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On the numerical solution of Volterra integral equations of the second kind

I Stability

by
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ABSTRACT

The main purpose of this paper is to analyse the stability of algo-
rithms for non-linear Volterra integral equations of the second kind. In

particular, Runge-Kutta type methods are studied.
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1. INTRODUCTION

In this paper the stability behaviour is considered of linear multi-
step methods and single-step methods of Runge-Kutta type when these methods
are applied to Volterra integral equations of the second kind. In particu-
lar, for Runge-Kutta methods the stability problem seems to be a hardly
investigated area, presumably because Runge-Kutta methods are considered
more as starting formulas for multistep methods than as independent integ-
ration formulas. It turns out, however, that Runge-Kutta type methods allow
relatively large regions of stability and therefore may be advantageous in
cases where the kernel function of the integral equation has a large Lip-
sehitz constant. Hence, we concentrate our considerations on Runge-Kutta
methods, although we also give the corresponding theory for multistep
methods. In section 2 the general formulas are introduced and a modification-
of these formulas is discussed, which can be characterized by the property
that they reduce to the common linear multistep and Runge-Kutta methods for
ordinary differential equations in those cases where the integral equation
is equivalent to an ordinary initial value problem. In section 3 the consis-
tency conditions are derived and in section 4 a convergence theorem is
given, both for the 'usual" and modified form of the multistep and Runge-
Kutta schemes. It appears that the modified formulas generally have a lower
order of accuracy, however, as will be shown in section 5, the stability
analysis is easier and, as we will report in a forthcoming report, the
stability regions seem to be larger. Numerical experiments will be published

in the near future.
2. DERIVATION OF A COMPUTATIONAL SCHEME

Volterra integral equations of the second kind may be written in

the form
X
(2.1) £(x) = F (x) + J K(x,8,£(8))dE,
X
n
where X
F (x) = g(x) + J K(x,&,£(g))deE.

*0



With respect to the point X s the first term Fn(x) may be interpreted as
the "past" and the second term as the '"future'" of the integral equation.
When approximations fj to f(xj), j =0,1,...,n are obtained, we may ap-
proximate Fn(x) for arbitrary x-values by applying some quadrature formula

and by replacing f(xj) by fj’ i.e.
- n
(2.2) Fn(x) = Fn(x) = g(x) + jzoxvnj K(x,xj,fj).

In order to derive a formula for the numerical approximation fn+1’ we

consider the following formula for f(xn+1):

(2.3) f(xn+]) = Fn(xn+1

An+1
) + f R(x_,;>8-£())dE.
%n

By replacing Fn(xn+l) with some approximation Fn(xn+1) and the integral

by a numerical quadrature formula, we obtain a formula of the type

1 = 7
(2.3Y) fn+l Fn(xn+]

) + o (K(x,8,£(8))),

where f represents some interpolating function through the values f.,

j= n+1,n,...;CI>n denotes some approximation to the integral in formula

(2.3). Two cases will be considered: firstly, the integral will be replaced
by a formula using non-step points in a way as is done in Runge-Kutta for-
mulas for differential equations, and secondly, we replace the integral by

a linear multistep formula. Both approaches are well-known in the literature.
The Runge-Kutta approach may be found in e.g. LAUDET and OULES [7], POUZET
[10], DAY [2], BELTJUKOV [1] and DE HOOG and WEISS [3]. Multistep methods
were considered by e.g. KOBAYASI [6], LINZ [8], NOBLE [9] and GAREY [4].

2.1 SINGLE-STEP METHODS

Similar to Runge-Kutta methods for differential equations we may

define the scheme

(2.4) £ e fDF apnyen If N, K(x #8, b ,x +v. b ,£00)
’ n+l - nttarl T Tat%a M5 Dyl 72 R VAn AL A VA LR e L

£o= £

o+l ot j=1,2,...,m.



Here, hn denotes the step length X4

approximation to Fn(xn+ujhn). After m iterations the approximant f

- x and F (x +p.h ) denotes some
n n°n - jan (m)

is
n+l

taken as the final approximation fn+ to f(xn ). The parameters uj, Ajﬁ’

sz and Mjﬂ are determined by consislency and+;tability conditions. We
observe that the computational effort per step of formula (2.4) can be
reduced by trying to give uj either the value 0 (since Fn(xn) = f(xn)) or
to give u. a value independent of j.

It may be interesting to consider the class of integral equations

with

K _ dg _
(2.5) = I 0

Equation (2.1) then reduces to a differential equation of the form

(2.1") -§§ = K(x,x%,£)= K (x,£)

The corresponding numerical scheme reduces to (note that Fn(x) no longer

depends on x)

0) _
fn+1 - fn
G) _= v * L) .
1] - =
(2.4") £31 = F, * by zzo Ajz K (xn+vj£hn,fn+]), j=1,2,....m,
fn+] = fé?%’

whereas direct application of the general m—point Runge-Kutta to equations

(2.1" yields a scheme of the type

(0

n+l fn
m
(i) * €] .
" - =
(2.4") £31 = £, *h zzo xjﬂ K'(x +vph £ 771),  §=1,2,...m
_ (m)
Fae1 = Toel

A comparison of (2.4') and (2.4") suggest to define Fn(x) is such a way

that Fn(x) = £ for all integral equations satisfying (2.5). In that case



all theory derived for Runge-Kutta methods also applies to this special
class of integral equations (we will call these equations test equations).

