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An implementation of a class of stabilized, explicit methods for the time

integration of parabolic equations *)

by

J.G. Verwer

ABSTRACT

The paper deals with an inplementation of a class of explicit three-
step Runge-Kutta methods for the numerical solution of initial value pro-
blems for systems of ordinary differential equations. The systems we have
in mind do originate from parabolic partial differential equations by ap-—
plying the method of semi-discretization. The underlying schemes are sta-
bilized and of first and second order. The number of function evaluations
per step varies between two and twelve. The implementation is provided
with steplength, error and order control. A FORTRAN version of the implemen-
tation is available. Numerical results of this FORTRAN program, applied to

two semi-discretized problems, are reported.
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1. INTRODUCTION

In this paper we discuss the implementation of a class of explicit
methods to be used for the time integration of semi-discretized parabolic
partial differential equations. The semi-discretized system of ordinary

differential equations is supposed to be in the autonomous form

{(t.") y' = £(y).

An important property, possessed by the major part of semi-discretized
parabolic systems, is that the spectrum of the Jacobian matrix, say J(y),
is almost real, i.e. the eigenvalues are situated in a laong narrow strip
around the negative axis of the complex plane. This property is essential
for the implemented class of methods. Therefore it must be assumed that
the problems, to which our time integrator is applied, possess this
property.

At the present time many numerical methods exist for solving time de-
pent partial differential equations (see RICHTMYER & MORTON [8]). When deal-
ing with more than one dimension, the greater part of these methods are
not so easy to apply and can only efficiently be implemented for narrow
classes of problems. As a consequence, the development of mathematical soft-
ware for wide classes of linear, and also non-linear, partial differential
equations is still in a very early state (see SINCOVEC & MADSEN [11] for a
list of references). This is in direct contrast to the development in the
field of ordinary differential equations (see e.g. SHAMPINE & GORDON [10]).
Very capable software exists for wide classes of non-linear ordinary differ-
ential equations. By way of the method of semi-discretization, we can make
use of the developments in this field (e.g. steplength and error control)
for the implementation of a time integrator.

In this connection stabilized, explicit integration formulas are suit-
ed, because of the fact that these formulas, when used in conjunction with
semi-discretization, are easy to apply, and can be implemented for wide
classes of linear and non-linear problems in one and more dimensions. The

only mathematical restriction, tobe posed for parabolic problems, is that the



spectrum of the Jacobian of the semi-discretized system is almost real.

A practical restriction, with respect to the application of such methods,

may arise when the spectral radius of J(y) is extremely large. In spite of
the relatively large stability boundaries, the methods are then forced to

integrate with very small steps, which may result in an excessive runtime.
In such a situation it may be preferable to use an implicit method, which

is unconditionally stable (see RICHTMYER & MORTON [8]).

The integrator discussed is based on three-step Runge-Kutta formulas
of order one and two. These formulas are stabilized with respect to the
real boundary of absolute stability. In fact; the stability regions are
long narrow strips around the negative axis of the complex plane. The sta-
bilization of the formulas is achieved by using extra evaluations of the
function f per integration step. The number of function evaluations may
vary between two and twelve. The analysis and construction of the formulas
is discussed in VERWER [14]. In section 2 of this paper we shall give a
short review of the theoretical aspects. Section 3 is devoted to the actual
implementation. In this section simple mechanisms for the steplength, error
and order control are discussed. In section 4 we discuss M3RK which is a
FORTRAN program based on the implementation discussed in section 3. The
last section of this paper is devoted to a discussion of some numerical
results obtained with M3RK.

Finally it should be noted that an ALGOL 60 version of an implementa-
tion of stabilized, explicit one-step Runge-Kutta methods (cf. VAN DER
HOUWEN [13]) has already been given by BEENTJES [6].

2. THE CLASS OF INTEGRATION FORMULAS

In this section we shortly discuss the underlying class of methods.
The analysis and construction of the formulas is extensively discussed in
VERWER [14,15,16], where one can also find further references.

Our class of three-step Runge-Kutta formulas may be represented as
follows:

0) _

o+l ~ I’
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(2.1) Yorl = (1 bj)yn + bjyn_l + cjhf(yn_l) +
i-1 .
Ajhf(yiil )), j= 1,...,m,
= ay™ 4 (1-4) ,m=> 2 n=2,3
Yn_,_] yn+] yn_2’ = ] 9Jg e

The vector y denotes the approximation to the analytical solution y(x) at
X =X . The points Xj’ j = n-2,...,n+l, denote the reference points of the
three-step formula and h denotes the steplength, i.e. h = LI In the
present section h is supposed to be constant. For the application of (2.1)
the additional starting vectors v, and y, must be given. Formula (2.1) is
called a three-step formula of degree m, m being the number of function
evaluations per integration step.

When applied to the scalar test-model
(2.2) y' = 8y,
scheme (2.1) yields the linear recurrence relation

(2.3) y

n+1 = dS(Z)Yn + dP(Z)yn_l + (l_d)yn—Z’

where S(z) and P(z) are polynomials of degree m in z = hé. The stability of
method (2.1) depends on the parameter d and the coefficients of the stabili-
ty polynomials S and P. We have implemented schemes of order p = 1 and

p = 2, with degree m satisfying 2 < m < 12. The corresponding polynomials

S and P are such that the absolute stability regions contain a long narrow
strip around the negative axis. We have

(2.4) Bl(m)_= 5.15 m2, Bz(m) =~ 2,29 m2,

where Bl(m) denotes the real boundafy of absolute stability for the p-th
order scheme of degree m. For real eigenvalues, the extrema of the amplifi-
cation factors of (2.3) are bounded by about 0.9 in the stability interval.
Because of this we have a strong damping for the higher harmonics.

The integration parameters of (2.1) are expressed in the parameter d

and the coefficients of S and P.



They are determined in such a way that the principal local truncation error,

LTEp say, is given by (see VERWER [ 141)

- 2_(2) " -
LTE1 = C2h y (xﬁ), CZ = 1,27,
(2.5)
- 3.(3) -
LTE2 = C3h y (xn), C3 = 0.44.
Observe that LTEp does not depend on m. For p = 1,2 and m = 2,...,12, the

coefficients s; of S and P; of P are given in VERWER [14]. The parameters

b., c. and A. are given b
i’ 73 J 8 v

b = Py
a - lp J(p, = 2p, + 2p, + 2s,) - G+ lp )2
o = 270771 2 3 3 2 470
™ — H
m 2 + P, 2p2 + 2p3 + 253
A=1- 1 c
m 2Po m’
bj =0, j=1,...,m2,
p, - ¢
_ 1 m
(2.6) bm—l = 3 s
m
P ., -
m+ 1 - .
c, =22 "4 ’ j=1,00.,m2,
J m+ 1=
¢ -2
m-1 A
m
Smow 1 - i
A, =T - 1 i=1,...,m2,
j s -
m = ]
\ -2
m-1 AT
m
The parameter d is independent of m and is given by
(2.7) d = 1.375, p=1, d = 0.775, p=2.



Finally we mention the concept of internal stability. Because of the
relatively large degree and relatively large stability boundaries, we have
to deal with an accumulation of rounding errors which appears per integra-
tion step. Especially for the higher degree formulas it can easily reduce
the local accuracy. For a formula of degree m this accumulation is approxi-
mately governed by a so-called internal stability function, say Qigg (z),
which is a strongly increasing polynomial of degree m - 1 Let odenote the
spectral radius. Then the accumulation is generally under control if we adjust the

steplength hand the degree mto the so—called internal stability condition

maximal local truncation
arithmetic precision ~

[p]

(2.8) Qm 1

(ho (I (y,))) <

In the program we shall use the values Q;g

the wvalues Qii% (B](m)) are listed in table 2.1. The values for the second

3 (Bp(m)). For future reference,

order schemes, which are used in the program, are defined by

2 e,y = 10% Qt1) (s, ).

m | 2 3 4 5 6 7 8 9 10 11 12
3100 1102 7102 4103 310% 2100 %105 S10% 3107 2108 o)
(1]

Table 2.1 The values Qm_ (Bl(m))'

1
Finally we note that scheme (2.1) needs six arrays of storage. For the

actual implementation discussed in the next section we also use six arrays.

3. THE IMPLEMENTATION OF THREE-STEP RUNGE-KUTTA FORMULAS

When integrating time dependent partial differential equations by using
the method of semi-discretization there arise two types of discretization
errors, viz. the error due to the spatial discretization and the error due
to the time integration. In general the first error can not be controlled.

To our opinion it is nevertheless useful to supply a method for the time



integration with various control mechanisms, if possible. By doing this

one relieves the task of the user of such an integrator. To support this
opinion we make the following observation. Our methods are conditionally
stable. When applied to a non-linear system, it may then happen that a sud-
den instability arises because of an increase of the spectral radius. When
a method is supplied with error and steplength control, such a sudden in-
stability is immediately detected and the steplength is decreased.

The most widely applied implementation technique for linear multistep
methods is nowadays the Nordsieck technique (see GEAR [5]). This technique
makes it is very easy to realize error, steplength and also order control.
Compared with a Lagrange implementation, i.e. an implementation where the
y— and y'-values are stored, a Nordsieck implementation is less efficient
for large systems because of the higher overhead costs. Therefore we prefer
the Lagrange implementation for our formulas. As we have to deal with a
low order and with three-step formulas, this yields no particular problems.

The greater part of the ideas we apply are well known and extensively
discussed in the literature (see e.g. GEAR [5] and SHAMPINE & GORDON [10]).
We shall therefore omit details where possible, but still observe that (as
usual) most of the ideas we apply are based partly on theoretical arguments,

and partly on heuristics.

3.1. THE START OF THE PROCESS

The two additional starting vectors Y, and y, are computed by means of
a one-step Runge-Kutta scheme of order p=2, which is also formulated as a
three-step scheme by introducing zero—parameters. It is obtained from (2.1)
by putting

(3.1) d=1, b.=c.=0, A.=r

j ] j m+1-j/r

n-j° j=1l,...,m; 2<m<12,

where rj, j =0,...,m, denote the coefficients of the corresponding m-th

degree stability polynomial, say Rm' For m= 2 this polynomial is given by

R2(z) = l+z+ %22. For 3<m< 12 this polynomial is chosen equal to the stab-
ilized polynomial §(2) given by VAN DER HOUWEN [13, table 2.6.7']. The
extrema of ﬁéz) in its real interval of absolute stability, say (—Eq(m),O),

are bounded by 0.95. Observe that for m= 2 no specific damping properties
are imposed. For m= 2 the absolute stability boundary is 2. For convenience

we approximate the boundaries Ez(m) with



(3.2) E,(m) = 0.44 m” +0.03 m.
If m # 12, these approximations are slightly smaller than the true boundaries
of ﬁ(z).

m

The internal stability behaviour of the starting schemes is roughly the
same as that of the three-step schemes. In particular, the values given in
table (2.1) hold for the starting schemes.

In order to start the process we need an initial steplength, say hstart'

This initial steplength should be related to the local tolerance, say TOL,

which is specified by the user. We estimate hS as follows. Let 00==0(J(y0)),

tart
o denoting the spectral radius, be given (if 9 is not available, it is

estimated by the program as outlined in section 3.5). Let I . I denote the

divided Euclidean norm (i.e. Euclidean norm divided by the square root of

the number of components). The idea is now to estimate %OBZY(Z)(XO)

which represents the last Taylor term taken into account by the actual

. . . 1 . .
start formula, obtained with stepsize oy - By relating this conser-
vative estimation of the principal local truncation error of the start

formula with TOL, we reasonably obtain a safe estimation of hstart'

Following this idea h is then defined by

start
(3.3) h = ol /a0 2510
: start 0 ‘'t e’ ’

where

n, = TOL + TOL * Iy,
(3.4)

-1 -1
= - ".
n, = 9 Ilf(yO * o, f(yo)) f(yo)

It is observed that in the root formula (3.3), which is used to extra-

polate a new stepsize(cf. GEAR [5],p.156), the estimation of

%GEZY(Z)(XO) is multiplied by 200 to obtain an extra safety margin.

In order to obtain absolute stability at the start of the process,

theinitial steplength must satisfy the stability condition

(3.5) hstartGO < 8Z(mmax)’



where moox denotes the maximal degreeée allowed with respect to internal
stability. The estimation of 9 and moo is discussed in section 3.5.

If hS ¢ does not satisfy (3.5), we put h = b(mmax)/so.

tar start

If h does not satisfy (3.5), we put h

=8 /o .
start Bz(mmax) 0

start

3.2. ESTIMATION AND CONTROL OF THE LOCAL ERROR

For the error control we use the local truncation error which is esti-
mated by LTEp(see(Z.S)). For the estimation of LTEP, p= 1,2, we apply the

simple interpolation formulas (n > 2)

Co
— - =1
LTE, <, +% et = B * Ipgde oy = 5 ~ Cpo
(3.6)
€3
LTEZ ch 2 [yn+1 - 3(yn - yn-l) * yn—2]» €3 = % - C3,

where, according to the definition of LTEP’ Yp-1 and y__, are assumed to be
approximations of a sufficiently high order to a local analytical solution
at the points x_ _; and X,-9, respectively.

The error criterion which is to be performed after each n—-th integra-

tion step, n > 2, is the mixed criterion

(3.7) "LTEp" < TOL + TOL x Ilyn+ I,

1
where TOL stands for a user specified tolerance parameter and [l -l denotes
the divided Euclidean norm. If (3.7) is satisfied the integration step is
accepted, otherwise rejected.

During the start of the process, i.e. if n = 1,2, no error control is
performed. This is justified by the conservative estimation of the initial
steplength. If the third step fails however, all results are rejected and

the process is restarted with h = h/10.
3.3. CHANGING THE STEPLENGTH

Before discussing the estimation and control of the steplength we first

mention how we realize the change. Our integration formulas (2.1) are



developed for a fixed steplength. This means changing stepsize must be han-
dled apart. In a Nordsieck implementation, changing stepsize is an inter-
polation-extrapolation process (see GEAR [5]). We also use interpolation-—
extrapolation to determine the new y-values.

Let h and oh denote the old and new steplength, respectively. The new

values of Y- and Y, are then interpolated or extrapolated by means of
the quadratic formula

(3.8) y(x-ah) = %&(&—])y(x—Zh) + a(2-q)y(x-h) + '%(2—&)(1—&)y(x),

where o = o and a = 2a, respectively. Formula (3.8) is applied for p = 1

and p 2. The error introduced by (3.8) is of order three and is ignored
at the estimation of LTE,.

Applying (3.8) too frequently may lead to severe instabilities. There-
fore we also use the rule of thumb: after a change of h at least 4 steps
are performed with h fixed, provided a step is not rejected. We return to

this point in the next section. The new values of y;_ are not computed by

1
means of interpolation or extrapolation, but by using the derivative func-
tion f(y). To our experience this leads to a more stable process of step—

length changing.
3.4. ESTIMATION AND CONTROL OF THE STEPLENGTH AND ORDER

The new steplength oh is estimated using the well known root formula.
Let o be defined by
1
TOL + TOL  ly_ | ptl

(3.9) o= TLTE T .
P

Then we put

a/2,0, p=1,
(3.10)

Q
i

&/1.6, p = 2.
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The factors 2.5 and 1.3 are to provide a conservative estimate. In order to
prevent marginal changes the change is not performed when 0.9 < a < 1.1.
Moreover, in order to prevent an excessive decrease or increase of the step-
length, a is bounded by 0.1 and 3.0, respectively. Because of the factors in
(3.10), a decrease of the steplength is not necessarily due to a step failure.

The estimate of o is made when a step fails or at least 4 steps have
been performed after the last change. Because of the fact that repeated
rejections may be caused by severe errors, thé process is interrupted if
this happens three times in succession. After this interruption we make a
restart as described in section 3.1.

