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Runge-Kutta type methods for the integration of hyperbolic differential 
. *) equations 

by 

P.J. van der Houwen 

ABSTRACT 

First and second order Runge-Kutta formulas are presented for the inte­

gration of the large systems of second order differential equations arising 

from the semi-discretization of certain classes of hyperbolic differential 

equations. These formulas are characterized by their low storage require­

ments and their relatively large real stability interval. Numerical experi­

ments are reported which show that the new formulas are superior to the sta­

bilized Runge-Kutta formulas for first order equations both with respect to 

accuracy and to the computational effort involved. 

KEY WORDS & PHRASES: Runge-Kutta formulas, second order differential equa­

tions, hyperbolic equations, extended stability region. 

*) This report will be submitted for publication elsewhere. 





I • INTRODUCTION 

Let 

(I. I) 
2-+ 

d y = 

dx2 

-+ -+ 
f(x,y) 

represent a set of differential equations of which the real-valued vector 
-+ 

function f belongs to a class of sufficient differentiability. In order to 

solve the initial value problem for this special class of second order equa­

tions, we do not convert it into an initial value problem for a larger sys­

tem of first order equations as is usually done in the case where the right 

hand side contains first derivatives, but we try to exploit the special form 

of the equation (cf. HENRICI [3,p.169]). We shall concentrate on the case 

where·the Jacobian matrix of the right hand side has its eigenvalues in a 

long strip along the negative axis. Such equations arise when hyperbolic 

equations are discretized with respect to the space variables. In many hy­

perbolic initial value problems, it suffices to use a first or second order 

accurate time discretization. Therefore, we will confine our considerations 

to integration formulas of first and second order. In particular, formulas 

of Runge-Kutta type will be considered, i.e. formulas of the form 

-+(O) -+ 
Yn+I = yn, 

. I 
-+(j) -+ -+' 2 J- -+ -+(,f) 

(I. 2) Yn+I = yn + µ.h y + h l >.. • ..e_f (x +µ ..e_h , y · 1 ) , J = 1,2, ... m, 
J n n n l=O J, n n n+ 

-+(m) -+' -+' m-1 -+ -+(l) -+ I Yn+I = Yn+I' Yn+I = yn + h S..e_f(x +µ..e_h ,y 1), µo = 0. 
n l=O n n n+ 

Here, h is the steplength x 1-x, and yn', yn'' n = 1,2, ... represent nu-n n+ n 
merical approximations to y(x),dy/dx at x. 

n 
The consistency conditions for scheme (1.2) are well known (see e.g. 

[3]); first order consistency is obtained for 

( I • 3) 
m-1 
l S.e. = I, 

.t=O 

second order consistency when, in addition, 



2 

rn-1 
(I. 4) I 

l=O 
A = m,l 

rn-1 

I s ,e_ ]J ,e_ 
f=l 

When scheme (1.2) is applied to the test equation 

(I. 5) 
2➔ 

d y 

dx2 

➔ 

Jy 

we obtain the relation (cf. ANSORGE and TORNIG [I]) 

(I . 6) 

2 
where Risa matrix-valued function of the argument h J. This function is 

n 
defined by the scheme 

(I. 7) 

R. (z) 
J 

R(z) = R (z) 
m 

j 1 , 2, ... , m-1 , 

The elements of the matrix R(z) are polynomials of degree rn in z. We shall 

call R(z) the stability matrix associated to scheme (1.2). Let z be a com­

plex number and a.(z) denote the eigenvalues of R(z), then we define the 
J 

region 

( I . 8) {z IJa.(z)! < I, j = 1,2} 
J 

as the stabili'.ty region of scheme (1.2). When all points oh2 with o E !::., !::. 
➔ n 

being the set of eigenvalues of the Jacobian matrix 3f /ay, are within the 

stability region, we call scheme (1.2) stPongly stable. When the Jacobian has 

one or more eige:walues 6 such that the eigenvalues a. (h2o) of R(h 2o) are 
J n n 

on the unit circle we shall call (1 .2) weakly stable. 
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In the following sections we try to maximize the length of the negative 

stability interval 

(1. 9) (-S,0) = {z \ z < 0, !a.(z)I < I, J 
J 

I , 2} • 

The corresponding stability condition becomes 

(1.10) 

