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Iterative solution of nonlinear equations by imbedding methods 

by 

C. den Heijer 

ABSTRACT 

A class of stationary iterative methods for solving nonlinear equations 

is constructed. This is done by an imbeddingstechnique. The local conver

gence behaviour of these methods is investigated. Furthermore the concept 

of the radius of convergence of an iterative method is introduced. This is 

a measure of how far from the true solution a startingpoint is allowed to 

be, the generated sequence still being convergent. 

The radius of convergence of Newton's method is given. Furthermore it 

is proved that all the members of a subclass of the iterative methods con

structed here have a greater radius of convergence than Newton's method. 

KEY WORDS & PHRASES: nonlinear equations, imbedding methods, stationary 

iterative methods, ZocaZ convergence, radius of con

vergence. 





I. INTRODUCTION 

I. I. The probZem 

Let X be a Hilbertspace, and F: X ➔ X a nonlinear operator. 

In this report we shall be concerned with iterative methods for solving 

the equation 

(I. I. I) F'(x) = O. 

* Suppose that x E: Xis the solution of (I.I.I). A well-known method for 

solving (I.I.I) is Newton's method defined by 

given xO EX, 

(1.1.2) 

k = 0,1, ••• ; 

where F'(x) denotes the Frechet-derivative of Fat x. However, if the start

* ing point x0 is not close to x, then the sequence{~} defined in (1.1.2) 

* need not converge to x. In that case imbedding methods have been shown to 

be more effective than Newton's method. In these methods, (I.I.I) is trans

formed into an initiaZ vaZue probZem. This is done as follows: 

Given an operator K: Xx X ➔ X such that 

(I.I. 3) K(x,x) = O, for all x E X. 

K may be dependent on F. 

Let xO EX be a (bad) initial guess at * 
X ' 

(1.1.4) H(t,x) = (l-t)K(x,x0 ) + tF(x), 

Thus we have 

H(O,x0 ) = O, 

(1.1.5) 

H ( I , x) - F(x). 

and define 

t E: [0,1], X E: X. 
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Suppose that H(t,x) 0 has, for any t E [0,1], a unique solution x(t), i.e. 

(1.1.6) 

Note that 

(1.1.7) 

H(t,x(t)) = O, 

X (I) * X • 

x(t) unique, t E [0,1]. 

Differentiation with respect tot yields 

(1.1.8) 

where H1 and H2 are the partial Frechet-derivatives of H with respect tot 

and x respectively and x( t) denotes d: x( t). If 

(1.1.9) g: [O,J] ➔ lli. 

is a (given) real function, then (1.1.6) and (1.1.8) yield 

(I.I.IO) HI (t,x(t)) + H2 (t,x(t))x(t) + g(t)H(t,x(t)) = 0, t E [0,J]. 

If we assume that H2(t,x(t)) is invertible fort E [0,1] then according to 

(1.1.7) and (1 .. 1.10), the curve x(t) satisfies the following initial value 

problem 

x(t) 
-I 

- H2(t,x(t)) [H 1(t,x(t))+g(t)H(t,x(t))J, t E [O,I], 

(I.I.II) 

With rather weak assumptions about F,K,g and x0 , solving (1.1.11) is equiv

alent to solving (I.I.I). (cf. [5]). Now, solving (I.I.II) with a (given) 

* Runge-Kutta method, the calculated approximation to x(I) = x 

short x 1 = G(x0). 
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Repeat this procedure, i.e. solve (I.I.II), taking x 1 instead of x0 : 

x2 = G(x 1), etc. 

The iterating function G is determined by K,g, the Runge-Kutta method 

(and of course F). 

In short 

(1.1.12) G(x) - G(x;K,g, "Runge-Kutta method"). 

The problem we are concerned with is, how the convergence behaviour of 

iterating functions G of type (1.1.12) is. We first give an example. 

EXAMPLE. Take 

K(x,y) = F(x) - F(y), 

g(t) = o. 

Let x0 EX, then 

(1.1.13) H(t,x) = (l-t)[F(x)-F(x0)J + tF(x), 

and (I.I.I) is transformed into the initial value problem 

x<t) = 

(1.1.14) 

-I 
F'(x(t)) F(x0), 

Solving (1.1.14) with Euler's method taking a stepsize h = N' where N is a 

natural number, then 

(I.I. I Sa) xi = YN, 
where 

Yo = XO 
(1.1. ISb) 

I -1 i y. = Yi-I - N F'(yi-1) F(xo), = 1, ••• ,N. i 

3 
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1. 
yi 1.s an approximation to x(j), i = 0,1, ••• ,N. 

The iterating function G 1.s now defined by 

(l.I.16a) G(x) = yN(x), 

where 

y (x) X o· 
(I.I.16b) 

y. (x) y i-1 (x) 
I -] 

1. . N F'(yi-l(x)) F(x), 1. = 1, •.. ,N. 

In chapter 2 we introduce some conventions. The radius of convergence 

of an iterative method is also introduced. This is a measure to indicate 

how far a starting point x0 of an iterative process is allowed to be from 

* * x, while the generated sequence x 0 ,x 1 ,x 2 , ... still converges to x . We end 

this chapter with some elementary results which will be used subsequently. 

In chapter 3 we give an explicit expression of the iterating function 

to be considered, in terms of F,K,g and the Runge-Kut ta method. 

In chapter 4 we investigate the restrictions to be imposed on K in 

order to prevent the construction of iterative methods with a zero radius 

of convergencei. 

In chapter 5, the radius of convergence of Newton's method is given. 

Finally, in chapter 6 we construct a class of iterative methods whose 

members all have a greater radius of convergence than Newton's method. 

Test results for the methods considered here will be given in a fol

lowing report. 

2. NOTATIONS, CONVENTIONS AND SOME ELEMENTARY RESULTS 

2.1. Conventions and Notations 

From now on the following conventions hold: 
! 

Xis a real Hilbertspace, with innerproduct (·,·), and norm ll•II = (·,•) 2 • 

If A: D ➔ X, D c X, then A'(x) denotes the Frechet-derivative of A at x, 

for x E interior (D). 

Let xi, ... ,xn+l be Hilbertspaces and XO= xi x x2 x ••• x xn the 
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productspace. If G: D ➔ Xn+I' D c x0 , then for x = (x 1, ••• ,xn) E interior 

(D), G.(x) denotes the partial Fr~ahet-derivative of G with respect to x. 
1 1 

at x, i = l, ... ,n. 

Let x: [0,1] ➔ X, then x(t) denotes :t x(t), t E [0,1]. 

For a formal definition of these concepts, see [I]. 

For x E X and p > O, B(x,p) = {y I y E X, lly-xll < p}. Furthermore, if 
-

V c Xis a subset of X, then V denotes the closure of V. 

2.2. Iterative methods 

Let 

(2.2.1) 

and 

(2.2.2) 

G ={GI G: D ➔ X, DC X} 

F* = {F I F: D ➔ X, D c X and the equation (I.I.I) has a unique 
solution}. 

F* * For given FE , x will always denote the unique solution of (I.I.I). 

Let {Gk}= G0 ,G1, .•. , where Gk E G has domain Dk c X, k = 0,1, .••• 

Then 

(2.2.3) D({Gk}) = {x0 I there exists a sequence {xk} such that xk E Dk 

and ~+I = Gk(~), k = 0,1, •.• }. 

* For a (given) subset F0 c F let 

(2.2.4) 

Any sequence{~}= M0 ,M1, ••• with~ E M0 , k = 0,1, ••. , is called an iter

ative method (applicable to F0). 

To any iterative method{~} and FE F0 the related iterative process 

({~},F) is defined by 
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(2.2.Sa) xk+l = Gk(~), k = 0,1, ... ; 

where 

(2.2.Sb) Gk= ~(F), k = 0, I , ••• 

The starting point x0 of (2.2.Sa) should be an element of D({Gk}) in order 

to prevent the iterative process breaking off prematurely. 

Given an iterative process ({t\},F) and x0 E D({Gk}), then the sequence 

{~} generated by x0 and the iterative process ({~},F) is, of course de

fined by (2.2.5). 

Let FE F0 , {~}bean iterative method applicable to F0 , Gk= ~(F), 

k = 0,1, .... 