Let us consider formula (2.2) more closely by writing it in the form

(2.6) F oo =F )+ gx) - glx) +
E nil
+ w_ . K(x,x.,f.) - w__ .. K(x_,x.,f.).
j=0 M R e A R

Using representation (2.3') this formula transform into

(2.7) Fn(X) =f - <I>n_](K(X,E,f)) +g(x) - 8lx) +

n

n
+ Z [Whj K(X’Xj’fi) W

lj K(xn’xj’fj)]’
where the weights wij are assumed to be zero when i < j.
Generally, (2.7) will not reduce to the equation ﬁn(x) = fn when

applied to the test equation. However, when we define ﬁn(x) by the formula

(2.2") FH(X) =f + g(x) - glx )+ jlgo wnj[K(x,xJ-,fj) - K(xn,xj,fj)],
it is still a consistent approximation to Fn(x), while it reduces to
Fn(x) = fn for the class of test equations. Unfortunately, formula (2.2')
may reduce the order of accuracy by one as will be shown in section 4. In
the following we shall call a formula, in which ﬁn(x) is evaluated accor-
ding to (2.2') instead of using the direct quadrature formula (2.2), a

modified integration formula.
2.2 MULTISTEP METHODS

We replace the integral in formula (2.3) by a linear k-step formula

to obtain

k
(2.8) Frer = FnGp) *+ 1y ZZO e K% ey g fnag-p)



The parameters bnﬂ are determined by consistency and stability conditionms.
Let us apply this scheme to integral equations satisfying (2.5) and .

suppose that ﬁn(x) is defined by (2.2'). We then have

k
(2.8") T ZZO LAY S NORVEL O

which is identical to the well-known Adams fdfmula for ordinary differen-
tial equations. Thus, just as for Runge-Kutta formulas, we see that the
modified forms reduce to formulas known for ordinary differential equations
when they are applied to the class of test equations.

It should be observed that the WeigEts wij’ j=0,1,...,1,
i=1,2,...,n used in the computation of Fn(xn+l) are not necessarily
related to the parameters bvﬂ’ £ =0,1,...,k; v=1,2,...,n. Usually,

however, one has

(2.9) hlnbn,?, B wh+1,n+l—£ = wﬁ,n+1—£’
where AR is assumed to be zero. The numerical algorithm then simply
reads
n+1
(2.10) Eep = 8C ) jzo Yn+l,j K(Xnﬂ’xj’fj)'

3. CONSISTENCY CONDITIONS
3.1 SINGLE STEP METHODS

Instead of appproximating the integral in (2.3) by a direct quadra-

ture rule based on non-step points (cf. DE HOOG and WEISS [3]), we try to
determine the Runge-Kutta parameters in (2.4) along the same lines as is
done in ordinary differential equations, i.e. by deriving and solving the
éonsistency conditions (cf. BELTJUKOV [1]). Scheme (2.4) will be called

consistent of order p when

a B p+l
f f(xn = O(hn ) as hn - 0,

n+1 +1)



where fn+l is assumed to be the result of formula (2.4) when applied with

fj = f(xj) and ﬁj(x) = Fj(x), j =0,1,...,n (in analogy to the terminology
in ordinary differential equations called '"the localizing assumption').

Consistency conditions can be derived by expanding f and f(xn+l) in a

n+1

Taylor series about the point X . For fn+1 we may write

m
(3.1) f F (x+uh)+h KEO Ap [K(xn,xn,f(xn)) +

n+l
oy 250 g, B0 (1) - ) B il K
oty (85 - ) S+ 02 2K
+ mzhn< £ O g )) -a"g—(- ; (fﬁ C o) %*
+ 0 Vagh ;ié ¥ O(hi)]

Here, all partial derivatives of K are evaluated at the point (xn X, f(x ).

In order to write fn+1 in a power series of hn we have to expand fg&z in a

power series of hn:

éf% = F (x ) + uzh F (x ) + éuzhz F"(x ) +
¢ [ 9K 9K
PPy Lo e [ %t ok T Vet g
[ (i) y) 2K L o2 1.
*ifae T EE / Bf O(hn)J
= f(x )+ h [ F'(x ) + ? A K-| +
Luﬂ n n 120 2i 7
2 [I 2 " Ly { BK BK
+ hy | M Fl'(x_ ) + iZo Aos \621 3=t Vei aE
m
. oK) |
+ (uy Flx) kzox K) 5?/]*0“‘)



Y (0) = =
0i are assumed to be zero (fn+1 fn f(xn)).