➔ 

provided that clf/clyhas a negative eigenvalue spectrum. It turns out that for all 

formulas of type (1.2) with optimal interval of stability, the maximal "step­

length per function evaluation", to be denoted by heff, is close to the value 

2//1 o 1 1, irrespective the number of stages involved. The formulas only max 
differ by their order of accuracy and by the way of damping of the higher 

harmonics in the numerical solution y. This result implies that within the 
n 

class of stabilized formulas of type (1.2) we may choose a formula using 

only a few stages without lack of efficiency. When we compare the efficiency 

of the formulas proposed in this paper with that of the stabilized Runge­

Kutta for first order equations, we may conclude that we have gained a fac­

tor greater than 2. For when equation (I.I) is converted into a first order 

system, application of an m-point, second order Runge-Kutta method with max­

imal ,:mag·inm0 y stability boundary (note that the Jacobian matrix of the 
➔ ➔ 

first order system has imaginary eigenvalues when clf/3y has negative ones) 

results in the stability condition (cf.[5]). 

( I. 11) h < 
n 

m-1 

JI 8 l I' 
max 

m 3,5,7, 

Hence, heff (m-1) / (m/iolma~), whereas the new formulas yield heff 

= 21✓16 I I 

max 
In section 2.3 a modification of scheme (I .2) is discussed which is 

• • ➔ ➔ (f_) 
function evaluations f(x +µ 0 h ,y 1), 

n ,L n n+ 
characterized by the fact that all 

preceded by parameters A. f which are not involved in the consistency con-
J, * ➔ (,t) * 

ditions, are replaced by the vectors J y 1 where J is some approximation 
n+ 

to the Jacobian matrix al;a; at the point (x ,; ). For sufficiently close 
n n 

approximations the stability theory for these modified formulas is identical 
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to that for scheme (1.2). We shall maximize the interval of stability for 
➔ * ➔ a class of first and second order formulas requiring one f and (m-2) J y 

evaluations. These formulas contain acontrol function by which the damping 

of the higher harmonics can be monitored. In case of mild damping both 

classes have~ stability boundary close to 4(m-I) 2 • Thus, when the evalua-
. * +(l) . 1 . tion of the vectors J y 1 requires ess computational effort than the 

n+ ➔ ➔(l) 
evaluation of the vectors f(y 1), the modified formulas have a larger ef-n+ 
fective step length heff than the original ones. In this ceonnection we observe 

that other classes of stabilized Runge-Kutta formulas such as those given 

in [5], can also be economized in the way described above. 

Finally, in section 3, some numerical experiments are reported. More 

extensive tests will be published in [2]. 

2. FORMULAS WITH EXTENDED REAL STABILITY INTERVAL 

First of all we remark that the number of free parameters, relative to the 

number of right hand side evaluations, can be increased by one whenwechoose 

(2. I) L O = Bo = o, 
J' 

j = l,2, ••. ,m, m ~ 2. 

For by this choice we obtain an (m-1)-stage formula containing m free para­

metersµ., m(m-1)/2 free parameters\. land m-1 free parameters Bl. Thus, 
J 2 J, 

together (m +3m-2)/2 parameters at the price of m-1 right hand side evalua-

tions, whereas scheme (l • 2) contains (m2 +Sm) /2 free parameters at the price of 
2 ➔ 

m right hand side evaluations, i.e. (m +3m-4) /2 parameters for (m-1) f evalua-

tions. In the following we assume that (2.1) is satisfied. 

Furthermore, since one of the JI).ost important classes of equations to 

which stabilized Runge-Kutta methods are applied, is the class of the very 

large systems originating from the semi-discretization of partial differen­

tial equations, we are interested in schemes with reduced storage require­

ments. Therefore, we tried to construct formulas with 

(2. 2) >. j ,l = B .t = O , f < j-1, J = I, ... ,m. 

It turns out that this choice does not restrict the interval of stability. 



