# stichting mathematisch centrum

AFDELING NUMERIEKE WISKUNDE NW 34/76 (DEPARTMENT OF NUMERICAL MATHEMATICS)

4/76 DECEMBER

P.A. BEENTJES & W.J. GERRITSEN

HIGHER ORDER RUNGE-KUTTA METHODS FOR THE NUMERICAL SOLUTION OF SECOND ORDER DIFFERENTIAL EQUATIONS WITHOUT FIRST DERIVATIVES

2e boerhaavestraat 49 amsterdam

Printed at the Mathematical Centre, 49, 2e Boerhaavestraat, Amsterdam.

The Mathematical Centre, founded the 11-th of February 1946, is a nonprofit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O).

AMS(MOS) subject classification scheme (1970): 65L05

Higher order Runge-Kutta methods for the numerical solution of second order differential equations without first derivatives

by

P.A. Beentjes & W.J. Gerritsen

#### ABSTRACT

Runge-Kutta methods are given of order 4 through 8 for the numerical solution of second order differential equations of the type y'' = f(x,y). All schemes presented allow a built-in error estimate that can be used to control the integration step. Special attention is paid to the stability of the methods given.

KEY WORDS & PHRASES: numerical analysis, second order differential equations, Runge-Kutta methods.

-

### CONTENTS

| 1.   | Introduction                                           | 2  |
|------|--------------------------------------------------------|----|
| 2.   | Notations and outlines of solution techniques          | 4  |
| 3.   | Fourth order formula using three function evaluations  | 8  |
| 4.   | Fifth order formula using four function evaluations    | 9  |
| 5.   | Sixth order formula using six function evaluations     | 11 |
| 6.   | Seventh order formula using seven function evaluations | 14 |
| 7.   | Eighth order formula using nine function evaluations   | 16 |
| 8.   | Stability analysis                                     | 21 |
| 9.   | Subroutines and examples                               | 32 |
| 10.  | Conclusions                                            | 43 |
| REFE | ERENCES                                                | 44 |

1. INTRODUCTION

An n-point Runge-Kutta method for the numerical solution of the (vector-) initial value problem

(1.1) 
$$y'' = f(x,y), \quad y_0 = y(x_0), \quad y'_0 = y'_0(x_0),$$

is given by the following scheme

$$k_{i} = h_{\ell} f(x_{\ell} + M_{i}h_{\ell}, y_{\ell} + h_{\ell}(M_{i}y_{\ell}' + \sum_{j=0}^{i-1} K_{ij}k_{j})), \quad i = 0(1)n-1$$

(1.2) 
$$y_{\ell+1} = y_{\ell} + h(y_{\ell}^{\prime} + \sum_{i=0}^{n-1} A_i k_i),$$
  
 $y_{\ell+1}^{\prime} = y_{\ell}^{\prime} + \sum_{i=0}^{n-1} a_i k_i, \ \ell = 0, 1, 2, \dots, L.$ 

From now on we assume, like most authors, that  $M_0 = 0$ . The scheme (1.2) is said to be of order p if the Taylor series of  $y_{\ell+1}(y'_{\ell+1})$  and  $y(x_{\ell+1};x_{\ell},y_{\ell},y'_{\ell})$  ( $y'(x_{\ell+1};x_{\ell},y_{\ell},y'_{\ell})$ ) do agree up to terms  $h^i$ , i = 0(1)p, where  $y(x;x_{\ell},y_{\ell},y'_{\ell})$  stands for the analytical solution of (1.1) proceeding through  $(x_{\ell},y_{\ell},y'_{\ell})$ . NYSTRÖM [1925], ALBRECHT [1955] and ZONNEVELD [1964] already presented formulas of order p,  $p \le 6$ . More recent work in this field was done by FEHLBERG [1972] and HAIRER [1976] who contributed formulas of order p,  $p \le 8$ . The formulas of ZONNEVELD and FEHLBERG are of particular interest as they yield some kind of error estimate that can be used to control the integration stepsize. These error estimates are obtained in the following way:

(1.3) 
$$\rho_{y} = h \sum_{i=0}^{m-1} C_{i} k_{i}, \quad (Zonneveld, Fehlberg),$$

(1.4) 
$$\rho' = \sum_{i=0}^{m-1} c_i k_i, \quad (\text{Zonneveld}),$$

where  $C_i$  and  $c_i$ , i = 0(1)m-1, are conveniently chosen parameters. Concerning the Zonneveld formulas,  $\rho_y$  ( $\rho'_y$ ) is an approximation of the term of order  $h^p$ in the Taylor series for  $y_{\ell+1}(y'_{\ell+1})$ . A disadvantage, however, lies in the fact that these error estimates are made at the cost of extra function evaluations, i.e. m > n. Fehlberg actually obtains  $\rho_y$  as the difference between the p-th order approximation  $y_{\ell+1}$  and a (p+1)-st order approximation  $y'_{\ell+1}$  as follows

$$\rho_{y} = y_{\ell+1} - y_{\ell+1}^{*} =$$

$$= y_{\ell} + h(y_{\ell}^{'} + \sum_{i=0}^{n-1} A_{i}k_{i}) - y_{\ell} - h(y_{\ell}^{'} + \sum_{i=0}^{n} B_{i}k_{i}) =$$

$$= h\sum_{i=0}^{n} C_{i} k_{i} = 0(h^{p+1}),$$

where  $k_n = h_{\ell}f(x_{\ell+1}, y_{\ell+1})$ , i.e.  $\rho_y$  is obtained with the aid of the first function evaluation of the next integration step.

The integration schemes presented in this report have a built-in error estimate of the form (1.3) where m = n, and, in some cases, as given in equation (1.4). In fact, these estimates are obtained as

(1.5) 
$$\rho_y = y_{\ell+1} - y_{\ell+1}^{**},$$

where

(1.6) 
$$y_{\ell+1}^{**} = y_{\ell} + h(y_{\ell}^{\prime} + \sum_{i=0}^{n-2} B_{i}k_{i}) = y(x_{\ell+1}^{\prime}; x_{\ell}^{\prime}, y_{\ell}^{\prime}, y_{\ell}^{\prime}) + O(h^{p}),$$

thus  $\rho_y$  is  $0(h^p)$ . (In the next sections we will refer to  $y_{\ell+1}^{\star\star}$  as the embedded lower order solution). Although our error estimates are somewhat more conservative than Fehlberg's estimates, we succeeded in constructing p-th order formulas of lower n than those given by Fehlberg. In sections 3-7 we present these formulas of order p, p = 4(1)8. In section 8, we shall pay special attention to the stability properties of our schemes. A stability analysis of formulas of type (1.2) is given by van der HOUWEN [1975]. FORTRAN programs for the computation of the Runge-Kutta schemes given in sections 3-8, together with some special examples of these schemes, are given in section 9.

#### 2. NOTATIONS AND OUTLINES OF SOLUTION TECHNIQUES

The procedure of equating Taylor series of  $y_{\ell+1}(y'_{\ell+1})$  and  $y(x_{\ell+1};x_{\ell},y_{\ell},y'_{\ell})$   $(y'(x_{\ell+1};x_{\ell},y_{\ell},y'_{\ell}))$  leads to a number of nonlinear equations in the parameters of (1.2). This number is dependent on the order of accuracy required. Usually, the following assumptions are made to reduce the number of necessary equations

(2.1) 
$$\sum_{j=0}^{i-1} K_{ij} = M_i^2/2, \quad i = 1(1)n-1.$$

The remaining equations of order p, p = 1(1)8, for y' are given in table 2.1.

For reasons of simplicity only the lefthand side of the equations is given in table 2.1; the righthand side equals 1 for all equations. We have also omitted limits of summation indices; the following conventions are adopted:

An index i is presented to run from  $N_i$  up to the value of its preceding index minus 1, where  $N_i$ -1 stands for the total number of  $\sum$ -signs on the right of the first appearance of index i. Furthermore, the leftmost index has the upper limit n-1.

E.g. (table 2.1, equation 29)

stands for

$$1440 \sum_{i=3}^{n-1} a_i M_i \sum_{j=2}^{i-1} K_{ij} M_i \sum_{k=1}^{j-1} K_{jk} M_k = 1.$$

The order equations with respect to y can be easily derived from the equations for y' by the following rule: Let  $f(\vec{a}) = 1$  represent an order-(p-1) equation for y', then  $pf(\vec{A}) = 1$  represents an order-p equation for y, where  $\vec{a} = (a_0, a_1, \dots, a_{n-1})$  and  $\vec{A} = (A_0, A_1, \dots, A_{n-1})$ .

## TABLE 2.1

| order | equation                                                                       | no | order | equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | no |
|-------|--------------------------------------------------------------------------------|----|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1     | ∑a <sub>i</sub>                                                                | 1  | 7     | 1260 $\sum_{i} K_{ij} M_{j} K_{jk} M_{k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20 |
| 2     | 2 ∑a <sub>i</sub> M <sub>i</sub>                                               | 2  | 7     | 2520 $\sum_{i} K_{i} K_{ik} K_{k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21 |
| 3     | 3 ∑a <sub>i</sub> M <sub>i</sub> <sup>2</sup>                                  | 3  | 7     | 840 $\sum_{i} M_{i} \sum_{i} K_{ij} \sum_{i} M_{k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22 |
| 4     | 4 ∑a <sub>i</sub> M <sub>i</sub> <sup>3</sup>                                  | 4  | 8     | 8 [a <sub>i</sub> M <sub>i</sub> <sup>7</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23 |
| 4     | 24 ∑a <sub>i</sub> ∑K <sub>ij</sub> M <sub>j</sub>                             | 5  | 8     | 48 [aiMi <sup>4</sup> ]Kij <sup>M</sup> j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24 |
| 5     | 5 ∑a <sub>i</sub> M <sub>i</sub> <sup>4</sup>                                  | 6  | 8     | 96 [a <sub>i</sub> M <sub>i</sub> <sup>3</sup> [K <sub>ij</sub> M <sub>i</sub> <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25 |
| 5     | 60 ∑a <sub>i</sub> ∑K <sub>ij</sub> Mj <sup>2</sup>                            | 7  | 8     | 160 $\sum_{i} a_{i} M_{i}^{2} \sum_{i} M_{i}^{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26 |
| 5     | 30 ∑a <sub>i</sub> M <sub>i</sub> ∑K <sub>ij</sub> M <sub>j</sub>              | 8  | 8     | 960 [a <sub>i</sub> M <sub>i</sub> <sup>2</sup> ]K <sub>ij</sub> [K <sub>jk</sub> M <sub>k</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27 |
| 6     | 6 ∑a <sub>i</sub> M <sub>i</sub> <sup>5</sup>                                  | 9  | 8     | 240 $\sum_{i=1}^{M_{i}} K_{i} M_{i}^{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28 |
| 6     | 36 ∑a.M.²∑K.jMj                                                                | 10 | 8     | 1440 $\sum_{i=1}^{M} \sum_{i=1}^{M} \sum_{j=1}^{M} \sum_{i=1}^{M} \sum_{i=1}^{M}$    | 29 |
| 6     | 72 [a.M.][K.M.] <sup>2</sup>                                                   | 11 | 8     | 288 [a <sub>i</sub> M <sub>i</sub> ([K <sub>ijMj</sub> ) <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30 |
| 6     | 120 $\sum_{i} K_{ij} M_{j}^{3}$                                                | 12 | 8     | 2880 $\sum_{i} M_{i} \sum_{j} K_{ij} \sum_{k} M_{k}^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31 |
| 6     | 720 [ai]Kij[Kjkm                                                               | 13 | 8     | 336 ∑a,∑K,,M,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32 |
| 7     | 7∑a <sub>i</sub> M <sub>i</sub> <sup>6</sup>                                   | 14 | 8     | 2016 $\sum_{a_i \sum K_{ij} M_i^2 \sum K_{ik} M_k}^{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 33 |
| 7     | 42 ∑a <sub>i</sub> M <sub>i</sub> <sup>3</sup> ∑K <sub>ij</sub> M <sub>i</sub> | 15 | 8     | 4032 $\sum_{a_i \sum K_{i_i} M_i \sum K_{i_k} M_k}^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 34 |
| 7     | 210 [a <sub>i</sub> ]K <sub>ij</sub> M <sub>j</sub> <sup>4</sup>               | 16 | 8     | $6720 \sum_{a_i} K_{i_i} K_{i_k} M_{i_k}^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 35 |
| 7     | 140 $\sum_{i} M_i \sum_{i} K_{ij} M_j^3$                                       | 17 | 8     | $40320 \sum_{a_{i}} K_{i} \sum_{k} K_{ik} K_{k\ell} M_{\ell}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 36 |
| 7     | 84 <u>\</u> a.M. <sup>2</sup> \K.M. <sup>2</sup>                               | 18 | 8     | 576 $\sum_{i} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1$ | 37 |
| 7     | $252 \sum_{i} a_{i} (\sum_{ij} M_{j})^{2}$                                     | 19 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |

The order equations for  $\mathbf{y}^{\, \prime}$ 

We now present some abbreviations, to be used in the next sections. We will indicate by (e is a positive integer)

- (ea) : the order equation (e) for  $y'_{\ell+1}$  in table 2.1;
- (eA) : the order equation for y<sub>l+1</sub>, resulting from equation (e) of table 2.1 and the rule given above;
- (eB) : the order equation for  $y_{\ell+1}^{**}$  in formula (1.6). This equation is obtained by changing  $A_i$  into  $B_i$  in order equation (eA) and by lowering the upper limit of the first index to n-2;

(eb) : the order equation for the n-1 point (p-1)-st order formula

$$y_{\ell+1}^{!**} = y_{\ell}^{'} + \sum_{i=0}^{n-2} b_i k_i^{'}.$$

This equation is obtained by changing  $a_i$  into  $b_i$  in order equation (ea). Again the upper limit of the first index should be n-2;

$$K_{i}^{(\ell)}$$
 :  $K_{i}^{(\ell)} = \sum_{j=1}^{i-1} K_{ij} M_{j}^{\ell};$ 

(n=N,p=P)-formula: an N-point P-th order formula of type (2.1); (n=N, $\tilde{p}$ =P)-formula: an N-point formula of type (2.1), where  $y_{\ell+1}$  is P-th order exact and  $y'_{\ell+1}$  is (P-1)-st order exact;

In order to construct an (n=N,p=P)-formula, we transform the original non-linear order equations into sets of linear Van der Monde systems that can be dealt with more or less separately. Concerning the order equations for  $y_{\ell+1}$ , the following theorem holds

Theorem 2.1 (HAIRER [1976])

If

(2.2) 
$$A_i = a_i(1-M_i), \quad i = O(1)n-1,$$

then the order equations for  $y_{\ell+1}^{}$  are a subset of the order equations for  $y_{\ell+1}^{\prime}$  .

In this report we have made the assumption (2.2), thus reducing the order equations to those given in table 2.1, extended with the order equations of the embedded scheme.

For orders p,  $p \le 6$  a solution scheme for the order equations is given by HAIRER [1976].

Given a solution for the equations

(2.3) 
$$\sum_{i=0}^{n-1} a_i M_i^k = \frac{1}{k+1}, \qquad k = 0(1)p-1,$$

this scheme successively determines  $K_i^{(\ell)}$ , i = 1(1)n-1,  $\ell = 1(1)i-1$ , as functions of a and M<sub>i</sub>, i = 0(1)n-1. This leads to the computation of the parameters K<sub>i</sub>, i = 1(1)n-1, j = 1(1)i-1, from the Van der Monde systems  $K_i^{(\ell)}$ , i = 1(1)n-1,  $\ell = 1(1)i-1$ .

For higher order methods (p>6), the solution of the order equations proceeds in an analogous way. However, a number of assumptions of the following form has to be made

$$K_{i}^{(\ell)} = \frac{M_{i}^{\ell+2}}{(\ell+1)(\ell+2)}, \quad \ell = 1(1)\ell_{p}.$$
  
$$a_{i} = 0, \quad i = 1(1)i_{p},$$

and there will be some restrictive conditions with respect to the parameters  $M_i$ , i = l(1)n-l.

The a priori solution for  $a_i$ , i = 0(1)n-1 of equation (2.3) can be given in terms of  $M_i$ , i = 1(1)n-1, as (2.3) is a Van der Monde system for the  $a_i$ , i = 0(1)n-1. If  $n_r$  is the number of non-zero  $a_i$ 's and  $p > n_r + 1$ , then there are  $(p-n_r-1)$  restrictive conditions for  $M_i$ ,  $i = i_1(1)i_n$ (cf. HILDEBRAND [1956], p 351-357). As for our higher order formulas (p>5) some of the lower indexed  $a_i$ 's have to be equal to zero (in order to facilitate the solvability of the remaining order equations), we have identified the non-zero  $a_i$ 's and corresponding  $M_i$ 's to the weight factors and abscissas of the Gauss-Radau quadrature formula

(2.4) 
$$\int_{0}^{1} f(x) dx \simeq w_{1} f(0) + \sum_{i=2}^{n} w_{i} f(x_{i}).$$

It is well known that (2.4) is exact for polynomials up to a degree of  $2n_r-2$ . Thus, an application of (2.4) to the set  $\begin{cases} x^{i} \\ i=0 \end{cases}^{2n_r-2}$  leads to

$$\sum_{i=1}^{n} w_i x_i^k = \frac{1}{k+1}, \quad x_1 = 0, \quad k = 0(1)2n_r^{-2},$$

which, in connection with (2.3), justifies the identification of the quadrature coefficients to the Runge-Kutta parameters  $a_i$  and  $M_i$ ,  $i = i_1(1)i_n$ . The expressions for  $w_i$  and  $x_i$ ,  $i = 1(1)n_r$  are given in ABRAMOWITZ and r STEGUN [1964], p 888.

On page 921 of this handbook numerical values are given for  $w_i/x_i$ and  $x_i$ ,  $i = 2(1)n_r$ ,  $n_r = 2(1)9$ . For our purposes we only need the  $n_r = 4$ and  $n_r = 5$  quadrature coefficients. These coefficients are given in section 9 to 27 decimal places.

In the next sections we will often omit the expressions for  $a_0, B_0, A_i, K_{i+1,0}$ , i = O(1)n-1. These parameters are easily obtained from the equations (1a), (1B), (1A), (2.1) and (2.2).

#### 3. FOURTH ORDER FORMULA USING THREE FUNCTION EVALUATIONS

The (n=3,p=4) scheme with an embedded  $(n=2,\widetilde{p}=3)$  scheme is easily found from equations (1a) through (5a).

The resulting formula, which has one free parameter (e.g.  $M_1$ ), is given by

$$(3.1) \qquad M_1 M_2 / 2 - (M_1 + M_2) / 3 + 1 / 4 = 0,$$

$$a_1 = \frac{M_2/2 - 1/3}{M_1(M_2 - M_1)}$$
,  $a_2 = \frac{M_1/2 - 1/3}{M_2(M_1 - M_2)}$ ,  $B_1 = \frac{1}{6M_1}$ ,

(3.2)

$$K_{21} = \frac{1}{24a_2M_1} \, .$$

Substituting  $M_1 = \frac{1}{2}$ , we arrive at Nyström's formula of order four (see NYSTRÖM [1925], p 24). In section 8 we will give a value for  $M_1$  which leads to optimal stability properties of our (n=3,p=4) scheme.

#### 4. FIFTH ORDER FORMULA USING FOUR FUNCTION EVALUATIONS

In this section we will derive (n=4,p=5) schemes with an embedded (n=3,p=4) scheme.

The general formula turns out to have two free parameters, e.g.  $M_2$  and  $M_3$ . The solution of equations (1a) through (8a) proceeds as follows. Equations (2a) through (4a) and equation (6a) are linear in  $a_i$ , i = 1,2,3. The solution is

$$a_{1} = \frac{M_{2}M_{3}^{2} - (M_{2} + M_{3})^{3} + 1/4}{M_{1}(M_{2}^{-}M_{1})(M_{3}^{-}M_{1})} ,$$

and similar expressions for  $a_2$  and  $a_3$ , together with the condition

(4.1) 
$$M_1 M_2 M_3 / 2 - (M_1 M_2 + M_1 M_3 + M_2 M_3) / 3 + (M_1 + M_2 + M_3) / 4 - 1 / 5 = 0.$$

From equations (5a) and (8a) it follows that

(4.2) 
$$K_{21} = \frac{M_3/24 - 1/30}{a_2 M_1 (M_3 - M_2)} ,$$
$$K_3^{(1)} = \frac{M_2/24 - 1/30}{a_3 (M_2 - M_3)} .$$

The latter equation yields, together with equation (7a)

(4.3) 
$$K_{31} = \frac{(M_3/24 - 1/30)/(M_3 - M_2) + M_2/24 - 1/60}{a_3 M_1 (M_2 - M_1)}$$

(4.4) 
$$K_{32} = \frac{M_1/24 - 1/60}{a_3 M_2 (M_1 - M_2)}$$
.

The parameters  $B_{i}$ , i = 1,2, are easily derived from equation (2B) and (3B), e.g.

$$B_{1} = \frac{M_{2}/6 - 1/12}{M_{1}(M_{2} - M_{1})} .$$

There are some limitations with respect to the values of the (free) parameters. As can easily be checked, we have

$$M_1 \neq 0, M_2 \neq 0, M_1 \neq M_2, M_2 \neq M_3, a_2 \neq 0, a_3 \neq 0.$$

We shall now briefly present some extra schemes, which are specific examples of the solution given above.