Our formulas are explicit and thus conditionally stable. Therefore the

steplength h is always bounded by
(3.11) h (P =8m ) /o,

hmax(p) being the maximal steplength with respect to absolute stability.

In (3.11), B(mmax) stands for Bl(mmax)’ Bz(mmax) or §2(mmax),

Next we mention the implemented order control which is very simple
and based on the fact that,in general, the steplength is bounded by stability
requirements. As already observed the process is always started with a
second corder one-step scheme and a second order three-step scheme.
During the process h normally increases until h = hmaX(Z). If h reaches this
value, 4 steps are performed with the second order scheme and h = hmaX(Z),
provided no step failure occurs. Then, a is estimated for p = 1. If this
particular a < 1.1, the process is continued with h = hmax(z) and the current
second order scheme. Otherwise the process is continued with a first order
scheme, but, as a matter of caution, with h = hmaX(Z). Then, the next time
a is estimated, h is allowed to increase while p = 1. This specific check for
an order decrease is made every four steps, provided h = hmaX(Z).

If during a first order integration h becomes smaller than hmaX(Z), P

is reset to 2. It is observed that an order increase is not necessarily

due to a step failure.

3.5. ESTIMATION AND CONTROL OF THE DEGREE AND SPECTRAL RADIUS

In order to control the propagation of local errors per integration
step we want to satisfy condition (2.8). This is achieved by putting

m < Mo Mooy being the maximal degree of the schemes, which satisfies (see table 2.1)
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[pl TOL

m—](Bp(m)) < arithmetic precision )

(3.12) Q

For the three-step schemes m thus depends on p; there holds m (2) <
max max
mmax(])' The maximal degree for the starting scheme is chosen equal to
mmax(z) of the three-step scheme. If the exceptional situation arises that
no < 2 (the quotient of TOL and arithmetic precision is too small), the
m

process is discontinued.

A property of stabilized methods is that the local truncation error of
the formulas is approximately independent of m. Thus it is useful to mini -

mize m with respect to the stability condition
(3.13) ho < B{m)

for given h and o, while B(m) represents Bl(m), Bz(m) and Ez(m),respective—
ly. The degree m is computed in this way at the start of the process, at
the change-over from a one-step to a three-step scheme, and further every
time h or p is changed.

From the foregoing it is clear that we need an estimation of o.
Because of the fact that o is used to determine hmax(p) and to select m
minimal with respect to (3.13), it must always be an upper estimation. Once
0 is estimated and the system to be integrated is non-linear, it may be
necessary to control the variation of ¢. Thus we also need a control mecha-
nism for the spectral radius. With respect to the estimation and control of
o we distinguish between 3 options, which option is chosen has to be speci-

fied by the user.

OPTION I. The user provides an estimation of o. Especially for linear pro-

blems this is often easy to do.

OPTION II. The user does not provide an estimation. In this case ¢ is esti-
mated by means of a power method which is adapted for general non-linear
vector functions f(cf. LINDBERG [6]). This method may be described as fol-
lows.

Suppose 0y = o(J(%Q) is to be estimated. Let r. be a random number from

[-e,els € > 0, and let VO be defined componentwise by
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v . (141.), v . #0,
(3.14) vy . = 051 t 0,1

Let e = max(s,e"voﬂz). The adapted power method is then defined by the

iteration
v =v, + ¢ / f(vj) _ f<v0)
I - 3
j+1 0 max “f(vj) f(vo)"2
(3.15)
i Hf(vj+]) - f(VO)II2
pj+1 € ’
max
where v, = y0 and j = 1,2,... . 1If £ is linear, i.e. J(y) constant, then
p. >o.. If £ is non-linear, then choosing ¢ sufficiently small, J(y) is

0
approximately constant in S(vo,s). Thus for e sufficiently small, pj will

converge to an accurate estimation of 9"

In our program we have set g = ]04APR, APR denoting the arithmetic
precision (e.g. for CDC Cyber e = 10_10). The iteration (3.15) is stopped
as soon as Ip.+l - pj < 10—3pj+], provided j = 4. If this inequality is
not satisfied within 50 iterations, the whole process is discontinued.

In general, the process converges slowly because of the absence of a domi-
nant eigenvalue. As a matter -of safety we therefore put 09 = 1.1p, p being
the last iterate.

In case of the second option the variation of the spectral radius is
also controlled. We distinguish between two situations. Firstly, o in-
creases during the course of the integration and the process becomes unsta-
ble. The instability is immediately detected by the error control and
results in a step failure. After a step failure we therefore simply reesti?
mate o, provided the failure was not in succession. Secondly, ¢ decreases
during the course of the integration. To detect a decrease of o we use
an inaccurate estimation of o, say o*, which is given by o = Pge The esti-
mation o is computed every 25 steps since the last estimation of o or 0*,
and we decide to reestimate o if o has been decreased with more than ten

percent.
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We note that Py is in most cases a very rough estimation to o. To our
purpose’this rough estimation suffices. At this place it is emphasized that
random values are used in formula (3.14). Though these values are small,
they may slightly influence ¢ and, in particular, Pg- As a consequence, one
should use a random generator using a fixed generative value to

be able to. recover earlier obtained results (see also section 4).

OPTION III. The user does not provide an estimation, but decides that an
initial estimation by means of the power method at the start suffices. Thus
in this case no control on the variation of ¢ is performed. For linear prob-

lems it is clear that one chooses between the first and third option.

3.6. ALGORITHMIC CONNECTION BETWEEN THE CONTROL MECHANISMS

This short section is added in order to clarify the algorithmic connec-—
tion between the mechanisms for controlling the order, the degree, the step-
size and the spectral radius. To this end an informal flowchart showing this
connection is given in fig. 3.1. In this flowchart it is assumed that we
choose option 2 for estimating and controlling the spectral radius. Because
of the fact that during the start of the process no control is performed
(see section 3.2), it is also assumed that we are already integrating with
a first or second order three-step scheme (in particular it is assumed that
n > 3). Note that at the start of the process the spectral radius is estimated,
the maximal degree moax is determined, the initial steplength hstart is
estimated, the maximal steplength hmax(p), p=1,2, given by (3.11), is
determined (see at the end of section 3.1), and the degree is minimized
according to (3.13). A more detailed flowchart showing the complete implemen-

tation is given in the next section.
4. THE PROGRAM

In this section we describe a FORTRAN version of the implementation
discussed in the previous section. The program consists of a main program
and 11 small subprograms which are written to structure the program in order
to make it more easily readable and easy to modify. We emphasize that the

subprograms are meant to be called by the main program, which is the sub-
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routine M3RK, and thus can not stand on their own.

The program integrates a given problem from an initial value of x to
a value of x which may be slightly beyond a user specified output point,
say X The desired solution at the output point X, is always interpolated

by means of the quadratic formula
(4.1) y(x) = mu-Dyx-2h) + u@2=n)y&-h) + 1(u-1)w-2)yx),

whereu = (x—xe) / h. After a normal return of M3RK the parameters in the
call list are ready to continue the integration. This means that when the
user decides to continue the integration, he only needs to define a new
output point X, and call again. In fact, M3RK is written in such a way that
the choice of output points does not influence the integration process it-

self.

All information to and from M3RK is passed through its parameters in

the call list

M3RK (X, XE, N, H, HMIN, SIGMA, TOL, F, Y, Yl, Y2, YXE, DY,

DY1, IFLAG, INFO)

X and XE represent the independent variable x and the output point X >
respectively. N represents the number of differential equations of the system
to be integrated. H an HMIN denote the steplength h and a smallest step-—
length, respectively.

SIGMA represents the spectral radius ¢ and TOL is the local tolerance param-
eter. F is the name of a subroutine defining the differential equations.

Y, YI, Y2, YXE, DY and DYl are arrays-of length N which represent the solu-
tion vector at x, x—h, x-2h, X, and the derivative vector at x and x-h,
respectively. We prefer the use of 6 arrays of length N instead of one of
length 6N for clarity, and in order to avoid the overhead costs of pointers.
When using one array this overhead is not negligeable for our class of for-
mulas because of the high degree. A small disadvantage is of course a longer
parameter list. IFLAG is an error flag and INFO an integer array of length
15, which is used to initialize the code, to pass information between M3RK

and the subprograms, to pass information to the user about the status of
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the integration, and finally to retain information for subsequent calls.

For specific information about input requirements and output we refer
to the prologue of comments of M3RK, which further explains how to use the
program (see appendix). Here we confine ourselves to the observation that
for a first call the only input parameters are X, XE, N, TOL, F, Y, INFO(i),
i=1,2,3, while SIGMA is optional. For a subsequent call the only input
parameter to be changed is normally XE. The user must always give a maximum
for the number of evaluations of f(y) to be spent by M3RK. If this maximum
number is reached while x < X, the process is interrupted and IFLAG is set
equal to 1. In this situation the user has the possibility to continue the
process in a simple way. The message IFLAG = 0 means that X, is reached.

To give insight in the structure of the program we give a short list
of the names and meanings of the subroutines which are called by M3RK:
HSTART computes the initial steplength according to section 3.1.

PARAM delivers the integration parameters according to expressions (2.6)

and (3.1). PARAM contains a data-statement to store the coefficients of the
stability polynomials S, P and ﬁéz)
length 440.

POWERM estimates the spectral radius (see section 3.5). If the computation

into an internally declared array of

fails IFLAG is set equal to 3,

MAXDEG evaluates the maximal degree m (cf. (3.12)). If m < 2, IFLAG
max max

is set equal to 2. MAXDEG contains a data-statement to store the 11 values

given in table 2.1,

MINDEG evaluates the minimal degree satisfying the stability condition (3.3).

STEP contains the actual integrator and performs precisely one integration
step with (2.1).
ESTIMA computes the local error bound and estimates the local error (see
3.7)).
NEWH delivers the new steplength and the factor o according to (3.10).
INTER!] performs the interpolation (3.8) and evaluates f(y(x-ah)).
INTER2 performs the interpolation (4.1) at the output point X,
SHIFT shifts the x~ and y-variables and calculates a new derivative to pre-
pare the next integration step.

In order to enlarge the portability of the program and to keep the

structure as simple as possible we have avoided the use of common-statements.
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As a consequence the subroutines are completely local, i.e. all information
they need is passed through the parameter list. On purpose we do not discuss
the various parameter lists. The meaning of the parameters should be imme-
diately clear when reading M3RK which is extensively commented. Moreover,
the subroutines called by M3RK are short and, as indicated above, directly
associated to small parts of section 3. Thus these subroutines are easily
verified by inspection. In figure 4.1 a flow chart is given which shows the
structure of a complete program comprising a‘éalling program, a user—sup-
plied subroutine F, our main program M3RK and the subroutines called by M3RK.
A downward sloping line from one box to another indicates that the lower
program is called by the upper one. Observe however that F is always called
via a parameter list.

A macroscopic flow chart of M3RK is given in fig. 4.2. In this flow
chart k = 1 and k = 3 for a one-step and three-step formula, respectively:
r denotes the number of successive rejected steps, n denotes the number of
steps performed after start or restart, and s denotes the number of steps
performed after an estimation, or check for an estimation of the spectral
radius.

There remains to make some comments about the poftability of the program.
The whole package has been tested on a CDC 73/28 using 14 digits. It has been
accepted by the PFORT Verifier (see RYDER [9]). The PFORT Verifier is a
program which checks a FORTRAN program for adherence to PFORT, a portable
subset of American National Standard FORTRAN. M3RK uses one machine dependent
constant, namely the arithmetic precision represented by the internal variable
APR. POWERM contains the CDC system subprograms RANSET and RANF, constituting
a random generator. RANF is the actual generator, while RANSET initializes
the generative value of RANF. It is emphasized that replacing the CDC random

generator slightly influences the results given in the next section.
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Fig. 4.1 Structure of a complete program
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first es call call
call MAXDEG INTER2
+ yes
prepare option
ves/ 1rLac \™© First firet e o call IFLAG
or
-2 call POWERM =3
step
yes no
prepare Y
continuing ~ call <
HSTART
step
1 \
yes no
call m,p or k call IFLAG no es) call
MINDEG changed n=1 Xz X, INTER2
A es
call call
STEP SHIFT
prepare ve =3 step call
restart at n
rejection ESTIMA
initial x
+no
call yes option call check for check for /\/‘
2
POWERM 2 for o NEWH > change > change ™
and £ = 1 p=1-+p=2 =2>p=1 /—\/
no
Y check for
es IFLAG o call no call
P > =
=3 NEWH change ro=3 INTER]
p=1-+p=2
*yes
prepare call
N restart HSTART
2
option s
call 2 for o call IFLAG s
SHIFT and s = 25 POWERM =3
no +no
A 4
> h changed p changed
)
Ao
yes
call h changed call call
INTER! INTER2 INTER2

Fig. 4.2

Macroscopic flow chart of M3RK
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5. NUMERICAL EXAMPLES

In order to test subroutine M3RK, it was applied to several problems.
Two of these problems are discussed in this section. Both problems are non-
linear and arise in practice. For both problems the semi-discretization has
been performed by means of a continuous time Galerkin method (seee.g. DOUGLAS

& DUPONT [41]).
5.1. A ONE-DIMENSIONAL SYSTEM OF TWO NON-LINEAR EQUATIONS

The first problem we consider is a one-dimensional system of two non-

linear equations from electricity theory (cf. TE RIELE [12], section 3.2.6):

u _ 3_22_ (u-v)

dt e 5 2 E ’
(5.1) x
2

ot P 2 glu=vy,
9X

where 0 £ x < 1, g(z) = exp(%uz) - exp(—%uz), u=17.19, ¢ = 0.143,

o = 0.1743. The corresponding initial and boundary conditions read:

u =1, v =0, 0<x<1, t =0,
(5.2) u_ =0 x =0 £>0
® ax 3 E 3
oV
u=1, % 0, x=1, t > 0.

Equation (5.1) was semi-discretized by means of a Galerkin method based
on piecewise quadratic polynomials, and implemented to yield a purely explic-
it system of ordinary differential equations (cf. BAKKER [1]). It is beyond
the scope of this paper to discuss this discretization technique. We confine
ourselves therefore to the definition of the semi-discretized system obtain-
ed for the equidistant grid {Xi|xi = (i-1)/(M-1), i = 1,...,M7;M odd}. Let
ui(t) = u(xi,t) and vi(t) = v(xi,t). The equations for the ui—components

then are:
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O | _1y2 - _ -
a, = 2ep(M 1) [7u] 8u2+-u3] g(u1 v]),
a,. = - ep(M—l)z[Zu -u -u 1 -g(u,.-v,.)
21 21 2i-1 2i+1 2i "2i
_ M-1
(5-3) 1 = ],..., 2 3
u =-1 sp(M—l)z[léu - 8(u +u,.)+u +u 1-
2i+1 4 2i+1 2i+2 21 2i+3 2i-1
. M-3
805 T V2441 = b
ua=0.

We do not give the equations for the vi—components, because there are now

easy to find.