Substitution in (3.1) leads to the power series

where uo and A

m
(3.2) fn+1 = Fn(xn + umhn) * hn [zo kmﬁ K+
2 T f 9K K [ '\aK}
+hn£20)‘m£16m£a_x+"mzag+\“£1?(X)+Z%K/ +
3 ¥ [1.2 o v ( K 3K
*hy KZO ot 12He Fn(xn) * 'ZO foi \%ei ox T Ve 3E
o
\ 8K\ 3K
* (ug Fl(x) + Zo )\ikK}’a—f_/ T
2 ' m 2
O R (”z Falx) + 1 2y K) T
X i=0
2 m 2
2 3°K ( \ 3K
+ v, —= + v w, F'(x ) + ) Ap, K} ==
b2 mf \"£ “n ;2o A7) et
m 2 .2
+ 1 (u F'(x ) + Z A K> AK
AN izo % a£2
2
9 K
* One Vme axag}
+ O(hﬁ).
On the other hand, it follows from (2.3) that
*n+1
f(x ) =F (x  .)+ [K(xxf(X))+(£—X)~3£+
n+1 n n+l L  n’"n’" 'n n’ 93§
n
2 .2 2 42
Gemx ) o2+ (£() = £(x)) 32+ b(e=x) %—‘23 bax ) S5+
g X
2 2 .2
, 3 K d K
+ (E‘Xn)(f(g) - f(Xn)) 3Eaf + 3(£(8) - f(Xn)) g;j +
BZK 32K 34]
+ (x=x ) (£(8) - £(x))) 55 + (x=x ) (E-x ) ¥ 0(h3 )J.



Expansion of f(&) about the point X and integration yields the series

(3.3) f(x_,,) = Fn(an) +h K+

n+1
e g2 [2 3K L B L by 3K
n [T 9 9L of |
2 2
1.3 3K 3°K -~ 3°K
+—-h7if"x )=+ 3 — + — +
6 n| n’ 3f ax2 3&2
2 .2 2 2 2
, 3K 3K ' 3K ' 3K ]
+ETG) 22w 287 () 5 P3G 5rE |
+ 0(h))
Hence,
(3.4) £ - f(x ) =lF (tuh) -F (x. )|+
: n+1 n+1 [ n ' 'n mn n  n+l J
[
+ h A - l] K +
n lpzg ™

" | ZO hatat 1) 5 ¢ (Kgo mtat ~ 1) Bt

+

<+

[ o ( : m \ - K]

i=0
3 7 " BK BK\
+ h [(220 Amﬂ(’“ﬂ F (x ) + IZQ Aﬂl( Vei 38 0p: Bx/
+ § A ( F'(x ) + ? y K) 25) L y) Ky
Lo il a7 LK) 3 *n’ ) 3F
(% . 2 1)k ( o 2\ o
+ P NIPIUE N IR o, 8, - 112 E
\zzo “nlmb 6/ o, KZOZ ol mt -t
(5 ( T A P iy
m n \2 2. .2
' ( L “M(“f_ PG v L K - ‘é(f'(xn)\} )25+



We

(3.

to

(3.

(3.

(3.

(Ifxe/ F()+ZAK>--f() 32K+
ml me\"¢ “n*® o i *n’ ) xof

[T . 32K 4
+ \KZO Amzemzvmz ;) 5§5€~ + O(hn).

now use the solutions

f(xn) = Fn(xn),

v = !
5) f (Xn) Fn(xn) + K(Xn’xn’f(xn))’
" = " lIS aK 3K
£'(x ) = Fo(x) + N £1(x ),
arrive at the following consistency conditions :

6) =1

8

¥

o
I

¥
h
|

7) ) Ap =1 b "

Nl
=
¥
Hh
|

» K;-Z-l "ne T 2 ntl

f(Xn+1

f(Xn+l

f(Xn+1

) + 0(h)

2
) + O(hn)

3
) + 0(h)
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v 2 1
KZI ‘mehe <3
m m 1
L me iZO Mivei T %
m m 1
Zl Ant .Z Allul %
= 1=1
P e Fop 3
A Ap. A = =
Z] we 2y i Ly Tik 6
b 2 1 ¢ 2 1
AV, == ) A ,0°, ==
Ly *ut’nt T3 ok ‘wt’me T3
o 1
ok utimee =3
m m 1 4
(3.9) K:ZI AnpVme iZO Mei =3 > f = EG )+ 0
m ? 2 1
Yoo ( A ) ==
L Mwe (L M) T3
m §1 1
) A _pH Ap: = %
by e Lo T3
m f 1
A Ap.9,. -
by e Lo Meifes 73
s 1
L PPt < 7
YA ,0 Ay, = 4
iy mtme Lo ei 77
- 1
U R

3.2 MULTISTEP METHODS

In case of (2.8) consistency conditions are most easily derived by

requiring that the sum in (2.8) is an exact approximation to the integral



11

for the functions K(xn+1,x,f(x))'= xr, r=0,1,...,p~1. By assuming that

fj = f(xj) and ﬁj(x) = Fj(x), j =0,1,...,n, we obtain the conditions for

p-th order consistency

K Xn+1

(3.10) hn z bnﬂ(xn+1—£ - xn)r J (x-xn)r dx, r=0,1,...,p-1.