- (i) The particular choice  $M_{2,3} = \frac{6\pm\sqrt{6}}{10}$  leaves  $M_1$  as a free parameter, because (4.1) is fulfilled independent on the value of  $M_1$ . The scheme is given by  $a_0 = \frac{1}{9}$ ,  $a_1 = 0$ ,  $a_2 = \frac{16+p}{36}$ ,  $a_3 = \frac{16-p}{36}$ ,  $M_2 = \frac{6-p}{10}$ ,  $M_3 = \frac{6+p}{10}$ ,  $p = \pm \sqrt{6}$ .  $K_{21}$ ,  $K_{31}$  and  $K_{32}$  are obtained from (4.2), (4.3) and (4.4).
- (ii) If we choose  $M_1 = M_3$  in case (i),  $a_3$  becomes a free parameter and the solution is  $a_0 = \frac{1}{9}$ ,  $a_2 = \frac{16+p}{36}$ ,  $\tilde{a}_3 = \frac{16-p}{36}$ ,  $a_1 = \tilde{a}_3 a_3$ ,  $M_1 = M_3 = \frac{6+p}{10}$ ,  $M_2 = \frac{6-p}{10}$ ,  $p = \pm \sqrt{6}$ .
- (iii) The particular choice  $M_3 = 0$ , implying that  $a_3$  can again be chosen arbitrarily, leads to  $M_{1,2} = \frac{6 \pm \sqrt{6}}{10}$ . The resulting scheme is given by  $a_0 = \frac{1}{9} - a_3$ ,  $a_1 = \frac{16-p}{36}$ ,  $a_2 = \frac{16+p}{36}$ ,  $M_1 = \frac{6+p}{10}$ ,  $M_2 = \frac{6-p}{10}$ ,  $M_3 = 0$ ,  $p = \pm \sqrt{6}$ . Equations (4.2) through (4.4) determine  $K_{21}$ ,  $K_{31}$  and  $K_{32}$ .

Nyström's (n=4,p=5) formula with  $M_2 = \frac{2}{3}$  and  $M_3 = 1$  fits equations (4.1) through (4.4), but because  $M_3 = 1$  the embedded (n=3, $\tilde{p}$ =4) formula is in fact (n=3, $\tilde{p}$ =5). The latter implies that no truncation error can be calculated in the sense of (1.5).

In section 9, a program for the two-parameter scheme is given by the subroutine RKPAR 45.

#### 5. SIXTH ORDER FORMULA USING SIX FUNCTION EVALUATIONS

The equations to be solved are given by (1a) through (13a). To start off, we will indicate how a family of (n=5,p=6) formulas can be obtained. Equations (2a) - (4a), (6a) and (9a) give the condition

The solution for the  $a_i$ , i = 1(1)4, is given by

$$a_{1} = \frac{M_{2}M_{3}M_{4}/2 - (M_{2}M_{3} + M_{2}M_{4} + M_{3}M_{4})/3 + (M_{2} + M_{3} + M_{4})/4 - 1/5}{M_{1}(M_{2} - M_{1})(M_{3} - M_{1})(M_{4} - M_{1})}$$

and, by permuting indices in the last formula, similar expressions hold for  $a_2$  through  $a_4$ . From (5a), (8a) and (10a) follows

$$\kappa_{2}^{(1)} = \frac{M_{3}M_{4}^{24-(M_{3}+M_{4})/30+1/36}}{a_{2}^{(M_{3}-M_{2})(M_{4}-M_{2})}}$$

(similar expressions hold for  $K_3^{(1)}$  and  $K_4^{(1)}$ ). Equations (7a) and (11a) yield

$$K_{3}^{(2)} = \frac{(1/60 - a_{2}K_{2}^{(2)})M_{4} - (1/72 - a_{2}K_{2}^{(2)}M_{2})}{a_{3}(M_{4} - M_{3})}$$

(similar expression for  $K_4^{(2)}$ ). Thus, with  $K_4^{(3)}$  resulting from (12a), we can express all  $K_{ij}$ , i = 2(1)4, j = 1(1)i-1, in terms of  $a_i$  and  $M_i$ , i = 1(1)4.

There is still one equation, (13a), to be satisfied. By substituting all the expressions found in this equation, a quite laborious computation leads to the simple condition

$$(5.1)$$
  $M_{4} = 1.$ 

Thus, we have found a two-parameter family (e. g.  $M_2$  and  $M_3$ ) of (n=5,p=6) formulas. A member of this family ( $M_2 = \frac{1}{2}, M_3 = \frac{3}{4}$ ) is given by ALBRECHT [1955]. However, since we did not succeed in finding an embedded (n=3, $\tilde{p}$ =5) formula of the family above (because of (5.1) the integration formula for y is already of type (n=4, $\tilde{p}$ =5)), we will now proceed to derive an (n=6,p=6) formula with an embedded (n=5, $\tilde{p}$ =5) formula.

By substituting

(5.2)  $a_1 = 0,$ 

(5.3) 
$$K_{i}^{(j)} = \frac{M_{i}^{j+2}}{(j+1)(j+2)}, \quad i = 2(1)5, \quad j = 1,2,$$

the equations (2a) through (13a) are reduced to

- (5.4)  $\sum_{i=2}^{5} a_i \sum_{j=1}^{i-1} K_{ij} M_j^3 = \frac{1}{120},$
- (5.5)  $\sum_{i=2}^{5} a_i K_{i1} = 0,$

(5.6) 
$$\sum_{i=2}^{5} a_i M_i^k = \frac{1}{k+1}, \quad k = 1(1)5.$$

It is easily verified that , if

(5.7) 
$$\sum_{i=2}^{5} a_{i} M_{i} \sum_{j=1}^{i-1} K_{ij} M_{j}^{3} = \frac{1}{140},$$

(5.8) 
$$\sum_{i=3}^{5} a_{i} M_{i} \sum_{j=1}^{i-1} K_{ij} L_{=1}^{j-1} K_{j^{f}} M_{\ell} = \frac{1}{840},$$

and

(5.9) 
$$\int_{i=2}^{5} a_i \, M_i^6 = \frac{1}{7} ,$$

the resulting scheme becomes of type (n=6, $\widetilde{p}$ =7).

To solve (5.6) and (5.9), we put  $a_2 = 0$  and respectively identify  $a_i$ , i = 0,3,4,5 with the weight factors, and  $M_i$ , i = 0,3,4,5 ( $M_0=0$ ), with the abscissas of the 4-point Radau quadrature formula. Note there are 6 possible identifications. From (5.3) easily results  $M_1 = M_2/2$ .

The solution of (5.4) through (5.7) proceeds as follows. Equations (5.4) and (5.7) are solved for  $K_4^{(3)}$  and  $K_5^{(3)}$ . As  $K_{51}$  is given by (5.5) we are able to determine all parameters  $K_{ij}$ , i = 2(1)5,  $j = 1(1)i^{-1}$ , by solving linear Van der Monde systems. Using all the expressions found above, equation (5.8) leads to the condition

(5.10) 
$$M_2 = \frac{(M_5/5 - 1/6)M_3/12 - (M_5/6 - 1/7)/20}{(M_5/4 - 1/5)M_3/6 - (M_5/5 - 1/6)/12}.$$

A similar formula for  $M_3$  is obtained if we take  $a_3 = 0$  instead of  $a_2 = 0$ , bringing the total number of possible solutions, as indicated above, to 12.

The equations (1B) through (5B) for the embedded  $(n=5,\tilde{p}=5)$  scheme reduce, with the aid of the assumptions (5.3), to the Van der Monde system

$$\sum_{i=2}^{4} B_{i} M_{i}^{k} = \frac{1}{(k+1)(k+2)}, \quad k = 1, 2, 3.$$

Finally, we remark that it is possible to obtain an embedded  $(n=5,\tilde{p}=6)$ scheme for the formula given above by taking  $M_2 = M_5$  instead of the value of  $M_2$  determined by (5.9).

It is easily verified that, in that case, the weights  $b_i$ , i = 1(1)4, are given by

$$b_2 = a_5,$$
  
 $b_3 = a_3,$   
 $b_4 = a_4.$ 

The consequence, however, for taking  $M_2 = M_5$  is that the scheme is no longer of type (n=6, $\tilde{p}$ =7), because equation (5.8) does not hold. On the other hand, it is useful to have an embedded (n=5, $\tilde{p}$ =6) scheme,

thus being able to control errors in y' as well as in y.

In section 9, a program for the solution above (with  $a_3 = 0$ ) is given by the subroutine RKPAR 66.

6. SEVENTH ORDER FORMULA USING SEVEN FUNCTION EVALUATIONS

In this section an (n=7,p=7) formula with an embedded (n=6, $\tilde{p}$ =6) formula is derived.

The equations to be solved are given by equations (1a) through (22a). First we put

$$K_{i}^{(j)} = \frac{M^{j+2}}{(j+1)(j+2)}, \quad i = 2(1)6, \quad j = 1, 2,$$

a<sub>1</sub> = 0.

Under these assumptions, the equations (1a) through (22a) reduce to

(6.1)  $\sum_{i=2}^{6} a_i M_i^k = \frac{1}{k+1}$ , k = 1(1)6,

(6.2) 
$$\sum_{i=2}^{6} a_i \sum_{j=1}^{i-1} K_{ij} M_j^3 = \frac{1}{120} ,$$

(6.3) 
$$\sum_{i=2}^{6} a_i K_{i1} = 0$$

(6.4)  $\begin{array}{c} 6 \\ \sum \\ i=2 \end{array}^{i-1} & K_{ij} \\ K_{j} \\ i \\ j=1 \end{array}^{M_{j}^{4}} = \frac{1}{210} ,$ 

(6.5) 
$$\sum_{i=2}^{6} a_i M_i \sum_{j=1}^{i-1} K_{ij} M_j^3 = \frac{1}{140} ,$$

(6.6) 
$$\sum_{i=2}^{6} a_i M_i K_{i1} = 0.$$

If we solve the additional equations

- (6.7)  $\sum_{i=2}^{6} a_{i} M_{i}^{7} = \frac{1}{8},$
- (6.8)  $\sum_{i=2}^{6} a_{i} M_{i} \sum_{j=1}^{i-1} K_{ij} M_{j}^{4} = \frac{1}{240} ,$

(6.9) 
$$\int_{i=2}^{6} a_{i} M_{i}^{2} \int_{j=1}^{i-1} K_{ij} M_{j}^{3} = \frac{1}{160},$$

(6.10) 
$$\sum_{i=2}^{6} a_{i} M_{i}^{2} K_{i1} = 0.$$

we have an (n=7, $\tilde{p}$ =8) formula.

However, we only succeed to solve (6.1) through (6.9). The solution of these equations proceeds as follows.

First we put  $a_2 = 0$  and we take for  $a_i$  and  $M_i$ , i = 0,3,4,5,6, the values of the weight factors and abscissas of the 5-point Radau quadrature formula, thus satisfying equations (6.1) and (6.7). The expressions for  $K_i^{(3)}$ , i = 4,5,6, follow from (6.2), (6.5) and (6.9). Equations (6.4) and (6.8) are solved for  $K_j^{(4)}$ , i = 5,6.  $K_{61}$  follows from (6.3) and, by substituting all the expressions found into the equation (6.6), we obtain the following relation

$$M_{2} = \frac{M_{3}M_{4}(M_{6}/5-1/6)/12 - (M_{3}+M_{4})(M_{6}/6-1/7)/20 + (M_{6}/7-1/8)/30}{M_{3}M_{4}(M_{6}/4-1/5)/6 - (M_{3}+M_{4})(M_{6}/5-1/6)/12 + (M_{6}/6-1/7)/20}$$

The equations (2B) through (8B) reduce, under the assumptions made above, to the Van der Monde system

$$\sum_{i=2}^{5} B_{i} M_{i}^{k} = \frac{1}{(k+1)(k+2)}, \quad k = 1(1)4.$$

It is possible to interchange the values of  $M_2$  and  $M_3$  in the solutions given above (making  $a_3 = 0$ ). Thus, the total number of indicated solutions is 48

Thus, the total number of indicated solutions is 48.