We integrated two systems, viz. system I and II obtained by setting
M = 31 and M = 61, respectively. Both systems were integrated over the
interval [0,20] by calling M3RK for XE = ]0_2 (first call), and for
XE = ]0—],1,5,10,20 (subsequent calls). They were integrated for 3 values
of TOL, viz. 10_3,10_4 and 10_5. The parameter INFO(2) was chosen equal to
2, indicating the second option for the spectral radius (the specification
of the remaining input parameters should be clear from the foregoing).
Results of the integrations are listed in tables 5.1 and 5.2. Table
5.1 gives the system I - approximations, and system II - approximations to
u(x,t) for the specified number of output times and some grid values ;.
The approximations were rounded to 4 decimal places. Comparing the results
for a system for several values of TOL yields an indication about the
accuracy of the time integration. Comparing the results for both systems for
several values of TOL yields an indication about the accuracy of the space
discretization. From this table we thus have an indication about the
accuracy of the approximations to u(x,t), i.e. the solution of one of the
components of the partial differential equation, at several times and points.
To get some insight in the course of the time integrations, and thus
in the behaviour of M3RK, table 5.2 gives for all integrations for each out-
put time the following information: step = the total number of steps,
restep = the number of rejected steps, fev = the total number of f(y)-

evaluations, sig = the number of f(y)-evaluations needed for the estimation

BIBLIOTHEER MA T DMETISCH LLNTHUW

ANSTERD &M
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and control of the spectral radius, sigma = the estimation of the spectral
radius used by M3RK. We observe that for both systems no step rejections oc-

curred. Among others, table 5.2 clearly shows the increase of the stepsize
during the process. Because of the fact that the problem possesses a steady
state solution, such an increase must occur. From this table we can also
calculate the average number of function evaluations per step at the given
output times. We also see that the average number of function evaluations
decreases as TOL becomes smaller. This is due to the fact that for the pre-
sent problem the stepsize is mostly restricted by accuracy requirements. If
this is the case the degree is minimized. As a consequence, a significantly
larger number of steps, due to a smaller value value of TOL, not always yie-
lds a significantly larger number of function evaluations. This fact is cle-
arly illustrated by table 5.2. It may thus be preferred to choose TOL not
too large. Moreover, the various control mechanisms work better for smaller
values of TOL.

We conclude this example by noting that all integrations were performed

without the necessity of making restarts.

5.2. A NON-LINEAR, TWO-DIMENSIONAL PROBLEM

The second problem we consider is a two-dimensional diffusion problem:

ou 32u 1 9 du
.é_E.=B(u) [—azz+;5}-(ra—£)] + y(u), 0<rc< re, 0 <z < Z >
u(0,r,z,) = 500, 0 <rc< s 0 <z < Z»
(5.4)
u(t,r,0) = u(t,r,ze) =500, O0<7rc«< r» t> 0,
u (£,0,2) =0, u (t,r_,2) =ulule,r,2)), 0<z<z,t>0,
where r_ = 10—4, z, = 0.15, and B(u) = A(u)/p(u), y() = n(u)/p(u),

p(u) = y(u)/A(u). The functions A, p, n, and ¢ are defined by



system I

system IT

t 0 0.2 0.4 0.6 0.8 0.9 0 0.2 0.4 0.6 0.8 0.9
10° .5283 .6879 .6879 .6879 .6879 .6883 .5498 .6879 .6879 .6879 .6879 .6883
10° .2193 4742 .5105 5124 5242 .5773 .2219 4743 .5105 .5123 .5225 5717
T 1 0422 . 1988 .3676 .5122 .6516 7377 0424 . 1981 .3664 .5102 .6489 .7345
o
. 5 .0330 . 1636 .3225 .4810 .6396 .7318 .0332 . 1626 .3207 4784 .6364 .7283
1
é 10 .0327 .1623 .3204 4785 .6375 .7301 .0330 .1617 .3190 4764 .6347 .7269
& 120 .0326 . 1623 .3203 .4785 .6375 . 7300 .0329 .1617 .3190 4764 .6347 .7269
1077 | .5271 |.6870 |.6870 |.6870 |.6870 |.6874 | .5488 |.6870 | .6870 | .6870 |.6870 | .6874
10 2184 |.4738 | .5099 !.5118 .5236 | .5767 || .2209 [.4739 | .5099 |.5118 |.5219 |.571]
041 . 1 . 1 |.512 .6521 .7381
. ! 419 198 367 } 5123 65 8 L0422 |.1977 .3660 | .5103 | .6492 |.7348
= { 5 .0330 .1637 .3226 L4811 .6398 .7318 .0332 .1629 .3210 4788 6368 .7285
w (10 .0327 .1624 .3204 4786 .6375 .7301 .0329 .1617 .3190 .4765 .6348 .7270
-
20 .0327 . 162 .3204 4785 .6375 .7301
8 3 623 4 37 .0329 .1617 .3190 .47647. .6347 .7269
10 .5268 .6867 .6867 .6867 .6867 .6871 .5485 .6867 .6867 .6867 .6867 .6871
10 .2181 L4737 .5098 5117 .5234 .5766 .2206 .4738 .5098 5116 .5217 .5709
(V)
|O 1 .0419 . 1979 .3670 5124 .6523 .7383 0422 . 1975 .3659 .5103 .6493 . 71349
) 5 .0330 . 1637 .3226 4811 .6397 .7318 .0332 . 1630 .3213 4791 .6370 . 7287
é 10 .0328 L1624 .3205 4786 .6376 .7302 .0329 L1617 .3190 4765 .6348 7270
20 .0327 .1623 . 3204 .4785 .6375 .7301 .0329 1617 3190 4764 .6347 .7269
Table 5.1 Approximations to u(t,x) of (5.1)

at several times and points.

€C



system I

system II

re-—

re-—

t step | step | fev sig sigma step step | fev sig sigma

0 0 0 21 21 4462.2 0 0 21 21 6871.4

10_2 38 0 127 40 1290.9 38 0 127 40 4352.3

10_] 58 0 183 45 1290.9 58 0 203 45 4352.3

?3 1 79 0 307 50 1290.9 80 0 415 50 4352.3
: 5 98 0 516 50 1290.9 116 0 832 55 4352.3
g 10 113 0 669 55 1290.9 145 0 1185 60 4352.3
- 20 149 0 1068 60 1290.9 204 0 1908 75 4352.,3
0 0 0 21 21 4462.2 0 0 21 21 6871.4

10—2 66 0 215 65 1185.0 66 0 194 44 4892.5

10_] 103 0 308 75 1185.0 104 0 318 54 4892.5

?5 1 142 0 469 80 1185.0 143 0 614 59 4892.5
; 5 171 0 725 85 1185.0 210 0 1266 74 4892.5
. 10 195 0 949 90 1185.0 244 0 1675 79 4892.5
- 20 213 0 1165 95 1185.0 310 0 2482 94 4892.5
0 0 0 21 21 4462.2 0 0 21 21 6871.4

1072 | 122 0 375 99 1304.2 122 0 344 68 4704 .6

\n 10—] 195 0 554 | 114 1304.2 196 0 541 83 4704.6
lE 1 273 0 819 | 129 1304.2 273 0 972 98 4704 .6
t 5 323 0 1189 | 139 1304.2 377 0 1931 123 4704.6
é 10 358 0 1508 | 149 1304.2 445 0 2556 | 133 4704 .6
20 383 0 1775 154 1304.2 509 0 3339 148 4704.6

Table 5.2 Information about M3RK concerning (5.3).

%t
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A(u) = 418.4 * {0.]28749610—13u4‘—'0.116873]0—9u3 +

+ 0.3848911 —6u2 - 0.5698121 -3u + 0.57185303},

0 0

p (u) 19300 * {0.14644103 + 0.1851310—1 * (u—0.104104)},

(5.5)

7.1486% % 12 % 1010 « {-0.378808,

(u) -1 + 0.267688] -3u +

0 0

+0.1724588 ~74%y,

0

4 5 4
0.5669610-7u * {—0.27049110 17u” + 0.3438691]O 13u” -

(u)

3 2
- 0.16390510 9u” + 0.330564710 6bu - 0.119410 3u +

+ 0.2667112]0—1}.

Problem (5.4) describes the temperature in a filament and was communicated
to us by POLAK [7], who is gratefully acknowledged for his cooperation.

For the semi-discretization of (5.4) we have applied a Galerkin method
based on piecewise bilinear functions. We have made use of an implementation,
written by BAKKER [2], yielding a purely explicit initial value problem.
Again we shall confine ourselves to the definition of the resulting system
of ordinary differential equations.

Let {rilr] =0, r.< T i=1,...,M-1, ry = re} and {zjlz] =0,
25 < Zi41> j=1,...,N-1, zy = ze} be partitions of the r—axis and z-axis,
respectively. Let pi(r), i=1,...,M, and qj(z), j=1,...,N, be piecewise

linear functions, i.e. pi(rk) =34 and qj(zl) = Sjl,'where § denotes the

ik
Kronecker symbol. Further, let uij(t) = u(t,ri,zj). The resulting system of

ordinary differential” equations is then defined by

ﬁij = 0, i=1,...,M, j = 1,N,
a.. = VTIWT]B(U..) {r w.ﬁ( .)S.. - a..u.. - a.. ,u,,. -
ij 1] 1] e ] uMJ iM 1] 1] ij-1 13-1

(5.6)
}o+ Y(uij)’

T Ain%iier T %1% T Fieitieg
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where
r z
e e
Vi T J rp; (X)dr, w, = J qj(Z)dZ,
0
(5.7) o ]
e e 3 e
a1 - J f r[ﬁi(r)ék(r)qj(z)ql(z) + p; ()P (1) qj(z)ql(z)] dr dz.
00

Again M3RK was applied to two systems. For both systems
r, = ({i-Dr /M-1), i =1,....M, and 2 = 0.06%(j-1)/(N-1),
i
j= 1,00, N-1)/4; zj =zj_] + 0.24/(N-1), j = +3)/4,..., (3N+1)/4;
z.

=2z,  +0.06/(N-1), j = (3N+5)/4,...,N. The choice M=5, N=21 and M=5,
5-

Ni41 yieids system I and system II, respectively. Because of the physical
nature of the problem it is not necessary to choose M > 5. A finer grid at
the endpoints of the filament is necessary in order to deal with boundary
layers. It should be observed that, because of two reasons, the resulting systems
are difficult problems for our explicit integrator. Firstly, the systems

are strongly non-linear. Secondly,in spite of the relatively small number of

gridpoints, we have to deal with a large spectral radius because of the very

small size of the r—-interval.

Both systems were integrated over the interval [0,1] by calling M3RK
for XE = 0.1 (first call), and for XE = 0.2,0.4,0.6,0.8,0.9 and 1 (sub-
sequent calls). They were integrated for 3 values of TOL, viz. 10_3,10_4 and
10—5. Again, the parameter INFO(2) was chosen equal to 2.

Some results of the integrations are listed in tables 5.3 and 5.4.
Table 5.3 gives the system I-approximations and system II-approximations to
ulj(t) at the specified output times for some values of zj € [O,ze/2].
Results for z € [ze/Z,ze] are omitted, as the solution is approximately
symmetric with respect to ze/z. With respect to comparing and interpreting
results of table 5.3, we refer to the remarks made at the preceding

example.

Table 5.4 yields the same type of information as table 5.2.The reject-
ions clearly indicate that the guidance of the process is better for smaller
values of TOL. Because of this, and because of the minimizing property of
the degree, we again conclude that it may be preferred to chose TOL not too

large. This conclusion particularly applies when integrating stongly non-

linear problems.

We conclude this section by observing that all integrations were per-

formed without the necessity of making restarts.



system I system II

£\2| 0.003 [0.006 0.009 | 0.015 | 0.075 0.003 0.006 | 0.009 | 0.015 | 0.075

" 0.1 700.8 | 748.9 757.1 758.3 758.4 706.0 751.4 | 757.1 757.6 757.5
'S 0.2 951.3 1123.6 |1172.4 |1185.2 |1185.2 955.7 1129.9 | 1174.5| 1183.8| 1183.9
—10.4 ] 1746.2 | 2316.1 [2514.2 [2593.4 (2596.3 1736.1 2322.0 | 2520.3 | 2591.1 | 2593.5
" 10.6| 2551.3 | 3154.0 |3284.7 |3323.9 (3325.4 2508.5 3156.7 | 3288.8 | 3324.0 | 3325.5
=10.8| 2816.7 | 3304.4 |3382.0 |3397.2 |3397.6 2755.4 3308.0 | 3384.3 | 3396.9 | 3397.2
= 10.9 | 2847.8 | 3317.5 13388.2 |3400.7 |3400.9 2785.6 3321.9 | 3390.8 | 3400.6 | 3400.8
1.0 | 2858.8 | 3321.9 |3390.1 |3401.5 |3401.6 2797.2 3326.7 | 3392.7 | 3401.5 | 3401.6
0.1 700.8 | 748.9 757.1 758.3 | 758.4 706.1 752.0 757.8 | 758.3 758.3

< 10.2] 952.1 | 1123.9 |1172.4 |1185.6 |1185.8 956.3 1131.0 | 1176.0 | 1185.6 | 1185.6
©10.4 | 1746.5 | 2316.9 |2514.8 [2594.0 [2596.9 1737.4 2323.8 | 2522.4 | 2593.6 | 2595.9
g 10461 2552.1 | 3153.9 [3285.3 |3324.4 |3325.9 2509.6 3157.7 | 3289.6 | 3324.7 | 3326.2
0.8 2815.3 |3303.7 |3381.6 [3397.0 [3397.3 2756.0 3308.8 | 3384.8 | 3397.2 | 3397.6
©10.9| 2847.2 |3317.3 |3388.1 |3400.6 |3400.8 2786 .4 3322.2 | 3391.0 | 3400.7 | 3400.9
1.0 | 2858.6 |3321.9 |3390.1 |3401.5 |3401.6 2797 .4 3326.8 | 3392.8 | 3401.5 | 3401.6
0.1 701.0 749.5 758.0 759.3 759.3 706.3 752.6 758.7 759.3 759.3

“w 0.2 952.8 | 1125.3 |1174.2 [ 1187.7 {1187.9 957.0 1132.5 | 1178.0 | 1187.8 | 1187.9
©10.4 ] 1748.9 |2319.8 |2517.7 |2597.1 |2600.0 1740.0 2327.4 | 2526.2 | 2597.6 | 2600.0
g |06 ] 2552.1 1 3153.3 |3284.7 |3323.7 |3325.2 2509.4 3156.9 | 3288.6 | 3323.7 | 3325.2
1 10.82815.3 |3303.5 |3381.5 |3396.9 |3397.2 2755.6 3308.1 | 3384.3 | 3396.9 | 3397.2
©10.9| 2846.7 |3317.0 |3388.0 |3400.6 [3400.8 2785.7 3321.8 | 3390.8 | 3400.6 | 3400.8
1.0 | 2858.3 |3321.7 |3390.0 |3401.5 [3401.6 2797.1 3326.7 [3392.7 | 3401.5 | 3401.6

Table 5.3 Approximations to u(t,0,z) of (5.6)
at several times and points.

