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On the numerical solution of Volterra integral equations of the second kind 

I Stability 

by 

P.J. van der Houwen 

ABSTRACT 

The main purpose of this paper is to analyse the stability of algo­

rithms for non-linear Volterra integral equations of the second kind. In 

particular, Runge-Kutta type methods are studied. 
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l . INTRODUCTION 

In this paper the stability behaviour is considered of linear multi­

step methods and single-step methods of Runge-Kutta type when these methods 

are applied to Volterra integral equations of the second kind. In particu­

lar, for Runge-Kutta methods the stability problem seems to be a hardly 

investigated area, presumably because Runge-Kutta methods are considered 

more as starting formulas for multistep methods than as independent integ­

ration formulas. It turns out, however, that Runge-Kutta type methods allow 

relatively large regions of stability and therefore may be advantageous in 

cases where the kernel function of the integral equation has a large Lip­

schitz constant. Hence, we concentrate our considerations on Runge-Kutta 

methods, although we also give the corresponding theory for multistep 

methods. In section 2 the general formulas are introduced and a modification 

of these formulas is discussed, which can be characterized by the property 

that they reduce to the common linear multistep and Runge-Kutta methods for 

ordinary differential equations in those cases where the integral equation 

is equivalent to an ordinary initial value problem. In section 3 the consis­

tency conditions are derived and in section 4 a convergence theorem is 

given, both for the "usual" and modified form of the multistep and Runge­

Kutta schemes. It appears that the modified formulas generally have a lower 

order of accuracy, however, as will be shown in section 5, the stability 

analysis is easier and, as we will report in a forthcoming report, the 

stability regions seem to be larger. Numerical experiments will be published 

in the near future. 

2. DERIVATION OF A COMPUTATIONAL SCHEME 

Volterra integral equations of the second kind may be written in 

the form 

X 

(2. I ) f(x) = F (x) + J K(x,~,f(!;))d~, n 
X n 

where X n 

F (x) = g(x) + I K(x,~,f(!;))dC n 

XO 
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With respect to the point x, the first term F (x) may be interpreted as 
n n 

the "past" and the second term as the "future" of the integral equation. 

When approximations f. to f(x.), j = 0,1, ••• ,n are obtained, we may ap-
J J 

proximate F (x) for arbitrary x-values by applying some quadrature formula 
n 

and by replacing f(x.) by f., i.e. 
J J 

n 
(2.2) F (x) ~ F (x) 

n n 
= g(x) + l w . K(x,x.,f.). 

j=O llJ J J 

In order to derive a formula for the numerical approximation f 1, we n+ 
consider the following formula for f(x 1): n+ 

(2.3) 
xn+l 

f(xn+l) = Fn(xn+l) + I K(xn+l'~,f(~))d~. 

~ 

By replacing Fn(xn+l) with some approximation Fn(xn+l) and the integral 

by a numerical quadrature formula, we obtain a formula of the type 

(2. 3' ) 

where f represents some interpolating function through the values f., 
J 

j = n+l,n, ••• ;~ denotes some approximation to the integral in formula 
n 

(2.3). Two cases will be considered: firstly, the integral will be replaced 

by a formula using non-step points in a way as is done in Runge-Kutta for­

mulas for differential equations, and secondly, we replace the integral by 

a linear multistep formula. Both approaches are well-known in the literature. 

The Runge-Kutta approach may be found in e.g. LAUDET and OULES [7], POUZET 

[JO], DAY [2], BELTJUKOV [I] and DE HOOG and WEISS [3]. Multistep methods 

were considered •Y e.g. KOBAYASI [6], LINZ [8], NOBLE [9] and GAREY [4]. 

2.1 SINGLE-STEP METHODS 

Similar to Runge-Kutta methods for differential equations we may 

define the scheme 

(2.4) f (O) = f /j) = F (x +µ. h ) + h I 
n+ I n' n+ I n n J n n l=O 

(l) 
>... 0 K(x +0. 0 h ,x +v. 0 h ,f 1), 
J~ n J~ n n J~ n n+ 

fn+l = f~:? j = 1,2, .•• ,m. 



Here, h denotes the step length x ·1 - x and F (x +µ .h ) denotes some 
n n+ n n n J n ( 

approximation to F (x +µ.h ). After m iterations the approximant f m)l is 
n n J n n+ 

taken as the final approximation f 1 to f(x 1). The parametersµ., A. 0 , 
n+ n+ J J-c.. 

a jl and \/jl are determined by consistency and stability conditions. We 

observe that the computational effort per step of formula (2.4) can be 

reduced by trying to giveµ. either the value O (since F (x) = f(x )) or 
J n n n 

to giveµ. a value independent of j. 
J 

It may be interesting to consider the class of integral equations 

with 

(2.5) aK = ~ = O. 
ax dx 

Equation (2.1) then reduces to a differential equation of the form 

(2. I ') !; - K(x,x,f)= K*(x,f) 

The corresponding numerical scheme reduces to (note that F (x) no longt:· 
n 

depends on x) 

f(O) = f 
n+I n 

(2 • 4 I) ~ ~ * (l) 
= F + h l A. 0 K (x +v. 0 h ,f +I), 

n n l=O J-c.. n J-c.. n n 
j = 1,2, •••• m, 

fn+I = f(m) n+I' 

3 

whereas direct application of the general m-point Runge-Kutta to equations 

(2. I ') yields a scheme of the type 

/0) = f 
n+I n 

(2.4") j = 1,2, ... m 

A comparison of (2.4') and (2.4") suggest to define F (x) is such a way n 
that F (x) = f for all integral equations satisfying (2.5). In that case 

n n 
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all theory derived for Runge-Kutta methods also applies to this special 

class of integral equations (we will call these equations test equations). 

