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Runge-Kutta type methods for the integration of hyperbolic differential

. *
equations )

by

P.J. van der Houwen

ABSTRACT

First and second order Runge-Kutta formulas are presented for the inte-
gration of the large systems of second order differential equations arising
from the semi-discretization of certain classes of hyperbolic differential
equations. These formulas are characterized by their low storage require-
ments and their relatively large real stability interval. Numerical experi-
ments are reported which show that the new formulas are superior to the sta-
bilized Runge-Kutta formulas for first order equations both with respect to

accuracy and to the computational effort involved.

KEY WORDS & PHRASES: Runge-Kutta formulas, second order differential equa-

tions, hyperbolic equations, extended stability region.
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1. INTRODUCTION

Let

(1.1) 3—}2' = T(x,9)

dx
represent a set of differential equations of which the real-valued vector
function g belongs to a class of sufficient differentiability. In order to
solve the initial value problem for this special class of second order equa-—
tions, we do not convert it into an initial value problem for a larger sys-—
tem of first order equations as is usually done in the case where the right
hand side contains first derivatives, but we try to exploit the special form
of the equation (cf. HENRICI [3,p.169]). We shall concentrate on the case
where ‘the Jacobian matrix of the right hand side has its eigenvalues in a
long strip along the negative axis. Such equations arise when hyperbolic
equations are discretized with respect to the space variables. In many hy-
perbolic initial value problems, it suffices to use a first or second order
accurate time discretization. Therefore, we will confine our considerations
to integration formulas of first and second order. In particular, formulas

of Runge-Kutta type will be considered, i.e. formulas of the form

>(0) _ >
n+l  In?
(1.2) () 2, h*'+h7-j§_] e 2 o
: yn+] - yn uj nyn n 220 Aj,ﬂ (X Uﬂ ,Yn+1), j=1,2,...m,
- _ +(m) > _ >! (/@) ~
Ya+1 = Yn+1? Yn+1 T 2 Bzf(x +U£ 'Y +]), Mo = 0.
Here, hn is the steplength X Xn’ and y , y , n=1,2,... represent nu-

merical approximations to ;(x) dy/dx at X -
The consistency conditions for scheme (1.2) are well known (see e.g.

[3]); first order consistency is obtained for
(1.3) wo= L 8=,

second order consistency when, in addition,



m—1 m-1 1

(1.4) z A = 2 Bo, = =
220 m, L 21 e 2
When scheme (1.2) is applied to the test equation

(1.5) ) = Jy

we obtain the relation (cf. ANSORGE and TORNIG [11])

v ¥
T+ \ 2

(1.6) vl [P
hnyn+] Khnyn

\
\

. . . 2 . . .
where R 1s a matrix—-valued function of the argument th. This function is

defined by the scheme

RO(Z)

(1.7)

1
.

£=0

1 u m—-1 A 0
Mlez 7 ™) R,
0 1 £=0 eK 0

R(z) = R (z) =
m

I p i-1
Rj(z) +z ) Aj’KRK(z), j=1,2,...,m-1,
\

The elements of the matrix R(z) are polynomials of degree m in z. We shall
call R(z) the stability matrix associated to scheme (1.2). Let z be a com-

plex number and aj(z) denote the eigenvalues of R(z), then we define the

region
(1.8) {z I]aj(z)l <1, j=1,2}

as the stability region of scheme (1.2). When all points Ghi'with S e A, A
being the set of eigenvalues of the Jacobian matrix ég/3§, are within the
stability region, we call scheme (1.2) strongly stable . When the Jacobian has
one or more eigenvalues § such that the eigenvalues a.(hiS) of R(hid) are

on the unit circle we shall call (1.2) weakly stable.



In the following sections we try to maximize the length of the negative

stability interval
(1.9) (-8,0) = {z | z <0, Iaj(z)i <1, j =1,2}.

The corresponding stability condition becomes

(1.10) ho< [
n {81
max
. P . .
provided that 3f/3yhas a negative eigenvalue spectrum. It turns out that for all
formulas of type (1.2) with optimal interval of stability, the maximal "step-

length per function evaluation', to be denoted by h is close to the value

>
2/V|6[max, irrespective the number of stages involvzzf The formulas only
differ by their order of accuracy and by the way of damping of the higher
harmonics in the numerical solution ;n' This result implies that within the
class of stabilized formulas of type (1.2) we may choose a formula using
only a few stages without lack of efficiency. When we compare the efficiency
of the formulas proposed in this paper with that of the stabilized Runge-
Kutta for first order equations, we may conclude that we have gained a fac-
tor greater than 2. For when equation (l1.1) is converted into a first order
system, application of an m-point, second order Runge-Kutta method with max-
imal <maginary stability boundary (note that the Jacobian matrix of the
first order system has imaginary eigenvalues when a?/a? has negative ones)

results in the stability condition (cf.[5]).