In section 9 we present a subroutine, RKPAR 77, for the computation of the parameters of the solutions corresponding to the case  $a_3 = 0$ .

#### 7. EIGHTH ORDER FORMULA USING NINE FUNCTION EVALUATIONS

In this section we give solutions for an (n=9,p=8) formula with an embedded (n=8, $\tilde{p}$ =7) formula.

The equations to be solved are given by the equations (1a) through (37a). By the assumptions

$$a_{1} = a_{2} = a_{3} = 0,$$

$$K_{i}^{(j)} = \frac{M_{i}^{j+2}}{(j+1)(j+2)}, \quad i = 2(1)8, \quad j = 1, 2,$$

$$K_{i}^{(3)} = \frac{5}{M_{i}^{j}/20}, \quad i = 4(1)8,$$

these equations reduce to

(7.1) 
$$\sum_{i=4}^{8} a_{i} M_{i}^{k} K_{i1} = 0, \quad k = 0, 1, 2,$$

(7.2) 
$$\sum_{i=4}^{8} a_{i} M_{i}^{k} \sum_{j=1}^{i-1} K_{ij} M_{j}^{4} = \frac{1}{30(k+7)}, \quad k = 0,1,$$

(7.3) 
$$\sum_{i=4}^{8} a_i \sum_{j=1}^{1-1} K_{ij} M_j^5 = \frac{1}{336},$$

(7.4) 
$$\sum_{i=4}^{8} a_i \sum_{j=2}^{i-1} K_{ij} \sum_{\ell=1}^{j-1} K_{j\ell} M_{\ell}^3 = \frac{1}{6720},$$

(7.5) 
$$\sum_{i=4}^{8} a_i \sum_{j=3}^{i-1} K_{ij} \sum_{\ell=2}^{j-1} K_{j\ell} \sum_{m=1}^{\ell-1} K_{\ell m} M_m = \frac{1}{40320},$$

(7.6) 
$$\sum_{i=4}^{8} a_i M_i^k = \frac{1}{k+1}, \quad k = 1(1)7.$$

There are several ways for solving equations (7.1) through (7.6). We will only deal with the following two cases, both having

$$K_{i1} = 0, \quad i = 4(1)8.$$

By this assumption equation (7.1) is satisfied.

# $\underline{CASE \ 1} \qquad a_5 = 0.$

Equation (7.2) is fulfilled by taking

$$K_i^{(4)} = M_i^6/30, \quad i = 4, 6, 7, 8.$$

From the assumptions made so far,  $K_{41} = 0$  and  $K_4^{(4)} = M_4^6/30$  lead to the condition

$$M_{2,3} = M_4 \frac{5 \pm \sqrt{5}}{10}$$
.

We now concentrate first on the solution of (7.6) and the equations of the embedded (n=8, $\tilde{p}$ =7) scheme, (1B)-(13B). Under the assumptions made, together with  $B_1 = B_2 = B_3 = 0$ , these latter equations reduce to

(7.7) 
$$\sum_{i=4}^{\prime} B_i M_i^k = \frac{1}{(k+1)(k+2)}, \quad k = 1(1)5.$$

Equations (7.6) and (7.7) are simply solved by substituting for  $a_i$  and  $M_i$ , i = 0,4,6,7,8, the values of the weight factors and abscissas of the 5-point Radau quadrature formula (2.4) and, moreover, by substituting

$$M_5 = M_8,$$
  
 $B_i = A_i, i = 0, 4, 6, 7,$   
 $B_5 = A_8.$ 

In a simple way, equations (7.4) and (7.5) can be reduced to

(7.7) 
$$\sum_{i=4}^{8} a_{i} \sum_{j=2}^{3} K_{ij} K_{j1} = 0,$$

and

(7.8) 
$$\sum_{i=4}^{8} a_{i} (K_{i3} K_{32} M_{2}^{3} - \frac{1}{20} \sum_{j=2}^{3} K_{ij} M_{j}^{5}) = 0.$$

We may rewrite these equations as

(7.9) 
$$c_2(-\frac{1}{20}M_2^5) + c_3(K_{32}M_2^3 - \frac{1}{20}M_3^5) = 0,$$

(7.10) 
$$c_2 K_{21} + c_3 K_{31} = 0,$$

where

$$c_{j} = \sum_{i=4}^{8} a_{i} K_{ij}, \quad j = 2,3.$$

The only possible solution of (7.9) and (7.10) is given by

$$(7.11) c_2 = c_3 = 0,$$

as can be shown by using the expressions for  $K_{21}$ ,  $K_{31}$  and  $K_{32}$ , together with  $M_1 = M_2/2$  and  $M_{2,3} = \frac{5\pm\sqrt{5}}{10} M_4$ . More generally, by taking

(7.12) 
$$c_j = \sum_{i=2}^{8} a_i K_{ij}, \quad j = 1(1)7,$$

we obtain the equations

(7.13) 
$$\sum_{i=1}^{7} c_i M_i^k = \frac{1}{(k+1)(k+2)(k+3)}, \quad k = 1(1)5.$$

We observe that (7.13) represents five order equations; e.g., the k = 5 - equation corresponds to (7.3), being the last equation from the system (7.1)-(7.6) not yet taken into account.

Since  $c_i = 0$ , i = 1,2,3, the existence of a solution of (7.13) for  $c_i$ , i = 4(1)7, is guaranteed if the following condition holds

(7.14) 
$$\sum_{i=1}^{5} (-1)^{i} x_{i} / (i+1) / (i+2) / (i+3) = 0,$$

where

$$x_{1} = M_{4}M_{5}M_{6}M_{7},$$

$$x_{2} = M_{4}M_{5}M_{6}+M_{4}M_{5}M_{7}+M_{4}M_{6}M_{7}+M_{5}M_{6}M_{7},$$

$$(7.15) \qquad x_{3} = M_{4}M_{5}+M_{4}M_{6}+M_{4}M_{7}+M_{5}M_{6}+M_{5}M_{7}+M_{6}M_{7},$$

$$x_{4} = M_{4}+M_{5}+M_{6}+M_{7},$$

$$x_{5} = 1.$$

We will show that (7.14) does indeed hold.

PROPERTY 7.1 If

$$\sum_{\substack{i=4\\i\neq 5}}^{8} a_{i} M_{i}^{k} = \frac{1}{k+1}, \quad k = 1(1)7, \quad \text{and} \quad M_{5} = M_{8} \text{ then}$$

$$\sum_{\substack{i=1\\i=1}}^{5} (-1)^{i} x_{i} / (i+1) / (i+2) / (i+3) = 0,$$

where  $x_{i}$ , i = 1(1)5 is defined by (7.15).

PROOF. From the Van der Monde system

$$\sum_{\substack{i=4\\i\neq 5}}^{8} a_{i} M_{i}^{k} = \frac{1}{k+1}, \quad k = 1(1)4,$$

we can obtain the quantities  $a_i$  in terms of  $M_i$ , i = 4,6,7,8. The remaining equations

$$\sum_{\substack{i=4\\i\neq 5}}^{8} a_{i} M_{i}^{k} = \frac{1}{k+1}, \quad k = 5, 6, 7,$$

lead to the conditions

(7.16) 
$$\begin{pmatrix} 1/2 & -1/3 & 1/4 & -1/5 \\ 1/3 & -1/4 & 1/5 & -1/6 \\ 1/4 & -1/5 & 1/6 & -1/7 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -1/6 \\ -1/7 \\ -1/8 \end{pmatrix},$$

where, as  $M_8 = M_5$ ,  $x_i$ , i = 1(1)4, is given by (7.15). Denoting the i-th equation of (7.16) by  $r_i$ , i = 1,2,3, we obtain (7.14) by taking  $(r_1-2r_2+r_3)/2$ .

To complete the solution of our eighth order formula, we proceed as follows. First, the parameter  $\rm K_{87}$  is obtained as

$$K_{87} = c_7/a_8$$
.

 $a_{/1} = 0.$ 

We are then left with 8 linear equations  $K_i^{(j)}$ , i = 7,8, j = 1(1)4, and 10 unknowns,  $K_{ij}$ , i = 7,8, j = 2(1)6. However, instead of two, we have only one free parameter, since a preset value of  $K_{72}$  (say) immediately leads to

$$K_{82} = c_2 - \sum_{i=2}^{7} a_i K_{i2}.$$

CASE 2

In this case the solution is found in a quite similar way. In particular we have

$$M_4 = M_8,$$
  
 $B_i = A_i, \quad i = 0,5,6,7,$   
 $B_4 = A_8.$ 

Again,  $M_i$  and  $a_i$ , i = 5(1)8 are related to Radau quadrature coefficients. The assumptions  $K_{41} = K_{51} = 0$  and  $K_5^{(4)} = M_5^6/30$  lead to the following conditions for  $M_2$  and  $M_3$ 

$$-5M_4(M_2+M_3)+10M_2M_3 = -3M_4^2,$$
  
$$(5M_4-3M_5)M_5(M_2+M_3)+(5M_5-10M_4)M_2M_3 = (3M_4-2M_5)M_5^2,$$

of which the solution is

$$M_{2} = M_{5} \frac{6p^{3} - 3p^{2} - 6p + 4 \pm \sqrt{36p^{6} - 156p^{5} + 309p^{4} - 356p^{3} + 1236p^{2} / 5 - 96p + 16}}{2(10p^{2} - 15p + 6)}$$

(7.9)

$$M_3 = \frac{M_4 (5M_2 - 3M_4)}{10M_2 - 5M_4}$$
,  $p = M_4 / M_5$ .

An investigation of the zeroes (all complex) of the square root argument appearing in the expression for  $M_2$ , shows that  $M_2$  is real-valued for arbitrary  $M_4$  and  $M_5$ .

In section 9 a FORTRAN routine of case 2 is given by subroutine RKPAR 98. For reasons of simplicity we only consider those schemes of the two cases treated above for which  $K_{72} = 0$ . Note that this choice leads to 48 possible solutions for each case.

#### 8. STABILITY ANALYSIS

In this section we will investigate the stability properties of the schemes developed.