£=0 X

“n
By introducing the quantities
*n-2"*n
(3.11) qp=—7—, L=-1,... k1,
n

the equations (3.10) can be compactly written in the form

k
T r - ] - —
(3.10") zzo bpQp g =g = 0sle..,p-l.

These conditions are identical to those of the Adams-Moulton formulas for

ordinary differential equations.
4. CONVERGENCE

Let us assume that the approximation Fn(x) satisfies the relation

X
n

(4.1) ﬁn(xn+l) =gl )+ [ K(x , ,E,E(£))de + E_(h),
X

0

where En(h) + 0 as h = max h, > 0. Secondly, we assume that our numerical

scheme is a consistent approximation to the integral equation, i.e. scheme

(2.3") satisfies the condition -

X
n+1

(4.2) 8 (K(x,E,£(8))) = f K(
n

X

£,£(£))dg + T_(h)

Xn+1’
where Tn(h) - 0 as h > 0. From (2.1) and (2.3') it follows that

f(xn+]



12
xn+1

KGx_, £, £(E))dE - & (K(x,E,E(6))dE

x
n+l’

><+
=Rt

=}

[K(xn+1,a,f(a>) - K(xn+,,s,¥(a))]da +

el

Il
O Y

]

n+1

K( £,£(8)) - ¢ (K(x,£,£(8))) +

X
n+l1’

N+
89—

+ 0 (R(x,E,£(8))) = ¢ (K(x,£,%(2)))

+ En(h).
Thus
X
n
(4.3) FGe, ) - £y, =Xj [K(xn+,,s,f(g)) - K(xn+,,a,f<g>)]da +
0

+ o (R(x,E,£(8))) - o (K(x,E,£(E))) +
- (B (B) + T_(h)).

Finally, we assume that K and ®n satisfy for n = k-1 the following condi-

tions:
n xn
1wy ROux,0(p) = J' KGx,£,4(£))de + 0%y,
j=0 . X,
(4.4)

|R(x,£,£) - K(x,8,D)] = L, [£-E],

k
I@n(K(X,E,f)) - q)n(K(XsE,f))l = L2 h Z f(xn+]_£) -fn"'l—KI B

1
values used in the formula for @n. The resulting error formula becomes

where L. and L2 are the Lipschitz constants and k is the number of fj—
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n .

~
|

Hh
|

(4.3") £(x_

+

o (R(x,E,£(8))) -0 (K(x,8,£(E))) -

q+1
E () + T_(0) + 0T,

In order to draw conclusions from this relation we need the following

lemma:

LEMMA 4.1. Let € 41°0 = 0,1,2... satisfy the conditions
n
I€n+1| <L _z lejl +M, L, M>0
j=0
then we have
le | < +1L)® @+L]e |).
n+l' = 0

PROOF. See Henrici [12, p. 312].

Let us now consider the case where Fn is approximated by formula
(2.2), that implies En(h) = 0(hq+]). Furthermore, let the scheme be p—~th
order consistent, i.e. Tn(h) = O(hq+]). From (4.4) and (4.3') it then
follows that

n
(1 —L2h)]f(xn+1)—fn+]] < L jZO wnj[f(xj)—fjl +
k
1
* LZhE-lef(an-Z)—an—,el s 0@+ om? <
t +1 +1
< @w+L)h ] If(xj)—fjl + 0Py + 0T, n = k-1,
J=
where
lwijl
W = max h
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We now apply lemma 4.1 with

Lty k22 +1 +1
L=——->=h,M=1 } |f(x,) - £.|+0@®P"") +0m?"),
1-L,h . J ]
2 j=0
to obtain
n-k+1 .
(4.5) £z ) - £, < +1) M+L£G ) - £ _, D

Assuming that the starting values have errors of order r = min(p,q) in

h, i.e.
(4.6) lf(xj) - fjl = 0%, j=0,1,...,k-1,
we finally obtain from (4.5)

4.7) Fx_, ) - £, = 0Py + 0wd*!y  asnh -0

n+1 n+

where X .1 s kept fixed.

When (2.2') is used we have

. Xn
En(h) = E;(Xn+]) - g(xn+]) - J K(Xn+]s€’f(g))dg =
X

0

n
£ - a0 - |

; wnj K(xn,xj,fj) +

0

+
Il o~>18

%n
an K(Xn+1 ’Xj:fj) - J K(Xn_'_l’gﬁf(g))dg
X

j=0
0

X
n

£o-f(x ) + j [K(x_,E,£(8)) - K(x_,,»E,£(2))1dg +
X

0

+

n
jZQ an[K(Xn+1’Xj’fj) - K(xn,xj,fj)]
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Substitution into (4.3) yields "

n
(4.8) £Gx, ) - £, = £Gx) - £+ J [RGx_, |»E,£(8)) —K(x_,E,£(6))1dg
*0
+ z an[K(Xn’xj,fj) - K(Xn_'_]sxjsfj)] +

j=0

+ 0 (K(x,E,£(8))) -0 (K(x,8,£(6))) - T_(h).