LT



system I system II

t step g%;p fev sig | sigma step g%;p fev sig | sigma
0 0|0 11 11 |433026.3 0 0 11 11 [433627.5
0.1 146 | 5 1595 | 92 |[361136.0 114 1 1241 73 |387114.9
" 0.2 | 275 | 8 3043 |191 (314911.0 245 6 | 2759 206 |353507.5
's | 0.4 | 483 |14 5418 |377 |250766.5 460 10 | 5172 340 |291676.3
— 1 0.6 | 666 |21 7466 |543 |209500.5 652 15 | 7306 468 |253444.2
t 0.8 | 767 |22 8593 |593 |195533.7 865 24 | 9578 615 |243312.1
S| 0.9 | 803 |22 8992 |598 |195533.7 904 24 110042 625 |243312.1
& 1.0 | 830 |22 9321 |603 |195533.7 951 25 10600 648 |240319.6
0 0|0 11 11 [433026.3 0 0 11 11 |433627.5
0.1 176 | O 1548 | 53 |(381046.8 176 0 1541 54 |383557.4
< 0.2 | 327 | O 3059 |142 |315213.0 336 0 | 3108 130 |353077.8
's | 0.4 | 573 1 5395 [238 |260536.2 617 3 | 5714 271 |286028.2
— ] 0.6 | 776 1 7402 (311 210908.2 854 5 {7915 367 |257379.4
i 0.8 | 984 | 9 9437 |560 |[193543.2 1003 6 | 9373 410 |244102.1
51| 0.9 [1026 | 9 9877 [565 |[193543.2 1038 6 | 9803 420 |244102.1
= 1.0 1053 | 9 10206 |570 |193543.2 1098 7 |10413 443 1240106.2
0 0,0 11 11 1433026.3 0 0 11 11 |433627.5
0.1 237 | O 2131 63 [388688.4 237 0 | 2131 63 |390626.6
. 0.2 | 425 | O 3902 |140 |327591.8 440 0 | 4049 152 |357651.3
' | 0.4 | 739 | O 6858 |267 |249339.1 792 0 | 7291 257 |306499.2
1 0.6 | 996 | O 9237 (332 |233658.6 1088 0 {10047 347 |259726.0
I 0.8 | 1231 0 11294 |382 [233658.6 1337 0 |12198 397 |259726.0
21 0.9 (1299 | 0 11901 392 |233658.6 1403 0 {12831 412 |259726.0
& 1.0 {1340 | O 12372 |402 |233658.6 1444 0 13315 417 |259726.0

Table 5.4 Information about M3RK concérning (5.6)

8¢
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6. CONCLUDING REMARKS

The purpose of this paper was to develop a robust and efficient time
integrator, being easy to apply to a wide class of linear, and in particular
non-linear, semi-discretized parabolic problems in one and more dimensions.
Although it is not clear that, e.g. for a two-dimensional non-linear problem,
our method needs less computer time than an unconditionally stable method
(such as an implicit method or an ADI method), the easy applicability of the
subroutine, when used in conjunction with semi—discretization, reduces the
human effort needed to solve a problem under consideration. For example,
the subroutine is easy to use with a software interface performing the
semi-discretization (see e.g. SINCOVEC & MADSEN [11] or BAKKER [2]).

It is of interest to observe that until now stabilized, explicit
methods, as well as their implementations, did not receive very much atten-
tion in literature. As a consequence, it is most likely that the present

implementation and its underlying algorithm can be improved significantly.

Acknowledgement

The author wishes to thank Professor P.J. van der Howwen and Professor
T.J. Dekker of the University of Amsterdam for their constructive comments
and careful reading of the manuscript. The author is also grateful to
Mr. M. Bakker for his assistance in programming the Galerkin discretizations,

and to Mr. B. Sommeijer for his assistance in testing the program.



30

REFERENCES

[1] BAKKER, M., Software for semi-discretization of time dependent partial
differential equations in onme space variable, Report NW, Mathe-

matisch Centrum, Amsterdam, (to appear).
[2] BAKKER, M., Unpublished manuscript, Mathematisch Centrum, Amsterdam.

[3] BEENTJES, P.A., NUMAL, a library of ALGOL 60 procedures in numerical
mathematics, section 5.2.1.1.1.1., procedure ARK, Mathematisch

Centrum, Amsterdam, 1974.

[4] DOUGLAS, J. & T. DUPONT, Galerkin methods for parabolic equations,
SIAM J. Numer. Anal. 7, pp. 575-626, 1970.

[5] GEAR, C.W. Numerical initial value problemé in ordinary differential
equations, Prentice Hall, Engléwood Cliffs, New Yersey, 1971.

(6] LINDBERG, B., IMPEX - A program package for solution of systems of
stiff differential equations, Report NA 72.50, The Royal
Institute of Technology, Stockholm, 1972.

(7] POLAK, S.J., Private communication, ISA, Gebouw VM, Philips, Eindhoven,
The Netherlands.

(8] RICHTMEYER, R.D. & K.W. MORTON, Difference methodes for initial value

problems, Interscience, New York, 1967.

(9] RYDER, B.G., The PFORT verifier, Software Practice and Experience, &,
pp. 359-378, 1974.

[10] SHAMPINE, L. & M.K. GORDON, Computer solution of ordinary differential
equations, The initial value problem, W.H. Freeman and Co., San

Francisco, 1975.

[11] SINCOVEC, R.F. & N.K. MADSEN, Software for non-linear partial differen—
tial equations, ACM Transactions on mathematical software 1,

pp. 232-260, 1975.

(12] TE RIELE, H.J.J., (ed.), Colloquium Numerieke Programmatuur (Dutch),

MC syllabus, Mathematisch Centrum, Amsterdam, (to appear).

(13] VAN DER HOUWEN, P.J., Comstruction of integration formulas for initial



31

value problems, North-Holland Publishing Company, Amsterdam, 1976.

[14] VERWER, J.G., A class of stabilized three-step Runge—Kutta methods for
the numerical integration of parabolic equations, Journal of Com-

putational and Applied Mathematics, (to appear).

[15] VERWER, J.G., Multipoint multistep Runge—Kutta methods I: On a class
of two-step methods for parabolic equations, Report NW30/76,
Mathematisch Centrum, Amsterdam, 1976.

[(16] VERWER, J.G., Multipoint multistep Runge-Kutta methods II: The con-—
struction of a class of stabilized three-step methods for para-
bolic equations, Report NW31/76, Mathematisch Centrum, Amsterdam,
1976.






APPENDIX : : !

SUBROUTINE 3RKIX, XE, 4, H, HU T, SIGYA, TOL,F,Y,

+ Y1,Y2,YXE,DY,DY{, IFLAG, IFO)
o kAR A A R A A AR R A AN AR AR R A AR R R AN A A AR A AR AR AR A A A A AT R A AN A AR A A AR R ARAR AR A A A ki
Cx ABSTRACT *
Ci**kt****k*‘k**lk***k*tk***it**i’*****t*i**iﬁ*****ﬂ*************t**k*k*'k*
C# “3RK IS DESIGUED TO SOLVE INITIAL VALUE PROBLEMS FOR SYSTEMS OF *
C+# ORNTYARY DIFFERENTIAL EQUATIONS OF THE FORM
C+ DY/DXZF (Y (1)) 4s0s YD,
C+ Y(I) GIVEY AT X,

C# dlICH ARIGIIATE FROM SEMI-NISCRETIZATION OF INITIAL=BQUNDARY VALUE

Cx PROALEHS FOR PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS, MR3IK I§

Cw aasaa N0 STABILIZEN,EXPLICIT THREE=STEP RUNGE=KUTTA FORMULAS OF

Cx ORDER OUE ANID TH0,0F wHICH THE DEGREE CAMN VARY BETWEEHN 2 AND {2,

Cx .

Cx M3PK “EEDS o ARRAYS OJF LENGTH W, WHICH ALL APPEAR IN THE CALL LIST,

Ce TIE CODE INTEGRATES FROM X TO XE,OM MNORHAL RETURN THE PARAMETERS IW
Cx THE CALL LIST ARE READY FOR CONTIMUING THE INTEGRATION,TO CONTINUE

Cx THE ToTEGRATIOU, TUE JUSER {FEDS 2MLY TD REDEFINE THE OQUTPUT POINT XE
Cx AN CALL AGAT,

Cx

Cx “30K CALLS 11 SUSROUTINES WHICH HAVE BEEM WRITTEN T0 STRUCTURE THE

Cx PROGRAM,TIEGE SUBRDUTINES ARE;

Cx H3TARY = [ISTART COMPJTES THE INITIAL STEPLENGTH

Ce PARAM = PARAS CONPUTES PARAMETERS OF THE VARINUS IHPLEMENTED

Cx SCHEYFS FROM THE COEFFICIENTS OF THE STABILITY POLYNOMIALS
Ck PUSER = POHERY ESTIMATES THE SPECTRAL RADIUS OF THE JACOBIAN OF F

Ce “AXDEG & ([AXDESG COMPUTES THE HAXIMAL DEGREE OF THE FORMULAS,

C MICH 1S ALLOWED uITH RESPECT TO INTERNAL STABILITY
Cx MIUNEG = UIHDEG COMPUTES THE “IMIMAL DEGREE OF THE FORMULAS,
C JHICH IS ALLOWED “ITH RESPECT TO ABSOLUTE STABILITY

Cx STEF = STEP CONTAINS T+E ACTUAL INTEGRATOR

C* ESTIMA = ESTIMA COMPUTES & LOCAL ERRDR BOUMD AND ESTIMATES A LOCAL
L= PREOR

Cx ME = JEMH DELIVERS A IEw STEPLENGTH

Cx TUTERL = INTERQ PERFIRMS THTERPOLATION AFTER A CHANGE OF THE

C* STEPLEIGTH

Cx [0TER? = [WTERR ITHTERPOLATES THE SOLUTTION AT THE QUTPUT PQINT XE
Cax SHIFT  w SHIFT BHIFTS THE DATA FOR 4 MEXT STEP '
Cx )

Cx THESE SURPOUTIMNES ARE COMPLETELY LOCAL,J,E,THE IWFORMATION THEY

Cx “EFD I8 DASSED THRNUGH THE PARAMETER LISTS,THE AHQLE PACKAGE HAS
Cx EE TESTLD Ul 4 CNC CYRER 73=28 USING AN ARITHMETIC PRECISION OF
Cx 14 UIGITS,TAAE CODE POUER* USES THE CDC SYSTEM SUBPROGRAMS RANSET
Cx AN RANF CIHSTITUT UG A RAMDOY GENERATOR,RANSET ANLD RANF MUST BE
Ce PEPLACED JIHEN 131G THE PROGRAM N1 ANOTHER COMPUTER,

Ca TAF CONES CALLFD 3Y 43PK USE 10 UHACHINE DEPEMDE'T CONSTANTS,

Cx 30 508 0OHE HMACITHUE DEFCHOENT COMBTANT, HAMELY THE A?ITH”ETIC

Ca PRFCTSTMD QF THE COMRPUTER I THE PROGRA™ THE IHMTERNAL VARIABLE APR,
Cr < TCH RLPEESE TS THE ARITHAMETIC PRECISION,FUALS 1,0E=14, APR MUST
Cx L CHa'GED aCCDINTUGLY rpt UATHA THE PROGRAM O ANDTHER COMPUTER,
Tk

Cx T.0 S=0LFE PONGRAM PACKAGE IS5 ACCERTED RBY THE PFQORT VERIFIER,THE

Cx PEDOST JFVLFLPT I5 4 PROGRYY HuICH CHECKS 4 FORTRAN PRIGRAM, I E, A
Ca 'l OPonars 40> LURPUNGRAVE,FOAR ADIFREIND TR PFORT,A PORTABLE

Cx S.093ET JF LUETTICA Y CIATIONGAL STANDAFD FORTRA(SEE[LY ), THE WHOLE

Co PURGRA PACEAGE T3 COUPLETELY EXPLATHED AFD DESCRI3ED Tw (2],

=

* W % XN W oW o ¥ % ¥ R M ¥ W N ¥ ¥ ¥ N N ¥ % ¥ ¥ B N N X N N N W W H ¥ ¥ B N ¥ ¥ N N ¥ % N % N N N & W



Ct (11 RYDER,B,G,,THE PFORT ¥ERIFIE§,SGFTHARE PRACTICE AAND EXPERIENCE,

&
o Vil 4,Pr,359=378,1974,
Cr [2) VERHER,J,G. Al TYPLEMENTATTION OF A CLASS OF STABILIZED,EXPLICIT =
C% METHORS FOR THE TIME [NTEGRATION OF PARABOLIC EQUATIONS, (TO *
Cx ARREAR), ]
kAN AR AR R R AR A A A A R A A A AR A A A A AR A A A A A R R R AN AN AR R AT AR AR AR R AR AR AR A A A AR AR R ARA N AN
Cx MCANING NP THE PARAIETERS *
C*k*;\*ttittkti#*ir*k*****th\***k***k***t*t**,ﬁ*t**tkt*****t‘t*****t**i*****
Cx X = VARTAGLE g INDEPENDENT VARIAGLE *
Cx X[ = EXPRESSING 3 QUTRUT POINT AT WHICH SOLUTION IS5 DESIRED &
Cu ! - EXPRE3ZSINY ¢ WUMBER OF EQUATION!S #
Cx H w VARIACLE t STEPLEMGTH *
Cx YTt = YARIABLE g MINIMAL STEPLENGTH *
Cx SI6GMA = ARRAY $ Al ARRAY OF LENGTH 2 CONTAIMING ESTIMATES *
Cx DF THE SPECTRAL RADIUS OF THE JACOBIAN OF F *
Cx Tl « EXPRESSION ¢ LOCAL ERRQOR TUOLERANCE #
C* F e SURRQUTINE 3 DERIVATIVE *
Tx ¥ = ARRAY $ SOLITION VECTDR AT X, INPUT AND 40RK ARRAY *
Cx Yi w AFRAY 1 SOLUTION VECTOR AT Xei,WORK ARRAY ®
Cr Y2 = ADRAY 1 SOLUTION VECTOR AT Xe2H,WORK ARRAY *
Cx YXE = APRAY § SOLUTION VYECTOR AT XE,QUTPUT AND AORK ARRAY *
Cx DY - APRAY s DERIVATIVE VECTOR AT X,W0ORK ARRAY *
Cx DYI w APRAY 2 DERIVATIVE VECTOR AT xXeH,WORK ARRAY *
Cx IFLAG  VARIACDLE t FRROR FLAG *
Cx TUFO = ADRAY 1 IMTEGER ARRAY OF LEHGTH 18,IMNFN 1§ USED TO %
C* PASS INFORMATION TO IWITIALIZE THE CODE,TO *
Cow PASS IMFNRMATION BETWEEN THE MAIN PROGRAM AND «
Cs THE SUBRPROGRAMNS,TO PASS THFORMATION TD THE *
Cx USER AROUT THE 3TATUS OF THE INTEGRATION,AND &
C* TO RETAIM TIHFORYATION FOR SUBSEQUENT CALLS, %
C A AR A R A R ANE AR A AR R AR R R A AP AR AR A A A A A AN AR A AR R AR R ANAR AR AR R AN A ARAAAARNARRAARAR
Cx FIRST CALL Tib M3 *

Ak R A A R A XA AR R A AR R AR RN AR KA RN AR A A AR R E RS AP A X AR AN AR R A AR AR ARAR AR A S R AR R AR KA %
Cx THE USER IUST PROVINE STORAGE 1+ HI3 CALLIMNG PROGRAY FOR THE ARRAYS
Ck I:v THE CALL LISTLHE +35 T2 SUPPLY THE SUBROYUTIME F(n,Y) FOR

Cx FVALUATING THE DERTIVATIVES DY(I)/DT,131, .40, deWHICH MUST BE OVERw
C# =NTTTEN 00 Y(I)FOR THE 3PECTRAL RADTJS THERE EXIST THREE OPYIOMNS
Cx #0ICH MUBT PE SELECTEDR #1TH INFO(2),I14 INFO(CY) THE USER HMUST GIVE
Cax A DALDNNY FAOR THE "VIMRER OF EVALUATINNS OF F(Y) TO BE SPENT(0H REs
Cax TP IT Ay OCCUR THAT INPN(3) IS EXCEEDED «4ITH ABOUT S5¢)
CrakpgdrdaiabahhhhahAhhhg

Cx 1.1PUT PALPAMELTERS

Crxrmaho sk RA A X EARFAAALA AR

=

* % M W oW N N N ¥ N B N ¥ ¥ N = ¥ ¥ N ¥ N ¥ ¥

(*x % = IUITIAL VALJE OF THE IMDEPFUDEMT YARTARLE

Cx XL = MITEUT PATIT AT SHICH BSALUTINY IS DESIRER

Cx ! e MIMLER P ENIATIONS

Cx 3104 = ()= 40 VPPER ESTISATIOG OF THE SPECTRAL 2ADIUS 0OF THE JA=
Cx COBTA OF F I4 CASE OF OPTIOY {,FOR MPTIDY 2 aAkD 3 ND
Cx IVITIALTZATION 13 PEAUIRED