5 

2.1 First oder formulas. 

The order equations for first order accuracy are (cf.(1.3)) 

(2.3) 

The corresponding stability matrix R(z) is given by 

(2.4) 

( + 'm,m-1 R21(z) 1 - 'm,m-1 + 'm,m-1 R22(z) 

\ R21 (z) R2/z) 

R(z) 

where (m > 2) 

= z(l+A I 2z(l+A 2 3z(I+ ... (l+A. 2 1z) ... ), m- ,m- m- ,m- , 

I + z(µ 1+A I 2z(µ 2+A 2 3z( ... 
m- m- ,m- m- m- ,m-

form= 2 w~ have R21 (z) = z and R22 (z) = u 1 z + I (note that by our choice 

(2.1), the degree of the polynomials R21 (z) and R22 (z) is reduced to m-1). 

The eigenvalues of R(z) satisfy the equation 

(2.5) 

where 

(2.6) 

a 2 - S(z)a + P(z) 0, 

S(z) 2 = 2 + a 1z + a2 z + 

+ TI Z 
2 

m-1 
+ a z 

m-1 

2 m-1 
+ • • • + TI Z 

m-1 

and where the coefficients o. andµ. are given by ( m 2 2) 
J J 
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m-1 
cr l = A I + µ I , cr. = . II. I A. . I (A I + µ . ) m,m- m- J i=m-J+ i,i- m,m- m-J 

m-1 
,r I = cr I -1 , ,rJ. = . II . I A . . I ( A I + µ . -1 ), j = 2, 3, ••• , m- I. i=m-J+ i,i- m,m- m-J 

These expressions for cr. and ,r. are easily converted to obtain the Runge-
J J 

Kutta parameters in terms of cr. and 1r.: 
J J 

A = a - µ A = a2 - ,r2' A •• I m, m-1 I m-1 ' m- I , m-2 J , J -

a - 7T 

= m-j+l m-j+I 
0 - 7T 

m-J m-j 
a . 

µ = m-J ~ + µ rt = ,r - o . cr .-,r . - vi ~-1' vm m - ' 
J m-J m-J 

J = I, 2, ••• ,m-2, 

where apart from the coefficients cr. and 1r., the parameterµ 1 also is a 
J J m-

free parameter. We shall choose 

(2.8) = 2' 

by which one of the second order terms in the truncation error vanishes. 

The coefficients cr. and ,r. are at our disposal for maximizing the stability 
J J 

interval. 

THEOREM 2.1. The length of the negative stabiUty inter>val of scheme (1.2) 
2 

satisfying (2.1) and (2.2) cannot exceed the value 4(m-I) • 

PROOF. The stability interval on the z-axis is determined by the condition 

that the roots of (2.5) are within the unit circle, i.e. by the inequali­

ties 

(2.9) Is I < P+ I' p < I' z < 0. 

Hence, a necessary condition is Isl ~ 2. Thus, we are looking for a polyno­

mial S(z) of degree m-1 in z which remains as long as possible between -2 

and +2. This type of minimax problem is well known and is solved by 

cr 1z 
S(z) = 2 Tm-I (1+ 2), Tm-I (w) = cos[(m-I)arcos w], 

2(m-I) 

where o 1 1s still a free parameter. 

' 
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2 
This polynomial remains between -2 and +2 in the interval [- 4 (m-l) OJ. 

0 , 

From the definition of P(z) it follows that o 1 ~ I; hence o 1 = I 1is the 

optimal value and S = 4(m-I) 2 is the maximal length of the interval of sta­

bility. 

The proof of this theorem suggests to choose. 

p(z) = I. 

However, this choice results in a weakly stable method since 

Therefore, we introduce a function p = p(z) assuming positive values less 

than I in the stability interval (-S,0), and we replace (2.9) by 

( 2. I 0) p $ P, - s < z < o. 

It is easily verified that these inequalities guarantee that la(z)I $ /p(i). 

Since it is sufficient for a stable behaviour that pis close to unity 

provided it is always less than unity, we simplify (2.10) by replacing it 

with the conditions 

(2. IO') Is I $ 2p, p = p' - S < z < O, 

which is only slightly more restrictive than (2.10) asp ➔ I. In (2.10') 

the function p may be freely chosen provided that pis a polynomial of 

degree m-1 in z with 

p (0) = I, p I (0) = (JI -I. 