In Van der HOUWEN [1975] the following amplification matrix for an n-point Runge-Kutta formula is presented:

$$R^{(n)}(z) = \begin{pmatrix} 1 + \sum_{\ell=0}^{n-1} A_{\ell} & .z. & R_{11}^{(\ell)}(z) & 1 + \sum_{\ell=0}^{n-1} A_{\ell} & .z. & R_{12}^{(\ell)}(z) \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

with

$$R_{11}^{(j)} = 1 + \sum_{\ell=0}^{j-1} K_{j\ell} \cdot z \cdot R_{11}^{(\ell)},$$
  

$$R_{12}^{(j)} = M_{j} + \sum_{\ell=0}^{j-1} K_{j\ell} \cdot z \cdot R_{12}^{(\ell)}, \qquad j = 1(1)n-1,$$

BIBLIOTHEEK MATHEMATISCH CENTRUM

$$R_{11}^{(0)} = R_{12}^{(0)} + 1 = 1,$$

 $z = h^2 \delta$ ,  $\delta \in \Delta$ ,  $\Delta$  denotes the eigenvalue spectrum of the Jacobian matrix of the right-hand side of (1.1); h represents the stepsize. A Runge-Kutta scheme is said to be *stable* when  $|\alpha_{1,2}| < 1$  and *weakly stable* if  $|\alpha_{1,2}| \leq 1$ , where  $\alpha_{1,2}$  are the eigenvalues of R<sup>(n)</sup>(z).

An investigation how perturbations are analytically propagated for equations of type y" = Jy, reveals that the "analytic" amplification matrix is of the following form

$$A = \begin{pmatrix} \cosh(Dh) & (Dh)^{-1}\sinh(Dh) \\ \\ Dh \sinh(Dh) & \cosh(Dh) \end{pmatrix}$$

where  $D^2 = J$ . The matrix A is the analytic analogue of the matrix  $R^{(n)}(z)$ . The eigenvalues of A satisfy:

$$\alpha^2 - 2 \cosh \sqrt{z} \alpha + 1 = 0, \qquad z = h^2 \delta, \qquad \delta \in \Delta.$$

From this it follows that  $\alpha_{\pm} = \exp(\pm \sqrt{z})$ . This means that there is weak stability at points on the negative z-axis and no stability for other z-values. For this reason, we concentrate on those schemes which have the longest negative stability interval, i.e. the interval [ $\beta$ ,0] of negative z-values for which  $|\alpha_{1,2}| \leq 1$ . We define  $\beta$  to be the *stability bound* of the method.

Evidently, an n-point Runge-Kutta formula, with a stability bound  $\beta$  is stable, if  $|h| \leq |h_{\max}| = \sqrt{\frac{-\beta}{1\delta 1}}$ . Concerning the eigenvalues of  $R^{(n)}(z)$ , the following equation holds

(8.1) 
$$\alpha^2 - S\alpha + P = 0,$$

where S equals the sum of the diagonal elements of  $R^{(n)}(z)$  and P denotes the determinant of  $R^{(n)}(z)$ . Applying the Hurwitz-criterion to (8.1) leads to  $|\alpha_{1,2}| \leq 1$  if

$$(8.2) P_1(z) = P - 1 \le 0,$$

(8.3) 
$$P_2(z) = S - P - 1 \le 0$$
,

$$(8.4) P_{2}(z) = -S - P - 1 \le 0.$$

For each polynomial  $P_i(z)$  there is a maximal interval  $[\beta_i, 0]$ , i = 1,2,3, for which the relevant equation of (8.2) through (8.4) holds. It is clear that the stability bound  $\beta$  is found by

$$[\beta,0] = \bigcap_{i=1,2,3} [\beta_i,0].$$

By calculating the zeroes of  $P_i(z)$ ,  $\beta_i$  (i=1,2,3) is easily derived.

#### EXAMPLE :

In the (n=3,p=4) case we have one free parameter left and this will be used to optimize the stability bound.

Using (3.1) and (3.2) it is easily verified that

$$R^{(3)}(z) = \begin{pmatrix} 1 + \frac{1}{2}z + \frac{1}{24}z^{2} + \frac{(1-M_{2})M_{1}}{48}z^{3} & 1 + \frac{1}{6}z + \frac{1}{24}(1-M_{2})z^{2} \\ z + \frac{1}{6}z^{2} + \frac{1}{48}M_{1}z^{3} & 1 + \frac{1}{2}z + \frac{1}{24}z^{2} \end{pmatrix}.$$

Thus, we have

$$P_{1}(z) = \frac{1}{144} \left\{ M_{2}(6-3M_{1}) - 4 \right\} z^{3},$$

$$P_{2}(z) = z \left\{ 1 + \frac{1}{12}z + \frac{1}{144}(3M_{1} - 6M_{2} + 4)z^{2} \right\},$$

$$P_{3}(z) = -4 - z - \frac{1}{12}z^{2} - \frac{1}{144} \left\{ 3M_{1} - 6M_{1}M_{2} + 6M_{2} - 4 \right\} z^{3}.$$

We now solve (8.2) through (8.4) using these  $P_i(z)$ , i = 1,2,3. Equation (8.2) yields

$$\frac{1}{144} \left\{ M_2(6-3M_1) - 4 \right\} z^3 \le 0.$$

Considering only negative z-values we may write

$$-3M_1M_2 + 6M_2 - 4 \ge 0.$$

Applying (3.1) yields

(8.5)  $M_1 < \frac{2}{3}$ .

Equation (8.3) leads to

$$z \left\{ 1 + \frac{1}{12} z + \frac{1}{144} (3M_1 - 6M_2 + 4) z^2 \right\} \le 0.$$

Since, again, z runs through the negative-axis, we obtain

(8.6) 
$$1 + \frac{1}{12}z + \frac{1}{144}(3M_1 - 6M_2 + 4)z^2 \ge 0.$$

There are two possibilities.

<u>CASE 1</u> Suppose  $3M_1 - 6M_2 + 4 \ge 0$ . A calculation, using (3.1), yields :  $M_1 = \frac{1}{3}$  ( $M_1 \ge \frac{2}{3}$  is contradicted by (8.5)). Substituting  $M_1 = \frac{1}{3}$  in (3.1) and (8.6) respectively, we find  $M_2 = \frac{5}{6}$  and  $z \ge -12$ . Using the values  $M_1 = \frac{1}{3}$  and  $M_2 = \frac{5}{6}$ , it follows that (8.4) is fulfilled if  $z \ge -12$ . Thus we find  $\beta \le -12$ .

CASE 2 Suppose

$$(8.7) \qquad 3M_1 - 6M_2 + 4 < 0.$$

Furthermore suppose case 2 leads to  $\beta \le -12$ . Substituting z = -12 in (8.6), results in  $3M_1 - 6M_2 + 4 \ge 0$ . But this contradicts (8.7). The conclusion is that for  $M_1 = \frac{1}{3}$  we find the optimal stability bound

$$\beta = -12.$$

The resulting scheme is given in table 8.1.

TABLE 8.1 The (n=3,p=4) scheme with optimal stability bound  $\beta = -12$ .

$$M_{0} = 0 \qquad M_{1} = \frac{1}{3} \qquad M_{2} = \frac{5}{6}$$

$$K_{10} = \frac{1}{18}$$

$$K_{20} = \frac{5}{144} \qquad K_{21} = \frac{5}{16}$$

$$A_{0} = \frac{1}{10} \qquad A_{1} = \frac{1}{3} \qquad A_{2} = \frac{1}{15}$$

$$a_{0} = \frac{1}{10} \qquad a_{1} = \frac{1}{2} \qquad a_{2} = \frac{2}{5}$$

$$B_{0} = \frac{1}{6} \qquad B_{1} = \frac{1}{3}$$

In the (n=4,p=5) case, two free parameters are left ( $M_1$  and  $M_3$ ). We did not succeed in calculating by analytical means a scheme with an optimal stability bound.

The best combination of  $M_1$  and  $M_3$  we have found numerically, is given by

$$M_1 = .2776745182, M_3 = .7366565518,$$

yielding a stability bound

 $\beta = - 8.4622662640723.$ 

The resulting scheme will be presented in section 9.

For the higher order formulas of section 5 through 7, only a finite number of schemes is derived.

We determined  $\beta$  by using a numerical procedure to calculate the zeroes of the polynomials  $P_i(z)$ , i = 1,2,3, for each of those schemes. The schemes with the longest stability intervals are listed in section 9.

In table 8.2 we give the results we have found, not only for the schemes we developed, but also for the schemes presented by Fehlberg and other authors.

If no non-zero stability interval is found, this is denoted by  $\beta = 0$ . At last, the stability-regions of the schemes presented in the tables 8.1 and 9.1 - 9.4, are given in the figures 8.1 - 8.5.

An s is printed at each investigated point z of the complex plane where the formula is weakly stable.

TABLE 8.2 The stability bound of some Runge-Kutta formulas.

| Runge-Kutta formula | Characteristics | β                                                     |
|---------------------|-----------------|-------------------------------------------------------|
| TABLE 8.1           | (n=3,p=4)       | -12                                                   |
| NYSTRÖM [1925]      | (n=3,p=4)       | $4(-2-\sqrt[3]{2}+\sqrt[3]{4})\cong -6.6900799917069$ |
| FEHLBERG [1972]     | (n=4,p=4)       | $-\frac{72}{17} \approx -4.2352941176476$             |
| TABLE 9.1           | (n=4,p=5)       | -8.4622662640723                                      |
| NYSTRÖM [1925]      | (n=4,p=5)       | 0                                                     |
| ZONNEVELD [1970]    | (n=4,p=5)       | 0                                                     |
| FEHLBERG [1972]     | (n=6,p=5)       | 0                                                     |
| TABLE 9.2           | (n=6,p=6)       | -10.396968386386                                      |
| ALBRECHT [1955]     | (n=5,p=6)       | -9.2426036128093                                      |
| FEHLBERG [1972]     | (n=7,p=6)       | 0                                                     |
| FEHLBERG [1972]     | (n=9,p=7)       | -9.8569225631423                                      |
| TABLE 9.3           | (n=7,p=7)       | -9.784342857982                                       |
| HAIRER [1976]       | (n=7,p=7)       | -5.7532375998338                                      |
| TABLE 9.4           | (n=9,p=8)       | -26.617539426346                                      |
| FEHLBERG [1972]     | (n=11,p=8)      | 0                                                     |

|                                              | Im(:         | z)       |
|----------------------------------------------|--------------|----------|
|                                              | Ιı           | •3       |
| SSSSSSSSSSSSS                                | I 1          | ۰2       |
| SSSSSSSSSSSSSSSSSSS                          | I 1          | .1       |
| SSSSSSSSSSSSSSSSSSSSSSSSSSSSS                | I 1          | ٥.       |
| SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS             | ΙO           | .9       |
| SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS       | ΙO           | 8.       |
| SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS       | IO           | .7       |
| <b>5</b> 55555555555555555555555555555555555 | IO           | .6       |
| 83853355555555555555555555555555555555       | το           | 5        |
| 892525252525555555555555555555555555555      | ŤŌ           | Ĩ.       |
| 22222222222222222222222222222222222222       | T 0          | 2        |
|                                              | x 0.<br>x 0. | م        |
|                                              | 10,          | <u>م</u> |
|                                              |              | .1       |
| 22222222222222222222222222222222222222       | 10, 10       | .0       |
|                                              |              |          |
| -12 -11 -10 -9 -15 -7 -5 -5 -4 -3 -2 -1      | 0            |          |
| Ke(z)                                        |              |          |