Let us consider formula (2.2) more closely by writing. it in the form 

(2.6) 

n n-1 
+ I w. K(x,x.,f.) - I ~ 1. K(x ,x.,f.). 

j=O nJ J J j=O n- J n J J 

Using representation (2.3') this formula transform into 

(2. 7) 

n 
+ I [w. K(x,x.,f.) - w 1. K(x ,x.,f.)], 

j=O nJ J 1 n- J n J J 

where the weights w .. are assumed to be zero when i < j. 
~ ~ 

Generally, (2.7) will not reduce to the equation F (x) = 
n 

applied to the test equation. However, when we define F (x) by 
n 

n 

f when 
n 

the formula 

(2.2') F (x) = f + g(x)- g(x )+ I w .[K(x,x.,f.) - K(x ,x.,f.)], 
n n n j=O nJ J J n J J 

it is still a consistent approximation to F (x), while it reduces to 
n 

F (x) = f for the class of test equations. Unfortunately, formula (2.2') 
n n 

may reduce the order of accuracy by one as will be shown in section 4. In 

the following we shall call a formula, in which F (x) is evaluated accor­
n 

ding to (2.2 1 ) instead of using the direct quadrature formula (2.2), a 

modified integration formula. 

2.2 MULTISTEP METHODS 

We replace the integral in formula (2.3) by a linear k-step formula 

to obtain 

(2. 8) f 
n+l 
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The parameters bnl are determined by consistency and stability conditions. 

Let us apply this scheme to integral equations satisfying (2.5) and 

suppose that F (x) is defined by (2.2'). We then have 
n 

(2.8') f I n+ = f 
n 

+ h 
n 

which is identical to the well-known Adams formula for ordinary differen­

tial equations. Thus, just as for Runge-Kutta formulas, we see that the 

modified forms reduce to formulas known for ordinary differential equations 

when they are applied to the class of test equations. 

It should be observed that the weights w .. , j = 0,1, .•. ,i, 
1.J 

1. = 1,2, ... ,n used in the computation of F (x 1) are not necessarily n n+ 
related to the parameters bvl' l = 0,1, ... ,k; v = 1,2, ... ,n. Usually, 

however, one has 

(2.9) h b = w = w n n,l n+l,n+l-l n,n+l-l' 

where w is assumed to be zero. The numerical algorithm then simply n,n+l 
reads 

n+I 
(2. 10) fn+I = g(xn+l) + l w I. K(x l,x.,f.). n+ ,J n+ J J j=O 

3. CONSISTENCY CONDITIONS 

3.1 SINGLE STEP METHODS 

Instead of appproximating the integral in (2.3) by a direct quadra­

ture rule based on non-step points (cf. DE HOOG and WEISS [3]), we try to 

determine the Runge-Kutta parameters in (2.4) along the same lines as 1.s 

done in ordinary differential equations, i.e. by deriving and solving the 

consistency conditions (cf. BELTJUKOV [1]). Scheme (2.4) will be called 

consistent of order p when 

f I - f(x 1) = O(hp+l) ash + 0, 
n+ n+ n n 
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where f 1 is assumed to be the result of formula (2.4) when applied with n+ 
f. = f(x,) and F.(x) = F.(x), j = 0,1, ••• ,n (in analogy to the terminology 

J J J J 
in ordinary dirferential equations called "the localizing assumption"). 

Consistency conditions can be derived by expanding fn+l and f(xn+l) in a 

Taylor series about the point x. For f 1 we may write n n+ 

(3. I) f n+l = F (x +µ h ) + h I A_o rK(x ,x ,f(x )) + 
n n m n n l=O llK- .. n n n 

( f(l) ) a2K 
2 

+ 0mlhn 1 2 h2 a K 
\ n+l 

- f(x ) -- + 2"m..e. --2 + n axaf n a~ 

+ v h (f(l) - f(xn)) 
a2K 2 a2K 

i (f~:~ - f(xn)) --- + --+ ml n n+l a~af af2 

Here, all partial derivatives of Kare evaluated at the point (x .~n,f(x ». n n 
In order to write fn+l in a power series of hn we have to expand£~~~ in a 

power series of h: 
n 

F (x) + µ 0 h F'(x) + 1 2h2 F"(x) + n n ~ n n n 2µl n n n 

f µ F' (x ) + 
m 

K] + = f(x) + h I Ali n n L l n n i=O 

2 f 1µ2 F"(x) 
m ( aK aK + h, + I Ali \ 8li ax+ "ti~+ n l 2 l n n i=O 

Ill 
aK\l O(h~), + (µ. F' (x ) + I Aik K) ai)J + 1. n n k=O 

..e. = 0,1, ... ,m, 
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where µ0 and A0 . are assumed to be zero (f(O)l = f = f(x )). 
1 n+ n n 

Substitution in (3.1) leads to the power series 

m 
(3. 2) = F (x + µmhn) + h l A_ 0 K + 

n n n l=O IIK-

+ h2 ml f oK aK ( m ·\ aK} ' e + \) + µ FI (x ) + \ ' K + 
n l=O /\ml l ml ax ml a[ \ l n n i~O I\ li ) TI" 