The function p will be called the damping function of the method and is 

assumed to be an increasing function in the stability interval (-S,0); the 

maximal deviation from unity will be denoted by E: , i.e. E: = 1-p(-S). 

For m=2 and m=3 the maximization of S in (2. IO') is easily established·. 

Omitting the details we obtain for m=2 (cf.[4]). 
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4-2£ 
cr 1 = 4-3£' 

The corresponding integration formula reads 

➔ ➔ ➔' .!. 4-£ h2£ (x 
Yn+l = yn + h y + 

n n 2 4-3£ n n 
(2. 11) 

+ .!.h ➔ + 
2 n'yn 

➔ f ➔' ➔ .!.h ➔ + 1 ➔' hf (x + 2h y ). Yn+l = yn + 2 n'yn n n 

The stability condition reads 

(2. 12) 

max 

3 2--£ 4 as 
{Io I max, 

nn 

£ -r O. 

The damping function is given by (h maximal) n 

(2.13) 
£ 0 

p = 1 + 4-3£ z = 1 + £ TIT . 
1u1max 

For m=3 we obtain 

S ( 1 +,r l) - 2£ 

crl = 1 + ,r 1 ' cr = 2 s2 
(2. 14) ,r 1 S - £ ✓ 1 1 + I - £ 

1T = s = 8 2 s2 1 + 31rl 

1 ➔' 
2h y ), nn 

where, apart from£ , the parameter 1r 1 also is a free parameter. When Sis 

kept fixed we see that£ is maximal when we choose 1r 1 = 0. Therefore, it is 

expected that 1r 1 = 0 yields the strongest damping. It happens that this 

value of 1r 1 makes the integration formula second order accurate as may be 

seen from (2.7), (2.8) and (1.4). In the following section we will discuss 

formula (2.14) with 1r 1 = 0. Higher point formulas of first order will be 

discussed in section 2.3. 

2.2. Second order formulas 

To the conditions (2.2) and (2.8) we add condition (1.4), i.e. 

(2.15) >.. m,m-1 2' 
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to obtain a second order process.By substituting this value into (2.7), the 

corresponding Runge-Kut ta parameters are expressed into the coefficients o. 
J 

and Tij; note that in the present case where o 1 = I and TI! = O, the other 

coefficients are still free. 

For m=3 the coefficients o 2 and TI 2 directly follow from (2.14) by putting 

TI! = 0 and a 1 = I: 

J = S-2E, TI = 
12 7 2 

-½-, S = 8(1 + ~). 
s 

The integration formula is generated by 

0 0 

0 (2.16) (A. 1) = o -
2 

J' 

0 0 

with the stability condition 

(2.27) h :::: 
n 

TI 2 

0 

0 

I 
2 

. I 
4 - -E 

2 

( s.) 
J 

j O , as 
J !max 

and damping function (hn = Js/\o\max) 

02 
E----

lol 2max 
(2.28) p I -

0 

= 0 

E ➔ 0, 

02 + TI2 
;:; 
L. 02 - TI2 

(µ.) 
I 

J 2 

It may be interesting to compare the damping effect of the one-point 

formula (2. II) with that of formula (2.16). Let us denote the damping func­

tions (2.13) and {2. 18) by p 1 and p2 , respectively, and choose the value of 

E in (2.18) equal to 3El.where E 11 is the value of E chosen in (2.13). From 

(2.12) and (2.17) it then follows that two maximal stable steps of the one­

point formula covers the same integration interval as one maximal step of 

the two-point formula. The damping of the two formulas over this interval 

is given by 



I -

It is easily seen that the two-point formula has a slightly stronger damp­

ing effect on the higher harmonics than the one-point formula. 

For m=4 we only succeeded to solve the minimax problem for small values 

of E(cf.[4]); we found 

2 2 
2 (6-y-3E\), 
y s 
3E 

= - 2' 
s 

f3 = 36 - 9E, 

The corresponding integration formula is defined by the parameter matrices 

0 0 

0 
0 3-1T3 

(2.19) (A. ,e_)= 0 2-,r2 

J ' 0 0 

0 0 

with the stability condition 

(2.20) h 
n 

and damping function 

(2.21) p -- I - 32 

0 

0 

0 2-,r2 

0 

as E-+ 0 

0 0 
0 3+TI3 

2(a3-n3) 

0 0 0 2+1T2 
, ( s.) ' ( ]J j) 

0 J 0 2(a2-,r2) 
I 
2 

By comparing (2.17) and (2.20) it is seen that after three maximal steps 

with the two-point formula and two maximal steps with the three-point for­

mula the same integration interval is covered. A comparison of the damping func-
3 2 

tions p 2 and p 3 of the two-point and three-point formula, respectively, re-

veals that the damping effect is not improved. 