We now define the error function Cn(x,h) by
Xn n
q+1
J K(x,8,£(8))dg = v K(x,x.,f(x.)) +C_(x,)h" .
j=0 M 3 b n
X

0
Formula (4.8) may be written as

f(x ) - £

£(x ) - £+ z v [K(x o755 f(x ) +

n+l =0

n+l

K(xn’xj’f(xj)) + K(xn’xj’fj) - K(xn"']’xj’fj)] +

+

o (R(x,E,£(E))) = o (K(x,E,£(£))) = T_(h) +

+

- q+1
[c (x>0 - C (x ,h)Ih" .
In addition to (4.4) we now also have to require that

]cn(x h) - Cn(xn,h)l < L.h,

n+l’ 3

(4.9)
!K(X,E,f) - K(X’E;E) + K(;,E,E) - K(E,E,f)l < L4|X_;| If_%,[-

From (4.8), (4.4) and (4.9) it then follows that for n = k-1

| < _lﬂx)-f|+L13w Z[ﬂx)—f| +
j=0

q+2

A LICIPD L S

K
+Lflzllf@nn-ﬂ = Eperogl 1T @]+ Lo
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Thus, we find the inequality

2L n

2
- < - —_— f(x.)-£.
lf(Xn+l) fn+1l < If(Xn) fnI +.l--L2hh j=n§1—k| (XJ) JI *
q+2
+ T‘E%YH n? E |£(x.)-£.] + ITH(T)E-lLﬁh
B S = I 2
A simple calculation yields
N
-1 5 2
£ -f < (1-L,h) L,wh f(x.,)-£.| +
|£Gpp) n+1| 271 j=£—1l 4 iZO e - 5
n A
T, r,n9*2] h Fa) - £,|} =
+ l J(h)l-+ 3 | + ZkL2 jZo I (xJ) JII
¢ (1 -1.m) " Hran, wh?+ 2k n] E l£(x.) - £.] +
- 277 T 277 oo
+ n [ max ]T.(h)] + L3hq+2]}.

0<jsn

Applying lemma 4.1 with

nL4wh2 + 2kL2h
- 5
1 L2h

=
I

m%XlTj(h)l+ L3hq+2

k=2 ;
£(x,) - £, :
t -Zo [£Gep) =85 +m I = Lyh

=
]

1

leads to inequality (4.5). Keeping the point x fixed, we have n = O(h— )

n+1
so that

L =0, M=0a"" +oa®™ + 0P ,

where we have again assumed that the starting values satisfy (4.6). It is

now easily seen that (4.5) leads to the result
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(4.10) fx ) -£ . =0mP) + 0m®™!y ash - o.

n+1 n+l

5. STABILITY

Before studying the stability of scheme (2.4) and (2.8) we consider

the stability of the integral equation itself. Consider the variational

equation

X
(5.1) A EG) = J = ,6,£(8)) A £(E)de
X

0

From this relation it follows that

X
n
A f(x_ . .) =N f(x_ ) + J [25 (x £,£(8)) +
n+1 n % of n+l’7?
0

oK

Xp+1
P a8t 8 EEas.
%

n

Let us define the quantity

™2
_ 3°K ,
A G(x) —XJ w5f (¥,08,-£(8)) A £(8)deg
0

and assume that 82K/3x8f is a slowly varying function of x, and 93K/3f a

slowly varying function of £ and f. Then, we may write

- 3K

A f(xn+1) = A f(xn) + hn A G(xn) + [5?'(Xn’xn’f(xn)) +

Xn+1
32K
n 3%3F (Xn,Xn,f(Xn)) J A £(E)dE.
X
2 n X+l
' ~ 5K
A G(xn+]) = A G(xn) + Eigf-(xn’xnf(xn))xj A £(E)AE.

n
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Using the abbreviations

J(Xn) = _g-l-f<_ (Xn’xn,f(xn))
2 H
HOx ) = s (e ox 5 E(x )

and approximating the integral with the trapezoidal rule,

-1 :
1 zhn(J(xn) + hn H(xn)) 0 A f(xn+]

(5.2)

-1
zhn H(xn) 1 A G(Xn+1

I+}h (J(x ) + b H(x ) h:\ A £(x)

th H(x ) 1 A 6(x)

)

)

we obtain

[1Rd

+

3
0(h_) .

Neglecting the O(hi) terms we may conclude that this error equation is

stable when its characteristic equation has its eigenvalues within or on

the unit circle. A simple calculation yields

[i-4h (3(x) + h B(x )]’ - [2+4h] H(x )Tz +

+ 1 + %hn J(xn) = 0.

It is easily verified (cf. the analyis of equation (5.22) in section 5.2)

that this equation has its roots within or on the unit circle when

J(xn)
(x)

n

H(Xn) <0, > -1h.

N

fas

Thus, for h » 0 the stability conditions become

82K

(5.3) %Ifﬁ (x 5% E(x ) < 0, 2 (x,x ,£(x ) < 0.