Then the region of convergence S 

({~},F) is defined by 

S({~},F) of the iterative process 

(2.2.6) S = {x0 I x0 E D({Gk}) and the sequence{~} generated by x0 
* and ({~},F) converges to x }. 

If x* E interior (S) then the iterative process ({~},F) is said to be 

ZocalZy convergent. 

Let ({~},F) be a locally convergent iterative process. 

* If a neighbourhood V of x and a o > 0 exists such that 

I. V C s, 
2. for all x0 EV the sequence{~} generated by x0 and ({~},F) 

satisfies 

k = 0,1, ... ; 

then the iterative process ( {~} ,F) is said to be ZocaUy., quadraticaUy 

convergent. 
* If a neighbourhood V of x exists such that 

I. V C s, 
2. for all x0 EV the sequence{~} generated by x0 and ({~},F) 

satisfies 

II x - x *11 
k+I 

* ~ II xk - x II, k 0,1, ... ; 



then the iterative process ({~},F) is said to be locally~ monotonically 

convergent. 

2.3. The radius of convergence 

* Let F E F • 

7 

As pointed out in the previous chapter, we are interested in iterative 

methods{~}, such that the related interative processes ({}1<},F) generate 
. * * sequences{~} that converge to x, even if x0 is not close to x. 

In order to be able to compare iterative methods by this criterion, we 

introduce the following definitions. 

F F*. Let O c 

DEFINITION 2.3.1. For FE F0 and iterative method{~} (applicable to F0), 

* r({~},F) = sup{p I B(x ,p) c S({~},F)} 

is called the radius of convergence of the iterative process ( {~} ,F). 

DEFINITION 2.3.2. For an iterative method{~} (applicable to F0), 

r({~}) = inf r({~},F) 
FEFO 

is called the radius of convergence of the iterative method{~} with 

respect to F0 • 

It is clear that, the larger r({~}) is for an iterative method{~}, the 

better the convergence behaviour will be for the iterative processes gener

ated by it. 

2.4. Stationary iterative methods 

* Let Fo CF. 
In this report we restrict our attention to stationary iterative methods 

{~}. This means that~= M, k = 0,1, .... 
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Let FE F0, {M} be a (stationary) iterative method (applicable to F0). 

The operator G = M(F) is, in this connection, called an iterating function. 

It is clear that, for the iterative process ({M},F) to have a positive 

radius of convergence, this process should at least be locally convergent. 

The (local) convergence behaviour of the iterative process ({~},F) is, 

of course, closely related to the behaviour of G = M(F). 

The following expresses this relation 

THEOREM 2.4.1. If the iterative process ({M},F) is locally convergent and 

G = M(F) is continuous in a neighbourhood of x* then 

* * G(x) = x. 

* This means that x is a fixed point of G. 

* Conversely, when x is a fixed point of G, we have 

THEOREM 2.4.2. Let ({M},F) be an iterative process. If x* is a fixed point 

* of G = M(F) and II G' (x ) 11 < I then the iterative process ( {M} ,F) is locally 

convergent. 

* PROOF. Let E > 0 be such that IIG'(x )II = I - 2E. Then there exists a p > 0 

such that 

* * * * * IIG(x) - G(x ) - G' (x )(x-x )II :,; Ellx - x 11, for any x E B(x ,p). 

Hence 

* * * * * * IIG(x) - x II :,; IIG(x) - G(x) - G'(x )(x-x )II + IIG'(x )(x-x )II:,; 

* :,; ( 1-E) II x - x II • 

The conclusion is innnediate. D 

C 



2.5. Classes of operators 

In this report we restrict our attention to operators F which are 

* members of the following subset of F . 

Let S,y > 0 be given, then 

(2.5.1) 

Let 

(2.5.2) 

F < S,y > 

u 
S,y>O 

* = {F I F E F ' D = X; 

F' (x) exists and IIF' (x)-F' (y)II :::; y llx-yll 

* -1 forallx,yEX; IIF'(x) II:::; S}, 

F < S,y > , 
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then the auxiliary operator K (see (1.1.3)) is assumed to be a member of the 

following class of operators 

(2.5.3) KI ={KI K: XX XX Fl ➔ X, 

For all FE F, the operator K(x,y;F) has the following 

properties 

1. K(x,x;F) = 0, for all x EX, 

2. K1(x,y;F) exists for all x,y EX, 

* 3. there are o1,o 2 > 0 and a neighbourhood V of x such 

that 

IIK 1(y,x;F) - K1(z,x;F)II:::; o1lly - zll, 

* * * * IIK 1(x ,x ;F) -K1(x ,x;F)II:::; o2llx-x 11, for all 

x,y,z E V}. 

If FE F1 is given, then, for ease of notation, we shall write K(x,y) in

stead of K(x,y;F) when no confusion is possible. 
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Examples 

Given FE Fl, 

1. K(x,y) = F(x) - F(y), 

2. K(x,y) = F' (y) (x-y), 

3. K(x,y) = X - Y• 

2.6. Some results from analysis 

We give here three theorems that will be used subsequently. 

THEOREM 2.6.1. (cf.[3]). If Land Mare bounded linear operators in X, 

M-l exists and IIM - LIi < 1 
IIM-l II , 

then 

-1 -I 
L exists and II L II 

IIM-l 11 
s------

t-llM-11111M-LII 

THEOREM 2.6.2. (cf[3]). If F: D ➔ X, D c X,D open and convex, F'(x) exists 

and IIF'(x)II s o for aU x ED, then 

IIF(x) - F(y)II s ollx - yll, for aU x,y E D. 

THEOREM 2.6.3. If F: X ➔ Xis Frechet-differentiable in X and 

II F'(x) - F'(y)II s yllx - yll for aU x,y EX and some y > O, then 

IIF(x) - F(y) - F'(y)(x-y)II s ½ llx - y11 2 , for aU x,y E X. 

PROOF. This result follows from the fundamental theorem of the differential 

and integral calculus (cf.[3]): 

I 

IIF(x) - F(y) - F'(y)(x-y)II = nf [F'(8x+(l-8)y)-F'(y)J(x-y)d8II s 

0 

D 



3. CLASS OF ITERATIVE METHODS 

Before we construct the iterative methods to be dealt with in this 

report, we define the Runge-Kutta methods to be used. 

3.1. Runge-Kutta methods 

Let 

y(t) = f(t,y(t)), t E [a,b], 

(3.1.1) 

y(O) = Yo 

be an initial value problem to be solved, where f: [a,b] x D + X, D c X 

and y0 ED are given. 

I I 

Computational methods for solving (3.1.1) approximate the analytical solution 

y(t) of (3.1.1) on a discrete point set {tn I a= t 0 < t 1 < ••• < tN = b}. 

Runge-Kutta methods are one-step methods, which means that, starting 

from y0 and t 0 , approximations yn of y(tn), n = l, ... ,N are obtained by 

(3.l.2a) = y. + h.<P(t.,y.;h.,f), 
1. 1. 1. 1. 1. 

1. = O,I, •.• ,N-1; 

where 

(3. J.2b) 1. = 0,1, •.• ,N-l. 

The function¢ is characteristic for the method. We therefore define a 

Runge-Kutta method in terms of¢. 

DEFINITION 3.1.1. Let A= (A. 0 ) be a strictly lower triangular (m+I)x(m+l) 
J ',{_. 

matrix. Then the general m-stage Runge-Kutta method is defined by 

(3.1.3a) <t>(t,y;h,f) = 

where 
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kl 
(3.l.3b) 

k,e_ 

and 

(3.l.3c) 

= 

= 

f(t,y) 

f(t+n,e_h,y+h 

l-1 
I 

j=l 
Ao . ' 

,{_.' J 

l-1 
I Al .k.), l 2, •.. ,m; 

j=l ,J J 

,e_ = 2, ... ,m. 

The matrx A is called the generating matrix of the Runge-Kutta method, 

which, obviously, completely determines the method. 

For the sake of shortness we shall use the phrase "Runge-Kutta method 

A" to mean "Runge-Kutta method with generating matrix A". 

Moreover, given a Runge-Kutta method A= (Aj,l), then nl is always 

supposed to satisfy (3.l.3c). It is usual to restrict oneself to Runge-Kutta 

methods for which 

Ill 

(3. l. 4a) I A O = I, 
l=•l m+l,,{_. 

