).
w w By

LEMMA 6.5. Let F ¢ F<B,y>. For all y ¢ B(x*,E%), let
-1
z=y-w F'(y) F(y).
Thaen the following error estimate holds:

lz—x"l < %ﬂ("y-x*ﬂ).
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. 2 1 *
Moreover, there is a M, I8y <H, < B such that for all y € B(x ,uw),

* *
lz-x"I < ly-x"1I.

PROOF. Let y € B(x*, E%). Set Hy-x*H = g. It should be noted that according

to Lemma 5.1, F'(y) is invertible and

B

-1
Ig < .
L R I

Let
vey-F@ FE.
Then z = wv + (l-w)y. According to Lemma 6.4,
(6.12) lz=x*12 = (1-0) ly=x*12 + o lv=x*12 - w(1-w)a2,

where a = HF'(y)_lF(y)H.
If

_oBy
1-Byo

1A

then Lemma 6.3 applies and

1

lv-x"1 <a, o< ZBY(]_BYG)'
Therefore,
6.132)  Dz=x"1% < (1=w)o® + o 1v=x"1?
and
6.130)  1z=x"1? ¢ (1-wo® + WP (i-gv0) )%, if e
1f

aBy
1-Byo
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then o > Zéy(l_BYO)' According to Lemma 5.2,
(6.14) ly-xIl < —5Y9___
= 2(1-Byo)
Thus
2 2 2
o * ) g2 __Byo” R ]
(6.15) lz—-x"ll < (1-w)og™ + w[Z(I-BYO)] w1 w)[ (1- BYO)J
By L
if 1=gyo > 3.
Note that
(6.16a) BY"Z < L (1-gy0), if o e[ 1
2(1-Byo) ~ 2By ’ 1%°28v) "
and
Bycz 1 1 1
6.16b —_
(6-160) S li=gyoy 2 gyt PY9)s 1f 0 € [zs s)

Using (6.13a), (6.14), (6.15) and (6.16a) we may conclude that

L.

Ilz-x*ll2 <z (o), if o € [O,ZBY

From (6.16b) it follows that

(lnw)o2 + wz[il—(l-BYc)]z <

(6.17) )
J gya” ]
“l2(1-gy0) |

if o € {—L—-l-\.

2By’By)

< (l—w)c2 +

- w(l- w)[ o= (1= BYU)]
Using (6.13b), (6.17) and (6.15) we may conclude that

lz-x*12 < £, (0), if o [—'— —>.

This proves the first part of the lemma.
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It is easily verified that:

).

1. gw(o)/o is monotonically increasing on the interval (0 By

2. éi% Ew(c)/c < 1.
3. 1i g)/o = =,
G#? £, ( )/

Consequently, there are uniquely defined constants u and n, such that

(6.18a) Ew(nw)

(6.18b) € (u)

]
=
€
w
™
<
£
€
™
<

(6.18c) Ew(c) < ag, for all o € (O,uw).

Therefore, the conclusion holds. [J

It should be noted that from Lemma 6.5 it follows that for any w ¢ (0,1)
such that for any F ¢ F<B y> and any y € B(x*,uw), for

there is a W, > 3§Y

z =y - wE'(y) 'F(y),

the inequality lz-x"l < ly-x"I holds.

However, for the first Newton iterate, say Vv,
= 1 -1
v=y-F'(y) F(y)

the inequality lv—x"1 > "y—x*“ may hold.

THEOREM 6.1. Let Woseees O s (m>2), be a sequence of real numbers satisfy-
ing (6.1). Let A = (A ), K, g be defined by (6.2), (6.4) and (6.5) respec-
tively. Then the zteratzve method {M}, where M(*) = M(K,g,\;*) has a greater

radius of convergence with respect to F<B,y> than Newton's method.

PROOF. 1. For j = 1,..., m-1, let My and nw be defined by (6.11) and (6.18)
j ]

forw = w.
J

Define for j = 1,...,m-1,
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O L]_J L]

¢wj' I_O’BY I_O’BY E]
(6.19) ¢ (o) ijo), for o € [O,n >,
w. w .

] E L
¢wj(0) = By for o € [nwj’§7]'

Now, consider the function ¥ defined as follows

o L1, T 1]
i A7 I Tk
Byci 1
(6.20a) Y(g) = W, for o, € [0,(—]+/§)B—Y>,
Y(e) = L for o e{(—1'+/§)-!——]—
BY’ m o BY’BY/’
where
o, =&
(6.20b)

Oj = ¢U) (Oj_l)’ for j = 2,...,m.

Using (6.18a) and (6.18b) it is easy to verify that there is a real 8 (de-

pending on B,y,w .,wm) such that

12
2 ~ 1

38y~ ° C By’

ii. y(e) < e for all € e [0,0),

i. v)= o,

iii. For any p € [0,5) there exists an a ¢ (0,1) such that y(e) < ae for all
e € [0,p].

2. Let F ¢ F<B,y> and G = M(F).

a. Let x ¢ X be such that lx-x"I <p < 0. Then according to the first part
of the proof, an a ¢ (0,1) exists such that y¥(e) < ae for all € € [0O,p].
l,...,m be defined in (6.20b). Then, using

[l

. * o,
With e = Ix-x I, let 0., j

Lemma 6.5, ”yj—x*" < Oj’ j 1,2,...,m; where Y sYpse-sy, are defined as

follows:

£
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According to Lemma 6.2, G(x) = Y+l holds. We recall that w = 1. Using

(6.21) and Lemma 5.2 it follows that

2
I I PYom
Yme1 X" 2 ETT:§§G;7

A

Hence (cf (6.20a)),

le(x)-x"1 < p(lx-x"1) < allx-x"1.

HA

b. Let X, € B(x* ;). Then, since "xo-x*" < p for some p < 3, from (a) it
follows that B(x*,p) c S, S = S({M},F) being the region of convergence of
the iterative process ({M},F).

Therefore, the radius of convergence of the iterative method {M} with

respect to F is not less than p, where p >

38y°
Since F € F<B,y> was arbitrary, it follows that the radius of conver-
gence of {M} with respect to F<B,y> is not less than p, p > 3§Y'

Together with Theorem 5.1 this completes the proof. O
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