T Tl = LoCal ERROR Tl ERAICE

i e YLCTOT UF TUTTTAL VALUFES OF THE DEPENMDESNT VARTABLES

Ce I Fo = (1= ¢ T0 T-OICATE FIRST CALL

Cx ()= 3 TN T DICATE QPTINY { FOR THE SPFCTRAL rFADIUS,T.E,
T THE ISP 2U3T INITIALTZE SI6vA(1)

£x = Q0 T TODICATE 0PTINE 2 FOR THE SPECTRAL RADTUS,T,E,
La THE CODE TUTTTALIZES SIGYA(L) AHND CNOHTROLS SIGHA(])
Ca = 4 TD ODINDICATE PTING 3 FOR THE SPECTRAL RADTHS,T,E,



L THE CODE ONLY INITIALIZES SIGMA(L) AT THE FIRST CALL

*
C (3)=s “MAXTHIPY JUMBER OF F(Y) EVALUATIONS TO BE SPENT *
kN A A AR AN ARRAKNARRARARKRAY %
Ce NUTPUIT PARPANETERS *
C*t*i***t*t*********#**** *
Cx X = LAST POINT REACHED IM THTEGRATION,MORHALLY X IS SLIGHTLY *
Cx BEYOND XE *
Cx H = I00ITIAL STEPLEMGTH FOR SUBSENUEMT CALL *
Cx Hilul o "IMIMAL STEPLENGTY USED BY M3RK *
Cx 3IGMA = (1)= UPPER ESTIHATION 0OF THE SPECTRAL RADIUS IMNITIALIZED BY %
o) THE SER DR BY PQWERM *
Cx = (2)e IYMACCURATE ESTIMATION OF THE SPECTRAL RADIUS USED FOR »
L* ITS COHTROL *
Cx Y « SOLUTIOY] VECTOR AT X ]
Cx Y} = SOLUTINN VECTOR AT XeM x
Cx Y2 = SOLUTION VECTOR AT XwpH x
Cx YXF w SOLUTION VECTOR AT OUTPUT POINT XE *
Cx DY w NDERIVATIVE VECTOR AT X *
Cx DY » DERIVATIVE VECTOP AT XeH *
Ca TFLAG = = 0 NORHAL RETURM,ILE,OUTPUT POINT IS REACHED *
L = | QUTPUT PIINT IS MDT REACHED,THE MAXIMUM WMBER OF *
Cx F(Y)=CVALUATIONS HAS BEEY SPENT,THE PROCESS CAN 8E (COMe «
Cx TIHUJED BY INCREASING IWNFO(3) AND CALLING AGAIN *
Cw s 2 MAXIMAL DEGREE FALLS QUTSIDE THE RAMGE AS TOL/APR IS *
Cx T30 SYALL,.THE PROCESS I8 XNOT STARTED *
Cx = & POMERH FAILED IN THE ESTIMATION OF THE SPECTRAL RADIUS, #
C+ THE PROCESS IS DISCONTINUED *
Ce TFD = (1) = 1 70O IMDICATE THAT THE MEXT CALL IS A SUBSEAUENT ONE =%
C# (2) = 1 IV CASE OF DOPTION { OR 3,ELSE 2 *
Cx (3) = '‘PCHAUGED *
L (4) = TUTAL NUMBER OF THTEGRATION STEFPS PERFORMEDR,I.E, *
Cx ACCEPTED AMD REJECTED ONES *
L (5) = HJHBER OF REJECTED INTEGRATIOY 3TEPS &
(& () = NMUYUBER QOF RESTARTS IMITIATEL RY THE CNDE *
Cw (7) = TOTAL NUHMBER 0OF DERIVATIVE EVALUATIONS %
Cx (8) = NUMBER OF DERIVATIVE EVALUIATIONS USED FOR THE ESTIMAn *
o ) TION AMD CONTROL OF THE SPECTRAL RADIUS *
Cx (9) = CURREE'T DEGREE *
C# {10)= “AXIMAL PEGREE FOR THE FIRST ORDER FORMULAS *
C#* (11)= HAXIMAL NEGREE FOR THE SECN'D DRDER FORMULAS *
Cx (12)2 CJURRENT ORDER e
L (13)= VJIMGER F STEPS PLRFORMEN AFTER START NR RESTART k
Cx {ia)s WIMBER QF STEPS PERFORMED AFTER CHAMGE 2F H OR NRDER =
L f195)= HNDED gF STERS PERFORYED AFTER ESTIHATION OF SPEC= %
L+ TRAL RADIUS *
& *
L« IT7T IS F’P;ﬁQIZEJ THAT THE QUTPUT LIST GIVEY ABOYE I8 40T 3TRICTLY *
Cx VALID 00 D RETIR G [FLes I8 FYIAL TO 2 nr 3, *
L* TT I3 FUFTHLQ r'"'i“TZ‘“ THAT O RETURY TilF ARRAY Y ALAAYS COHTAING «
Ca TOE Sl UTIO YECTOR AT THE POIST Y THUIS WrEd [FLAG=23, THE JSER HAS 4
f+ T8 POSSTLILITY T\ NESTART THE PRACESS AT THE POINT X,PROVIDED HE *
T 15 aRLE TJ TAKE ACTIN 4174 RESPECT T THE E£STIHATION NF THE 5PECe &
Ca ToAL CALTIS, *
CJ‘**A**.*.**ﬁ.*ak*tkAiAtxk*kkik*k***fs#tk:\*kﬁ&i*éi**#kt&t*tk*ktk***t**&**tk**
L S BECUEDT Capl3 TO 13R% %
2’*i;i,At_*ﬁ&ttkﬂ:*-ktXAﬁ*i'ikﬁ:gkt‘ﬁ**_-k*k*t*‘ki**t*k***ﬁ***ttté**kﬁ*kikt**********

Ta T TETOTTOF 30K L PARAUETENS LRL RFADY FOR CNUTINGTHG THE I4TEe &



Cx GRATION,PROVIDED IFLAG IS NOT EQUAL TD 2 OR 3,IF XE IS REACHED AND

Cx 4 NOR* AL COMTINJATION 18 DESIREDR,THE USER “EED ONLY TO DEFINE A NEW

Cx DUTPUT POINT XE AN CALL AGAIMN,IF 0# RETURN IFLAGEL AMD THE USER

Cx YWAMNTS TO COHTIMIE,HE ONLY NEEDS T0O IMNCREASE IMFOC(I) AMD CALL AGAIN,

Cx THE PROGRAM IS8 WRITTEW IN SUCH A HAY THAT THE CHOICE 2F QUTPUT

Cr PUIaTS DOES MNOT AFFECT THE INTEGRATION PROCESS ITSELF,BETWEEN SUBw

Cx SEQUEHT CALLS THE USER MAY INCREASE TOL,ALL OTHER PARAMETERS MUST

Cx REMATH UNCHANGEDR,THE COUMTERS Ti INFO ARE USED ACCUMULATIVELY,

C Ak kA AR Rk AR AR AR RN KR A AR R AN R R AR AR A A AR AR AR AR A KRR AN R AR AR AN AR R AR R RN AR R AR kR k&

Cx PROGRAM TEXT %

Cr kAR AR A A AR A A AR AR AR A AR R R R AR R R R R AR AR R AR R A A R R AR kAR A AR A AR AR AR AR AR AR R AR A KA
DIMEUSTON YO YL ) o YRCM)  YXE(N) DY (N),DYL(H),SIGHA(2),INFD(15)

w» % % % W W N X

Ch A AR AA R A AR R A AR RRAAXN AR AR AN ARk R AR AKX x®
Cx MEAMTING OF THE IMTERYAL VARIABLES *
Chahhkdkx b dA bR R AERAARRAA KRR ARAR AR RS R A AR *
Cxk ALFA = THE FACTOR FOR CHANGIMG THE STEPLENGTH "
Cx APR w THE ARITHMETIC PRECISION x
Cx HalD w PREVINUSLY ACCEPTED STEPLENGTH *
Cx MOLD = DPREVINUSLY JSED DEGREE *
Cx REJECT = '"JUMRBRER OF SIUCCESSIVE STEP FAILURES *
Cx B @ [JOHZERD B=PARAMETERS NF THE SCHEME *
Le C = C=PARAMETERS NF THE SCHEME *
Cx LA = | ALDA«PARANETERS DF THE SCHEME *
Cx HI'AX = AXI'AL STEPSIZES «ITH RESPECT T ABSOLUTE STABILITY *
C+ EFS = |LOCAL ERROR BOYHD *
Cx ERPOR = ESTIYATED LNCAL ERROR *
Ca kAR A A R R A AR R R R AR AR A AR AR A AR A AR R A A AR AR R AR AR AR A AR AR KRR A AR A A A KA AR R A A RN A A A i

IMTEGER REJECT
REAL LA
CIMENSION B8(2),C012),LA012),11MAX(2)
Chhh R h kR KRR AR R KRR KRR KRR AR R AR KRR AR R R AR A KA AR IR RA R R A AR AR A RR AR AR AR A AR R k&
Cx IF ALREADY PAST NOUTPUT POINT DURIHG A SHBSEQUENT CALL,THEYN INTERe *
Cx POLATE AND BETURN *
Rk AR R R AR AR A AR R A AR A R A AT AN AR R AR R AR AR AR AR A AR A AR R AN A AR ARA KRR AR AN N A A AR AR KA X
IF(TOFUCL) 4Eda 0 IR, X,LT,XE) GOTO 10
caLL I TLHQ( YY1, YZ.YXE.(X—XE)/*J
RETUN ,
F****kit*ﬁ**a***t*t*k***k*t************tt***tt**t*#***t*k**t*k**********
C* SET THE FUROR FLAG IFLAG EQUAL TO ZERO AMD INITIALIZE APR,DETERMINE =
Cx THE MaxINal DEGRFES SITH RESPECT TO IMTERNAL STABILITY,IF NECESSARY
Cx IHTE??uFT k.
A X A A A R R A R P AR R A AR R A A A AR AR A R AR AN R A AR A A A A A A A R A AR R AR AR A A AR AR AR A A KRR ARARA
tu 1IFLAG=Y
APP:;.;Enlg
CALL PAXDEG(TOL APR,IFLAG, ITHFD)
IF(TFLAG.KM.B) G270 20
BE TN
D A A A A AR A R R AR AR A A AR A E A P A A AR A A A R A A A P R AR A NS AN N A RS AR AR AR AR AR AR AP Ak Ak & K
C# ST THD ConTROL VARTIADLES PCJIECT AND HOLD FUR A CONTIUUING CALL,AND %
C+# T TTIGLIZL TwD APTAY 174X *
P AR AN AN R KA KA R A S AR AR KA RF A A AN AR R A A A AR A A F A AR AN A K AR R R AR AR R AR A AR AR AR AT A AR A & X
g TECTLFCL) G F gu) 56TH 30
CEJEC Tz
- "l iy
LS#FLTAT (10F ¢
j:*rL L TOT EOC

X(1)s5 POYAFLOATCIUF )(10)) /316 1A(1)
Y(2)=2 TU)Y*ELOAT (T OFa (1)) /81674 (1)
“JT] 2.



Ctk*k!\'**iik*k*t‘t**ttk**‘*t*t******i****t#k*tt**ﬁ*#***t***t**itt****tt****
Cx SET REJECT,HOLD AND 4 FQR THE FIRST CALL, SET THE ELEMEKTS INFO(I), *
Co T8, ,,.59,13,14,15 EQUAL TN ZERD AND INFO(12) EQUAL TN 2,70 PREPARE *
Cx TYHE FIRST STEP EVALUATE F(Y) AMD SUBSTITUTE INTO DY,IF NECESSARY *
Cx ESTIYMATE THE SPECTRAL RADIUS AMD CHECK FOR A FAILURE OF THE POWER *
Cx METHOD,,IMITIALIZE ARRAY H4AX AMD ESTIMATE THE INITIAL STEPLENGTH *
Ctkktt*t#*;ti*tk*t-t**t*tt**k***ttt*****tttt*******ttt**k*t*******ii**t**t
30 INFO(L)=]
REJECTwmO
DO 4g I=4,9
49 IMFO(I)=0
no B¢ [=13,15
59 INFO(I)=0
I'FO(12)=2
NN es T=i,H
oY (I)=y(l)
DYL(I)=0,
Yi(l)=0,
Y2(l)su,
Al CfJ";Tlf}i.!E
CALL F(N,DY)
IHFQ(7)=INFO(7)+1
IF(INFO(2) EQ,L) 3070 70
STGHA(L1)=0,
CALL PUAERY(I, Y Y1, YXE,DY,DY1,F,8TIGHA,APR,IFLAG, INFQ)
IF(IFLAG,ME.3) GOTO 70
RETHRY

To AMAX(1)s5  I18xFLOAT(INFOC10))2FLOAT(INFOE10))/81IGHA(L)
HMEX (2)32,,29%FLNAT(IUFOCII) IRFLOAT(TUFO(CL1))/SIGHA(L)
CALL HSTARTC(M,Y,DY,YXE,F, TOL,APR,SIGHA(]),HMIN, INFO)
MY
SO Dimed
(ks kb h AR ARAARA AR AR KA KRR AR A A AR A E R AR ARAA AR AR RN AN A AR I AR ARR AR R AR AR R AR ARk k%
Cx DOTERTLE THE DEGREE,AHD,IF NECESSARY,CALCULATE THE PARAMETERS OF *
Cx TE SCHLYE TO RE U3ED *
Cha ks AR R A AR KRR A R AR AR AR A AR AR A AR KRR A AR AR A AR AN A AR AT R R AR AR R AARA N A AN AN R AR ARAKX
By 2OLhal FOCD)
CALL "MIMDEGCH, 3TGHACL), THFD)
IF(IHFNLR) Ed,MNLD) GOTN 9¢
CALL ParAM (C,LA;ﬁ; IT'JFOJ
Ok a b bk kA AR RAR AR KA KA AN AR KR AR AR AR KA R AR A K A A KR A KR KR ARRA KR AN AR AR AR AR KA A hk ok -
Ce CHECK IF THL TAXIbt MMUMBER OF EVALUATIONS IS REACHED UPDATE HMIN ]
Ce 200 CaLCWLATE & SOLITICE AT XaH *
CrAd Rt kA R AR ARA K AR AR AR A ARK AN A KA R AR AR AR KR AR KA R A A AK AR A AR A AR RARAN RN A N R AR KR
DL IFCTUR(T7),GELIVFI(3R)) TFLAG=R]
TFOTIPLAG M LY BAT2 10

(_;:F Tf_':-:”
E
Pooo LR O LT )y i ek
CALL STERC Y, Y, Y2, YXE, DY, DY, Hy P 0y LA, 3, INFA)
TORa{13)=T F2013)+1

i 3':"'(5\‘)3,[ ~:F"]L'l)+l
L AARE A AR AN AR AA AR AR A A A AR R A A A A A KA A AR AR A KR A AR A A A A AKX R AR KA AKX A S A AR AAARAALXARANRAR
kTP THE URUCLAD IS T THE START DHRSD,5H4IFT THE DATA,CHECK FOR THE *
x DT AT TTHE A THREERSTER SCETCE,TIF THE QUTPUT PAOTHNT IS PASSED &

A
s TOTERNOLATE 80N POTUR *

B E SRS

[an



C*tt**t***kt****k*t*k*k******it**tt****tt***i*****kt*t*ttt**k*i****ﬂki*t
IFCIHFO(13),GE,3) GOTO 110
CALL SHIFT(N;Y,Y1,Y2,YXE,DY,DY1,X,HOLD,F,I0FD)
INFO(LI4)sINFD(14d)+1
INFO(I5)8IHFO(1S) +]
IF(CIHFO(L3),EQ,1) GOTO 990
INFO(9)=20 :
IF(X, LT.XE) GOTO 89
CALL ITHTER2(N,Y,Y1,Y2,YXE, (Xe«XE)/HOLD)