(.11) .l B m = 3,5,7, .

n ﬁa 3’

max

Hence, heff = (m-1) / GnVIélmaX), whereas the new formulas yield heff

=2/\VI6s| .
max
In section 2.3 a modification of scheme (1.2) is discussed which 1is

>(0)
Khn’yn+])’
preceded by parameters A. ? which are not involved in the consistency con-

J’ _>(£)
1

. . *
ditions, are replaced by the vectors J Yo+

>
to the Jacobian matrix 3f/8§ at the point (x ,; ). For sufficiently close
n’’n

%
characterized by the fact that all function evaluations f(xn+u
x . .
where J 1s some approximation

approximations the stability theory for these modified formulas is identical



to that for scheme (1.2). We shall maximize the interval of stability for

>
a class of first and second order formulas requiring one f and (m-2) J* ;

evaluations. These formulas contain acontrol function by which the damping
of the higher harmonics can be monitored. In case of mild damping both

classes have a stability boundary close to 4(m-1)2. Thus, when the evalua-
* >(L)
Y+l

>

evaluation of the vectors f£(

tion of the vectors J requires less computational effort than the

>(2)
yn+1

fective steplength heff than the original ones. In this connectionwe observe

), the modified formulas have a larger ef-

that other classes of stabilized Runge-Kutta formulas such as those given
in [5], can also be economized in the way described above.
Finally, in section 3, some numerical experiments are reported. More

extensive tests will be published in [2].

2. FORMULAS WITH EXTENDED REAL STABILITY INTERVAL

First of all we remark that the number of free parameters,relative to the

number of right hand side evaluations, can be increased by one when we choose
(2.1) Ao =8 =0, i=1,2,...,m, m> 2.

For by this choice we obtain an (m—-1)-stage formula containing m free para-
meters p., m(m—-1)/2 free parameters A. 7 and m-1 free parameters Bﬂ‘ Thus,
together (m2+3m—2)/2 parameters at the’price of m-1 right hand side evalua-
tions, whereas scheme (1-2) contains (m2+5m)/2 free parameters at the price of
m right hand side evaluations, i.e. (m2+3m—4)/2 parametersfor(m—]);-evalua-
tions. In the following we assume that (2.1) is satisfied.

Furthermore, since one of the most important classes of equations to
which stabilized Runge-Kutta methods are applied, is the class of the very
large systems originating from the semi-discretization of partial differen-
tial equations, we are interested in schemes with reduced storage require-
ments. Therefore, we tried to construct formulas with

(2.2) g =B =0, L<jtl, i=1,..,m.

It turns out that this choice does not restrict the interval of stability.



2.1 First oder formulas.

The order equations for first order accuracy are (cf.(1.3))

(2.3) =8 =1,

The corresponding stability matrix R(z) is given by

b+ Am,m—l RZI(Z) b= Am,m-] * >‘m,m—l RZZ(Z)
(2.4) R(z) = s
Ryy(2) Ryy(2)
where (m > 2)
RZl(z) = z(1+Am_1,m_zz(1+km_2’m_32(l+...(1+Az,lz)...),
R = e
22(2) I+ Z(Umrl+Am—1,m—ZZ(um—2+Am—2,m—32(
...(u2+A2’1u]Z)-o-);

for m = 2 we have R2](z) = z and R22(z) =u oz + 1 (note that by our choice
(2.1), the degree of the polynomials R2](z) and R22(z) is reduced to m-1).

The eigenvalues of R(z) satisfy the equation
(2.5) a? - S(z)a + P(z) = 0,

where

2
2+ 0.z +0.2 4+ ... +0 z

S(z) | 9 a1 .