Fig. 8.1. THE STABILITY - REGION OF THE SCHEME GIVEN BY TABLE 8.1

|                                                                                | Ĩ   | 12"- |
|--------------------------------------------------------------------------------|-----|------|
| SSSSSS                                                                         | I   | 11"  |
| SSSSSSSS                                                                       | I   | 10"- |
| SSSSSSSSSS                                                                     | I   | 9"-  |
| SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS                                        | I   | 8''- |
| SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS                                        | I   | 7"-  |
| SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS                                        | I   | Ġ"   |
| SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS                                        | I   | 5"   |
| SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS                                        | I   | ų"_  |
| SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS                                        | I   | 3''  |
| SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS                                            | I   |      |
| SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS                                         | I   | ייך  |
| \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ | S I | 0" ( |
| <u>_8 _7 _6 _5 _4 _3 _2 _1</u>                                                 | 0   |      |
| e(z)                                                                           |     |      |

Fig. 8.2. THE STABILITY - REGION OF THE SCHEME GIVEN BY TABLE 9.1

Im(z)



|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ir     | n(z)           |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------|
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T      | 0.005          |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ī      | 0.004          |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ĩ      | 0.004          |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ĩ      | 0.004          |
|          | SSSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ī      | 0.004          |
|          | 655555555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I      | 0.004          |
|          | 8555555555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ī      | 0.004          |
|          | 55555555555555555555555555555555555555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I      | 0.004          |
|          | SSSSSSSSSSSSSSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I      | 0.004          |
|          | SSSSSSSSSSSSSSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I      | 0.004          |
|          | SSSSSSSSSSSSSSSSSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I      | 0.004          |
|          | SSSSSSSSSSSSSSSSSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I      | 0.003          |
|          | SSSSSSSSSSSSSSSSSSSSSSSSSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I      | 0.003          |
| S        | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I      | 0.003          |
| S        | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I      | 0.003          |
| SS       | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I      | 0.003          |
| SS       | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I      | 0.003          |
| SS       | 85555555555555555555555555555555555555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I      | 0.003          |
| SS       | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I      | 0.003          |
| SS       | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I      | 0,003          |
| SS       | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I      | 0.003          |
| SS       | SSSSSSSSSSSSSSSSSSSSSSSSSSSSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I      | 0.0020         |
| SS       | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I      | 0.0028         |
| SS       | SSSSSSSSSSSSSSSSSSSSSSSSSSSSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I      | 0.005.         |
| SS       | SSSSSSSSSSSSSSSSSSSSSSSSSSSSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I      | 0.0026         |
| SS       | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I      | 0.002          |
| SS       | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I      | 0.0051         |
| SS       | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I      | 0.002          |
| SS       | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I      | 0.0022         |
| SS       | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I      | 0.002          |
| SS       | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I      | 0.0020         |
| SS       | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I      | 0.001          |
| SS       | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ī      | 0.001          |
| SS       | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I      | 0.0017         |
| SS       | 55555555555555555555555555555555555555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ī      | 0.0016         |
| SS       | 55555555555555555555555555555555555555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I      | 0.001          |
| 55       | 555555555555555555555555555555555555555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1      | 0.0014         |
| 55       | Construct and a construct      | 1      | 0.0013         |
| 55       | 20002002000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1<br>T | 0.0012         |
| 55       | Construction and a construc      | 7      | 0.0011         |
| 55       | Construction and a construction of the co      | 1      | 0.0010         |
| 22       | Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L<br>T | 0.000          |
| 55       | Coordessected and a second second second second and     Coordessected and a second secon      | L<br>T | 0.0000         |
| 00       | ©ConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstructionConstruction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ۸<br>۲ | 0.000          |
| 22       | Contendance cance and a cance  | т<br>Т | 0.0000         |
| 00<br>92 | Construction Const | т<br>Т |                |
| 00<br>CC | 20100000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | л<br>Т | 0.000          |
| 50       | Constant and a const                                                                                                                                                                                                                                                  | T      | 0.000          |
| 60       | C4366264646464646464646464646464646464646                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T      | 0.0002         |
| 20       | C2222222222222222222222222222222222222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ť      | 0.000          |
| 00       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T      | <b>J</b> ,0000 |
| _10      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                |
| -1U      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                |
| re       | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                |

-

Fig. 8.4. THE STABILITY - RECION OF THE SCHEME GIVEN BY TABLE 9.3

|        | 24           | -21           | -18           | -15           | -12         | 9            | 6              | -3          | 0         |
|--------|--------------|---------------|---------------|---------------|-------------|--------------|----------------|-------------|-----------|
| SSSSSS | SSSSSSSSSSS  | SSSSSSSSSSSSS | SSSSSSSSSSSSS | SSSSSSSSSSSS  | SSSSSSSSSSS | SSSSSSSSSSSS | SSSSSSSSSSSSSS | SSSSSSSSSSS | 355555555 |
| SSSSSS | SSSSSSSSSSSS | SSSSSSSSSSSS  | SSSSSSSSSSSSS | SSSSSSSSSSSSS | SSSSSS      |              |                |             |           |
| SSSSSS | SSSSSSSSSS   | SSSSSSSSSSSS  | SSSSSSSSSSSSS | SSSSSSSSSSS   |             |              |                |             |           |
| SSSSSS | SSSSSSSSSS   | SSSSSSSSSSSS  | SSSSSSSSSSSS  | SSSSSS        |             |              |                |             |           |
| SSSSSS | SSSSSSSSSS   | SSSSSSSSSSSS  | SSSSSSSSSSSSS | SS            |             |              |                |             |           |
| SSSSS  | SSSSSSSSSSS  | SSSSSSSSSSSSS | SSSSSSSSSSSS  |               |             |              |                |             |           |
| SSSSS  | SSSSSSSSSSS  | SSSSSSSSSSSSS | SSSSSSSS      |               |             |              |                |             |           |
| SSSSS  | SSSSSSSSSSS  | SSSSSSSSSSSSS | SSSSS         |               |             |              |                |             |           |
| SSSS   | SSSSSSSSSS   | SSSSSSSSSSSS  | SSS           |               |             |              |                |             |           |
| SSSS   | SSSSSSSSSSS  | SSSSSSSSSSSSS |               |               |             |              |                |             |           |
| SSS    | SSSSSSSSSSS  | SSSSSSSSSS    |               |               |             |              |                |             |           |
| SSS    | SSSSSSSSSS   | SSSSSSS       |               |               |             |              |                |             |           |
| SS     | SSSSSSSSSSS  | SSSSS         |               |               |             |              |                |             |           |
|        | SSSSSSSSS    | 5 <b>S</b>    |               |               |             |              |                |             |           |
|        | SSSSSS       |               |               |               |             |              |                |             |           |
|        |              |               |               |               |             |              |                |             |           |
|        |              |               |               |               |             |              |                |             |           |

Fig. 8.5. THE STABILITY - REGION OF THE SCHEME GIVEN BY TABLE 9.4

ω

#### 9. SUBROUTINES AND EXAMPLES

In this section, we present four FORTRAN subroutines for the computation of the Runge-Kutta schemes given in the preceding sections. Furthermore, we give some examples obtained by these programs.

All computations were carried out in double precision on a Control Data CYBER 73-28.

#### RKPAR 45

1

This subroutine computes an (n=4,p=5)-formula as given in section 4. The meaning of the formal parameters is

| M(i)   | : | M <sub>i</sub> ,   | i =  | 1(1)3;     |           |       |    |     |       |
|--------|---|--------------------|------|------------|-----------|-------|----|-----|-------|
|        |   | Input :            | M(2) | and $M(3)$ | should be | given | by | the | user; |
| K(i,j) | : | <sup>K</sup> ij-1' | i =  | 1(1)3,     | j = 1(1)  | i;    |    |     |       |
| A(i)   | : | <sup>a</sup> i-1'  | i =  | 1(1)4;     |           |       |    |     |       |
| AA(i)  | : | A <sub>i-1</sub> , | i =  | 1(1)4;     |           |       |    |     |       |
| BB(i)  | • | <sup>B</sup> i-1'  | i =  | 1(1)3.     |           |       |    |     |       |

In table 9.1 we give results of RKPAR 45. The subroutine text is given below.

```
SUBROUTINE RKPAR45(M,K,A,AA,BB)
 DOUBLE K(3,3), A(4), AA(4), BB(3), M(3), H1, H2
 M(1) = (M(2) \times M(3)/3 - (M(2) + M(3))/4 + .2D0)/
(M(2) \times M(3)/2 - (M(2) + M(3))/3 + .25)
 H1=M(1) \ M(1)=M(2) \ M(2)=H1
 DO 1 I=2,4
 A(I) = (M(2) \times M(3)/2 - (M(2) + M(3))/3 + .25)/M(1)/(M(2) - M(1))/(M(3) - M(1))
 AA(I) = (1-M(1)) \times A(I)  H1=M(1)  M(1)=M(2)  M(2)=M(3)  M(3)=H1
 CONTINUE
 BB(2) = (M(2) - .5)/6/M(1)/(M(2) - M(1))
 BB(3)=(M(1)-.5)/6/M(2)/(M(1)-M(2))
 A(1)=1-A(2)-A(3)-A(4) $AA(1)=.5-AA(2)-AA(3)-AA(4)
 BB(1)=.5 -BB(2)-BB(3)
 BB(1)=1-BB(2)-BB(3)
 K(1,1) = M(1) \times M(1)/2
 K(2,2)=(M(3)\times 5-4)/120/M(1)/(M(3)-M(2))/A(3)
 H1=(M(2)\times5-4)/120/(M(2)-M(3)) $K(2,1)=M(2)×M(2)/2-K(2,2)
 H2=((-M(3)\times5+4)\times M(1)/(M(3)-M(2))+2)/120
 K(3,2) = (M(2) \times H1 - H2)/M(1)/(M(2) - M(1))/A(4)
 K(3,3) = (M(1) \times H1 - H2) / M(2) / (M(1) - M(2)) / A(4)
 K(3,1)=M(3)\times M(3)/2-K(3,2)-K(3,3)
 RETURN
 END
```

#### (n=4,p=5)-parameter values

| M(1) =<br>M(2) =<br>M(3) =                                           | <ul> <li>.27767451820000000000000000d+00</li> <li>.1030765716316241810799106d+01</li> <li>.736656551800000000000000d+00</li> </ul>                                                                                                                        |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| K(1,0) =<br>K(2,0) =<br>K(2,1) =<br>K(3,0) =<br>K(3,1) =<br>K(3,2) = | <ul> <li>.385515690288010656200000d-01</li> <li>.1035046689895335495004212d-01</li> <li>.5208885140675141896374394d+00</li> <li>.4043773620368925067360654d-01</li> <li>.2157226811781355587552307d+00</li> <li>.1517102027310823219116280d-01</li> </ul> |
| A(0) =<br>A(1) =<br>A(2) =<br>A(3) =                                 | <ul> <li>.8299319778775747262452707d-01</li> <li>.3049416111237371385452454d+00</li> <li>.1908833838070589247754553d-02</li> <li>.1139740249265759780779821d+00</li> </ul>                                                                                |
| a(0) =<br>a(1) =<br>a(2) =<br>a(3) =                                 | <ul> <li>.8299319778775747262452707d-01</li> <li>.4221664870022824917392322d+00</li> <li>.6204418640702603472122545d-01</li> <li>.4327961288029340009150153d+00</li> </ul>                                                                                |
| B(0) =<br>B(1) =<br>B(2) =                                           | <ul> <li>.5292387832180889040043506d+00</li> <li>.4230269281599970360410908d+00</li> <li>.4773428862191405995455855d-01</li> </ul>                                                                                                                        |

#### RKPAR 66

This subroutine computes an (n=6,p=6)-formula as given in section 5. The meaning of the formal parameters is M, K, AA, BB, : see the description of the formal parameters of RKPAR 45; Input : For M(3), M(4) and M(5), only permutations are permitted of the non-zero abcissas of the 4-point Gauss-Radau qaudrature formula. These coefficients are given in table 9.5; B(i) :  $b_{i-1}$ , i = 1(1)6. In table 9.2 we give results of RKPAR 66. The subroutine text is given below.