+ h3 I A fiµ 2 F"(x) + I Ao~ (eo~ ~Kx + Vo~ ~! + 
n l=O ml 12 l n n i=O ~~ ~~ o ~~ o~ 

On the other hand, it follows from (2.3) that 

xn+l 

+ f rK(x ,x ,f(x )) + 
L n n n 

X 
n 

oK 
(f,-x ) - + 

n of, 
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Expansion of£(!;) about the point x · and integration yields the series 
n 

Hence, 

(3.4) 

+ .!_h3f f"(x) _aK + 3 a2K ~ a2K + 
6 n L n a£ ax2 a1;2 

2 a 2K a 2K a2K , a 2K l 
+ (f'(xn)) at2 + 3 axal; + 2£'(xn) ai;af +3£ (xn) axafj 

+ O(h4). 
n 

fn+I - f(x I)= rLF (x +µ h) - F (x 1>] + n+ n n m n n n+ 

+ h 
n [ I Amt - 1] K + 

l=O 

( m ( ' m \ - ' ) aKl 
+ \l±o Amt µl Fn (xn) + i±o AliK) ½£ (xn) Tf J + 

+ h! [(.e.Io Ame.(½µi F~(xn) + irO A.e.i(vli :~ + eli :!) + 

+ Jo Ali(µi F~ (xn) + Jo AikK) :~) - ¼ f"(xn)) :~ + 

( m I 2 1) a2K ( m I 2 1\ a2K 
+ \ I 2Ame.vmt - 6 - 2 + I 2Ame. emf. - ~; - 2 + 

l=O ' ai; l=O ax 

( m ( , m \ I , \ a 2K 
+ \e.±o Amf.Vmf. µl Fn (xn) + Jo AliK j - 3 f (xn)} 8/;clf + 

( m ( m )2 1 ~ )2) a2K + l ~A_ 11 µ 0 F'(x)+ l A0 .K --6 f'(x) - 2 + 
l=O Ill{.. ~ n n i=O ~i n' · 8f 



+(.I AmR..0mR../\µl F~(xn) + I Al_ iK) - ½f'(xn)) a::~ + 
l=O i=O 

+ I\ I AmR..emR.."mR.. - i) a:
2a~] + o<h!> • 

l=O 

We now use the solutions 

f(x) = F (x ), n n n 

(3.5) f'(x) = F'(x) + K(x ,x ,f(x )), n n n n n n 

f"(x) = F"(x) + 2 aK + aK + aK f'(x) 
n n n ax ~ a£ n ' 

to arrive at the following consistency conditions: 

(3.6) µ = 
+ f = f(xn+I) + O(h) m n+I n 

(3. 7) 
m 

+ O(h2) I Ami.. = I + f ·= f(x 1) 
l=O n+I n+ n 

(3.8) + f l = f(x 1) + O(h3) n+ n+ n 

m m 
I Ami.. I AOi = ! 

l=J i=O ,\.. 

9 
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m m 
(3. 9) ll1 Amlvml iio Ali 

m m 

I Amlµl I Ali 
l=l i=O 

3.2 MULTISTEP METHODS 

I 
3 

1 
6 

I 
3 

In case of (2.8) consistency conditions are most easily derived by 

requiring that the sum in (2.8) is an exact approximation to the integral 



I 1 

for the functions K(x 1,x,f(x)) = xr, r = O,l, •.. ,p-1. By assuming that n+ 
f. = f(x.) and F.(x) = F.(x), j = 0,1, •.. ,n, we obtain the conditions for 

J J J J 
p-th order consistency 

(3.10) h 
n 

r (x-x) dx, 
n 

r = 0 , 1 , • • • , p- l • 

By introducing the quantities 

(3.11) l = - 1 , ••• , k-1 , 

the equations (3.10) can be compactly written in the form 

(3.10') r = 0 , 1 , ••• , p-1 . 

These conditions are identical to those of the Adams-Moulton formulas for 

ordinary differential equations. 

4. CONVERGENCE 

(4. 1) 

Let us assume that the approximation F (x) satisfies the relation 
n 

X 
n 

l?n(xn+l) = g(xn+l) + f K(xn+l'~,f(l;))d~ + En(h), 

XO 

where E (h) -~ 0 ash= max h. + 0. Secondly, we assume that our numerical n . J 
scheme is a consistent atproximation to the integral equation, i.e. scheme 

(2.3 1 ) satisfies the condition· 

(4.2) <I> (K(x,~,f(l;))) 
n 

K(x 1,~,f(~))d~ + T (h) n+ n 

where T (h) -~ 0 ash+ 0. From (2.1) and (2.3 1 ) it follows that 
n 

f(x 1) - f 1 = F (x 1) - F (x 1) + n+ n+ n n+ n n+ 
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Thus 

xn+l 
r 

+ j K(xn+l';,f(;))d; - ~n(K(x,;,f(;))d; 
X n 

X n 

= I [K(xn+l';,f(;)) - K(xn+l';,f(;)) ]d; + 

XO 

xn+l 

+ f K(xn+l';,f(;)) - ~n(K(x,;,f(;))) + 
xn 

+ ~ (K(x,;,f(;))) - ~ (K(x,;,f(;))) 
n n 

+ E (h). 
n 

X n 

(4.3) f(xn+J) - fn+l = I [K(xn+l';,f(;)) - K(xn+l';,f(;))]d; + 
XO 

- (E (h) + T (h)). 
n n 

Finally, we assume that Kand~ satisfy for n ~ k-1 the following condi­
n 

tions: 