> 9xof

In case of strict inequality we shall speak of strong stability.
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5.1 STABILITY ANALYSIS OF SINGLE-STEP METHODS

Let us perturb the numerical values f., j = 0,1,...,n by perturbations

£) (K)
+1
and AFn(x), respectively. The perturhatlon of £

Af. and denote the amount by which f and F (x) are perturbed by Af

o+l is then approx1mate1y

determined by the scheme

(0) _
BECT = AE,
() _ v By LD
(5.4) A L1 = AF (= IR )+h 2? zaf(x'+632 220V 5P £ 01 AEL
- (m)
Afn+1 = n+l’ j=1,2,...,m,

provided that the perturbations Afj are sufficiently small. In most studies
of stability the considerations are restricted to the model equation (cf.

KOBAYAST [6], LINZ [8] or NOBLE [9])

X
(5.5) f(x) =1-a J f(g)dg,
0

that it is assumed that the kernel function K(x,£,f) satisfies the conditions.

8 = — T e DD e 2%
% constant, Py 3E ax 0.

Instead of these rigorous restrictions to the class of integral equations
to be analyzed, we prefer to state in more details what restrictions are
needed to give a stability analysis. When formula (2.2) is used for the
evaluation of Fn(x), we require the following properties of the kernel

function K(x,£,f) (K is assumed to be sufficiently differentiable):

-—‘(X g£,f) = é'f‘(x x_,f ) for (5,£) ¢ Us(xn’fn)

(5.6)
BZK
9xaf

BZK

—E)—}-(-B—f_ (X’Xj’fj)

(x x ,E. )l j=0,1,...,n for x ¢ Ue(xn)
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where U€(°) denotes a small neighbourhood of (°). When these conditions

are satisfied Agn(x) is approximated by

~ n aK
(5.7) AF (x) = jZO Vi 3F (x,xj,fj) af, =
= % v LN (x,x.,£.) + (x-x) 2% @,%;,£)] 8f, =
520 nj 3f “m’7i’7] n’ 9xof

n

AFn(xn) + (x-xn) AGn,

where
n 2
AG = z w 9 (x x f ) Af
n .5 'nj Bxaf ?
j=0
By writing
2
37K _
ox9of (xn’xn’fn) B Hn’

9K (E) -
'B_f’ (Xn Jz ’Xn'!'VJleh f ) Jn + eJEh H,

scheme (5.4) reduces to

0
Af (+i AE
(G+1) ~ = T 2 L)
7
(5.4") pE oy, T EF, (x ) + th AG + Zo sztthn+ej£han] AE LD s
~ (m)
A T AT

(J)

~ These formulas suggest to express Af in the form

(J) ~
" =
(5.4") Q Af_ + Rj AF_(x ) + thn AG_,

where Q R4 and Sj are polynomials or rational functions in the arguments

2 ey ' . _ SN
th and h H . By substituting (5.4") into (5.4') we find (z thn,y han,

Q(z,y) = 1, Q5 (z,y) Z Mip(z48s 4v) Qp(z,y),

Ry(z,¥) = 0, Ri(z,y) = 1 + zzo Mip(zt8s gy Ry(z,y),
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m

SO(Z,y) =0, Sj(z,y) =y +£ZO Ajﬂ(z+9j,£y) Sﬂ(z,y),

from which the functions Qm,Rm and Sm, to be called stability functions in

this paper, can be derived. Thus,

_ 2 2~ 2
(5.8) Af ;= Q (hJ hH)AE +R (h J ,h°H )& (x )+ S (hJ ,hH )h AG .

(Note that Rm and Sm are identical when for all j, uj =1,)
Furthermore, from the relation

n+l

) - Fn(xn) = g(xn+l) - g(xn) * jZO Wh+]’j

~

Fn+l

(x

n+l K(Xn+l’xj’fj)+
)

- w_. K(x ,x.,f.)
j=0 nj n° j°J

we find, using conditions (5.6),

n
~ ~ ~ _ BK
AFn+1(Xn+1) - AFn(xn) * jEO (wn+1j wnj) of (xn’xj’fj) Afj +
n+l 2
9 K
R R Lt I
+ w _a._1.<-

n+ln+l 3f (Xn’xn’fn) Afn+]’
or, when n is close to n,.

n

(5.9) AFn+1(Xn+l) = AFn(xn) ’ jzﬁ (Wh+lj - wnj)Jn Afj ¥
* hn A Gn+1 * wn+1n+1Jn A fn+1’
w_,,— being the first weight in the row w . which differs from w_..
n+ln n+lj nj

Finally, we have from the definition of AGn the relation

Af

Yh+in+l Hn n+l’

n
(5.10) AG 4 = 86, jzﬁ LAY

-w .) H Af. +
nj n ]

NYHIERAT:

WBLIOTHEEK W/ ECH CENTRUM
AMSTERUAM
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Introducing the vectors

+ ~
= T
AV = (BE LA ... Af SAE,AF (x),AG )
we arrive at the relation
(5.11) AAN . =BAV,

1 0 0
0 1 0
0 01 0
A =l Dt : Aw., = w .
n . . : ’ n+l ni’
0 0 1o ] ] J
TVo+1,n+] Jn 0 ... —hn
n+1,n+1Hn 0...00 1
Qm oo Rm hnSm
1 .o 0
0 1 0
B = . . .. . . .
n . . . .
0 0 0 0 0
Aw J Aw J ... Aw=J 1 0
nn n-1n on
\Aw H Aw H ... Aw=H O 1
nn n-1"n nn

. fa . . -
The vector of perturbations AVn remains bounded in some norm I |

when

1

(5.12) HAn Bnll < 1.