RE TURM
R Ak AR kA AR AR AR R R A R AR AR AR AR AR AR AR AR KRR AR R AR AR AR AR AR A AR AR AR AR AR A AR Ak R AR kK
C* CALCULATE THE LOJCAL ERRORBOUND AND ESTIMATE THE LOCAL ERROR, %

R e s S SR R R 2 2223321222222 303 33223323823 222222222222
110 CALL ESTIMAC(Y,Y,Y1,Y2,YXE,TOL,EPS,ERROR, INFO)
Ct*t***tt*ﬁ**t*t*t*t**kk***tt***t**********t*i*t*****t****tt*tt*t****it*
Cx IF THE ERROR IS TOD LARGFE FOR THE THIRD STEP AFTER START, THEN REe *
C* START AT IWNITIAL POJIANT AITH HaH/10 *
2822232282032 2 3323323222232 8322223333 13233222332222222]
IF(EPS ,GE.ERROR,OR INFO(13),NE,3) GOTO 130
INFO(6)SINFO(B) +1
INFN(S)2INFO(S)+3
INFD(9)=0
INFO(13)50
INFO(L4) =0
INFO(15)=0
XeXwo , %H
MEH/LO,
DY 120 I=1,n
Y(I)=Y2(I)
DY (1)=sY(])
129 COrTIMIE
CALL F(N,DY)
TYFQ(7)=INFO(T7)+1
G2ATN 8y
Ctt**iktk*t*ttt*****#*t***k**tt****i**t****t******i*t*t*k***k*t*k*ﬁ****t
Cx IF STEP FAILED,CHECK FNR A REESTIMATION OF THE SPECTRAL RADIUS,IF *
Cx 'IECESSARY,CHECK FQOR A FATLURE DF POWERM AND UPDATE HMAX *
Rk ke AR AR R AR R AR R AR AR R R AN A A AR AR A AR A AR AN A AR A A B AR R AR AR AR DA AR AR ANRA AR
130 IF(THFO(E) 4EW, 1, 0R, INFO(15),EQ,0,0R,EPS,GE,ERROR) GOTO 150
SIGHA(L)I=0, :
CALL POWERY (Y Y1, YXE, DY, DY L, F,SIGMA,APR, IFLAG, INFO)
IF(IFLAGME,3) GITO 140
RPETURY
C
LA AMAX(1)=S, IS#FLOAT(INFDCI0) ) &FLOATCINFO(10))/SIGMA(T)
HIAX(2)22,294FLOAT (THFOCL1) ) &FLOATCTHFD (1)) /8IGHA(T)
S Ak A K R Rk R KRR AR R AR A AR R R AR R R AR KA AR KR AR R R R A A A R AR A A AR R A AR RN AR KRR A ARk Rk ko
Lk CALCVLATE a wE® STEDLENGTH *
CA AR R R AR R AR R AR A AR R KR AR AR R K AR R R A KRR A AR A A R R AR AN A AR R R AR R AR AR R A AR AR AR AR
150 0L had
CALL JESH(RPS/ZERROR, H0LD, 4, ALF A, HMAX, THF D)
Ci:\klx*tt*tat*kté#*k&k*kﬁ**k*##s*ttkék*#*ki’\k*****&ﬁ*tﬁ*ﬁ&****t*i*****é**ﬁ
Co TF THE DRUER ENJALS | A4D TUE STEPLENGTH I8 SHALLER THAN THE MAXI= x
Ca ial STECLENGT E FOR 20ER D RESET THE DRUER *
Cikt#%tiit’c****tﬁkA*kttkécﬁi;kﬁr#**k**&k*k*‘kﬁ‘k*g***g***t***kﬁ*&*#t***tt****
IF(DI FN(12)ER, LA i LT vMaxX(2)) TiFd(9)=n
IF(I Py £0,0) TFJ(12)=2



C**tk*#*i*t***t*tt**k***ktktt*kt*t********t***ttk*t**********t***i****#*
Cx IF STEP FAILED REJECT THE IHTEGRATION STEP,CHECK FOR THREE SUCCESs
Cx SIVE FAILURES,A'ID,IF HECESSARY,INTERPOLATE FOR THE MEW STEPLENGTH  «
Cx ARAKA R R A AR A AR R AN AR R A AR AN AR AR A AR AR AR AR A A AR R A RR AR A AAAAA AT A AARR R A AR AR A A b A %k

IF(EFS,GE,ERRNRY 6OTD 170

REJECTEREJECT+1

TUFO(5)2INFO(S) +1

IF(REJECT,ER,3) GITO 150

CALL THTERLCH,Y,Y1,Y2,DY1,F,ALFA, INFO)

GNTH ARG
Ckrhah d kA R A AR AR N AR R T R AR AR R AR R AR AR R R AR AN R AR AR B A R AR R A AAANARAR KA AR A A AR K S
Cx RESET RELJECT,INFO(I),I26,9,12,13,14 AND THE STEPLEMNGTH FOR A *
C*x RESTART *

Cammbhk kg Ak AT AR R A AR AR AR A A AR A R AR AR A AN A AN AR AR AR AR AR AR AR A AN AR RN A A
160 REJECT=0
TIFO(e)=INFO(6) +1
INFO(9) ')
INEOISEIE -
INFQ(13)30
INFO(14)m0
CaLL HETART (M, Y, DY, YXE,F,TOL,APR,SIGHA(1),H,INFD)

A0 DaH

GOTO 2y
Caad bkt R AR A AR AR R A A AR AU R AR A AR AR AR R A AR AR AT AR AR R A AR R AT AR RN AR A AR R AL AR AR Rk &
Cx FICW CUT IF THE ORDER SHOULD CHANGE FROM 2 70O {,04 EXIT OF THIS *
Cx PROGRA&Y PART o SHOULD RE RESET TN HHAX(2),IF THE ORDER HAS 70 BE *
Co CHANGED FROY 2 TN 1 SET INFO(9)=0 *

R R R 2t 222 s s 2R 2R3 2322832222323 32232332233 22333%37
170 IF(TOFO(LA) LT3, 0R,INFO(12),EQL) GLTO 180

TF(HOLL,E JHHEAX (2) ,OR AL NE JHMAX (2)) GOTN 180

THFO(12)=1

CALL ESTIMACI, Y, Y1,Y2,YXE,TOL,EPS,ERRNOR, INFOQ)

CALL CIEWH(EPG/ERRAR, MOLD, H, ALFA, HMAX, THFO)

IF(ALFALELL1,) THFD(12)=2

HEHYAX(2)

TN (1y)s=]

IF(TIFN(12),EQ,2) GOTN 180

1HEN () =0
Ctt*k*kt1lk**tﬁ*t*ti**k*kﬁ**k*k***t*t***ﬁ*k**tk***ktt*t*********t******t
Ce SUTFT TIE DATA *
Ctk**k*ti****tktkt**k*kkﬁtkt*it**i*t**kt**k***t**tt************k*****tt* )

125 CALL SUIET(, Y, YL, Y2, YXE, DY, 0Y 1, X, HOLD,F, I1FD)

REJECT=O

DEN(1d)s] W FO(14)+8

TWFO(IS)IRINE2(1S)+
Q***Akitt_ik*#*t* AT AR R A AR A AR A AR AR AR R A A AR R AR A AN R A AR A AN AR A A AR A AR R A A AR A A Ak &
Cr COECK FOR A REESTIVATION OF Tof BSRECTRAL RADIUS,IF HECESSARY,CHECLK =
Ce F R L FAILUME 0OF PORUERY AMD UPDATE HMAX *
Ektk***iii‘i&A‘*k,***k*ti*kk*;\***t*k*‘k*tt****k*k*tkxk#**i*t**t*t*****ki****

TFCT Fo(2)  F Y, 1,02, T IFN015),1F,25) GUTO 200

CRLL T OwER T, Y YL, YXE,NY DY, F,SIGHA, APR, IFLAG, INFD)

IO (TP LA, nE,3) 00T 19y

TET

P K (1) 8T LSRFLOAT (T R (10 IRFLOAT(TIUFRD(10))/8TI61A(L)
P (203 2P AFLOAT (TR (L) ) %FLOAT(TUFN(11))/5IGIA(L)
THAKAE A A A AAR RS A KA N AANN AL A A AF AR A A A KA R AR AR AR A A A AR B AR SRR AR AARBARAR AT R R AK KX



Cx IF X IS SMALLER THAY XE CONTINUE THE INTEGRATION,IF NECESSARY,INe
Cx TERPNLATE FOR A CHAMGE OF H *
Cik‘tk*tt******ﬂ*ttk*k******iA‘***************fk**tt*****t*#t**********ﬁ**‘l
200 IF(X,GELXE) GOTD 210
IF(HMNELHOLD) CALL INTERLI(M,Y,Y1,Y2,DY1,FsALFA, INFD)
IF (M NE HOLD,0R, INFO(9),EQ,0) 60TO 80
GOTO 99 '
3223223232222 3222232222823 332233333223 1322338131132 8%2¢%%2
Cx THTERPOLATE AT XE AND,IF NECESSARY,INTERPOLATE FOR A CHANGE OF H *
C+ BEFORE PETURN *
Ctt‘ktit*ttk**i*tt*kiktt**t**t*****tt****t**t****t*****t****i*******ik**t
210 CALL TUTER2(M,Y,Y1,Y2,YXE, (X«XE)/HOLD)
1;#5".’554.3!01593 CALL IHTERLIC(M,Y,Y1,Y2,DY1,F,ALFA, INFQ)
RETHRH
END



SJUBRCUTINE HETART(il,Y,0Y,YXE,F,TOL,APR,SIGHA,H, INFQ)

CAAR RN AR AR AR R AR K AR AR KK A R AR AR AR R A A AN A AR KA A AR AR R AR RN AR AN AR R A AR R AR AN AR N k&

Cx SURROUTIME HBTART CALCULATES THE INITIAL STEPLENGTH

*

C AR A d R AR R E AR AR AR R R AR A A A A AR AR AR AR AR AN R AR AR R RN AR KRR R ARA A K AR AARA AR RN AN AKX

10

PIMEISION Y(NY, DY (1), YXE(N) , INFO(1S)

N 4y T,
YXE(L)®Y(L)+DY(I)/SIGMA
COHNTIHE

CALL F(N,YXE)
LIFO(7)SINFO(7)+!
ETAT=S0,0

ETAERO,0

D0 20 Isl,id
ETATSETAT+Y(1)xY(I)
E=2YXE(I)=DY(])
ETAERETAL+EXE

» CONTIMUE

ETAT=sTOL+TOLASART(ETAT/FLOAT(N))
ETAESSORT(ETAE/FLOAT(M))/SIGMA+AFPR
HESART(ETAT/ETAE)/SIGMA/Z10,0

RHMEAX=INFO(]L)

RETAR (D O3 ARMMUAX 0 A4 ) arRMMAXKRMMAX
IF(H,GT,RETA/SIGHA)HERETA/SIGMA

RE TR

Bl



SURROUTIIE PARA'(C,LA,B,INFO)

kA AR Ak h R AR AR A AR AR AR AN R AR A AR KR A AR R R RN A R AR A AR AR R AR AR AR R RN AR AR A AR MR AR

Cx*
Cx
Cx
Cx
Cx

PARAM DETERMIYES THE PARAMETERS OF THE INTEGRATION SCHEME,THESE
PAPAMETERS ARE EXPRESSIONS DEPEHDIHG ONM THE COEFFICIENTS OF THE
STABTLITY POLYNOMIALS,«wHICH ARE STORED IN THE ARRAY D, DURIMG

THE START,I,E,I4F0C43) IS 0 OR {,THE PARAMETERS OF A ONE=STEP SCHEw
ME ARE CETERMIHNED,
Car kAR AR KA KRR R KRR KRR AR KR AR KR AR AR AR A K AR MR R R R AR RA AR A AR RN AR R AR R AR A KK

REAL LA

DIMENSION CC12),LA(1R),B(2),D(440),P(13),8(13),INFOC(LS)
INTEGER ORDER

DATA D(1),D(2Y,0(3),D04),D(5),D(6),D{(7),0(8),D(9),D(10),
+DCL1),DCL2),DCL3),DC14),D(1S),D(16),D(17),0(18),0019),D(20),
+0021),D022) o0 (23)4D(24),0(25),D(263,.D(27),0(28),0(29),D(30)/
+.5U505454545454E+00,,32974222139503E+00,,15874540963720E=014,
+,54545454545454E400, ,3295T7T7793724008E+00, ,18807742712872E=01,
+,26931406295668E=03, ,SUSUSUSASUSHBYERY0D, ,329596334626%966E+00,
+,19843848141588E=01,,38370516974646E=03,,23214008199836E=05,
+,54545454545454E400, ,32940480780399E+400, ,20289622974884E=0},
+.439227268369494F=N3, ,38RAB1393659393F=05, ,1205B6338065{9E=07,
+,54545454545454E+00,,32915730747582E+00, ,20529934599533E=014,
+,47014565070180E=03, ,48729959290595E=0%5, ,23293337843875E=07,
+, 4170869329096 1Ew10,,54545454545454E+400, ,329402905%56199E+00,
+,20695785946957E=01, ,48959305208277E=03, ,55250561672575E=05/
CATA D(31),0(32),0(¢33),D(34),0(35%),0(36),0¢37),0(38),D(39),
+OCA0),L(41),0042),0043),0(44),D(45),D(46),DC47),D(48),0(49),
+0(S0),0(51),0(52),0(53),D(54),0(55),0(56),D(5731,D(58),0(59),
+0(60)/7
+,32042572866540E=07,,92217187087773E=10, ,10431596770258E=12,
+ 5454845454545 UE+00, ,32904622047855F+00,,2076912724746TE=01,
+,5014UBT3108237E=03, 5953831 2498493E=05, ,38413639404624E=07,
+,13735161731261E=09, ,25579038177072E=12,,1935%325549260Em=15,
+,545645454545454E400, ,32902403825404E400, ,208358873464T795E=01,
+,510]19371265378E=03, ,62671263848834E«05, ,4327329421167Q0E=07,
+,175579566220B3Fw09, ,41529099926815E=12,,52977760638010E=15,
+,28162396623902E=18, ,5U545454545454E400, ,329C070L770523E+00,
P, 20B4TTN9821TT3EmQ], 514740226257 18Ew03, ,64655444450446E=05,

+, 1669068 1553560Em07,,205457528§2528E=09, ,55985683650846E=12/

SATA D(eL),N(62),D0(63),D(64),0(65),D0(66),0(67),0(68),0(69),
FOTO) 00T DT72),0073),D(74),DCT5),D(76),0(T7),0(78),D(79),
FOLE0),0(81),2(82).,0(83),0(84),D(85),0(86),0(87),0(88),0(89),
F2(90)/