The subroutines RKPAR 66, RKPAR 77 and RKPAR 98 all use the auxiliary routine PV.

PV(n,A,b) solves the  $n \times n - Van$  der Monde system Ax = b, the righthand side, b, being overwritten by the solution x. An ALGOL 60 version of PV is given by the procedure pvand of BJORCK and PEREYRA [1970].

SUBROUTINE RKPAR66(M,K,A,AA,B,BB) DOUBLE K(5,5), A(6), AA(6), B(5), BB(5), M(5), AL(4), XB(4), H1, H2, H3  $AL(1)=0D0 \ \$XB(1)=1D0$ DO 1 I=2,4 AL(I) = M(I+1)1 XB(I) = 1D0/ICALL PV(4,AL,XB) DO 2 I=4,6 A(I) = XB(I-2)2  $AA(I) = (1 - M(I - 1)) \times A(I)$ A(1)=AA(1)=B(1)=BB(1)=XB(1)A(2) = AA(2) = B(2) = BB(2) = ODOA(3) = A(4) \$AA(3) = AA(4) \$A(4) = AA(4) = ODO BB(3)=AA(3) \$BB(4)=AA(6) \$BB(5)=AA(5) \$B(3)=A(3) B(4)=A(6) \$B(5)=A(5) M(2)=M(3) M(3)=M(5)M(1) = M(2)/2 $K(2,2)=M(2)\times M(2)/3$  K(2,1)=K(2,2)/2  $K(1,1)=M(1)\times M(1)/2$  $H1=M(3)\times\times3/M(2)/M(2)/3$  $K(3,2) = (M(2) \times 2 - M(3)) \times H1$  $K(3,3) = (M(3) - M(2)) \times H1/2$  $K(3,1)=M(3)\times M(3)/2-K(3,2)-K(3,3)$ H1=-A(3)×M(2)××5/24 \$H2=M(2)×H1+1D0/140 H1=H1+1DO/120 \$H3=M(5) K(4,2)=0D0 DO 5 I=4,5  $XB(4) = (H1 \times H3 - H2)/(H3 - M(I))/A(I+1) - K(I,2) \times M(1) \times 3$ DO 3 J=1,3 AL(J+1) = M(I+J-4)3  $XB(J) = M(I) \times (J+1)/(J+1)/J - K(I,2) \times M(1) \times (J-1)$ CALL PV(4,AL,XB) DO 4 J=2,4 4 K(I, I+J-4) = XB(J)K(I,1) = XB(1) $K(5,2) = -(A(3) \times K(2,2) + A(5) \times K(4,2)) / A(6)$ H3=M(4) 5 RETURN EID

| M(1)<br>M(2)<br>M(3)<br>M(4)<br>M(5)                                                                                                               | <br>.4557060202436480263022269d+00<br>.9114120404872960526044539d+00<br>.5905331355592652891350737d+00<br>.2123405382391529439747581d+00<br>.5905331355592652891350737d+00                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| K(1,0)<br>K(2,0)<br>K(2,1)<br>K(3,0)<br>K(3,1)<br>K(3,2)<br>K(4,0)<br>K(4,2)<br>K(4,2)<br>K(4,3)<br>K(5,0)<br>K(5,1)<br>K(5,2)<br>K(5,3)<br>K(5,4) | <br>.1038339884431520723767253d+00<br>.1384453179242027631689671d+00<br>.2768906358484055263379342d+00<br>.8578857188937532666720522d-01<br>.1018345840159215245890866d+00<br>1325846380856805411028647d-01<br>.2800803003656096348645685d-01<br>8411131822307058753491315d-01<br>2031376376190042082864547d-01<br>.9896130403825663169358284d-01<br>2185055439822761348513357d-01<br>8599936698851550106972146d-01<br>.1943654655589209444882784d-01<br>5679798517591284998964446d-28<br>.2627780669275798172520326d+00 |
| A(0)<br>A(1)<br>A(2)<br>A(3)<br>A(4)<br>A(5)                                                                                                       | .625000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| a(0)<br>a(1)<br>a(2)<br>a(3)<br>a(4)<br>a(5)                                                                                                       | .625000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| В(0)<br>В(1)<br>В(2)<br>В(3)<br>В(4)                                                                                                               | <br>.625000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| b(0)<br>b(1)<br>b(2)<br>b(3)<br>b(4)                                                                                                               | .625000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

#### RKPAR 77

```
By this subroutine an (n=7, p=7)-formula is computed according to
section 6.
The formal parameters have the same meaning as in RKPAR 45.
Input : In M(i), i = 3(1)6, any permutation of the non-zero abscissas
         of the 5-point Gauss-Radau quadrature formula is allowed.
         These values are given in table 9.5.
Output is given in table 9.3
The subroutine text is given below.
     SUBROUTINE RKPAR77(M,K,A,AA,BB)
     DOUBLE K(6,6),A(7),AÁ(7),BB(6),M(6),AL(5),XB(5),H(4)
      AL(1)=0D0 $XB(1)=1D0
      DO 1 I=2,5
      XB(I) = 1D0/I
1
      AL(I) = M(I+1)
      CALL PV(5,AL,XB)
      AA(1) = A(1) = XB(1)
      DO 2 I=4,7
      A(I) = XB(I-2)
      AA(I) = (1 - M(I - 1)) \times A(I)
2
      A(3) = A(4)  $AA(3) = AA(4)
      A(2) = AA(2) = A(4) = AA(4) = BB(2) = ODO
      M(2)=M(3) M(1)=M(2)/2
      H(1)=M(2)\times M(4)/12 $H(2)=(M(2)+M(4))/12 $H(3)=(6\times M(6)-5)/30
      H(4) = (7 \times M(6) - 6) / 840
      M(3) = (H(1) \times H(3) - 12 \times H(2) \times H(4) + (M(6) \times 8 - 7)/1680)/
     (M(6)/2-.4D0) \times H(1)-H(2) \times H(3)+H(4))
      DO 3 I=2,5
      AL(I) = M(I)
3
      XB(I) = 1DO/(I+1)/I
      XB(1) = .5D0
      CALL PV(5,AL,XB)
      BB(1)=XB(1)
      DO 4 I=3,6
4
      BB(I) = XB(I-1)
      K(2,2)=M(2)×M(2)/3 $K(2,1)=K(2,2)/2 $K(1,1)=M(1)×M(1)/2
      H(1) = M(3) \times 3/M(2)/M(2)/3
      K(3,3) = (M(3) - M(2)) \times H(1)/2
      K(3,2) = (M(2) \times 2 - M(3)) \times H(1)
      K(3,1)=M(3)\times M(3)/2-K(3,2)-K(3,3)
      DO 5 I=1,3
      AL(I) = M(I+3)
      H(I) = .05DO/(I+5) - A(3) \times M(2) \times (I+4)/24
5
      CALL PV(3,AL,H)
      DO 6 I=2,4
      AL(I) = M(I-1)
```

 $XB(I-1)=M(4)\times\times I/(I-1)/I$ 6 XB(4)=H(1)/A(5) \$AL(1)=ODO  $H(1) = (3 \times M(1) + M(3)) \times XB(4) - ((3 \times M(3) + M(2)) \times XB(3) - M(2) \times M(3) \times XB(2)) \times M(3) \times XB(2))$ \$M(1) CALL PV(4,AL,XB) DO 7 I=1,4 K(4,I)=XB(I) DO 8 I=1,2 7 AL(I) = M(I+4) $XB(I)=1D0/3D1/(I+6)-A(3)\times M(2)\times (I+5)/48-A(5)\times H(1)\times M(4)\times (I-1)$ 8 CALL PV(2,AL,XB) H(1)=XB(2)/A(7) \$XB(5)=XB(1)/A(6) \$AL(1)=0D0 DO 9 I=2,4 AL(I) = M(I-1)9  $XB(I-1)=M(5)\times\times I/(I-1)/I$ XB(4) = H(2)/A(6) \$AL(5) = M(4) CALL PV(5, AL, XB) $K(6,2)=(-A(3)\times K(2,2)-A(5)\times K(4,2)-A(6)\times XB(2))/A(7)$ DO 10 I=1.4 AL(I+1)=M(I+1) \$K(5,I)=XB(I) XB(I)=M(6)××(I+1)/(I+1)/I-K(6,2)×M(1)××(I-1) 10 AL(5)=M(5) \$XB(4)=H(3)/A(7)-K(6,2)×M(1)××3 K(5,5)=XB(5) \$XB(5)=H(1)-K(6,2)×M(1)××4 CALL PV(5, AL, XB)K(6,1) = XB(1)DO 11 I=3,6 11 K(6,I) = XB(I-1)RETURN END

| TA | BL | E | 9 | • | 3 |
|----|----|---|---|---|---|
|    |    |   |   |   |   |

# (n=7,p=7)-parameter values

| M(1)<br>M(2)<br>M(3)<br>M(4)<br>M(5)<br>M(6)                                                                                                                                               | .6987993217189027607604354d-01<br>.1397598643437805521520871d+00<br>.4000411928274101291618510d+00<br>.7231569863618761723199540d+00<br>.9428958038854823178068788d+00<br>.4164095676310831799433023d+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| K(1,0)<br>K(2,0)<br>K(2,1)<br>K(3,0)<br>K(3,1)<br>K(3,2)<br>K(4,0)<br>K(4,1)<br>K(4,2)<br>K(4,2)<br>K(4,3)<br>K(5,0)<br>K(5,1)<br>K(5,2)<br>K(5,3)<br>K(5,4)<br>K(6,2)<br>K(6,3)<br>K(6,5) | .2441602460173992818428283d-02<br>.3255469946898657091237711d-02<br>.6510939893797314182475421d-02<br>.6950734459359684445905069d-01<br>1316716701046432993328298d+00<br>.1421808034904350215588637d+00<br>2233386086311725713815682d+00<br>.6879702203440521524685621d+00<br>3696937466464573380016170d+00<br>.1665401483955731370602149d+00<br>.3287948790198381550170291d+00<br>7794218868929814567876664d+00<br>.7279190336246760330633300d+00<br>.8817438134280918967577427d-01<br>.7905984139808304501439068d-01<br>.1150566255049276410603826d+00<br>2661854428270603663693784d+00<br>.2518203160924605777305588d+00<br>1743744160125838100650920d-01<br>.3783359937791662092222736d-02<br>3389530995083151069699423d-03 |
| A(0)<br>A(1)<br>A(2)<br>A(3)<br>A(4)<br>A(5)<br>A(6)                                                                                                                                       | .4000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| a(0)<br>a(1)<br>a(2)<br>a(3)<br>a(4)<br>a(5)<br>a(6)                                                                                                                                       | .4000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| B(0)<br>B(1)<br>B(2)<br>B(3)<br>B(4)<br>B(5)                                                                                                                                               | .4349093249446002288355192d-01<br>0.<br>.1801702589208266253846778d+00<br>.1853747664252665626739922d+00<br>.8392263517292045860892212d-01<br>.7041406986526330448855974d-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

#### RKPAR 98

This subroutine computes an (n=9,p=8)-scheme according to section 7. The formal parameters have the same meaning as in RKPAR 45. Input : In M(i), i = 5(1)8, any permutation of the non-zero abscissas of the 5-point Gauss-Radau quadrature formula is permitted.