(3. l.4b) n,e_ E ( o, I J, l=2, ... ,m. 

The initial value problem we want to solve is of type (I. 1.11). This means 

that a= 0 and b = I in (3.1.1). In this particular case an N x m-stage 

Runge-Kutta n1ethod ~(t,y;h,f) exists with generating matrix A = (\. 0 ), 
J ,,{_. 

such that y 1 = yN, where 

Moreover it is easy 
~ l-1 ~ 
n,e_ = Ij=I Al,j' l = 

to see that INxm A 
l=I Nxm+l ,l 

2, •.. , Nxm. 

I, and n,e_ E (O,l], where 

Therefore, as we are only interested in the Runge-Kutta approximation in 

t = 1, it is no restriction to assume that in (3.1.2), N = l. 

3.2. Descript;ion of the iterative methods 

Let FE F1, KE K1, g:10,1] ➔ JR and a Runge-Kutta method A be given. 
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Let 

(3.2.1) I -1 
D = {(t,x,y) t E [0,1]; x,y EX; [(1-t)K1(x,y)+tF'(x)] exists}. 

For a given x0 EX, let the curve x(t), defined in (1.1.6) satisfy 

(t,x(t),x0) ED, for all t E [0,1]. Then we recall from chapter I that the 

curve x(t) is a solution of the initial value problem 

x(t) 

(3.2.2) [-K(x(t),x0)+F(x(t))+g(t){(l-t)K(x(t),x0)+tF(x(t))}J, 

t E [Q,J], 

Consider f: D + X, 

f(t,x,y) 
-I 

= -[(l-t)K1(x,y)+F'(x)] x 

(3.2.3) 

[-K(x,y)+F(x)+g(t){(l-t)K(x,y)+tF(x)}], (t,x,y) ED. 

Then (3.2.2) is equivalent to 

x(t) = f(t,x(t),xo), t E [0,J], 

(3.2.4) 

The Runge-Kutta approximation x 1 of x(I) * = X 

(3.2.Sa) 

where 

is given by 
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(3.2.Sb) 

£=2, ••. ,m. 

We have written k 1(x0) and k,e_(x0) instead of k 1 and k,e_ to emphasize the 

dependence of k 1 and k,e_ on x0 • 

It l.S clear that if we repeat this process in the way described in 

chapter I ' the generated sequence {~} might be considered as being gener-

ated by XO and an iterative process ( {M} ,F) with itera-ting function G = M(F) 

defined as 

(3.2.6a) 

where 

kl (x) 

(3.2.6b) 

£-I £-I 
[-K(x+ l A,e_ .k.(x),x) + F(x+ I A,e_ .k.(x)) + 

j=l ,J J j=l ,J J 

£-I £-I 
+ g(n,e_){(I-n,e_)K(x+ I A,e_ .k.(x),x)+n,e_F(x+ I A,e_ .k.(x))}J, 

j=I ,J J j=I ,J J 

£=2, ... ,m. 

We define D(G) for G of type (3.2.6) as 

(3.2.7) D{G) = {x I x EX, 1.n x all inverses appearing 1.n (3.2.6b) exist}. 

Obviously, the operator M depends on K,g and A 

(3.2.8) M: F1 ➔ G, M(•) - M(K,g,A;•). 

From now on, for given KE K1, g: [0,1] ➔ JR and Runge-Kutta method A, 



we shall use the phrase "M(•) _ M(K,g,.t\;•)" to mean "M(•) - M(K,g,.t\;•), 

where M is of type (3. 2. 8) ". 

15 

In the next chapters we shall investigate the convergence behaviour of 

iterative methods {M} where M(•) = M(K,g,.t\;•) for given K,g and .t\. 

4. LOCAL CONVERGENCE BEHAVIOUR OF THE ITERATIVE PROCESSES 

Let F E F 1 • 

For given KE, K1 , g: [0,1] ➔ JR and Runge-Kutta method-/\, let M(•) = 

= M(K,g,A;•). Then G = M(F) is of type (3.2.6), G: D(G) + X. 

It has already been observed (see Chapter 2) that the radius of conver

gence of the iterative process ({M},F) is only positive when ({M},F) is lo

cally convergent. 

In this chapter we investigate the conditions which have to be imposed 

on Kin order that ({M},F) is locally convergent. 

Since KE K1 we recall from Section 2.5 that there is a neighbourhood V 

* of x and 8 1 , 82 > 0 such that 

( 4. I) 

* * * * IIK 1 (x ,x ;F) - K 1 (x ,x;F) ~ 82 llx-x 11, for all x,y, z EV. 

Moreover FE F1 implies that there are S,y > 0 such that 

IIF' (x) - F' (y)II < yUx-yll, for all x,y E X 

(4.2) 

Let 

(4.3) D 11 = {x I K(x,x;F) is invertible} 

and 
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(4.4) 
-1 = x - Kl (x,x;F) F(x), for all x E Dl. 

LEMMA 4.1. If' x* E interior (D 1) then Gi(x*) exists and 
* * * -I I * Gj(x) = I - K1(x ,x ;F) F (x ). 

PROOF. For ease of notation we suppress the dependence of Kon F. Since 

( * *) . . K1 x ,x is bounded and invertible, there is an a> 0 such that 
* * -I IIK 1(x ,x) II :S: a. Now, 

so that, using (4.1), 

(4.5) * * * * IIK 1 (y,x) -K1 (x ,x )II ~ o111y-x II + o211x-x II for all x,y EV. 

Let p = 2a(c5 +c5 2)' then Theorem 2.6. I yields that for x E B(x*,p) n V, 
( ) . .I 'bl d K1 x,x is 1nverti e an 

(4.6) 
-I 

IIK 1 (x,x) II < 2a. 

If P and Qare bounded, invertible linear operators on X, then 
p-1 - Q-1 Q-1 (Q-P)P-1, so 

(4. 7) 

Let,> 0 such that sup{IIF'(x)II Ix E B(x*,p)} < ,, then using Theorem 

2.6.2, 

(4.8) IIF(x)II * * < ,llx-x II for all x E B(x ,P). 

Moreover, Theorem 2.6.3 yields 

(4.9) * * y * 2 IIF(x) - F'(x )(x-x )II:'.:: 2 llx-x II for all x EX. 
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* Using (4.5), (4.6), (4.7), (4.8) and (4.9), for x E B(x ,p) n V: 

* * * -I * * IIG 1(x) - G1(x) - [I-K1(x ,x) F'(x )] (x-x )II= 

-I * * -I * * = II-K 1(x,x) F(x)+K1(x ,x) F'(x )(x-x )II= 

-1 * * -I * * -I * * = ll[--K1(x,x) +K 1(x ,x) ]F(x)-K1 (x ,x) [F(x) - F'(x )(x-x )]II:,; 

2 y * 2 :,; [2a (o 1+o 2)-r + a2J llx -xii • D 

Let 

(4. 10) {x J F'(x) is invertible} 

and 

(4.11) 
-1 

G2(x) = F'(x) F(x), for all x E D2 . 

I * I * LEMMA 4.2. G2(x) exists and G2(x) = I. 

* I PROOF. According to (4.2) and Theorem 2.6.I, B(x , 28y) c n 2 and 

(4.12) * I < 28 for all x E B(x , 28y). 

* Now, F(x) + F' (x) (x -x) = r(x), where llr(x)II 
* I 

< .111 x-x *11 2 for all x E X (The-
2 

orem 2.6.3). Therefore, for x E B(x , 2Sy): 

(4.13) 

Let 

(4.14) 

(4.15) 

-1 
IIF'(x) r(x)II * 2 < Syll x -xii • 

D3 = {x J x E D1 and F'(G 1(x)) is invertible} and 

□ 

-I 
G3 (x) = x - F' (G 1 (x)) [-K(G 1 (x) ,x;F) + p F(G 1 (x)) ], for all 
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x E n3 , where p E JR. 

* * LEMMA 4.3. If x E interior (D3) then c3(x) exists and 

* * * -I I * Gj(x) -p[I -K1(x ,x ;F) F (x )]. 

PROOF. Again, for ease of notation, we suppress the dependence of Kon F. 