+.2223R7U(BB1933Em15, ,B41T714R0799272E=18,,32655765072494E=21,
+ SUSUSLBASASIS4F +0(, ,52923047518706E400, ,20942105514480E=01],
+,R2158114179973E=03, ,66698403229501E=05, ,49787290971999E=07,
+,231751090T73032E=00, ;6929018377237 9 =12, 13309584971 259E=14,
188761524767 16Em17,,1070274009632F=20C, ,31159779644428E=24,
4545451545454+ 00, ,32RRBR2U6227955E408(, ,20930564082556E=01,
2393 dE367737E=03, ,67865312951772E=05, ,51892263386503E=07,
S1eNTh27G07935E=12, [ 80319349035222F-12, ,17105594522426E=14,
Punu3fhot23529% =17, ,21407E8898775% =20, 1100273956954 0F=23,
2467223355705 70 =27, ,45454545454545E400, ,39753050587769E400/
DATA T(9L),0(92),0(93),1(94),0(95),0(96),D(97),0(98),7(99),
NG S G DGR PG EDPMISTES PG LD FINGRU-S IS RN B I
GRSV SRR ISR DTSR PO FENGEESFINES B E D FE IS B LS I
OO R), 0 (LT ) T EY (1 L9) N (120)/

to 1910 A2 60R A e, (454545050505 A5E 400, ,397654933548680400,

NV IEVE RV,

e
@
]
®
a

2

L
*
*
*
*
*



11

+,22675100922608Ew0],,32438614977749E=03, ,45454545454545E+090,
+,397676391003506E+00, ,23921246939481E=01, ,46221334545758€E=03,
+,2794549253979%E =05, ,45454545454545E400, ,3978679{946874E+00,
+,249539754044867E201, ,53071848010798E=03,,47002589400275E=05,
+, 1488530335618 {Ea07, 45454545454 545E+00,,39811541979691E4+00,
+,208645895889546E=01, ,569988602933880=03,,59138340603510E=05,
+,28300608926316E=07, ,50812598486162E=10, ,45454545454545E+00,
+. 3370862821 7T1073E+00,,25000002282553E=01, ,59148858437864E=03,
+,66757562926758E=05, ,38720468964770E=07,,11144761163396E=09/

DATA D(121),D00122),D(0123),00124),0(125),D(1263,0(127),
+00128),0(129),00130),0¢131),00132),0(133),D(¢134),D(135),
$D0136Y,00137),00138),00139),D0140),D01413,D0142)Y,D(143),
FUCLA4),00145),00146),D(147),D0148),D(149),D(150)/
+,1260R8153728C00E=12, ,45454545454545E+00, ,3982265067941TE+00,
+,25183525013803E=01,,560880314013113E=03,,72359433014328E=05,
+,06725317100106E=07,,16719594503501E=09, ,31157527742621E=12,
+,23590370482110E=15, ,4545U845454545E+00, ,39824868901869E400,
+,2526581982776TE=D1,,61910411544859Em03,,76074711148850E=05,
+,52536344101559E=07, ,21317642667569E=09, ,50421345500406E=12,
+.54817688539028E=15, ,34187163161474E=18, ,45454545454545E400,
+,39826570956750E+00,,252878440910655F=0],,62494425734623Em03,
+,TRS4N296938450E=05, ,56743151456408E=07, ,2497386916976%E=09,
+,hR06656T7167T935E=12,,11216260688042E=14,,10236802978533E=17/

DATA D(IS51),20152),0(0153),D0154),0(155),D(156),D(157),
+D0158),0(0139),00160),0(161),0(162),0(¢163),0(¢164),D(16%5),
400166, DC16T),D(168),D(169),D(170),D(171),00172),D(173),
$O0LT4),001T75),D0178)/
+,397206579645%Em2], ,45454S45450545E+00, ,39804225208%567TE+00,
+,25341708058167E=01,,63151501325496E=03, ,B0807554649258E=05,
+,60354064402269FEm07,,28111642092611E«09, ,B4106334638657E=12,
+,16167280397671FEmild, ,19299941789907Em17,,13021732956413E=20,
+,37944453604700E=24, ,45454545454545E400, ,39R38448104318E+00,
+,25416762495%46Em0 1, 63697712076076E=03, ,82551983508228E=0%,
+,63149729838770 =07, ,30629R5870A8R8E=09, ,978086819{6440E=12,
+,208365631305%Fmly, 2932067957433 Ewl7, 26166497017204E=20,
+,13415328234784 23, ,30092796196223E=27/

DATA DCITT7Y e DCL78Y,D(179),00180),D(181),0(182),0(183),D0(184),
$OC1RS),0(186) 00187 ,0(188),0(189)1,0(190),0(191),D0(192),0(193),
+00194),0019%),00196),N(197),2(198),0(199),D(200),D(2C¢1),D(202),
FOL203),D(204),0(208),N(206)/
+e 5064516 12%032E400,=,21559395({7T4pT72E+00,=,30544696579492E=01,
e 5856451012993 2E+00,°,19115223031554E400,=,29473834786102E=01,
bm 10360347258 135 Ew02,»,58064516129032E+400,=,18233307297138E+400,
e 2823054447303 2E =1 ,=,12030039601232E=02,=,152080083348(5E=04,
t= SR 0 AL5161290832E 40,2, 17833069941496E400,%=,28475246894827E=01,
tm g U063 203 04R2F w2, » 2996411130460 0Fmny, =, 2134380411561 3E=06,
$e B8 A4S 01290328400, =, 17610367098315F+00,=,28260676645090E=01,
e 1532245831 03360w2,=,36586320114212E=04,«,39367529427935E=06,
bw, (6220005135199 0%, = S8064516129032E+00,=,174R33901149{1E+00,
b 277U 168220200 ent = 148575698991 8F=02,=,36301045393729E=04/

ATA D 0207),2(203),0(239),002100,D(211),0(2123,0(213),0(214),

02150, 0(218), S (217),0(2182),0(212),(220)sD(221),0(222),0(223),
PoL224),00220), 002200, (227),00(228),0(227),0(230),D(231),D(232),
+ 0 (233),0(230), 0 (2358),1 (236)/
tm 1A ASG0TS3577 RLepb  m 2ARTS58480728  Em0d, =, 5253123108335 2E=11,
be 5P 6516120320400, = 1739607123857 1F400,,2R084134226593E«01,

L]

tem 17032470621 7 bR ey, = 500455000%2993Ee0U, s 791377731206 7RE=06,

BUBLIOTHEES MATHE W ATIOCH CENTRUM

AMSTERDAM



12

te AT37475354772%  =(8,=,29589252318632E=10,=,52416294063507E=13,
b BBU64516129032E+00,%,17339878373842E400,=,28044727272007E=01,
t= 162%53143532453E=02,+,45810065724231E=04,=,7115%57880038546E=06,
e HAGURYT2TUBL40epR, = 33250355915939E=10,=,92392278190522E=13,
e  10625147%683957E»15,=,58064516129032E+400,=,17144173377009E400,
+=,2R015092938518E«01,=,16157222373633E=02,=,46227724829057E«04,
b= 7547922234554 UEw06,= ,T4BRU835017511E=08,=,45979053535837E=10/
TATA D(237),00238),0(239),00240),0(241),D(242),0€243),D(244),
+0(245),0(246),00247),0(248),D(249),0(250),0(251),D(252),D0(253),
+00254),0(285),0(256),0(257),D(258),D0(259),0(260),D(261),0(262),
+00263),0(264),0(265),D(266)/
4o, 170605137727 70E=12,%,35056663086597F=15,«,30628886618{91E=18,
+m,58064516129032E+00,=,17300234166294E+00,=,27328009024214E=01,
te ,15,56021545051E»02,=,41367453292114E=04,=,65884289780074E=06,
te 6553614631 7341E=08,»,42091025159364Ew10,=,17479977056317E=12,
+e, d5368406820998Ew]5,=,66928703208412E=18,=,42844311155752E=21,
tm ,B060516129032E400,»,17229366960984E+400,=,28800272381574E=01,
4w 1851 74430420Ew02,=,59976978730906E=04,»,11090566945359E=05,
tm, 1274593569223 0Em(7,=,9515R8694657869E=10,=,469694064T76975E=12,
e, 1821806413652REml,m 311309521 0850BFwi7,»,36466961532119E=20,
1=, 18044934368123E=23,,15806451612903E401,,15059165323919E+01/
TATA D(267),2(268),0(269),0(€270),D(271),D(272),0(273),D(274),
+2(275),0(276).0(277),0(278),D(279),0(280),D(281),D(282),0(283),
$(284),D(285),0(286),0(287),0(2R8),0(289),D(290),D(291),D(292),
$0(293),0(294),0(295),D0(296)/
+,150978945451 0198400, ,15806451612903E+01, ,14814748109607E+0),
+,19%16531414T798E400,,6233416339R843E=02,,15806451612903E+01,
+, 14726556536 1A5E+01,,20074218117966E400, ,86336976630508E=02,
+,11558G84%587197E=03, ,15806451612903E+401, ,14686532B800601E+401,
+, 2 U9RI2ETIST208E+00,,99938118863291E=02,,19922348036296E=03,
$,139192014489220=05,,15806451612903E+01,,14664262516283E+01,
2067757 1533935E+00,,106B0275405545Em0], ,24933405067263E=03,
t 268550371 )1666E=05,,10854850713601E=07,,15806451612903E+01,
+,146515648172430401, ,20774599475456E400,,10971861052267E=01,
+,27524368B30002Em03, ,35403656934423Em05, ,22575321236761E=07/
TATA D(297),2(228),0(299),0(300),0(301),0(302),0(303),0(304),
$N(305),0(0306),0(307),0(308),0(309),D(¢310),0(311),D0(312),0(313),
+00314),0(315),0(316),N(317),D0(318),0(319),0(320),D(321),D(322),
+(323),0(324),0(325),D(326)/ :
+,56571487802585F w1, ,15806451612903E+01, ,14642832935319E+01,
+.209562131017305400,,11509566107375E=01,,31007288163828E=03,
t,15A30786133392E=05, 3707941 130883E=07, ,15682590950194F=09,
b, 6733430035588 F =12, ,1580645161292036+401, ,14637213643836E401,
FoPLRYBS321101E+00,,1153641674770%  =0], 31T7R4p14BT05U8E=0T,
FLHG116T2C04TCNPEe(5S, 4452819608048 1E=07, ,23505328331393E=09,
Fohni7 01843380712, ,7923943R1066385E=15, ,15806451612903F+01,
$,140176d3104182F 401, ,21191206RRA5B4F 400, ,11R05056288024F=01,
+, 3344074233904 79E =03, 84414235293 880E=05, ,532180864d34111E=07,
4,350 754850191903F =00, (12244057386 754E=11, ,25181064036724Ew]l/
CATE N(RRT), 0 0323),0(329), 00 (330),0(331),(332),n(333),00334),
FOCA35), 008360, 0 (337),0(338),0(0339),D(340),0(341),D(342),0(343),
FO0RAL) 0 (345) (346, 0 (307 ), 0(348),D(349),0(350),D(351),(352)/
+,219770 00728 10F=17,,15R064516127903040, ,14633254223081E+01,
WD AERTT 3BT 40y, ,11579454550239E=01, , 3285730552908k e03,
LS A5RRA ST AU m) G, S5 371977519294E=07, ,375450R3692440FE =09,
g HE L nEan 325 e, JUPAR U390 7 o6 Emld, 6446583268541 14E=1T7,

+
¥
*
b IR LARGRTIRAL0NE =20, L 15ACAL5]1612503F 40, 14626162502550F+01,
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+,21134531244915E400,,12108121568554Em01,,35894153745450E=03,
+,6260402262U067 {E=D8, ,6919336261629T7E=07,,50198179261835E«09,
+,24253292036317E=11,,77310365461803E=14,,15613921810526E=16,
+,18102819599185E=19,,91776107476727E=23/

UATA D(353),0(354),P(355),0(356),D(357),0(358),0(359),D(360),
+0(361),0(362),0(0363),0(364),0(0365),0(306),0(367),0(368),D(369),
+0(370), 0(371),0(372),1(373).0(374).D(375),D(376) D(377),D(378),
+D(379),0(380),0(381),0(382),D(383),D(384),0(385),D(386),D(387),

+0(388), n(389);ﬁ(3903:p(391)1’(392)15(393)ID(SQQ);D(395)19(396)0
+D(397),0(398),0(399),D(¢400),D(401),D(402)/
+1-1110051
100l as0a5,03304085 ,Em09,1,,1,50:,5,79027358,E=09,37089254,E=10,
#1,01,10,5,85605575,E009,56773923,Em10,12758716,E=1lslasler0a5,
+B9018496,E=09,67947003,E=10,23143226,Ew1]|,2898388,Eei12,1,+s1::0,5,
+9102%4808,£e09, 74822425 ,E=10,30567580,E=11,6072004,E»}2,

14679323, Emld,1,016s0,5,92308224,E=09,79335426,E«10,35849723,E=11,
+8800161,E=12,11108474,E=14,5648779,Em16,1451¢¢05,93178948,E=09,
+B2US 15T E=10,396B80345 ,Ex11,11000301 ,Em12,17552367.,E=14/

CATA D(H403),D0404),0(405),00400),00407),00408),D(4C09),0(410),
$0(411),0(0412),00413),00414),00415),D(416),D€a17),0D(418),D(419),
+@(4 0), D(ﬂal).D(uaa),ﬁ(ﬂ23),@(424J,0(425),D(AE&),D(HZ?).D(QEB),
+0CA29),DC430),D0431),00432),D(433),D(434),D(435),D(436),00437),
+T(A38),0(439),00440)/
+1a97e734,&.1b;5293311.E-18,1,,1. 0,5,93797465,E=09,84690176,E=10,
$U252d183,E=11,12746945,E«12,23355 062 E=i14,25642831 E={6,
+18U95707 E=18,3962808,Em22,1,114s0:5,94252811,E=09,86352191,E=10,
+uub838u2.5-11.14135170.E-12,28359079.5-14o36242802 Emib,
+285°1262,E-18.12691526.E~20.24249737.5-23.1.,1..0.5,94597848.E~99p
+8761929 E=1G,46357872,E»11,15246910,F=12,325997584,Ewi4,
446107927 ,L=16,42819928 Ee«18,25110371,E=20,84319465,E=23,
+]12357108 . L=25/

GRNDER=INFO(12)
w0 (9)
IF(TFO(13),LT,2) GOTY 5¢
M E1T76x(URDERe )4 1x(M41)/2=3
P 1 IR AN
BT
D 1L Jsi,
”1PJ-’1fJ
HArderoe]
;\(J)-t\({.lPV)
ﬁ(JDE“( 2PrJ)
GOROUTINE
IF(H, 0 T 2) GaATy 20
By ="J.U
5043800
) ”"’:1‘37‘;-.()*FL TAT(OPDER=1)
SN (V42,04 (=P (3) 40 (44804
=L/ ‘—f(”u-d SY/DD)ak2) /(2 +E)
(sl u/m0el ()
(’*13=3(J)/|A(')
C( =17=F(5)/LA(’)
IS0 ()0 (Y Y/LALYD
Sley=lP(1)
TF (7,07, 2) GUTo 35

X

4

£\

v

3]

SN a1

§

Is
~—

[ &g
r

e



60

14

RETURN

Mt D

NOde Jsp,
MR siiegm]

SSUREISEN
C(J)ZP(MFP2'1T) /5 (1P 1M)
LACJ)=5(1P21T) /S (MPLAT)
COLTINNE

RETURY

E352+4Ma('4]1)/2=3
i';:*:!g}._d*l

0o 6y Jai, '™

SRUANE RN
S(1)sD(“1IRT)
BElLY®C,0

E(2)=0,0

C()m0,0
LAC)=5(1)

Miigte |

8 70 J=1,0M
MRgit]sty et

AR SN IS SN
LACI)=S(IP2MI) /S (MP1HT)
Cesn

PETURY
EIC
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SUHROUTINE POYERM(N,Y,Y1,YXE,DY,DY1,F,SIGMA,APR, IFLAG, INFOD)

Cr ks Ak A A R R AR R A AR R R AR AR R AR A AR R A A AR R A A AR R R AN A AR R AN AR AR AR AR A AR AAR AR A AR

C*
Cx
C
C»
Cx
Cx
L
Cx
Cx
C+
C*
Cx
L*
C
Cx
Cx
C*
=
Cx*
Cx
C#
Cx

(40 )