(4.4) 

k 
l~n(K(x,;,f)) - ~n(K(x,;,f))I s 12 h i!o f(xn+l-l) -fn+l-ll, 

where 1 1 and 1 2 are the Lipschitz constants and k is the number of fj­

values used in the formula for~. The resulting error formula becomes 
n 
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n 
(4.3 1 ) l w .[K(x 1,x.,f(x.))-K(x 1,x.,f.] + 

j=O nJ n+ J J n+ J J 

+ qi (K(x,i;,f(i;))) - qi (K(x,i;,f(i;))) -
n n 

- (E (h) + T (h)) + O(hq+l). 
n n 

In order to draw conclusions from this relation we need the following 

lennna: 

LEMMA 4. 1. 

then we have 

Let £ 1,n = O, 1,2 .•. satisfy the conditions n+ 

n 
JE:n+ll ~ L l 1£.J + M, L, M > 0 

j=O J 

PROOF. See Henrici [12, p. 312]. 

Let us now consider the case where F is approximated by formula 
n 

(2.2), that implies E (h) = O(hq+l), Furthermore, let the scheme be p-th 
n 

order consistent, i.e. T (h) = O(hq+l). From (4.4) and (4.3 1 ) it then 
n 

follows that 

where 

n 
( 1 - 1 2h) J f (x 1) - f 1 J ~ L 1 l w . I f (x.) - f. I + 

n+ n+ j=O nJ J J 

k 
+ 12 h l if(xn+l-l) - fn+l-ll + O(hp+l) + O(hq+I) ~ 

l=I 
n 

:5: (L 1w+L2)h l Jf(x.)-f.J + O(hp+l) + O(hq+l), n ~ k-1, 
j=O J J 

w = max 
i,j 

Jw .. I 
l.J 
h 
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We now apply lemma 4.1 with 

to obtain 

Assuming that the starting values have errors of order r = min(p,q) in 

h, i.e. 

(4.6) lf(x.) - f.l = O(hr), j = 0,1, ..• ,k-1, 
J J 

we finally obtain from (4.5) 

(4. 7) f(x ) - f = O(hp+l) + O(hq+l) 
n+l n+I ash ➔ 0 

where x 1 is kept fixed. n+ 
When (2.2 1 ) is used we have 

Xn 

En(h) = Fn(xn+I) - g(xn+I) - I K(xn+l'~,f(~))d~ = 
XO 

n 
= f - g(x) - l w. K(x ,x.,f.) + 

n n j=O nJ n J J 

= f -f(x) + 
n n 

n 

XO 

xfn [K(x ,~,f(~)) -K(x 1,~,f(O)Jd~ + 
n n+ 

+ l w .[K(x 1,x.,f.) - K(x ,x.,f.)] • 
j=O nJ n+ J J n J J 
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Substitution into (4.3) yields 
X 

n 

(4.8) = f(x) 
n 

n 

- f + f [K(x +l '~,f(~)) -K(x ,~,f(O)Jd~ n n n . 
XO 

+ l w [K(x ,x.,f.) - K(x 1,x.,f.)J + 
j =O nJ n · J J n+ J J 

+ q, (K(x,~,f(~))) - q, (K(x,~,f(~))) -T (h). n n n 

We now define the error function C (x,h) by 
n 

xn I K(x,t,f(O)d~ = I w . K(x,x. ,f(x.)) + C (x,h)hq+l. 
j=O nJ J J n 

XO 
Formula (4.8) may be written as 

n 
f(xn+l) - fn+l = f(x )-f + l w .[K(x 1,x.,f(x.) + n n . 0 nJ n+ J J 

J= 

- K(x ,x.,f(x.)) + K(x ,x.,f.) - K(x 1,x.,f.)J + 
n J J n J J n+ J J 

+ q, (K(x,~,f(~))) - q, (K(x,~,f(~))) - T (h) + n n n 

q+l + [C (x 1,h) - C (x ,h)Jh . n n+ n n 

In addition to (4.4) we now also have to require that 

le (x l,h) - C (x ,h)I ~ 13h, n n+ n n 
(4.9) 

From (4.8), (4.4) and (4.9) it then follows that for n = k-1 
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Thus, we find the inequality 

212 n 
I f (x 1 ) - f 1 I s If (x ) - f I + 1 _ 1 h h l I f (x.) - f. I + 

n+ n+ n n 2 j=n+l-k J J 

14w 2n 1Tn(h)l+13hq+2 
+ I h h l I f (x. ) - f . I + I - 1 h 

- 12 j=O · J J 2 

A simple calculation yields 

I n r J 
s (J-12h)-\ l 1wh2 l lf(x.)-f.l + 

l j=k-ll 4 i=O 1 1 

I I q+2 l ~ I I l + TJ. (h) + 13h J + 2k12h l f (x.) - f. f s 
j=O J J 

Applying lennna 4.1 with 

1 = 

-I 
leads to inequality (4.5). Keeping the point x 1 fixed, we haven= O(h ) n+ 
so that 

where we have again assumed that the starting values satisfy (4.6). It is 

now easily seen that (4.5) leads to the result 
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(4.10) ash+ O. 