* There are a, p, T > 0 such that (4.8) holds and for all x E B(x ,P), 

IIF'(x)-llf < 213, IIK (x,x)- 111 < a and11G
1
(x) - x*II < 2! . This last inequality - I - - µy 

implies th~t for x E B(x*,P), IIF'(G 1(x))- 111 < 2S. (see Theorem 2.6.1). So 

* * B(x ,p) c n3 . For x E B(x ,P): 

where 

(4.16) 

-I * IIF'(G 1(x)) K(G 1(x),x) + x - x II = 

-1 * = IIF'(G 1(x)) [K/x,x)(G 1(x)-x) + r 1(x)] + x - x II = 

II ) - I ) 1 ) ) - 1 ) x - x* II = -F'(G 1(x) F(x + F (G 1(x r 1(x + = 

= ll-[F'(G 1(x))-I-F'(x)-l]F(x) + F'(G 1(x))- 1r 1(x) - F'(x)- 1F(x) + 

llr 1(x)II 

* +x-xll, 

01 2 
< 2 IIG 1(x) - xii (see Theorem 2.6.3). 

IIG 1(x)-xll * * < a,Tllx - x II, for x E B(x ,~). 

Using (4.7), (4.8) and (4.13): 

(4.17) < [ (4B/y.aT 2 + 2si1 + By] llx - x*II 2 for all x E B(x* ,P). 
2 

Let k: D3 -+ X, 
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* * * * * * Since G1(x) = x and Gi(x) and G2(x) exist, k'(x) exists and k'(x) = 
* * * * -I . * = G2(x )Gi(x) = I - K1(x ,x) F'(x ). Then for E > 0, there is a pl > 0 

such that 

(4. 18) -I * * -I * . * IIF'(G 1(x)) F(G 1(x))- [I- K1(x ,x) F'(x )J(x-x) * ~ E llx - x II, 

* for all x e B(x ,P 1). 

* * -1 * * + p [ I - KI ( X 'X ) F ' ( X ) J ( x-x ) II < 

-I * < IIF'(G 1(x)) K(G 1(x),x) +x-xll + 

* 2 * < vii x - x II + Ip I E II x - x II , 

where vis the term between the square brackets in (4.17), vis independent 

of E, thus the conclusion of Lennna 4.3 holds. 0 

The next theorem shows the dependence of the local convergence behav

iour of the iterative process ({M},F) where M(•) = M(K,g,A;·), on K. Let 

(4.19) 

and gd[O, I] -+ ]R a given function. 

THEOREM 4.1. Let Fe F1 and Ke K1 , then the following propositions (i), 

(ii), (iii), and (iv) are equivalent. 
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(i) The iterative process ( {M} ,F), where M( •) 

quadratically convergent. 

(ii) For any g: tO, I J ->- JR, the iterative process ( {M} ,F), where 

M( •) = M(K, g,fl 1; •) 1..-s locally monotonically convergent. 

(iii) For any Runge-Kutta method fl the iterative process ({M},F), where 

M(·) = M(K,g0 ,A;•) is locally quadratically convergent. 

( . ) * *. ) - '( *) iv K1(x ,x ,F - F .x . 

PROOF. We shall prove: I. (i) implies (iv) 

2. (iv) implies (iii) 

3. (iii) implies (i) 

4. (iv) implies (ii) 

5. (ii) implies (iv) 

Of course, this is sufficient to prove that (i), (ii), (iii) and (iv) are 

equivalent. 

• • (;) ( * * ) .J. I ( *) I. Suppose proposition L holds and let~ x ,x ;F r F x . Let G M(F), 

where M(•) = M(K,g0 ,A2; ·), then 

G(x) 
-] 

= x - K1(~,x;F) F(x) for all x E D(G). 

Since the iterative process ({M},F) is locally quadratically convergent, 

there is a neighbourhood V c D(G) of x* and a 8 >Osuch that 

II * II II * II 2 · 1 ( * ) G(x) - x < 8 x - x for all x EV. Hence Lemma 4. I applies, so G x 

exists and 

* *. -] ' * I - K1(x , x ,F) F (x ) . 

* * * * As K1x ,x ;F) 'f F'(x ), some y EX, y 'f O exists such that IIG'(x )yll 111 yll, 

L > 0. By L, a positive p exists such that 

(4.20) IIG(x) - G(x*) - G'(x*)(x-x*) < L * * flx-x II, for all x E B(x ,c) c V. 

Moreover, a L * * t 1 E (0, 2811 y 11 ) exists such that x + ty E B(x ,P) for all 

Fort E: [O,t 1J: 



* * * IIG(x +ty) - G(x) - G'(x )tyll ~ 

* * * > IIG'(x )tyll - IIG(x +ty) - x II > 

~ Llltyll - 611tyll 2 > 

> Lil tyll - 6LII yll • II t II = 
261iyll y 

L 
z'lyll. 

This yields a contradiction to (4.20). So (i) implies (iv). 

2. Suppose 

(4.21) 

Let A= (A .) be an m-stage Runge-Kutta method. Let G = M(F), where 
Q,,J 
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M(•) = M(K,g 0 ,A;·). For ease of notation we suppress the dependence of Kon 

F. 

Now, let DO= X and 

(4.22) 
Go: Do ➔ X' 

G0 (x) = x, for all X E Do. 

O, define for Q, = l, ... ,m 

(4.23) DJi = {x Ix E DQ,_ 1 ,[(1-nQ,)K 1(GQ,-J(x),x) + n9,F'(GQ,_ 1(x))] is in

vertible}, 

and 

(4.24) 
G : D ➔ X 

Ji Q, Q, 

GJi (x) = x + l A0 1 • k. (x) , 
j=I .x,+ ,J J 

Note that G = G. 
m 

for all x E DQ,. 

We shall prove by induction the following proposition: 

For Q, = I, ... ,m there exist P9,,0Q, > 0 such that 
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-I 
b. k (x) = -F'(x) F(x) + r (x), where llr (x)II < a II x-x*II 2 

Q, 
for all 

Q, * Q, Q, 
XE B(x ,P ). 

Q, 

' * c. k (x ) = -I. 
Q, 

Let £ = I : G1 (x) = x + A2 , 1k 1(x) 
-I = x - n2K 1(x,x) F(x) for x E DI. 

Since F Fl and Kl there exists a neighbourhood V of X * and -a • E K E 

o 1,o 2 ,S,y>0 such that ( 4. I) and (4.2) hold. Now, using (4.5) and (4.21), 

(4.25) * * IIK 1(x,x) - F'(x )II < (o 1+o 2) llx-x II for all x EV. 

Let 

(4.26) I * * I * I p 1 = max{p B(x ,p) c B(x , 2S(o +o )) n V n B(x , 26Y)}, 
I 2 

then from Theorem 2.6.1 it follows that both K1(x,x) and F'(x) are inveriible 

and 

(4.27) 

* This implies that B(x ,p 1) c D1. 

* b. Let x E B(x ,p 1), then 

-I - I = -[KiCx,x) - F' (x) ]F(x). 

Using (4.21), 

thus (4.2) and (4.5) imply that 

(4.28) IIKi(y,x) - F' (x)ll ::: (o 2+y) llx-x*II + o 11!y-x*II, 

* for all x,y E B(x ,p 1). 

Let T > 0 be such that sup{IIF'(x)II I x E B(x*,p 1)}; T, then (4.8) holds for 

p = p 1. Then, using (4.7), (4.8), (4.27) and (4.28), 



(4.29) 
-I 

Ilk 1 (x) + F 1 (x) F (x) II 

2 
So , 1 et cr I = ( 2 B) ( cS I + cS 2 +y )T I • 

c. Obviously,k 1(x*) = 0. So using (4.26), for x E B(x*,p 1) 

* llk1(x) - k 1 (x ) + * (x-x ) II :: 

I - I 
< 11-F(x) F(x) * * 2 + ( x-x ) II + cr I II x-x II • 

* * I * Since B(x ,p 1) c B(x 'ZBy), (4. 13) holds for x E B(x ,~ 1), so 

* * Ilk (x) - k (x ) + (x-x ) II < 
I I = 

* 2 * < (sy+crl)llx-x II , for all XE B(x ,pl). 

I * Therefore, k 1 (x ) = -I. 

So for£= I the proposition holds. 