A necessary condition to satisfy this inequality is the requirement that
. -1 o . . .
all eigenvalues g of An Bn are within or on the unit circle, i.e. the con-

ditions that the roots of the characteristic equation

((5.13) det(Bn - ;An) =0



23

are within or on the unit circle. Note that the degree of this equation
can be kept low by choosing the weights Whj such that n is close to n.
In general, this implies uniform step sizes hn'
In order to illustrate the preceding results we derive the characteris-
tic equation for the cases where En(x) is estimated by the Trapezoidal rule

and Simpson's rule (+ 3/8-rule) using uniform integration steps.

Trapezoidal rule + m—point Runge-Kutta

In this case we have (i = 1,2,...n+1 and j = 0,1,...,n+1)
1/2 1/2 0 ... 0
1/2 1 1/2
1/2 1 1
(wij) =h
1/2 1 oo 1 1/20
1/2 1 oo 1 1 1/2/(a+1)*(n+2)

so that the value of @ in relations (5.9) and (5.10) equals n. Thus, formula

(5.11) becomes
1 0 0 A£n+l
-1 - =
thd 1 -h | [ AF L (x )
A

n
-1
zth 0 1 Gn+l
Qm R h S Af
m n m n
= 1
= thn 1 0 AFn(xn)
3hH 0 1 AG
n n

yielding the characteristic equation (z = th, y = thn)

(5.15) > - [2+4Q (z,y) + }zR (z,y) + iy(R_(z,y) + Sm(zsy)352-+
+ [1+2Qm(z,y - %yRm(Z,y)]C +

- [Qm(za}’) - %ZRm(Z,Y) - %ySm(z,y)] = 0.
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In the particular case where Ithn] is very small, this equation

may be written as

2
(5.15") (1-0)I[¢ —,[1+Qm(z-0) + %sz(z,O)]; + Qm(Z,O) - %sz(z,O)] = 0.
The roots are within or on the unit circle when

zR (z,0)
m

IA

0,

I\

-1,

(5.16) Qm(z,O)

Qm(z,O) - %sz(z,O) < 1.

These inequalities determine the interval of stability -8 < z < 0 and the
corresponding stability condition (strict inequality corresponds to strong

stability)

(5.17) h < -

Application of these criteria to a number of Runge-Kutta methods may be

found in [111].
Simpson's Rule + m—-point Runge-Kutta

Leaving aside the starting procedure, Simpson's Rule provides the
weights wnj when n is even and together with the 3/8-rule it provides

the weights Whj when n is odd; thus

1/3 4/3 1/3

3/8 9/8 9/8 3/8

1/3 4/3 2/3 4/3 1/3 <:::>
1/3 4/3 17/24 9/8 9/8 3/8

1/3 4/3 2/3 4/3 2/3 4/3 1/3

1/3 4/3 2/3 4/3 17/24 9/8 9/8 3/8

1/3 4/3 Dl 4/3 2/3 4/3 1/3

1/3 4/3 ... 4/3 17/24 9/8 9/8 3/8
173 4/3 .. 4)3 2/3 4/3 2/3 4/)3 1/%/

(5.18) (wij)'= h
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For odd values of n relation (5.11) becomes

1 0 0 0 O Afn+]
0 1 0 0 O Af
0 01 00 0 M)
]o 0 1 0 0 BE =
.-EhJ 0 0 1 ~h AFn+l(xn+1)
--hH 0 O O O 1 AG
n n+l
Q- 0 0 R_hS_ A
1 0 o 0 0 AE -
0 10 0o 0 0 A,
= 0 o I o 0 0 M5 |
235 1y 3y -1hs 1 0 AF(x)
24""n 24 n24 n 24 n n'n
23 11 5 1
- =—hJ = - 0 1 A G
EZth 24hJﬁ24th 24hH N
which has the characteristic equation
1
Qm_g 0 Rm Sm
1 -z 0 0
1 - 0
(5.19) det 0 ¢ 0 =0,
0 0 1 -z 0 0
(23+8z)z =11z 5z -z 24(1-tg) 24t
| (23+80)y -Ily Sy -y 0 24(1-7)

"where we have again written z = th and y = thn. Putting y = 0 (small
values of |h2Hn]) this equation reduces to a fifth degree polynomial given

by

(5.19a") CS— []+Qm(z,0) + %-zR(z,O)] ;4— [%%-sz(z,O) - Qm(z,O)]€3 +

11 2 5 1
+ ZRm(Z,O)C YA ZRm(Z,O)C + '2__

2% 7 7 2R (2,0) = 0.

For even values of n we find in a similar way the fourth degree

polynomial
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(5.19p") c4- [1+Qm(Z,0) + %-th}z,O)] c3— [%%-zshgz,o) - Qm(z,O)Jc2 +

S _
24 zR.(z 0)t¢ EZ‘ZR.(Z 0) 0.