(2.6)

P(z) 1 + (Ul—l)z + 7 22 + ... + T z

2

and where the coefficients Oj and uj are given by (m 2 2)



m-1
= .= . . .. + .
%9 Am,m—l'+um—l’ GJ ‘1=mEJ+1 >‘1,::.—1(>\m,m-1 u'm-_])
I o 1y, j =2 1
T o =l M1 Qe eyt 35 230 mol

These expressions for Oj and ﬂj are easily converted to obtain the Runge-

Kutta parameters in terms of Oj and nj:

(0] . m .
_ m=J+1 m—j+1]

m-1’ xm—l,m—Z =0y T My Aj,j—l o . -

S T .
m—j m—]

m,m—] 1 >

. =O'———:;T———_Ol +u;n—1’ Om=Trm=O’ j= 1,2,...,111—2,
R

where apart from the coefficients Oj and ﬂj, the parameter B also is a

free parameter. We shall choose

N —

(2.8) by =

by which one of the second order terms in the truncation error vanishes.
The coefficients Gj and ﬂj are at our disposal for maximizing the stability

interval.

THEOREM 2.1. The length of the negative stability interval of scheme (1.2)
satisfying (2.1) and (2.2) cannot exceed the value 4(m—1)2.

PROOF. The stability interval on the z-axis is determined by the condition

that the roots of (2.5) are within the unit circle, i.e. by the inequali-

ties
(2.9) [s| < P+1, P<1, =z<0O.

Hence, a necessary condition is |S| < 2. Thus, we are looking for a polyno-
mial S(z) of degree m—-1 in z which remains as long as possible between -2
and +2. This type of minimax problem is well known and is solved by

O]Z

S(z) = 2 T .
2(m-1) 2

(1+ ), T ~l(w) = cosl (m-1)arcos w],

m—1 m

where Oy is still a free parameter.



, 01.

2
This polynomial remains between -2 and +2 in the interval [- ﬁSEZLl—

1 > 1; hence o, = llis the

optimal value and B = 4(m-1)2 is the maximal length of the interval of sta-

From the definition of P(z) it follows that o

bility.
The proof of this theorem suggests to choose.

—j—f)’ p(z) = 1.

2(m-1)

S(z) =2T (1 +

m—1

However, this choice results in a weakly stable method since
la@@) | =T + /T2 - 1] =1,

Therefore, we introduce a function p = p(z) assuming positive values less
than 1 in the stability interval (-B8,0), and we replace (2.9) by

(2.10) |s| < + /o, P <op, -8 <z <0.

It is easily verified that these inequalities guarantee that |a(z)| < Vp(z2).
Since it is sufficient for a stable behaviour that p is close to unity

provided it is always less than unity, we simplify (2.10) by replacing it

with the conditions
(2.10") Is] < 2p, P=op, -B<z<0,

which is only slightly more restrictive than (2.10) as p -~ 1. In (2.10")
the function p may be freely chosen provided that p is a polynomial of

degree m-1 in z with

p(0) =1, p'(0) = 01-1.
The function p will be called the damping function of the method and is
assumed to be an increasing function in the stability interval (-B,0); the
maximal deviation from unity will be denoted by € , i.e. € = 1-p(-B).
For m=2 and m=3 the maximization of B in (2.10"') is easily established.

Omitting the details we obtain for m=2 (cf.[4]).



The corresponding integration formula reads

> > ! 1 4-¢g _ 27 1 > 1, '
Yn#1 ~ n * hnyn * 2 4—3€hnf(xn * 2hn’yn * Zhnyn)’
(2.11)
> >t - 1 > 1. !
= - +_ .
Yn+1 In * hnf(xn * Zhn’yn 2hnyn)
The stability condition reads
(2.12) po< /33 ~£§f___ase—>o
) n -V J8] 5] )
max max
The damping function is given by (hnmaximal)
(2.13) b= 1+ z=14e
4-3¢ Glmax
For m=3 we obtain
B(1+ﬂ1) - 2¢
op=l*m, 0, = g2 >
(2.14) - -
_ TT1B € -3 1+ /1 - ¢
Ty = iz B = T

where, apart from € , the parameter m_ also is a free parameter. When B 1is

1
kept fixed we see that ¢ is maximal when we choose m, = 0. Therefore, it is

expected that TS 0 yields the strongest damping. Il happens that this
value of ™ makes the integration formula second order accurate as may be
seen from (2.7), (2.8) and (1.4). In the following section we will discuss
formula (2.14) with mo= 0. Higher point formulas of first order will be

discussed in section 2.3.

2.2. Second order formulas

To the conditions (2.2) and (2.8) we add condition (1.4), i.e.

(2.15) A =



to obtain a second order process. By substituting this value into (2.7), the
corresponding Runge-Kutta parameters are expressed into the coefficients o.
and nj; note that in the present case where o, = 1 and T 0, the other
coefficients are still free.