Now, suppose that for j = 1,2, •.• ,£-l<m the proposition is true. Let 

pl satisfy (4.26) which is no restriction. Since 

and 

I * 
G£-I (x ) 

0 < ~p < 
£ = 

£-1 

x + l A£,J.kJ.(x), 
j=I 

k!(x*)=-I, 
.J 

J = I , ••• , 9--1 ; 

for all x ED 1, 
£ -

' * exists and IIG£-l(x )II= I - n£, So, there is a Pi, 

min {p.}, such that 
j=l, ••• ,9--1 J 

Therefore, 

II G.e,-J (x)-x*II = 

23 
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* < II x-x II, * ~ for all x E B(x ,pt) 

By (4.2), (4.5) and (4.21) we have 

11[(1-n£)K1(G£_ 1(x),x) + n£F'(G£_ 1(x))J-F'(x*)II < 

< (1-n )[6 llx-x*ll+6 IIG (x)-x*IIJ+n yllx-x*II, 
· £ 2 1 £-1 t 

* ~ for all x E B(x ,p£). 

With p 0 - min{p 1 } Theorem 2.6.1 yields that ~ - · £'2S[(1-n£)(6 1+6 2)+n£yJ ' 

[(1-n£)K1(G£-I(x),x)+n£F'(G£_ 1(x))J is invertible and 

(4.30) 

* Therefore, B(x ,p£) c D£. 

* b. For x E B(x ,p£): 

-1 
k£(x) + F'(x) F(x) = 

-1 
= -[(1-n£)Kl(G£-)(x),x)+n£F'(G£-1(x))] x 

[-K(G£-I(x),x)+F(G£_ 1(x))+g0 (n£){(I-n£)K(G£_ 1(x),x)+n£F(G£_ 1(x))}J+ 

+ F'(x)- 1F(x). 

From Theorem 2.6.3 it follows that 

~ ~ 6 1 2 = K1(x,x)1G 0 _ 1(x)-x]+s 1(x), lls (x)II < -IIG (x)-xll. 
~ I = 2 £- I 

Thus 

~ 
K(G£-I (x) ,x) = [K 1 (x,x)-F' (x) JrG£-I (x)-x] + F' (x) (G£_ 1 (x)-x) + s 1 (x) 

= [K 1(x,x)-F'(x)J1G£-l(x)-x] + 

£-1 -1 
+ F'(x) l A£ .[-F'(x) F(x)+r.(x)J + s 1(x) 

j= 1 ,J J 
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) 
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R,-1 

= -n.Q,F(x) + [Kl(x,x)-F'(x)]1G1-1<x)-x] + l Ai,J.rj(x) + sl(x). 
j=I 

Hence, using (4.28) and observing that 

(4.31) 

we see that 

(4.32) 

IIG I (x)-xll 1-
* * = IIG (x)-x +x -xii 

R,-1 
* < 211 x-x II , 

According to Theorem 2.6.3, 

Thus 

F(GR,_ 1(x)) = F(x) + F'(x)[G2_ 1(x)-x] + ; 2(x), 

lli2(x)II ~ tlG2_ 1(x)-xll 2• 

R,-1 
F(GR,-)(x)) = F(x) + F'(x) l AR, .[-F'(x)- 1F(x)+r.(x)] + s2(x), 

j= I ,J J 

and therefore 

(4.33) 

Now, let 

(4.34) 

R,-1 
II s 2 (x) II :: [ l 

- j=I 

* 2 I A • I a . + 2y ] llx-x II • 
R, ,J J 

-] 
then IIA(x) II :: 2B (see 4.30), and 

IIA(x) - F'(x)II ~ (J-n1) IIK1(G1_1(x),x) - F'(x)II + 

+ nR, IIF' (G2_1 (x)) - F' (x)II, 
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So, using (4.28) and (4.30) 

(4.35) 

(4.32), (4.33) and (4.34) then yield 

-1 k1 (x) + F'(x) F(x) = 

-1 
= -A(x) [nl(x) - s 1(x) + (1-n 1)F(x) + s2(-,c) + 

-I -I 
+ g(n1 ){(1-n1)(-n?'(x) F(x)+s 1(x))+n 1 ((1-n1 )F'(x) F(x)+s2(x))}J+ 

+F' (x)- 1F(x) = 

= [-A(x)- 1 + F'(x)- 1]F(x) + 

-I 
+ A(x) [(-l+g(n1 )(1-n1 ))s 1(x)+(1+g(n1 )n1 )s2(x)J. 

Let v 1 and v 2 be the terms between the square brackets in (4.32) and (4.33) 

respectively. We recall that a T > 0 exists such that IIF(x) II :'.: Tllx-x*II, for 

all x E B(x*,p 1). Then, using (4.7), (4.27), (4.30), (4.32), (4.33) and 

(4.35), 

-I 
llk1 (x) + F'(x) F(x)II ~ 

< {(2s) 2[(1-n1)(2o 1+o 2+y) + 2n1yJT + 

I I I * 2 + (2S)[,-I + g(n1 )(1-n1 ) v1 + jl + g(n 1)n1 v2J}llx-x 11 • 

Therefore, for j = 1 proposition b holds. 

* c. It follows that for x E B(x ,p 1 ) a o1 > 0 exists such that 

-I * 2 k/x) = -F'(x) F(x) + r/x), where llr/x)II < o1 11x-x II 

* Obviously, k1(x) = 0, so that 

llk1 (x) - k1 (x*) + (x-x*)R < 

* * 2 < 11-F'(x)F(x) + (x-x )II + a111x-x II * for all x E B(x ,p 1). 
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* * * l * Since B(x ,PJi) c B(x ,p 1) c B(x , 213-y), (4.13) holds for x E B(x ,p.Q,), thus 

* Therefore k.Q,(x) = -I and the proposition is proved. 

Now, with p = min{p 1, ••• ,pm, 2!y}, for x E B(x*,p), 

G(x) = x + 
-1 

x - F'(x) F(x) + 

So, (4. 13) yields 

* -1 m 
IIG(x) - x II = 11-F'(x) F(x) + (x-x*) + I A 1 r (x)II 

where e =Sy+ 

* 2 < ell x-x II , 

m 

I I A 1 I cr • For x E V 1 = m+ ,£ .Q, .Q,= l 

IIG(x) - x*II * < ! II x-x II , 

£= l m+ , .Q, .Q, 

* I * B(x ,28 ) n B(x ,p), we have 

hence, for all x0 E V 1 , the sequence { ~} generated by x0 and ( {M} ,F), re

* mains in v1, converges to x and satisfies 

k = 0,1, •.• 

Therefore, (iv) implies (iii). 

3. It is obvious that (iii) implies (i). 

* * * 4. Suppose Kj(x ,x ;F) = F'(x ). 

Let g: [O, I J -i, JR. Then proposition (iii) holds for g0 = g, since (iv) implies 

(iii). Therefore the iterative process ({M},F), where M(•) = M(K,g,A 1 ; ■) is 

locally, quadratically convergent. So, there is a neighbourhood V of x * and 

o > 0 such that for all x0 EV, the sequence{~} generated by x0 and 

({M},F) satisfies~+ x* and ll~+l - x*II sell~ - x*ll 2 fork= 0,1,2, ...• 
* I -

Thus for x 0 EB: (x, 6) n V the sequence{~} generated by x0 and 
* * * ({M},F) satisfies~+ x and ll~+l - x II; llxk - x 11, k = 0,1, .... 

So (iv) implies (ii). 
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5. Suppose proposition (ii) holds and let 

(4.36) 

Again, we have suppressed the dependence of Kon F. Let 

(4.37) D1 = {x j K1(x,x) 1s invertible} 

and 

(4.38) 

For g 1: [0,1] ➔ R, g 1(t) = 0 for all t E [0,1], let G2 = M(F), where 

M(·) = M(K,g 1,A 1;~. Then one easily verifies that D1 ~ D(G2). Proposition (ii) 

implies that x* E D(G2 ), so K1(x*,x*) is invertible. According to (4.32) 
* * -1 * there is a y EX, y # 0, such that U[I - K1(x ,x) F'(x J]yU = LHyU, L > 0. 

Now, let g2 :[0,IJ ➔ JR, such that p = (l+g(I))L - I> 0. For G = M(F), 

where M(•) = M(K,g2 ,A 1 ;•), 

G(x) 
-I 

X - F'(G](x)) [-K(Gl(x),x) + (l+gz(l))F(G](x))], 

for all x E D(G). 