We conclude this section with the obsevation that for small values of 

r all formulas derived so far approximately have the> same maximal effec-

tive step h ff= 2/llol '. e: max 



2.3 Modified Rung-Kutta formulas of first and second order 

* Let J 

at the point 

formula 

➔ 

be an approximation to the Jacobian matrix of the function f 
➔ 

(x ,y ). Instead of method (1.2) we now consider the modified 
n n 

j-1 

1 1 

-+(0) ➔ ➔ (j) ➔ -+' 2 * -+Cl) 
Yn+I = yn' Yn+I yn + µ.h y + I \,e_h J Yn+I' j = I , 2, ... m-1, 

J n n 1.=0 
-+' m . 1 

2-+ ➔ (1.) -)- ➔ 2 (2.22) Yn+1 Yn + µmhnyn + \nlh f(x +JJ,e_h , Yn+1), 
1.=0 n n n 

+' -+' m-1 
➔ -+(1.)) 

Yn+1 yn + I B,e_h f(x + JJ,e_hn' 
f=0 n n y n+ 1 · 

It is easily verified that the consistency conditions (1.3) and (1.4) for 

first and second order also apply to this modified scheme. Furthermore, when 
* ➔ ➔ ➔ ➔ 

J equals the Jacobian matrix af/ay off at(x ,y ), method (2.22) has a sta-
n n 

bility matrix R which is identical to that defined by (1.7). Hence, the mod-

ified formula has a similar stability behaviour as the orir,inal formula. When 

J* differ& from a;;a; the stability conditions should be carefully applied. 

From the above observations it may be concluded that the first and sec­

ond order formulas derived in the preceding sections, are still legitimate 

integration formulas when modified in the sense of (2.22). These modified 

formulas require one evaluation of the right hand side (by virtue of (2. 1) 
* ➔ (1.) and (2.2))and m-2 evaluations of J y 1. Therefore, it is efficient to use n+ 

the modified forms of the Runge-Kutta formulas when the evaluation of the 
* ➔ (1.) . 

vectors J y 1 is cheaper than the evaluation of the right hand side; in par-n+ 
ticular, for large values of m the gain factor may be very large. This jus-

tifies to consider higher point formulas of first and second order. To that 

end, we have to optimize the polynomial Sunder the constraints (2.10) or 

the easier constraints (2.10'). Form 2 4 this problem becomes increasingly 

more difficult and therefore we replace the constraints (2.10 1 ) by still 

more easy constraints; we look for polynomials S(z) and P(z) which satisfy 

the conditions 
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Is I :0: 2p' -8 s z < o, 

(2.23) Is I s 2(1-E), -s s z s - 8' 

p = p' -s s z s 0, 

for Sas large as possible and p being the damping function as defined in 

section 2.1. J~or small values of E these constraints are only slightly more 

restrictive than those of (2.10'). It can be shown that the optimal S(z) 

satisfying (2.23) is given by (cf.[5, 
w0+1 

p.90]) 

(2.24 S(z) = 2 
T (w +--z) 

m-1 0 S 

where 

( I -c) T I ( w ) I , m- o 
(2.25) 

8 

By choosing for p that polynomial which remains as long as possible close 

to the value 1-E: (optimal damping of the higher frequencies for given E) we 

obtain for P(z) the polynomial 

(2.26) P(z) = p(z) = I - E + [E: + (cr -I - (m-2)E)z][z+S]m-2. 
I S S 

In case of first order formulas, both parameters E and cr 1 are free to select 

a suitable damping function p. By deriving the remaining coefficients cr 2 , 

cr 2 ,a3 , ... ,crm-l and TT 2 ,TT 3 , ... ,TTm-l from (2.24),(2.25) and (2.26), the para­

meter matrices (Aj,i),(Sj) and (µj) directly follows from (2.7). In the 

second order case we have cr 1 = I by virtue of the consistency conditions 

(2.8) and (2. 15). Again after deriving the remaining coefficients, the 

Runge-Kutta parameters are defined by (2.7). 