For m=3 the coefficients 9y and L directly follow from (2.14) by putting
1:

n] = 0 and o]

B-2e, 5 _ _ £ B=28(1 +/1 -¢).
2 82 2 62

The integration formula is generated by

N | —
Q
1
E]

N’
i
o
Q

I
=
o

"
7~
jon)
[ YN
A
I
=)
N —

(2.16) (Aj s (uj) =

o
o
N —

with the stability condition

s(+/1- _ * 7~ 3°

(2.27) h < - = as £ > 0,
n 8 max 191 nax
and damping function (hn = V%/lalmax)
2
§
(2.28) p=1-52" =1 -
B 8]
max

It may be interesting to compare the damping effect of the one-point
formula (2.11) with that of formula (2.16). Let us denote the damping func-
tions (2.13) and (2.18) by oy and Pys respectively, and choose the value of
€ in (2.18) equal to 3e]lwhere s]lis the value of ¢ chosen in (2.13). From
(2.12) and (2.17) it then follows that two maximal stable steps of the one-
point formula covers the same integration interval as one maximal step of
the two-point formula. The damping of the two formulas over this interval

is given by



10

2
pf = (1 + QIT%;gaX)Z ané p2 =1 - 3SIT§TQ
max
It is easily seen that the two-point formula has a slightly stronger damp-
ing effect on the higher harmonics than the one-point formula.
For m=4 we only succeeded to solve the minimax problem for small values

of e€(cf.[4]); we found

2 YZ 1 Y3
0, =" =5 (6 -y =-3e5), 03=-—73(8-y- k),

Y B Y B

3 9
m, = - ;23 my = -2 é%3 B=36-09, y=9+s.

The corresponding integration formula is defined by the parameter matrices

o,+T
0o o0 0o o 0 3 3
_ 2(c,-7.)
047, 3 °3
0 =— 0 0 0 0,
2.19 (A, )= 2 "2 (B.) = ,(u.) =
(219 P 0 0 o-m, of T 0 J 2(0,7m))
22 .
2
0 0 0 1 1 1
with the stability condition
63
(2.20) h < £ as € > 0
n |6 | max
and damping function
2 3
S $
(2.21) p = 1=-3 ~—— - 2 ——.
612 e 1012
max max

By comparing (2.17) and (2.20) it is seen that after three maximal steps
with the two-point formula and two maximal steps with the three-point for-
mula the same integration intervalis covered. A comparisonof the damping func-
. 3
tions o,
veals that the damping effect is not improved.

2 . . .
and P of the two-point and three-point formula, respectively, re-

We conclude this section with the obsevation that for small values of

e all formulas derived so far approximately have the same maximal effec-

tive step hoge = 2//1]¢] .

max
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2.3 Modified Rung-Kutta formulas of first and second order

>
* . . . . .
Let J be an approximation to. the Jacobian matrix of the function f

at the point (Xn,;n)- Instead of method (1.2) we now consider the modified

formula

;@ 5 39 ;n+ujhn;;+i§; S L T
0Dy =y s L e, g T,

§;+1 - §; * Zg; BZhnf(xn * uﬂhn’ +§£3)'

It is easily verified that the consistency conditions (1.3) and (1.4) for
first and second order also apply to this modified scheme. Furthermore, when
J* equals the Jacobian matrix 3§/8§ of % at(xn,§n), method (2.22) has a sta-
bility matrix R which is identical to that defined by (1.7). Hence, the mod-
ified formula has a similar stability behaviour as the original formula. When
J* differs from 8%/3; the stability conditions should be carefully applied.
From the above observations it may be concluded that the first and sec-
ond order formulas derived in the preceding sections, are still legitimate
integration formulas when modified in the sense of (2.22). These modified
formulas require one evaluation of the right hand side (by virtue of (2.1)
and (2.2)) and m-2 evaluations of J y(ﬂ) Therefore, it is efficient to use

the modified forms of the Runge-Kutta formulas when the evaluation of the

>0
+1

ticular, for large values of m the gain factor may be very large. This jus-

vectors J A is cheaper than the evaluation of the right hand side; in par-
tifies to consider higher point formulas of first and second order. To that
end, we have to optimize the polynomial S under the constraints (2.10) or
the easier constraints (2.10'). For m > 4 this problem becomes increasingly
more difficult and therefore we replace the constraints (2.10') by still
more easy constraints; we look for polynomials S(z) and P(z) which satisfy