5. STABILITY 

Before studying the stability of scheme (2.4) and (2.8) we consider 

the stability of the integral equation itself. Consider the variational 

equation 

X 

(5. 1) b. f(x) = f 
XO 

From this relation it follows that 

X 
n 

b. f(xn+l) = b. f(xn) +I[:! (xn+l'~,f(~)) + 
XO 

- :! (xn,~,f(~))J b. f(~)d~ + 

Let us define the quantity 

Xn 

I a2K 
b. G(xn) = axaf 

XO 

and assume that a2K/axaf is a slowly varying function of x, and aK/af a 

slowly varying function of~ and f. Then, we may write 

~ b. G(x 1) b. G(x) n+ n 
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Using the abbreviations 

J(x) 
n 

H(x) 
n 

aK 
= -;--f (x ,x ,f(x )) 

a n n n 

a2K 
= -;:;-::;-f (x ,x ,f(x )) 

oXo n n n 

and approximating the integral with the trapezoidal rule, we obtain 

(5.2) 

I-!h (J(x) + h H(x )) n n n n 0) (b f(xn+I )) 

I b G(x 1) n+ 

I+!h (J(x) + h n n n 

Neglecting the O(h3) terms we may conclude that this error equation is 
n 

stable when its characteristic equation has its eigenvalues within or on 

the unit ciircle. A simple calculation yields 

[I-!h (J(x) + h H(x ))Js2 - [2+½h3 H(x )Js + n n n n n n 

It is easily verified (cf. the analyis of equation (5.22) in section 5.2) 

that this equation has its roots within or on the unit circle when 

Thus, for h ➔ 0 the stability conditions become 

(5. 3) 
aK a2K 
~f (x ,x ,f(x )) ~ 0, -;:;-;;;-f (x ,x ,f(x )) ~ O. 
o n n n oXo n n n 

In case of strict inequality we shall speak of strong stability. 



5.1 STABILITY ANALYSIS OF SINGLE-STEP METHODS 

Let us perturb the numerical values£., j = 
(l) J~ 

f 1 and F (x) n+ n ~£. and denote the amount by which 
J 
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O,1, ... ,n by perturbations 

are perturbed by ~f(l)l 
n+ 

and ~F (x), respectively. 
n 

The pertureation off 1 is n+ then approximately 

determined by the scheme 

~f(O) = ~£ 
n+l n' 

~£ (j) ~ m aK (l) ~/l) (5.4) = ~F (x +µ. h ) + h I A. l af (x +e "l h ,x +v.lh ,£ 1) n+l n n J n n l=O J n J n n J n n+ n+I' 

~fn+I = ~/m) 
J = 1,2, .•. ,m, n+ I' 

provided that the perturbations~£. are sufficiently small. In most studies 
J 

of stability the considerations are restricted to the model equation (cf. 

KOBAYASI [6], LINZ [8] or NOBLE [9]) 

(5.5) 

X 

f(x) = I - a f f(s)ds, 

0 

that it is assumed that the kernel function K(x,s,f) satisfies the conditions~ 

aK 
-- = ax 

aK 
constant, ax = dg -

dx - O. 

Instead of these rigorous restrictions to the class of integral equations 

to be analyzed, we prefer to state in more details what restrictions are 

needed to give a stability analysis. When formula (2.2) is used for the 

evaluation of F (x), we require the following properties of the kernel 
n 

function K(x,s,f) (K is assumed to be sufficiently differentiable): 

(5.6) 

(t,f) e U (x ,£) s n n 

J = O,1, ... ,n for x e U (x) 
E n 
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where U (•) denotes a small neighbourhood of(•). When these conditions 
e: ~ 

are satisfied 6F (x) is approximated by 
n 

(5. 7) 

where 

By writing 

n oK 
6F (x) ~ L w. -;-f (x,xJ.,fJ.) 6f. = 

n j=O nJ a J 

6G = 
n 

m aK a2K L w .[-;:;-f- (x ,x.,f.) +•,(x-xn) "x"f (x,xJ.,fJ.)J 6f. ~ 
j=O nJ a n J J a a J 

= 

~ 6F (x) + (x-x) 6G, n n n n 

n ·a2K 
I w. rn <x ,x.,f.) 6f .. 

j=O nJ x n J J J 

aK (l) -;-f (x +8. 0 h ,x +v. 0 h ,f 1) = J + 8. 0 h H, 
a n J-<- n n J-<- n n+ n J-<- n n 

scheme (5.4) reduces to 

Af(O) = Af 
u n+ I u n' 

(5.4') Afo+1>~~c ~ 2 <l> 
u I = F X) + µ.h 6G + l L 0 [h J +8. 0h HJ 6£ l, 

n+ n n J n n l=O J-<- n n J-<- n n n+ 

6fn+l ~ 6f(m) n+l' 

These formulas suggest to express 6f(j) in the form 
n+l 

(5.4") 6f(j) ~ Q. 6f + R. 6F (x) + S.h 6G, 
n+ I J n J n n J n n 

where QJ·,R; and S. are polynomials or rational functions in the arguments 
. J 2 

h J and h2H. By substituting (5.4") into (5.4 1 ) we find (z=h J ,y = h H \ n n n n n n n n; 

m 
Qo(z,y) = I ' Q.(z,y) = I Ajl(z+ej,ly) Q,e(z,y), 

J l==O 
m 

R0(z,y) = O, R.(z,y) = I + I Ajl(z+ej,ly) R,e(z,y), J l=O 
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m 

s0(z,y) = 0, Sj(z,y) = µj +lio Ajl(z+ej,ly) Sl(z,y), 

from which the functions Q ,R and S , to be called stability functions in m m m 
this paper, can be derived. Thus, 