The subroutine text is given below and output is given in table 9.4.

SUBROUTINE RKPAR98(M,K,A,AA,BB) DOUBLE K(8,8), A(9), AA(9), BB(8), M(8), AL(5), XB(5), H1, H2, H3, H4 DO 1 I=1,64 1 K(I) = 0D0M(4)=M(8) \$H1=M(4)/M(5)H2=DSQRT(((((((36×H1-156)×H1+309)×H1-356)×H1+247.2D0)×H1 -96)×H1+16) \$ H3=((6×H1-3)×H1-6)×H1+4 \$H4=(20×H1-30)×H1+12  $M(2) = (H_3 - H_2) \times M(5) / H_4 \ M(1) = M(2) / 2$  $M(3) = (-.6D0 \times M(4) + M(2)) \times M(4) / (2 \times M(2) - M(4))$  $AL(1)=K(4,2)=ODO \ $XB(1)=1DO$ DO 2 I=5,8  $K(I,2)=0D0 \ \$XB(I-3)=1D0/(I-3)$ 2 AL(I-3)=M(I)CALL PV(5,AL,XB) AA(1) = A(1) = BB(1) = XB(1)DO 3 I=6,9 A(I) = XB(I-4) \$A(I-4) = AA(I-4) = BB(I-4) = ODO $AA(I) = (1 - M(I - 1)) \times A(I)$ 3 BB(5)=AA(9) \$BB(6)=AA(6) \$BB(7)=AA(7) \$BB(8)=AA(8)  $K(2,2)=M(2)\times M(2)/3$  K(2,1)=K(2,2)/2  $K(1,1)=M(2)\times M(2)/8$  $H1=M(3)\times\times3/M(2)/M(2)/3$ K(3,3)=(M(3)-M(2))×H1/2 K(3,2)=(M(2)×2-M(3))×H1  $K(3,1)=M(3)\times M(3)/2-K(3,2)-K(3,3)$ DO 4 I=2,5 4 AL(I) = M(I)DO 6 I=4,6 I1=I-1 DO 5 J=1.I1 5  $XB(J)=M(I)\times\times(J+1)/(J+1)/J$ CALL PV(I1,AL,XB) K(I,1)=XB(1)DO 6 J=3,I 6 K(I,J) = XB(J-1)H1=(M(4)-.4D0)/24 H2=(-M(4)+.5D0)/60  $H3=(7\times M(4)-4)/840$ H1=H1×M(5)+H2 \$H2=H2×M(5)+H3  $K(8,8) = (H1 \times M(6) + H2) / M(7) / (M(4) - M(7)) / (M(5) - M(7)) / (M(6) - M(7)) / A(9)$  $K(8,3)=(-A(6)\times K(5,3)-A(7)\times K(6,3))/A(9)$ K(7,3) = 0D0DO 7 I=2,5

7 AL(I)=M(I+1) $D0 \ 9 \ I=7,8$   $D0 \ 8 \ J=1,5$   $XB(J) =M(I) \times (J+1)/(J+1)/J-M(2) \times (J-1) \times K(I,3) - M(7) \times (J-1) \times K(I,8)$ 8 CALL PV(5,AL,XB) K(I,1)=XB(1) DO 9 J=2,5 K(I,J+2)=XB(J) 9 RETURN END

TABLE 9.4

#### (n=9,p=8)-parameter values

| M(1)<br>M(2)<br>M(3)<br>M(4)<br>M(5)<br>M(6)<br>M(7)<br>M(8)                           | .8818229058097346629799006d-01<br>.1763645811619469325959801d+00<br>.6220922173571816799625451d+00<br>.9428958038854823178068788d+00<br>.4164095676310831799433023d+00<br>.1397598643437805521520871d+00<br>.7231569863618761723199540d+00<br>.9428958038854823178068788d+00 |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| K(1,0)<br>K(2,0)<br>K(2,1)<br>K(3,0)<br>K(3,1)<br>K(3,2)<br>K(3,2)<br>K(4,0)<br>K(4,1) | .3888058186053620856159670d-02<br>.5184077581404827808212893d-02<br>.1036815516280965561642579d-01<br>.3134675608043437668474804d+00<br>6949576439586949831692579d+00<br>.5749894466025387040452510d+00<br>.2810461118860262102526799d-01<br>0.                              |
| K(4,2)<br>K(4,3)<br>K(5,0)<br>K(5,1)<br>K(5,2)                                         | .2677390223867939117083915d+00<br>.1486826149170284332491982d+00<br>.2248149984228374125063083d-01<br>0.<br>.6245918460927543984770666d-01                                                                                                                                   |
| K(5,3)<br>K(5,4)<br>K(6,0)<br>K(6,1)                                                   | .1991771986403440151571168d-02<br>2339924306098028496020526d-03<br>.5924114075638131713906331d-02<br>0.                                                                                                                                                                      |
| K(0,2)<br>K(6,3)<br>K(6,4)<br>K(6,5)<br>K(7,0)<br>K(7,1)<br>E(7,2)                     | 2220690425204046670104212d-02<br>.2771602104885062624174655d-01<br>0.                                                                                                                                                                                                        |
| K(7,0)<br>K(7,1)<br>K(7,2)                                                             | <br>.2771602104885062624174655d-0<br>0.<br>0.                                                                                                                                                                                                                                |

| K(7,3) = K(7,4) = K(7,5) = K(7,6) = K(8,0) = K(8,1) = K(8,2) = K(8,2) = K(8,3) = K(8,3) = K(8,4) = K(8,5) = K(8,6) = K(8,6) = K(8,7) = K | .1198123112201063571813080d-01<br>.3562959533375963104928727d-03<br>.8781592732724059424652266d-01<br>.1336085380105559276286989d+00<br>.2692793813438841381260518d-01                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1437648183915948208072228d+00<br>2907165771619611066932433d-01<br>.1564197820471100178394809d-02<br>.2010144318800217964285312d+00<br>.3128329549048853539632465d+00<br>.7502320186044923307662709d-01 |
| A(0)<br>A(1)<br>A(2)<br>A(3)<br>A(4)<br>A(5)<br>A(5)<br>A(6)<br>A(7)<br>A(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .4000000000000000000000000000000000000                                                                                                                                                                 |
| a(0)<br>a(1)<br>a(2)<br>a(3)<br>a(4)<br>a(5)<br>a(6)<br>a(7)<br>a(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .4000000000000000000000000000000000000                                                                                                                                                                 |
| B(0)<br>B(1)<br>B(2)<br>B(3)<br>B(4)<br>B(5)<br>B(6)<br>B(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .4000000000000000000000000000000000000                                                                                                                                                                 |

TABLE 9.5 Non-zero abscissas of the Gauss-Radau quadrature formula

$$\int_{0}^{1} f(x) dx \simeq w_{1} f(0) + \sum_{i=2}^{n} w_{i} f(x_{i})$$

| n<br>r | x.<br>i                                                                                                                      |
|--------|------------------------------------------------------------------------------------------------------------------------------|
| 4      | 212340538239152943974758110<br>590533135559265289135073748<br>911412040487296052604453856                                    |
| 5      | .139759864343780552152087081<br>.410409567631083179943302331<br>.723156986361876172319954003<br>.942895803885482317806878807 |

#### 10. CONCLUSIONS

In our opinion, a Runge-Kutta formula given by (1.2) should conform to the following three conditions:

- (i) for a given order of accuracy p, the number of function evaluations should be as small as possible for reasons of efficiency.
- (ii) the interval of stability as defined in section 8 should be as long as possible.
- (iii) the formula should make a more or less reliable error estimate for stepsize control at the cost of little computational effort.

In fact, with any formula a suitable error estimate can be established by a comparison of the results obtained by taking a step h and the results obtained by performing twice a step h/2.

This procedure of error estimation is rather expensive. As far as we know, the only low-cost error estimates can be made by the formulas of Fehlberg, Zonneveld and our schemes.

It is true that according to our schemes a more conservative error estimate is obtained than by those of Fehlberg and Zonneveld. On the other hand, our formulas are more favourable considering condition (i).

Furthermore, we see from table 8.2 that our fourth, fifth, sixth, and eighth formulas are considerable improvements of the existing schemes, because of their extended interval of stability. Moreover, our formulas satisfy property (i) as well as property (iii).

Only the Fehlberg (n=9,p=7) formula is competitive with respect to (ii).

#### ACKNOWLEDGEMENTS

The authors wish to thank Prof. dr. P.J. van der Houwen for his useful criticism. They are also grateful to ms. M. Jellema and ir. D. Weingarten for their careful reading of the manuscript.

#### REFERENCES

- ABRAMOWITZ, M. & I. A. STEGUN [1964], Handbook of Mathematical Functions, National Bureau of Standards, Applied Mathematics Series, 55, Govern. Printing Off., Washington, D. C. .
- ALBRECHT, J. [1955], Beiträge zum Runge-Kutta- Verfahren, Z. angew. Math. Mech., Bd. 35, Nr. 3, Märtz 1955.
- BJÖRCK, A. & PEREYRA, V. [1970], Solution of van der Monde systems of equations, Math. Comp. 24, 893-904.
- FEHLBERG, E. [1972], Classical eighth and lower-order Runge-Kutta-Nyström formulas with step-size control for special second-order differential equations, NASA Technical Report 381.
- HAIRER, E. [1976], Méthodes de Nyström pour l'équation différentielle y" = f(x,y), Université de Geneve, Section de Mathématiques.
- HILDEBRAND, F. B. [1956], Introduction to numerical analysis, McGraw-Hill Book Company Inc, New-York.
- HOUWEN, P. J. van der [1975], Stabilized Runge-Kutta methods for second order differential equations without first derivatives, Report NW 26/75, Mathematisch Centrum, Amsterdam.
- NYSTRÖM, E. J. [1925], Über die numerische Integration von Differentialgleichungen, Acta Soc. Sci. Fenn. 50, no. 13.
- ZONNEVELD, J. A. [1964], Automatic numerical integration, MC Tract 8, Mathematisch Centrum, Amsterdam.