the conditions

fi53cH CENTRUM
BIBLIOTHEEK MA TrEATISCH CENT
W"rcnaﬁm———a«

e ]
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P =0, -8B <z=0,

for B as large as possible and p being the damping function as defined in
section 2.1. For small values of ¢ these constraints are only slightly more
restrictive than those of (2.10'). It can be shown that the optimal S(z)

satisfying (2.23) is given by (cf.[5, p.901)

watl
T (W +——2z)
- m—-1""0 B
(2.24 S(z) 2 T ) s
m-1"0
where

(1-€) Tm_](WO) =1,

(2.25) Wyl ) wo T 5
6 = QS:T-B’ g = ET(m-l) Wo—l tanh [(mrl)ln(wo+ wO—])] .

By choosing for p that polynomial which remains as long as possible close
to the value 1-e& (optimal damping'of the higher frequencies for given £) we

obtain for P(z) the polynomial

(m-2)¢
B

z+B _m—-2

B o

(2.26) P(z) = p(z) =1 - ¢ + [e + (0]-1 - Yz 1L

In case of first order formulas, both parameters € and o, are free to select

a suitable damping function p. By deriving the remaining coefficients P

02,03,...,0 and 7 from (2.24),(2.25) and (2.26), the para-

-1 2232 ol
meter matrices (Aj K)’(Bj) and (uj) directly follows from (2.7). In the

i

second order case we have o, = 1 by virtue of the consistency conditions
(2.8) and (2.15). Again after deriving the remaining coefficients, the
Runge—-Kutta parameters are defined by (2.7).

We conclude this section with the derivation of a second order
(m=5)-method of type (2.22) generated by (2.24),(2.25) and (2.26). An

elementary calculation yields (01=1,W1=0)



(2.27)

where

and

2 2 -2
0, = 16(6w0-1)(w0+l) (1-¢)B 204
4 -4
C)’4 = ]6(W0+1) (1_5)8 1)
-2 -3 -4
Ty =~ 6eB 7, Ty = 8eB 7, T, =7 3eB ,

B = 32w0(w0+1)(2wé~1)(1—€) X 64 - 20e

w, = %(1+;/1+—5——>E 1 +ée .

0 2(1-¢)

= 64wé(w0+1)3(1—€)6_ 5

3

In terms of the coefficients Oj and Ty the integration formula is defined

by

(2-28)(Aj£)=

0 0 0 0 0 0
o,=m
0o 220 0o 0 0
373
g,—T
0 0 — o, 8.) =0
927 J
0 o 0 o,y 0 0
0 0 0 0 ! 1

with the stability condition

(2.29)

and damping

8—-%&
hn £ — as e >0
e

max

function

b=1-¢+c¢ (1—3 Iél ) <1+ | s )

s )

max max

s (UJ)=%




3. NUMERICAL EXPERIMENTS

In this section some of the formulas derived in the proceeding

sections are applied to a simple linear, hyperbolic system of the form

d2

dt

< ¥

|

(3.1) = Jy + v(t),

N

where J is a matrix with constant coefficients. This type of equation was
chosen in order to illustrate the advantages of the modified formulas

when compared with the original ones; the reduction of the computational
labour is greater as the evaluation of the vector Jy + v(t) is more expen-
sive than the matrix-vector multiplication Jy.

In particular we have choosen the system

2
j%f Yo T 28 do(éx)—z(yl'yo) ¥ %’Azyo + P Yo
a2 _ -2 V.1 .2 iat
G-D 2 Vit e (?ij»l‘yj*zyj—l/ rEhyp e vy
a? _ -2 1.2 iIat
;;7 Yy T 28 dr(éx) (yr—l_yr) * Z-A Iy Te Wy
where j = 1,2,...,r-1. This system is derived from the partial differential

equations describing the water elevation at the points j A x in a river of
length r A x; the depth and the wind field in these points are given by

dj and wj, respectively; furthermore, XA and g denote the friction coeffi-
cient of the bottom and the accelaration of gravity. The following

specifications were used

dyj
yJ(O) = —d—t—(O) = 0, J = O,...,r,
Ax = 10 000 and Ax = 1000, respectively
r = 100 000/Ax,



15

d. = 10(2 + cos(2ﬂjAX10_5),
j
w., = lO—BSin(ﬂijlo_S),
(3.2) J :
A = .000025,
g = 9.81.