IF 04 E4TRY SIGHA(1)s0 POWERM CQMPUTES AN ESTIMATION OF THE SPECTRe
AL RADIUS OF THE JACOBIAN BY MEANS OF AN ADJUSTED POWER METHOD,THE
ITERATION 18 STAPPED IF TW0D SUCCESSIVE ITERATES DIFFER RFLATIVELY
LESS THAM 0,001,TiHE MIMIMAL NUMBER 0OF ITERATIONS I8 S,IF THE COMPU=
TATION DI HQT SUCCEED WITHIN S0 ITERATIONS AN ERRDRHESSAGE I8 GlvVe
E'l,A3 A SAFETY MARGIN,THE LAST ITERATE IS EMLARGED WITH 10 PERCENT,
TiE RESULT IS STNRED IM SIGMA(L),

IF Ot ENTRY SIGHA(1) NOT ERUALS 0 POWERM PERFORMS THREE ITERATIONS
HITH THE ADJUSTED POYWER METHOD,IF THE THIRD ITERATE 1§ MORE THAN 10
PERCEHNT SHALLER TilaAM SIGHA(2),THE ITERATION 185 COMTINUED AS IF
SIGHMAC(L)=¢,IM THIS CASE THE THIRD ITERATE I8 STORED IN SIGMA(2),

THE PUHER METHOD REQUIRES THREE WORK ARRAYS,WE USE YXE,DY AND DY1,
WHERE DY AND DY1 ARE OQVERWRITTEN,OM ENTRY OF THIS ROUTINE DY AND
DY1 COHTAIN F(Y) AT YaY(X) AND YsY(XeH),RESPECTIVELY,THUS ON EXIT
OF THIS ROUTIME THO EXTRA EVALUATIONS OF F ARE NECESSARY FOR RESTO=
PING THE NRERIVATIVES,

THIS CODE USES THE CDC SYSTEM SUBPROGRAMS RANSET AND RANF,GENEe
RATIMNG RAIDOM VALUES FROM THE INTERVAL [0,1], THE ARGUMENT OF RANF

L B B R B 2E B BF B b BF N CEE S NF B N CEF 3

*®

I5 DUAHY aND IGHMORED RAMSET INITIALIZES THE GENERATIVE VYALUE OF RANFa#
R A R Ak AR AR AR A AR KRR KR KRR AR R AR AR AR R A AR A A AR AR RAR A AR AR KR AR AR AR R KA AR %

CTHENSTION YO ,YLOD YXE(MN) DY (M) DY L (N, SIGHA(R2) , INFO(15)

CEAL ORI, HNRMY

IF(IAFN(2) ,ED,3) THFO(2)=1

INFO(1IS)80

TOLLIP=l F+4%xAPR

SIG"=0,0

S0s0,0

CALL RANGET(0)

00y Isl,d

RABR, *[LAHF (IDU ) wmit

YXFE(I)=DY (D)

IFCY(T),EQ0,0) DY

IF(Y (L) iIE.0,0) DY

DYI(I)=DY (1)

S0=230+LY(I)*IY (1)
to COHTIIIE

AP0 TOLLIPASURT(50)

IF (DR O LT TOLLIPYNORMO=TOLLIP

CALL FLJ,HVIJ

THEN(7)=INFO(T7)+1

THEN(R)s]FN(8)+1

(1)sRA%TOLLIP
(1)=Y

)
1SY(I)a (1, 04TOLLIP®RA)

)5
1) GNTH 2y

[A¥]
U

‘fl(l)



“NRARSORT(50)
5161412516
STGHEIOR!/HARMY

TF (K EQ,3,AND,3TIGHA(CL) ,EQq0,0) SIGMA(2)=5IGH
IF (K, LL.2,"R,SIGMA(1),ER,0,0) GOTO 49
IF(31G1",GE,0,945156HA(2)) GATO RO

L)

7y

8¢

£

21

SIGIHA(2)=SIGH
STGHA(L)RD,

IF (ALS(SIG11=SI61)/SIGM,GT,0,001,0R,K,LE 4) GOTO 50

SIGHALL)®1,1#SIGH
6ATN Ay
N1 sy Iml, !

YXECD)SDY (D) +(YXE(I)=DY1 (1)) /SIGH

CALL F(MN,YXE)
THFO(TISINFO(T) +1
TIFO(R)2INFO(8) +}
CNUTIMUE

N 95 Ial,

DY (D) RY (D)

CALL F(m,0Y)
TNFO(TYSINFO(T7) +1
TYFO(R)BINEO(R) +1
IF(THFI(L3),71E,0)
RE TR

g LD 110 Ist,M
oooYICI)=sYL(D)

CALL F(N,DY1)
[IFO(7)aIUFO(7)+]
THEN(R)=INFN(B) 41
QETHIN

£l

GOTO 100
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SUBRDITINE MAXDEG(TOL,APR,IFLAG, IMNFO)
Cha kA A kA A AR R AR R R kR AR AT R A A AR R AN R A AR AR AN AR R AR AR R AR AR R AN ARR KRR AR R A kA A
Cx 1.0 WAXREL THE “AXIMAL DEGREES WITH RESPECT TO THE INTERMAL STABILI= =
Cx TY CODITION ARE COMPUTED, IF QHNE OF THESE MAXIMAL DEGREES FALLS *
Cx DUTSTDNE THE RAMNGE, AN ERRORMESSAGE IS GIVEN, %
C*ttk*k*t*A’*'ﬁ*****#*_**********************‘k************f*****‘**ﬂ'********
CIHENSION AC11), IVF0(15)
DATA 2(1),7€2),2(3).0€4),8(5),0(6),8(¢7),0(8),9(9),0¢10),0(41)/
+3,E1,1,ECoT,E2,4,E3,3,E4,2,E5/)9,E5,5,E6,3,E7,2,E8,1,E9/
FeTOL/ZAPR
D0 10 Is2,12
J=13-I
[FeR(t) LEGJE) GOTD 20
1¢ CRUTIMUE
IFLAG=2
SETURHN

20 IHUFO(10)=14=]

GO 3u I=s2,1°?

Jeilel

IF(1ut, 0% (J)LE,E) GOTO 4d¢
30 CRITIVUE

IFLAGe?

RETLURN

4y TNFC(11)=14e]
RETIHRM
£
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SJHBROUTIME MINDEG(H,SIGHA,INFQ)
C*.kttikkttt*kltt*tt*kt*t*tttk*tt*#*t**tttt*******t***t*tt***t***t**tttt*
C* “I'DEG DETERMIMES THE MINIMAL DPEGREE M WHWICH STILL GIVES RISE TO A =
C« STABLE I“TEGRATIO! STEP, *
C—*t***ﬁk*t#tktkkktkttittx*t**i***tk**ﬁkt*****ﬁ*t**ttt**t*t**titi***tttti

DTHENSION INFO(LS)

LOGICAL START

L2INFO(L12)+9

WAXRTHFOCL)

STARTSINFO(13),LT,2

IF(,HUO0T,START) BETACE5,15+2,86xFLOAT(1=INFO(12))

DO 10 i3, MAX

Rz

IF(START) BETAC=0,03&xR1+0,44

IF(H, LE,PETAC*RMxRM/SIGHMA) GOTO 20

1¢ CONTIHUE
m:b*.',QAx

20 INFO(9)=l!
RETURY
ENE
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SHRINTINE STEP (I, Y,Y1, YE;YXE,HY, YU, HaF,CaLA,D, INFO)
Qt*;\t*t*i*ﬁt*it!k*ti**t*ttttk******i***tti****t**tkt**t*k***t***t*******
Ca BTEP COITALIS THE ACTUAL INTEGRATOR,FOR CONVERTENCE, THE ONE=STEP %
C* SCHEE IS ALSD FORMULATED A5 A THREESTLP SCHEME RY THTRODUCING ZE= »
L el ACACETERS O EXIT GOF THIS ROUTINE THE NEYW CALCULATED SCLUTION *
C* VECTOR I8 COMTAINED T YXE, *
kA A R R AR R AR K A AR A AR AR A AR AR AR AR KA R A AR AR AN A AR R AR KA AN R KA A A KR AN KA RKKAR

2 S

LTOEOSION YO, YLOD Y20, YXE () ARY (M), 0Y L),

4LA(12),C(12),ﬂ(c3 1+ Fﬂ(lS)

2 TUFD(9)

D21, 375@ 0xFLOAT(TIIFO(12)=]1)

IFCTFN(13),LT,2) D&l,0

o1y I=l,

13 vxr(1)~DY(I)
IF (i Bh,2) GOTI 40

"'?5-3“:”?

-
-

)
)+ ICAPY 1 (1) ¢ ILAXYXE (D)

B O | I~ O | ]
f\-’-‘r\\—lb—

A
’
I

T e TN L

W
~
2
—
—t
- m

CALL F(h, TXE)
[F(7)=INFN(7) 41
30 CDNLTIIVIE

r

1‘41“

nA

Cl TV EL =l L .

Y L L e Y
e g1 #= — 3 T

™= i

771'“

(g Y}\ES

(

= (

* (2 3*'

k|

£

TIELENT
1 i

fe YT
-
—~

e
b Ag

.
!°(13:%‘11*V(I)+? TaY I OI 40 Y2 (1) 400l Y1 (I) 4L AxYXEC(TD)
_T v

£ -
i

i

(&4
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SUBROUTIHNE ESTIMA(H,Y,Y1,Y2, YXE,TOL,EPS,ERROR, INFD)

R Ak KAk k R AR R R AR AR A A AR AR AR AR AR R R R AR AN AR KRR R A AR AR R AR R AR R AR R AR A X
Cx ESTIMA CALC''LATES THE LOCAL ERPOR BOUND EPS=m(i+NORM(Y))*TOL FOR THE »

C*x MIXED EPROR TEST AHD ESTIVATES THE LOCAL ERROR ERROR,

*

ok kR A A AR AT R R AR R A R A R A A R R AR R P AR A A RN AR R AR AR AR R AR AR AR AR R A AR N AR A AR R AR AN KR

(@)

(Y

2h

DTUEASTON YOI, Y)Y, Y20:1) , YXE(M), INFO(15),CONET(2)

INTEGER DRDER
CA:8T(1)=2,85
CONBT(2)m0,49
ORDERsINFO(12)
EPS=y,0

ERROR=0, 0
IF(NPDERLET,2) GOTH 20
BN 10 I=t,0

YI=Y(I)
EPS=EPS+YIxY]
ExY1(I)»Y1=YI+YXE(])
ERRORRERROR$EXE
CONTIHUE

GOTO 4y

0O 3y ISl

EPS=EPS+Y(1)aY(I)
E2eY2(I)+3,0Kk(YI(T)=Y(I))+YXE(C])
ERRORSERPOR+EXE

3 €A TIONE

EPS=TNL+TUL*SRRT (EPS/FLOAT (M)

ECRONaCOUST(OREER)xSART(ERROR/FLOAT (1))

RETHN

B
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SURROUTINE NEWH(EPSERR,HALD, i1, ALFA, HHAX, INFNO)
C,itt*k#t*tﬁ*t*kitttt**tkt***x*t**tk**kt**t*t**kt***tt*t**t*t*t******ﬁ***
C* Ipve DELIVERS 4 MEY STEPLENGTH AMD THE FACTUR ALFA BY WHICH THE *
Cx STEFPLENGTH I8 CHAMGED, EPSERR DEMOTES EPS/ERROR, *
C Ak kAR kAR AR R AR R AR A AR R R R A AR A AR A A A AR AR AR A A AR KA AN KA AN ANR RN AR AR AR AR AR ARN

PICENSION HMAX(2), IHFO(1S)

IMTEGER ORDER

ALFARL,0

IF(IUFO(LY) GE,3,0R,EPSERR, LE,1,0) GOTO {0

RETURH
c
{0 ORDEReINFO(1Q)
ALFASEPSERRPwx (1 ,/PLNAT(DORDERY1))/(2,0=FLOAT(ORDER») %0 ,4)
IF(ALFA,GT 0,9, AMND ALFA,LT, 1,1) ALFARL,0
IF(ALFAGHE1,0) GATD 2¢
c

RETURN
26 IF(ALFA,GT,3,0) ALFAB3,0
IF(ALFALT,0,1) ALFASO,!
HeHOL DAALFA
IF(H,GTJMAX(DRDER)) HsHMAX(ORDER)
ALFAZH/ROLD
PETURN
£
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SUERDUTIHE THTERLCH, Y, Y¥Y1,Y2,DYL,F,ALFA, IHFO)

Ak kA A kR AR R R AR R R R A R A R A A A A A R AR R A AN R AT AR AR R A AN AR AR A AR A AR AN A AR AR AR AR R A X

Cx TUTER] COUPUTES VALUES FOR Y(XwALFAXH) AND Y(Xw2%ALFA®H) FROM Y(X),

Cx Y (X=i) AP Y(X=2H) BY OQUADRATIC INTERPOLATION,AND COMPUTES THME DERw *

C* IVATIVE AT X=i BY CALLING F,
Ak ke ke AR KA R AR KR AR R RN R KR R R ARk AR AR AR AR AR AR A AN AR R AR AR R A AR R AR R AR AR A AR

DIMEZSICH Y, YLD, Y200 ,DYL(N) , INFO(1S)

REAL i)

Mz, =ALFA
CIEEC?*’%J'I.)*(""U'Z-)/Z.
Climhitla(g=nu)
ClosiUn(lite] /2,
Milap w2 xALFA
C22=(Mlile] )% (Mle2,) /2,
C21ehia(2, =)

CRostilla (el ) /2,

o0 10 l=i.

cYosy(l)

CYieY1(I)

cygaye(l)
YI(I)sCI2xCY2+0 1 aCYL+C10#CYQ
CYLI(I)sYL(ID)
Y2(I)=CR224CY24C21xCY1+L20%CY0

S EDETINE

CoLL F(H,LYL)
IHEQ(7)=IaF0(7)+1
ITYFO(14)=0

RETURN

%

*®
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SUSROUTINE INTER2CN,Y,Y1,Y2,YXE,A)
A h AR Ak R AR AR R AR AR AR R A AR AR A A A R R R AR AR N R AR AR AN R A A N AR AR AR R AR RAR A AR AA R AR
Cx INTERZ COMPUTES THE SOLUTION AT THE QUTPUT POINT XEsXwAxH BY QUADe
Ct RATIC THTERPOLATION BETHEEM Y(X),Y(X=rH) AMND Y(Xw2H),THE RESULT IS *
Cx STOREDR IH YXE, *
o R A AR A R A R R AR AR KA R R R R AR AR AR A A R R R R AR AR A AR A AN AT R R AR R R AR A AR AN AR AR R A AR R

DIMEHSION Y(MY YL (), Y2(H), YXE(N)

REAL MU

e, =A

C12=(”U*lo)*(“u'2.)/2.

Clistiilx(2,=NJ)

Clositx (U=l ) /2,

0o 10 I=1,7

10 YXECIIRCL2xY2CI)+C11xY1(IY+CLO%Y(])
RETURN
gD
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Cﬁ**k***i_*i‘*****k*t***i‘***k*i*‘k***t***t*t****************t*************i
Cx SUHIFT SHIFTS THE X AND Y VARIABLES AMD COMPUTES F(Y(X+H)) *
Ak kAR A kA AR A AR AR R AR R AR AN R A A AR AR AT AR AR R R AR AR AR AN R AR ARR AR AR AR A kAR ARk AN

DIMENSION YO YL O, Y2(N) , YXE(N) »DY(N),,DYL(H) ,INFD(1S)

D016 Isl,t

Y2(1)=Y1(I)

Yielysy(cl)

Y(I)=YXE(I)

eY1(el)=soY (D)

CY(I)sY(I)

10 COMTINMIE

Catl F(n,DY)

INEQ(7)2INFO(T)+L

XeX+H

RETURY

E”D