* Proposition (ii) implies that x E interior (D(G)), so Lemma 4.3 applies 

for D3 = D(G) and G3 = G, therefore G'(x*) exists and 

G'(x*) ( ( ))[ ( * *)-] '( *)] = - l+g I I - Kl x ,x F x . 

* Now, there is a neighbourhood V of x such that 

* Let t 1 > 0 be such that for all t E [0,t 1J, x + ty EV. Then for all 

t E [0,t 1J: 



IIC(x +ty) - G(x*) - G' (x*)tyll > 

> (l+g(l))Llltyll - lltyll = 

= pll tyll. 

This yields a contradiction, so (ii) implies (iv). D 

As a direct consequence of Theorem 4.1 we have 
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THEOREM 4.2. Let FE F1 and KE K1 then the following propositions (i) and 

(ii) are equi'.-valent: 

(i) K1(x*,x*;F) = F'(x*). 

(ii) For all g:[O,1] ➔ R and any Runge-Kutta method A, the iterative pro

cess ({M},F), where M(•) = M(K,g,A;•) is locally quadratically conver

gent. 

PROOF. The result immediately follows from the equivalence of proposi

tions (iii) and (iv) in Theorem 4. I. D 

Examples of KE K1 that satisfy the condition K1(x*,x*;F) = 

FE F1 are 

I. K(x,y;F) = F(x) - F(y), 

2. K ( x, y ; F ) F ' ( y) ( x-y) . 

* F' (x ) for 
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5. RADIUS OF CONVERGENCE OF NEWTON'S METHOD 

Let KE K1 be defined by K(x,y; F) = F(x) - F(y), where x, y EX and 

FE F1; let g: [0,1] + JR, where g(t) = 0 for all t E [0,l]; let A be a 

Runge-Kutta method, where 

Consider the iterative method {M}, where M(•) = M(K,g,~;•), For FE F1, the 

iterating function G = M(F) is defined by 

G: D(G) + X, 
(5. I) 

-I 
G(x) = x - F'(x) F(x), for all x E D(G). 

Therefore {M} is Newton's method. 

Now, let s, y > 0. In order to calculate the radius of convergence of 

Newton's method, we first have to prove some leIIlllla's. 

I 
LEMMA 5. I. If F E F <S,y> and X E B(x * , By) then F' (x) invertible and 1,S 

* - I * I PROOF. Since F E F <S,y>, we have IIF' (x ) II ; S and for all x E B(x 'Sy): 
* * I IIF'(x)-F'(x )ll~yllx-x II < j. Therefore, Theorem 2.6.J applies, thus proving 

this leIIlllla, D 

I 
* -LEMMA 5.2. For FE F <S,y> let G be defined by (5.1)~ then B(x ,Sy) c D(G), 

* .L and for au XE B(x ,Sy)' 

IIG(x)-x*II < 
* 2 Syllx-x II 

* 2(1-Syllx-x II) 

PROOF. According to (3.2. 7), D(G) = {x!F' (x) is invertible}. So from Lemma 
* .L 5.1. it follows that B(x ,Sy) c D(G). Since FE F <S,y>, from Theorem 2.6.3 

it follows that for x EX: 
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O = F(x*) = F(x) + F'(x)(x*-x) + r(x), where llr(x)II < ½ llx - x*II~ 

* 1 Thus for x E B(x 'Sy) 

* 2 -1 Byllx-x II 
Now, using Lemma 5.1, we obtain IIF'(x) r(x)II < --'--'-----*-

2(1-Byllx-x II) 

This completE~S the proof. D 

THEOREM 5.1. The radius of convergence of Newton's method with respect to 

F < B, y > is ~r . 

PROOF. 1. We first prove that the radius of convergence of Newton's method 
2 with respect to F<B,y> is not less than 38y 

Take an arbitrary FE F<B,y>, and let G = M(K,g,A;F). G is thus de

fined by (5.11). 
2 
3 - E 

2 
3 + 2E 

2 For any E, 0 < E ~ 3, set a(E) = 

Note that O ~: a(E) < I. According to Lennna 5.2, it follows that for any 
- * 2 -· I 

XE B(x ,(3 -E) Sy), 

(5.2) * II G(x) - x II < 
* 2 Syllx-x II 

2 (1-Syll x-x *11) 

2 

< 
3-E * 

----- II x-x II = 
2c1-cl-d) 

3 

* 2 . Now, for any x0 E B(x 'JSy), there is an E > 0 such that 

* a(E) llx-x II. 

- * 2 I x0 E B(x ,(3 -- E)Sy). (5.2) shows that the sequence {xk}, generated by x0 
and ({M},F) satisfies 

* k * llxk -x II< [a(E)J llx0-x II -+O (k-+""). 

So, the radius of convergence of Newton's method with respect to Fis not 
2 

less than 38Y~ • 

Since FE F<S,y> was arbitrary, it follows that the radius of conver

gence of Newton's method with respect to F<S,y> is not less than 3!Y 

I· In order to prove that the radius of convergence of Newton's 
2 

method with respect to F<S,y> is 3By' we show that an FE F<S,y> and an 

x0 E X exist,, 
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* 2 such that llx0 - x II = 3Sy and the sequence {xk} generated by x0 and ({M},F) 

satisfies x0 - x2 = x4 = •... 

f I . h . ( ) a. I X -- IR wit 1.nnerproduct x,y = x.y, then define 

I for x I 

2S 2y 
> Sy 

(5.3) 

I - r_ X 
2 for 0 -x 
' 

< X < s 2 = Sy ¢(x) = 
I 2 I 
-x s 

+ r_ X 
2 ' 

for - - < X Sy= < 0 

I for x I 
< -

2S 2y Sy 

(5.4) lc/>'(x)I 
I I 

< S , for all x E IR • 

It is easily verified that O is the unique solution of ¢(x) = O, 

11¢'(0)-III =Sand llcp'(x) - ¢'(y)II < yllx - yll for all x,y EX. Therefore, 

¢ E F<S,y>. 
2 

Now take x0 = 3Sy' 2then the 

satisfies x 1 =, - 3Sy , x 2 = 

sequence{~} generated by x0 and ({M},F) 
2 

3Sy' etc. 

b. If Xis an infinitely dimensional Hilbert space, then a subset B of X 

exists such that the following three statements hold (cf. [I]): 

For all u,v EB-we have (u,v) = 0 if u # v, (u,v) = I if u = v. 

For any x E X,, the set B = {u J u E B, (u,x) # O} is countable. 
X 

Assuming that,, for x EX, B contains an infinite number of u (otherwise 
X 

extend B with u EB for which (u,x) = O), let n ➔ u be an enumeration of 
X n 

the set B, then 
X 

00 

X == l 
n=I 

and 

00 

(x, u )u 
n n 

llxlll 2 = l 2 (x,u ) . 
n n=I 



Now, for x EX, let B = {u} and set a = (x,u ), n = 1,2, •••. Then x n n n 

00 

(5.5) X = I 
n=l 

a u . 
n n 
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N 
Define FN(x) = I 

n=l 
¢(a )u, where¢ is defined by (5.3). According to (5.4) 

n n 

and Theorem 2:.6.2, l¢(an)I,;; ¾Ian!. Thus, form> 0, IIFN+m(x) - FN(x)ll 2 = 
N+m 
l [¢(a )] 2 ➔ 0 (N--+oo). Therefore, {FN(x)} is a Cauchy sequence. Let 

n=N+l n 
F(x) = lim FN(x). Then 

00 

(5.6) F (x) = l 
n=l 

¢ (a )u . 
n n 

F(x) 1.s independent of the enumeration of B . We shall prove that FE F<B,y>. 
X 

* * 1. . F(x) = 0 has a solution x = * 0. Let y E X be such that F(y) = 0 
00 00 

* {v} * I * I )v and y -I 0. Let B = and y = S V • Then F(y) = ¢(S and 
y* n n=l n n n=l n n 

00 

0 = IIF(y*)ll 2 = L 
n=l 

[¢(S ) ] 2. Thus ¢(S ) = 0, n = 1,2, .... This implies 
n n 

that B = 0, n = 1,2, ... 
n 

* . Therefore, y = 0 which yields a contradiction. 

ii. Let x E x. 
For h E X, let B u Bh = {u }, X = 

X n 

N 
~h = I ¢' (a )h u , then form> 

n=l 
n n n 

IIA h - A__hll 2 = N+m -~ 

N+rn 

I 
n=N+l 

00 

I 
n=I 

o, 

a u 
n n 

00 

and h = L 
n=l 

h u. Set 
n n 

l N+m 
L h 2 ➔ 0 (N--+oo). 

s2 n=N+l n 

00 

Thus {Anh} is a Cauchy sequence. Let Ah= lirn ~h = 
N--+oo 

independent of the enumeration of Bx u Bh. 