(5.8) = Q (h J ,h2H) fl£ +R (h J ,h2H )fi (x )+ S (hJ ,h"ZH )h flG. 
m nn nn n m nn nn n n m nn nn n n 

(Note that R and S are identical when for all j, µ.=I.) 
m m J 

Furthermore, from the relation 

n+l 
= g(xn+l) - g(xn) + l w +l . K(x +l'x.,f.)+ 

j=O n ,J n J J 
n 

- l w. K(x ,x.,f.) 
j=O nJ n J J 

we find, using conditions (5.6), 

flF ex)+ 
n n 

+ h n 

n r aK 
l (w +l .-w .) TI (x ,x.,f.) fl£.+ 

j=O n J nJ n J J J 
n+l 
r w i. 

j=O n+ J 

or, when n is close ton, 

n 
(5.9) ~ flF (x) + l (w 1 . - w .)J flf. + 

n n j=n n+ J nJ n J 

+ h fl G + w J fl f n n+J n+ln+l n n+J' 

w 1- being the first weight in the row w 1. which differs from w .• 
n+ n n+ J nJ 

Finally, we have from the definition of flG the relation 
n 

(5. 10) = flG + 
n 

n 
l (w 1 . - w .) H flf. + w 1 1 H flf 1. n+ J nJ n J n+ n+ n n+ j=n 

ilJ8LIQ1 HEEK ·;,v, 11 trt✓ r:Tt2CH CtrH HUM 

AIV\S ! LfaiAM 
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Introducing the vectors 

➔ - ~ T ~v - (~f ,~f t'·••;~f l'~f-,~F (x ),~G) n n n- n+ n n n n 

we arrive at the relation 

(5. 11) 

where 

when 

(5. I 2) 

A n 

➔ ➔ 
A ~v 1 = B ~v, n n+ n n 

and B are (square) matrices defined by n 

0 

0 

0 0 

A = . 
n . . 

0 0 
-w J n+l ,n+l n 0 

-w H n+l ,n+l n 0 

Qm 0 

1 0 

0 

B :: n 

0 0 

~w J ~w IJ n n n- n 
,~w H nn ~w 1H n- n 

. 

0 

0 

0 . 
• . , ~w. = w 1 • - w . 

J n+ J nJ' 
l 0 0 
0 1 -h 

n 
0 0 1 

0 R h S 
m nm 

0 0 0 

0 0 0 

0 0 0 

~w-J 0 nn 
~w-H 0 nn 

The vector of perturbations ~V remains bounded in some norm 11- II 
n 

II A-] B ii s I. 
n n 

A necessary condition to satisfy this inequality is the requirement that 
-I all eigenvalues s of A B are within or on the unit circle, i.e. the con­
n n 

ditions that the roots of the characteristic equation 

(5.13) det(B - sA) = 0 
n n 



are within or on the unit circle. Note that the degree of this equation 

can be kept low by choosing the weights w. such that n is close ton. 
nJ 

In general, this implies uniform step sizes h. 
n 
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In order to illustrate the preceding results we derive the characteris-

tic equation for the cases where F (x) is estimated by the Trapezoidal rule 
n 

and Simpson's rule(+ 3/8-rule) using unifol:"Ill integration steps. 

Trapezoidal rule+ m-point Runge-Kutta 

In this case we have (i = 1,2, ••• n+l and j = 0,1, ••• ,n+l) 

(wij) =h 

so that the value of n 

(5. 11) becomes 

1/2 1/2 0 

1/2 1/2 

1/2 

1/2 

1/2 

1/2 0 

1/2 (n+l )*(n+2) 

in relations (5.9) and (5.10) equals 

(-:hJn 
0 

-;) cn+l ~ 1 ~Fn+l (xn+l) = 

- 1hH 0 ~G 1 2 n n+ 

n. Thus, formula 

('~ R hS) (:!:(xn~ m nm 
= 1 0 

2 n 
1hH 0 1 
2 n n 

yielding the characteristic equation (z = hJ, y = h2H) n n 

(5. 15) ~3 - [2+0 (z,y) + izR (z,y) + iy(R (z,y) + S (z,y)J~2 + 
'm m m m 

- [O (z,y) - ½zR (z,y) - ½yS (z,y)J = 0. 
'm m m 
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In the particular case where Jh2H J is very small, this equation 
n 

may be written as 

(5.15 1 ) (1-t)[t2-, [l+Q (z.0) + ½zR (z,0)Jt + Q (z,0) - lzR (z,0)J = 0. m m m m 

The roots are within or on the unit circle when 

zR (z,0) 
m 

::;; 0, 

(5. 16) ~(z,0) ~ - I , 

Q (z,0) - !zR (z,0) ::;; I. m m 

These inequalities determine the interval of stability -S::;; z::;; 0 and the 

corresponding stability condition (strict inequality corresponds to strong 

stability) 

(5. I 7) s h ::;; ---, J ::;; 0. 
13n1 n 

Application of these criteria to a number of Runge-Kutta methods may be 

found in [ 11]. 