We conclude this section with the derivation of a second order 

(m=5)-method of type (2.22) generated by (2.24),(2.25) and (2.26). An 

elementary calculation yields (a 1=1,n 1=0) 
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2 2 -2 2 3 -3 
cr2 = I 6 ( 6w O - I ) ( w O + I) (I -E) S , cr 3 = 64w0 (w0+I) (1-E)S , 

(2. 27) 
4 -4 

0'4 = I 6 ( w O + I ) (1-E) S , 

-2 -3 -4 
1T2 = - 6ES , 1T3 = - 8ES , 1T4 = - 3ES , 

where 

and 

In terms of the coefficients a. and 1T., the integration formula is defined 
J J 

by 

0 0 

0 0 

0 0 

0 0 

0 0 

0 

cr3-1T3 
---0 
cr2-7r2 

0 

0 0 

with the stability condition 

(2.29) 
8- l E 

4 
h :s: -;:::==:::=:;-

n /i al ' 
max 

and da~ping function 

as E ➔ 0 

0 

0 

0 

l 
2 

I 
0 

cr4+1T4 

cr4-1T4 
cr·+1T 

0 
3 3 

cr3-7r3 

(S.) 0 (µ.) l 
cr2+1T2 

= ' = 2 
J J cr2-1T2 

0 

2 
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3. NUMERICAL EXPERIMENTS 

In this section some of the formulas derived in the proceeding 

sections are applied to a simple linear, hyperbolic system of the form 

(3. l) 
➔ ➔ 

Jy + v(t), 

where J is a matrix with constant coefficients. This type of equation was 

chosen in order to illustrate the advantages of the modified formulas 

when compared with the original ones; the reduction of the computational 

labour is greater as the evaluation of the vector Jy + t(t) is more expen­

sive than the matrix-vector multiplication Jy. 
In particular we have choosen the system 

d2 -2 l 2 + e!H 
dt2 Yo = 2g dO(~x) (yl-yO) + - A y WO' 4 0 

d2 
-2( ) l 2 •;i._t 

(3. l) 
dt2 

y. = g d.(6x) 2y. 1-y.+2y. l + 4 A y. + e2 w.' J J - . J+ J J- J J 

d2 -2 l 2 + e!H 
dt 2 yr = 2g dr(~x) (yr-1-yr) + - A y wr' 4 r 

where j = 1,2, ... ,r-l. This system is derived from the partial differential 

equations describing the water elevation at the points j ~ x in a river of 

length r 6 x; the depth and the wind field in these points are given by 

d. and w., respectively; furthermore, A and g denote the friction coeffi-
J J 

cient of the bottom and the accelaration of gravity. The following 

specifications were used 

dy. 
y.(O) = _dJ(O) = 0, J = O, ... ,r, 

J t 

6x = 10 000 and 6x = 1000, respectively 

r = 100 000/6x, 
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-5 
d. = 10(2 + cos(211jt.x 10 ), 

J 

= 10-3 . ( . -5) · w. sin 7TJt.x , 
(3.2) J 10 

A = .000025, 

g = 9.81. 

Although in this test problem, the computational effort to compute the vec-
➔ ➔ 

tor v(t) = exp(½t..t) w is relatively small, it serves its purpose to compare 

the modified and unmodified formulas. 