L ¢'(a )h u . A 1.s 
n=l n n n 

We shall prove that A= F'(x). 
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IIF(x+h) - F(x) - Ahll 2 = 

00 00 00 

I I I 2 = <t>(a +h )u - ¢Ca )u - ¢' (a )h u II = 
n=l n n n n= l n n n=l n n n 

00 

= II I {¢(a +h) - ¢(a) - ¢'(a )h }u 11 2 
n n n n n n 

For h EX, 

n=l 

00 

= I !¢Ca +h ) n n n=l 

00 

< I [ .lh 2 J 
= 2 n n=l 

2 00 

= l I 
n=l 

2 
y 4 

< -- II hll . = ~f 

IIAhll 2 = 

2 

- ¢(a ) - ¢'(a )h 12 
n n n 

00 

u B = {v }. 
X n X = L 

n=l 

J = 1,2. Then for real numbers e1 , e2 , 

00 

00 00 

00 

S v and h. = L 
n n J n=l 

Therefore, A is a bounded linear operator 1n X and A= F'(x). 
00 

h. V ' J ,n n 

00 

X = L y = I s u 
n n 

00 

and h = L 
n=l 

h u . 
n n 

n=l n=l 



Then 

ll[F'(x) - F'(y)]hll 2 

Cl() 

= II I 
n=I 

{¢'(a) - ¢'CB )}h u 11 2 
n n n n 

Cl() 

I 
n=I 

Cl() 

< y2 I 
n=I 

Therefore IIF'(x) - F'(y)II ! yllx - yll for all x,y e X. 
Cl() 

1. V • Lethe X, and Bh = {un}, h = I h u. Then 
n=I n n 

Cl() 00 

F' (O)h = 1 1 I I I 
l ¢'(O)h u = l - h u = 0 h. So F'(O) = 0 I, thus F'(O) is 

n n n=I B n n µ µ n=I 

invertible and F'(O)-I BI. This implies that IIF' (0)- 111 = B, 

Thus Fe F<B,y>. 
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Now, for u e B, let xO 
2 

= JBy u. Then the sequence {xk} generated by xO 

and ({M},F) satisfies: x 1 = 

dimensional, this completes 

2 2 
- 36Y u, x 2 = JBy u, etc. Where Xis infinitely 

the proof. 

c. If Xis finitely dimensional, then we can show by a similar method as 

F II *11 2 · part b of the proof that an Fe <B,y> and an xO e X, xO x = 3By' exist, 

such that the sequence{~} generated by xO and ({M},F) satisfies 

xO = x2 = x4 = .... 0 
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6. ITERATIVE METHODS WITH A GREATER RADIUS OF CONVERGENCE 

Let 6,y > 0. 

In this final chapter we present a class of iterative methods (appli

cable to F1) whose menbers all have a greater radius of convergence with 

respect to F<S,y> than Newton's method. 

Let m be an integer, m; 2. w1 , ••• ,wm are real numbers satisfying 

( 6. I) 

W. E (0,)), 
1. 

w = I. 
m 

1. I , ... , m- I ; 

Let fl.= (AQ, .) be an (m+I) x (m+I) strictly lower triangular matrix, such 
,J 

that 

for£= 2, ... ,rn+I; 

(6.2) 
for J = 2, ... ,rn; £ = j + I , .•• , rn+ I • 

LEMMA 6. I. For' fl.= (A£,j) defined by (6.1) and (6.2)., let nQ, = 

for £ = 2, ••• , m+ I • Then 

for Q, = 2, ... ,rn; 

and 

= I • 

PROOF. We prove this lemma by mathematical induction. 

Q,-] 

I 
j=I 

If £ = 2, then n2 = >- 2 1 = w1. According to (6.1), n2 E (0,1). 
' Suppose that for j = 2, ••• ,£-1 < rn+I the conclusion holds. According 

to (6.2), 

(6.3) A£-·l,j = >-£,j' for J = I, ... , i-2. 
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1-1 £-2 

n £ = I " £ . - " £ £-1 + l " £- l 'J .. 
j=l ,J ' j=l 

Thus using (6.2), 

Now, if£< m+l, then w1_ 1 E (0,1), and since we assumed that n1_ 1 E (0,1), 

we obtain n 1 E: (0,1). If£= m+l then according to (6.1), w1_ 1 = 1. This im

plies that n 1 = I. m+ 
This proves this lennna. D 

Thus, A== (>- 0 .) satisfies (3.1.4) and it may therefore be considered 
)(,, J 

as a generating matrix of an m-stage Runge-Kutta method. 

Let KE K1 be defined by 

(6.4) 

Let 

(6.5) 

K(x,y;F) = F(x) - F(y), for all FE F1 and x,y EX. 

g: [O,l] ➔ JR, 

g( t:) = 
1-t' 

g(t) = I, 

for t E [ 0, 1 ) , 

fort= 1. 

For FE F<S,y>, consider G = M(F), where M(•) = M(K,g,A;•). Then, 

(6.6a) 

where 

(6.6b) 

G: D(G) ➔ X, 
m 

G(x) = x + l 
Q, = 1 

A k (x) m+ 1 , Q, Q, 

k 1 (x) 
-1 

= -F'(x) F(x), 

Q, -1 
k1 (x) -F' (x+ \' 

" = l k. (x)) 
j=l Q,,j J 

for all x E D(G), 

-] 
X 
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t-1 £-I 
[F(x) + - 1- {(I-n )(F(x+ l >-£ .k.(x)) - F(x)) + n£F(x+ l >-£ .k.(x))}J 

I-n£ £ j=I ,J J j=I ,J J 

- _I_ F'(x + 
£- I 

-I 
£-I 

= I >. £ . k. (x)) F (x + I >.£ .k.(x)), Q, = 2, ••. ,m. 
1-n 

j=I ,J J j=I ,J J Q, 

If we define for all X E: D(G), 

y I (x) = x, 
(6. 7) 9,- I 

yQ,(x) = X + I ),£ .k.(x), Q, = 2, •.. , m+ I ; 
j=I ,J J 

then, with n 1 = 0, 

(6.8) £ = 1,2, ... ,m. 

LEMMA 6. 2. The f o Z lowing re Zations are true: 

(6.9a) G(x) = ym+ 1 (x), for all x E: D(G), 

where 

(6.9b) 
£ = 2 , • • • , m+ I • 

PROOF. We only have to prove that for all x E D(G), 
-I 

yQ,(x) = y 2_ 1(x) - w2_ 1F'(y£-l(x)) F(yQ,-J (x)), t = 2, ••• ,m+l. 

For all x E: D(G), according to (6.2), (6.6b) and (6.7), 

Thus, for£= 2, the relation to be proved is true. 

Now, for£= 3, ••• ,m+l,.according to (6.3) and (6.7), for all x E: D(G) 

£-I 
Yn(x) = X + r A k (x) 

X, j~l £,j j 
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Using (6.2), (6.3) and (6.8), 

,Q,-2 

\ >.. 1 • l ,Q,- ,J 
j=l 

I-

->..,Q, ,Q,-} -1 
= --,Q,---2-=-•---- F' (y ,Q,-l (x)) F(y ,Q,-l (x)) 

I ",Q,,J. 
j=l 

J-

This proves the lemma. D 

Thus, G = M(F) might also be conceived as being defined by (6.9). 

Iterative methods {M}, such that for all Fe F1, G = M(F) is defined by 

(6.6) (or, equivalently, by (6.9)), will be investigated in this chapter. To 

that end we need some lemma's. 

LEMMA 6. 3. Let x e X, and suppose that 

1. F e f<(3,y>. 

2. real numbers Kand a exist such that 

a) mcy < l 
= 2. 

b) F' (x) is invertible and II F' (x) - l II < K. 
= 

c) 
-I IIF' (x) F(x)II ::; a. 