Simpson's Rule+ m-point Runge-Kutta 

Leaving aside the starting procedure, Simpson's Rule provides the 

weights w. when n is even and together with the 3/8-rule it provides 
nJ 

the weights w. when n is odd; thus 
nJ 

1/3 4/3 1/3 

3/8 9/8 9/8 3/8 

0 I /3 4/3 2/3 4/3 1/3 

I /3 4/3 17/24 9/8 9/8 3/8 
(5. 18) (w .. )" = 

1J 
h 

1/3 4/3 2/3 4/3 2/3 4/3 1/3 

1/3 4/3 2/3 4/3 17/24 9/8 9/8 3/8 

1 /3 4/3 4/3 2/3 4/3 I /3 

1/3 4/3 4/3 17/24 9/8 9/8 

1/3 4/3 4/3 2/3 4/3 2/3 

3/8 

1/3/ 4/3 
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For odd values of n relation (5. I l) becomes 

0 0 0 0 0 l:lf I n+ 
0 0 0 0 0 l:lf n 
0 0 0 0 0 l:lf n-1 
0 0 0 0 0 l:lf = n-2 

I 0 0 0 I ..,.h l:lFn+l (xn+l) --hJ 3 n 

- -kH 3 n 0 0 0 0 l:lGn+l 

Qm. 0 0 0 R hS l:lf 
m m n 

I 0 0 0 0 0 l:lL-1 n-
0 0 0 0 0 l:lf n-2 

= 0 0 0 0 0 l:lf n-3 
, 

~J - -!-4i.r 2-hJ - -1 hJ 
~ 0 l:l F (x ) 

24 n 24 n24 n 24 n n n 

~H - _!_!hJ 2-hH - _I hH 0 I:!,, G 
24 n 24 n24 n 24 n n 

which has the characteristic equation 

Q -r; 0 0 0 R s 
m m m 

I -r; 0 0 0 0 

0 -r; 0 0 0 0, (5. l 9) det = 

0 0 -r; 0 0 

(23+8r;)z -I I z 5z -z 24 ( 1 -r;) 24r; 

(23+8r;)y -I ly Sy -y 0 24(1-r;) 

·where we have again written z = hJ and y = h2H. Putting y = 0 (small 
n n 

values of lh2H I) this equation reduces to a fifth degree polynomial given 
n 

by 

(5 • 19a I) 5 l . 4 23 3 
r; - [l+~(z,O) + 3 zR(z,O)J r; - [ 24 zRm(z,O) - ~(z,O)]r; + 

11 2 5 l 
+ 24 zRm(z,O)r; - 24 zRm(z,O)r; + 24 zRm(z,O) = 0. 

For even values of n we find in a similar way the fourth degree 

polynomial 
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(5. 19b') 
4 3 3 19 · 2 

r; - [l+~(z,O) + 8 zRm(z,O)J r; - [ 24 zRm(z,O) - ~(z,O)]r; + 

5 1 
+ 24 zRm(z,O)r; - 24 zRm(z,O) = O. 

Application of these equations to several Runge-Kutta formulas may be 

found in RECKERS [11]. 

5.2 MULTISTEP METHODS 

(5.20) 

From (2.8) and (5.7) it follows that 

k 
~ 6F (x 1) + h t b O ~Kf (x 1 ,x 1 0 ,f 1 o) 6f 1. 0 ~ . n n+ n .e.=o n ,,c_ fJ n+ n+ -,c.. n+ -,c.. n+ -,c_ 

k 
~ 6F (x) + h 6G + h l b 0 [J +h HJ 6f +l 0 • 

n n n n n l=O n,,c.. n n n n -,c.. 

Together with the relations (5.9) and (5.10) this formula describes the 

stability of the process. Let us assume that the number n occuring in (5.9) 

and (5.10) satisfies the inequality 

ii;?: n-k+l 

we then may introduce the vectors 

-+ ~ T 
6V = (flf ,6f 1, .•• ,6f-, ••• ,6f l k,6F (x ),6G) n n n- n n+ - n n n 

and obtain the relation (cf.(5.11)) 

(5.21) 
-+ -+ 

A 6V l = B 6V , n n+ n n 

where 



A = 
n 

B = n 

1-h b J n n,O n+I 

0 

0 0 

0 0 

-w J n+l ,n+I n 0 

-w H n+l ,n+I n 0 

hnbnlJn+I hnbn2Jn+I 

0 

0 

0 0 

t:,.w J t:,.w IJ nn n- n 

!:,.w H t:,.w 1H 
nn n- n 

and where J 1 = J + h H • n+ n n n 

0 

0 0 

0 0 I 

0 0 0 

h b - J n, n-n+I n+I 

0 

0 

0 0 

t:,.w_J 0 nn 

t:,.w_H 0 n n 
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, 

h b J h n nk n+I n 

0 

0 

0 0 0 

0 0 0 

0 0 0 0 

The characteristic equation of relation (5.21) is again of the form (cf. 

(5.13)) 

det(B - ~A)= O. n n 

Relation (5.21) can be simplified when the multistep method 1s of 

the special (usual) form (2.20). We then may write 
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+ h 
n 

n 
~ b.fn + ~ b.wjJnb.fj + wn+ln+lJnb.fn+l + hnb.Gn+l • 

Together with (5.10) we now have the error equation 

(5.21') A b.V = B V n n+l n n 

where 

b.V = (b.f, b.f 1, ••• ,b.f l k' b.G )T n n n- n+ - n 

_ l-wn+ln+lJn 0 -h 
n 

0 0 

A = n 

-w H 0 1 
n+ln+l n 

and 

l+b.w J b.w lJ nn n- n 

0 0 0 

0 0 0 

B = n 

0 0 0 0 

8W H b.w 1H 
n n n- n 

b.w-H n n 

We shall illustrate these results by deriving the characteristic 

equations of the trapezoidal rule and of Simpson's (+3/8) rule. 