In order to illustrate the increased efficiency of the new formulas with 

respect to Runge-Kutta formulas for first order equations, we also integrated 

the first order form of system (3.1') by a few stabilized Runge-Kutta for­

mulas for first order systems of hyperbolic type. Writing the first order 

equations in the general form 

(3.3) 
➔ 

dy - ➔ ➔ 
dx - F(x,y), 

the Runge-Kutta formulas we used, are given by (cf.[5]) 

(3.4) ➔ ➔( ➔ ➔F( ➔ ) ) = yn + h F x + h, yn + h x, y n n n n n n 

with the stability condition 

(3.5) 

(3.6) 

h 
n ..:; T-:.T ' 

1 /\ 1max 

·+ :;t ➔ ➔ ➔ ➔ ➔ 
= yn + h t·(x + ½h, y + ½h F(x +½h, y + ½h F(xn,yn))), n n n n n n n n n 

with the stability condition 

(3. 7) h 
n 

and finally, the Runge-Kutta formula 
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(3.8) ➔ + ~ h +F(x + 2h +(3)) 
= Y n I 9 n n 9 n' y n+ I ' 

➔ I ➔ 
y + -2h F(x n n n 

+ + h +F(x + 1h +(6)) 
= Yn n n 2 n' Yn+l ' 

with the stability condition 

(3.9) 

In the stability conditions (3.5), (3.7) and (3.9), l>-1 denotes the spec-
➔ max + 

tral radius of the Jacobian matrix aF /ay of the right hand side F, where it is 
-+ ➔ 

assumed that the eigenvalues of aF/ay are imaginary (note that l>-1 = 
~ I + m~ 

= viol when F corresponds to the first order form of equation (I.I)),. max 
Formula (3.4) is first order accurate, (3.6) and (3.8) are both second 

order accurate. This also holds for the modified forms of these formulas, 
➔ ➔ ➔ 

that is when in (3.4) and (3.6) the vector F(x, y) is replaced by Ky, K 
n n n ➔ 

being some approximation to the Jacobian matrix aF /ay at the point (x , y ) , 
n n 

d . (3 8) 1 ➔(I) +(5) · · an when in . the formu as for the vectors y 1, ••. ,y 1 are modified 
n+ n+ 

in the same sense. 
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Table 3.1 Number of correct significant digits (sd) and number of right hand 

side evaluations (fev) for several stabilized Runge-Kutta formulas 

and their modified forms in the case !:ix= 10 4 

fev sd 0.7 0.8 ]. 3 ]. 8 1.9 2. I 2.2 2.3 2.4 3. 1 3.2 

'* 3 (2.19 ) 
* 4 (2.16) 

6 (3.8*) (2.11) 

7 * * (2.19 )(2.16) 
(2.16) 

8 

9 (2.19) 

I I 

13 (2.11) 

14 (2.16) 

21 (3.8) (3. 6) (2.19) 

26 (3 .4) 

In order to compare the efficiency of the various formulas, we have ar­

ranged them in an (accuracy-computational effort) - diagram (see tables 3.1 

and 3.2), that 1.s the pairs (sd., fev), sd being the number of correct sig­

nificant digits and fev the number of right hand side evaluations involved, 

are indicated in a diagram by the reference number of the corresponding for­

mula. Tables 3.1 and 3.2 present the results for the respective cases 

!:ix= 10000 and !:ix= 1000 at t = 3600. The number of correct digits was de­

termined by using the numerical values produced by a higher order Runge-Kut ta 

method wiht extreme small step sizes (tit= 100 for !:ix= 10000 and tit= 10 

for !:ix= 1000). The results of the modified formulas are indicated by adding 

an asterix to the reference number of the-corresponding unmodified formula. 

All formulas were applied with the maximal stable integration step. More­

over, the new formulas (2.11), (2.16) and (2.19) are also applied with the 

integration step used by the formulas (3.4) and (3.6), respectively. 
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Table 3.2 Number of correct significant digits (sd) and number of right 

hand side evaluations (jev) for several stabilized Runge-Kutta 

formulas and their modified forms in the case ~x = 103 

fev sd 1.8 2.8 3.1 3.6 4. I 4.2 4.3 4.4 5.0 5.3 

* 21 (2. 19 ) 

* 32 (2.16) 

* 42 (3 .8 ) 

* * 65 (2.11) (2. 19 ) (2. 16 ) (2.19) (2. 16) 

124 (2. 11) (2.16) 

148 (3.8) 

186 (3 .6) (2.19) 

248 (3.4) 

From the tables 3.1 and 3.2 the superiority of the formulas (2.11), 

(2. l 6) and (2. l 9) is evident. Furthermore, we see that the modified formulas 

make it possible to find a less accurate solution for considerable less 

computational effort. 
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