Then 

llv-x*II ::; a, where v = x - F'(x)- 1F(x). 

PROOF. The conclusion is a direct consequence of the well-known Newton

Kantorovich theorem (cf [2] and [3]). D 

LEMMA 6.4. If x,y,z,u e X, z = wx + (I-w)y far an w e E., then 
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PROOF. I. Observe that 

"z-u" 2 = "w(x-u) + (I-w)(y-u)" 2 

= (w(x-u)+(l-w)(y-u), w(x-u)+(I-w)(y-u)) 

= w2 "x-u" 2 + (I-w) 2 "y-u" 2 + 2w(I-w)(x-u,y-u). 

2. "x-y" 2 = "(x-u) - (y-u)" 2 

= ((x-u)-(y-u),(x-u)-(y-u)) 

"x-u" 2 + "y-u" 2 - 2(x-u,y-u). 

Therefore, 

Together with the first part of the proof, this proves the lennna. D 

Let w E (0,1). Define 

(6. IO) 

Let the function ~w be defined by 

I t : [0,-(3)-+ [0,oo), 
w y 

I for a E [0,-13-), 
2 y 

- w ( J-w) rl_I_( 1-Sycr) Ji2, 
2(3y 

(6.11) 
~w(cr) = ✓z;w(cr), for all cr E [o, 8

1y). 

* I LEMMA 6.5. Let FE F</3,y>. For au y E B(x 'Sy), let 

-I 
z=y-wF'(y) F(y). 

ThBn the following error estimate holds: 

* * "z-x" s ~ ("y-x ">· w 
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Moreover, there is a µ - 2- < µw < - such that -Por all y E B(x *, µ ) , w' 3Sy Sy' J' w 

* * II z-x II < II y-x II • 

* l * PROOF. Let y E B(x, Sy). Set Uy-x II = cr. It should be noted that according 

to Lennna 5. l, F' (y) is invertible and 

Let 

-I 
v = y - F'(y) F(y). 

Then z = wv + (1-w)y. According to Lermna 6.4, 

(6.12) * 2 * 2 * 2 2 llz-x II = (1-w) lly-x II + w llv-x II - w(J-w)a. , 

where a.= IIF' (y)- 1F(y)II. 

If 

a.Sy 
1-Sycr 

then Lemma 6.3 applies and 

Therefore, 

( 6. 13a) 

and 

( 6. 13b) 

If 

llv-x*II I 
< a., a.< 28y(I-Sycr). 

l',•I z-x*ll 2 < 2 2 11 *11 2 (1-w)cr + w v-x 

* 2 II z-x II 

a.Sy 
l-Sycr 

> ! 
2 
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I 
then a > 2Sy(I-Syo). According to Lemma 5.2, 

(6. 14) 

Thus 

(6.15) 

Note that 

(6.16a) 

and 

(6.16b) 

* llv--x II 
2 

Syo < _ __,_ __ 
2(1-Syo). 

llz-x*II <_ (J-w)o 2 + w[ Syo2 ] 2 - w(J-w)[-1-(J-Syo)1J 2 
2(1-Syo) 2Sy ' 

"f oSy 1 1. - > 2 1-Syo . 

Byo 
2 

I f I \ 
2(11-Syo) < -(1-Syo) if 0 E l O' 2Sy)' 2Sy ' 

Hyo 
2 

I "f f I I) 
2(11-Syo) > -(1-Syo) 

1. 0 E l2Sy'Sy. = 2Sy ' 

Using (6.13a), (6.14), (6.15) and (6.16a) we may conclude that 

From (6.16b) it follows that 

(6.17) 

if 0 E [ I I \ 
2Sy'Sy)' 

Using (6.13b), (6.17) and (6.15) we may conclude that 

This proves the first part of the lemma. 
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It is easily verified that: 

I. ~w(o)/o is monotonically increasing on the interval (o, 8\). 

2. lim ~ (o)/o < I. 
a-tO w 

3. lim ~w(o)/o = 00. 

atl 

Consequently, there are uniquely defined constantsµ and n such that w . w 

(6. 18a) ~tu (nw) 
I 

= -
f3y 

(6. 18b) ~lu (µw) 
2 I = J.Jw' -- < J.Jw < nw < . 

3f3y f3y 

(6.18c) ~tu (a) < a, for all 0 E (0, µw). 

Therefore, the conclusion holds. □ 

It should be noted that from Lennna 6. 5 it follows that for any w E (O, I) 

there is a µtu > 3~y such that for any F E F<f3 y> and any y E B(x *, µw), for 

-I 
z=y-wF'(y) F(y), 

the inequality llz-x*II < lly-x*II holds. 

However, for the first Newton iterate, say v, 

V = y - F' (y)-IF(y) 

the inequality llv-x*II > lly-x*II may hold. 
= 

THEOREM 6.1. Let w1, •.. , wm' (m;2), be a sequence of real numbers satisfy-

ing (6.1). Let A= 0,0 .), K, g be defined by (6.2), (6.4) and (6.5) respec-
,. 'J 

tiveZy. Then the iterative method {M}, where M(•) = M(K,g,A;•) has a greater 

radius of convergence with respect to F<f3,y> than Newton's method. 

PROOF. l . Fo:r j = l , ... , m -1 , let JJ 
w. 

and n be defined by ( 6. l l ) and ( 6. 18) 
w. 

for w = w .. J J 
J 

Define for J = I , .•• ,m -1 , 
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(6.19) 

~ . ro _I] ➔ ro _I] 
'I' w . • L , Sy L , Sy , 

</> J (o) = f;ld (o), for OE [o,nw.)' 
w. j 

<PW~ (o) = Sly' for O E [ nw. 's\f 
J J 

Now, consider the function 1jJ defined as follows 

1": r 11 r 1] 
L0 'syJ ➔ L0 'sy' 

Syo2 
E [o,(-1+13)s1y)' (6.20a) 1" ( e:) m for = 2( 1-Syo ) ' 0 

m 
m 

ijJ(e:) = Sy' for 0 E [(-I +/3) s\, Sly), m 

where 

OJ = e:, 
(6.20b) 

a. = <P (a. I), for j = 2, ••• ,m. 
J w. I J-J-

Using (6. 18a) and (6. I Sb) it is easy to verify that there is a real p (de-

pending on S,y,w 1, ••• ,wm) such that 
... ... 2 I 

i. t{i(p)= P, 3Sy < P < Sy' 
... 

ii. ljJ(e:) < e: for all e: E [o,p), 
... 

iii. For any p E [0,p) there exists an a E (0,1) such that ljJ(e:) < ae: for all 

e: E [0,p ]. 

2. Let FE F<S,y> and G = M(F). 
* ... a. Let x EX be such that llx-x II ::: p < p. Then according to the first part 

of the proof, an a E (0,1) exists such that 1/J(e:) < 
= 

ae: for all e: E [ 0 ,P ] • 

* withe: = II x-x 11, let 0., J = I , ••• ,m be defined in (6.20b). Then, using 

* 
J 

Lemma 6.5, lly.-x II < 0.' J = 1,2, ••• ,m; where y1,y2, ••• ,ym are defined as 
J J 

follows: 

(6.21) 
J = 2, ••• ,m+ I • 
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According to Lemma 6.2, G(x) = Ym+l holds. We recall that w = I. Using 
m 

(6.21) and Lemma 5.2 it follows that 

2 

* 
Syo m II y 1-x II < 

2(1-Syo ) m+ = m 

Hence (cf (6.20a)), 

* * * II G(x)-x II < iJ; (II x-x II) < allx-x II. 
= = 

* A * b. Let x0 E: B(x p). Then, since llx0-x II ~ p for some p < p, from (a) it 

* follows that: B(x ,p) c S, S = S({M},F) being the region of convergence of 

the iterative process ({M},F). 

Therefore, the radius of convergence of the iterative method {M} with 
A 2 

respect to F' 1s not less than P, where P > )Sy' 

Since F' E: F<S,y> was arbitrary, it follows that the radius of conver-
2 

gence of {M} with respect to F<S,y> is not less than P, P > )Sy" 

Together with Theorem 5.1 this completes the proof. 0 
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