Although in this test problem, the computational effort to compute the vec-
tor z(t) = exp(iAt) v is relatively small, it serves its purpose to compare
the modified and unmodified formulas. '

In order to illustrate the increased efficiency of the new formulas with
respect to Runge-Kutta formulas for first order equations, we also integrated
the first order form of system (3.1') by a few stabilized Runge-Kutta for-
mulas for first order systems of hyperbolic type. Writing the first order
equations in the general form

dy

(3.3) R IORR

the Runge-Kutta formulas we used, are given by (cf.[5])

3.4 =7 +hF(x +h,y +hF( ¥))
(3.4) Ya+1 =~ Y n *n n’ ’n n *n? In

with the stability condition

1

(3.5) h S-I——‘- ,

n Amax
. 3 =% +h ¥ + 1 N P .2 a1 P 3
(3.6) Vi = Y F B FG 43R,y o+ gh F(xo+iho,y 4 oh F(x Ly ),

with the stability condition

2

(3.7) h s]—r— ,
n Amax

and finally, the Runge-Kutta formula
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+£lz - S;n * %hn§(xn’ S;1'1):‘.
Taet = o ROy ¢ g T
=5, B, s 32,
G-8)  Tpi) = To * ahEC * G Tl
Fant = Vu * SRE O ¥ s )
+iii - g;n * Ehng(xn * %%hn’ ;iiz)’
§n+l - §ﬁ * hn;(xn * %hn’ +§33)’
with the stability condition
(3.9 b= TTT— :
max
In the stability conditions (3.5), (3 7) and (3.9), |A| denotes the spec-

tral radius of the Jacobian matrlx BF/ay of the rlghthand 31deF where it is
assumed that the eigenvalues of 8F/8y are imaginary (note that |A|max =
= vlé'ma when F corresponds to the first order form of equation (1.1))-
Formula (3.4) is first order accurate, (3.6) and (3.8) are both second
order accurate. This also holds for the modified forms of these formulas,
that is when in (3.4) and (3.6) the vector F(Xn’ y ) is replaced by Ky , K
being some approximation to the Jacobian matrix 8F/8y at the point (x s ; ),
and when in (3.8) the formulas for the vectors ;(+2,...,;(+z are modified

in the same sense.
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Table 3.1 Number of correct .significant digits (sd) and number of right hand
side evaluations (fev) for several stabilized Runge-Kutta formulas

and their modified forms in the case Ax = 10

fev 54 0.7 0.8 1.3 1.8 1.9 2.1 2.2 2.3 2.4 3.1 3.2
3 (2.197)
4 (2.16™)
6 (3.8%) (2.11)
7 (2.197) (2.16™)
(2.16)
8
9 (2.19)
1
13 (2.11)
14 (2.16)
21 (3.8) (3.6) (2.19)
26 (3.4)

In order to compare the efficiency of the various formulas, we have ar-
ranged them in an (accuracy-computational effort) - diagram (see tables 3.1
and 3.2), that is the pairs (sd, fev), sd being the number of correct sig-
nificant digits and fev the number of right hand side evaluations involved,
are indicated in a diagram by the reference number of the corresponding for-
mula. Tables 3.1 and 3.2 present the results for the respective cases
Ax = 10000 and Ax = 1000 at t = 3600. The number of correct digits was de-
termined by using the numerical values produced by a higher order Runge-Kutta
method wiht extreme small step sizes (At = 100 for Ax = 10000 and At = 10
for Ax = 1000). The results of the modified formulas are indicated by adding
an asterix to the reference number of the.corresponding unmodified formula.
All formulas were applied with the maximal stable integration step. More-
over, the new formulas (2.11), (2.16) and (2.19) are also applied with the

integration step used by the formulas (3.4) and (3.6), respectively.
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Table 3.2 Number of correct significant digits (sd) and number of right

hand side evaluations (fev) for several stabilized Runge-Kutta

formulas and their modified forms in the case Ax = lO3
fev %9 1.8 2.8 3.1 3.6 4.1 4.2 4.3 4h 5.0 5.3
21 (2.197)
32 (2.16*)
42 (3.8
65 (2.11) (2.197)(2.167) (2.19)  (2.16)
124 (2.11) (2.16)
148 (3.8)
186 (3.6) (2.19)
28 | (3.4)

From the tables 3.1 and 3.2 the superiority of the formulas (2.11),
(2.16) and (2.19) is evident. Furthermore, we see that the modified formulas
make it possible to find a less accurate solution for considerable less

computational effort.
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