Trapezoidal rule 

Let the weights w .. be given by (5.14) and let the parameters b_ 0 l.J 11,,{.. 

satisfy relation (2.9). According to (5.21') we have 

leading to the characteristic equation 

(5.22) 

The roots of this equation are within or on the unit circle when 

(5.23) 

2+z 
--- :::;; 1, 2-z-y 

y+4 
2-z-y 

4-y 
:::;; ---"--

2-z-y • 

In figure 5.1 the region of points (z,y) is shown which satisfy these 

inequalities. 

y 

z 

y = -2z 

Fig.5.1 Stability region for the trapezoidal rule 

29 
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Simpson' rule 

Let the weights w .. be given by (5.18) and the b_b by (2.9). For 
1J Il,,l. 

odd values of n we obtain from (5.21') the relation 

1 
0 0 0 -h t:,,f 1 1- -hJ 3 n n+ 

0 0 0 0 t:,,f 
n 

0 0 0 0 t:,,f = 
n-1 

0 0 0 0 !:,,f 
n-2 1 - -hH 0 0 0 t:,,Gn+l 3 n 

23 - ..!.!_ hJ 5 1 
0 t:,,f l+ 24 hJn 24 hJn - -hJ 24 n 24 n n 

0 0 0 0 t:,,f 
n-1 

= 0 0 0 0 t:,,f 
n-2 

0 0 I 0 0 t:,,f 
n-3 

23 hH - ..!.!_ hH 5 I 
24 hHn - -hH t:,,G 24 n 24 n 24 n n 

with the characteristic equation 

(5.24a) 24~3(1-~) 2 + (z-z~-y~)(l-5~+11~2+23~ 3+8~4) = o. 

Similarly, we find for even values of n the equation 

(5.24b) 

5.3 STABILITY ANALYSIS OF THE MODIFIED FORMULAS 

In the preceding analysis it was assumed that F (x) is evaluated by 
n 

formula (2.2). We now study the stability problem when formula (2.2') is 

used. Again assuming that the kernelfunction satisfies conditions (5.6), 

we now have for t:,,F (x) the relation 
n 

, 



(5.7') t:.F Cx) - t:.f + 
n n 

n f aK l wnJ•La"f (x,x.,f.) 
j=O J J 

~ 8f + (x-x) 8G. 
n n n 

SingZe step methods 

Substitution of (5,7') into (5.8) yields 

(5.25) = [Q (h J ,h2H) + R (h J ,h2H )] t:,.f + m nn nn m nn nn n 

+ S (h J , h 2H ) h t:,. G m nn nn n n 

Together with (5.10) we arrive at the relation 

(5. 26) 

~-here 

-➔ T t:.V = (M , •.. ,t:.L,t:.G ) n n n n 

0 

0 

A = n 

0 0 

-w H n+l ,n+l n 0 

O' 

0 

0 

0 

31 
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and 

~+Rm 0 0 h S nm 

0 0 0 

0 0 0 

B = n 

0 0 0 0 

wH tiw l H liw- l H liw-H n n n- n n- n n n 

Note that for vanishing H equation (5.26) does not depend on the quadrature 
n 

formula used in the evaluation of F (x). In fact, the error equation reduces n 
to that of the equivalent Runge-Kutta formula for ordinary differential 

equations (cf. (2.4")). 

We shall illustrate the application of this error equation by deriving 

the stability region of the formula defined by the matrix (5.14) (trapezoi­

dal rule). Since we then simply haven= n and tiw = h/2, we obtain 
n 

(5. 27) 
OJ ( tifn+l ) = 

I tiG I n+ 

( 
Q +R 

m m 

1hH 
2 n 

The characteristic equation is given by 

+ Q (z,y) + R (z,y) - !yS (z,y) = 0. 
m m m 

In the (z,y)-plane the stability region, i.e. the set of points (z,y) where 

lsCz,y)j < I, is given by the inequalities 

(5.28) 

yS (z,y) ~ 0 
m 

~ I + !ys ( z, y) 
m 



MuUistep methods 

(5. 29) 

Substitution of (5.7') into (5.20) yields 

k 
Af I= Af + h AG + h I b O [J + h H] Af I 0 • 

n+ n n n n l=O n,,{.. n n n n+ -,{.. 

Together with (5.10) this yields the error equation (n ~ n-k+I) 

(5.30) 

where 

and 

-+ -+ 
A AV I = B AV , n n+ n n 

-+ T 
L1V = (Af ,Af I, •.. ,Af-, .•. ,Af I k,AG ) , n n n+ n n+ - n 

A= 
n 

B = 
n 

1-h b 0J n n n 

0 

0 

0 

-w H n+ln+I n 

I +h b I J I n n n+ 

0 

0 

Aw H 
n n 

0 

0 

0 

0 

0 

h b J n n2 n+I 

0 

0 0 

Aw 1H ... Aw-H n- n n n 

0 

0 0 

0 • • • I 

0 ... 0 

0 

h b J h 
n nk n+I n 

0 

0 

0 

0 

0 

0 
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J 1 being again J + h H. From this relation the characteristic equation n+ n n n 
is easily derived. 
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