Application of these equations to several Runge-Kutta formulas may be

found in RECKERS [11].
5.2 MULTISTEP METHODS

From (2.8) and (5.7) it follows that

= oK ~
(5-20) A1 T oF nns) * By Z P _?'(Xn+l’xn+l—£’fn+l-£) Mg S
- k
¥ AF (x ) +h AG +h EZO b, LIt BT AF L .

Together with the relations (5.9) and (5.10) this formula describes the
stability of the process. Let us assume that the number n occuring in (5.9)

and (5.10) satisfies the inequality
n > n-k+l

we then may introduce the vectors

AV = (Af ,Af Af £ AF (x ),AG )T
n n’ n-1°°"°° ﬁ""’A n+1-k> " 'n Xn)’ n

and obtain the relation (cf.(5.11))

i
>
<¥

-
(5.21) AnAV

B
n+1 n n

where
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l—hnbn’OJn+1

A = : ?
n
0 0 0 1 0
_wn+1,n+1Jn o 1
_wn+1,n+1Hn 0 0 0
- hnbnlJn+] hnanJn+l oo hn,bn—ﬁ+lJn+l 0o hnbnkJn+1 hn
1 0 oo 0 ces 0
0 1 0 oo 0
B =
n
0 0 aeo 0 0...010 0
Aw J Aw T N Aw_J 0...000 1
nn n-1n nn
Aw H Aw H eee Aw_H 0... 000 0 1
nn n-1 n nn
and where J =J +hH .
n+1 n nn

The characteristic equation of relation (5.21) is again of the form (cf.

(5.13))
det(Bn - CAn) = 0.

Relation (5.21) can be simplified when the multistep method is of

the special (usual) form (2.20). We then may write
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~ oK
= . ) — . . .+
Afn+1 Afn + g (wnH,J Wn,J) Y (xn,xJ,fJ) AfJ
oK
* Wh+],n+1'§f (xn’xn+1’fn+1) Afn+1 M
n+1 2
d K
* hn % wn+1j oxof (xn’xj’fj) Afj
n N
- Afn * é ijJnAfj * wn+1n+lJnAfn+1 +hnAGn+1'
Together with (5.10) we now have the error equation
. > _ >
(5.21%) AhAVn+] ann
where
AV = (Af, Af Af ae )T
n n’ " n-12"""°""n+1-k> "'n
- -h
1 Wn+1n+1Jn 0 N
0 1 0
A = . )
n °
1
Wn+1n+1Hn 0
and
veo _J 0
1+Awan Awn—lJn Aw. 0
1 0 .o 0 0
0 1 0 0
Bn= N °
0 0 0 0
.o -H 1
Awan Awn—IHn Awn 0

We shall illustrate these results by deriving the characteristic

equations of the trapezoidal rule and of Simpson's (+3/8) rule.



Trapezoidal rule

Let the weights wij be given by (5.14) and let the parameters bnﬂ
satisfy relation (2.9). According to (5.21') we have

-1 - 1
(l 2th h ) (Afn+l > = l+2th 0> (Afn )
-1 1
2th 1 AGn+l 2th 1 AGn

leading to the characteristic equation
2
(5.22) ¢ [(1-3z=3y)t" - (3y+2)t + (1+42z)] = 0.
The roots of this equation are within or on the unit circle when

2+z <1
2-z-y

(5.23)
| yt+b | < 4-y
2-z=y ! T 2-z-y °

In figure 5.1 the region of points (z,y) is shown which satisfy these

y
"

N LR LA Y F R R R A LTI TN 11

inequalities.

<
N

y = -2z

Fig.5.1 Stability region for the trapezoidal rule



30

Simpson' rule

Let the weights Wij be given by (5.18) and the bnﬂ by (2.9). For

odd values of n we obtain from (5.21') the relation

1
1- 3 th 0 0 0 -h Afn+]
0 1 0 0 Af
0 0 1 0 Af -1 =
? 0 1 0 Afn—Z
-3 th 0 0 1 AGn+]
23 11 1
1+ 74 th ithJ %% hJ Y hJ 0 Af
1 0 Af
n-1
= 0 1 Af -2
0 0 1 Afn_3
23 11 5 1
5% th 7% th % hH a7 th 1 AGn

with the characteristic equation

3+81;4) = 0.

(5.24a) 2423(1-0)% + (z-2zz-yz) (1-5z+1122+23¢

Similarly, we find for even values of n the equation

(5.24b) 24C2(1—C)2 + (z—zc—yc)(]-5c+;19c2+9c3) = 0.

5.3 STABILITY ANALYSIS OF THE MODIFIED FORMULAS

In the preceding analysis it was assumed that %n(x) is evaluated by
formula (2.2). We now study the stability problem when formula (2.2') is
used. Again assuming that the kernelfunction satisfies conditions (5.6),

we now have for Afn(x) the relation



[ oK _ K |
(x,xj,fj) SF (xn,xj,fj)J Afj

113

n
Afn + 2 w

(5.7") AFn(x) o nj|3F

e

A+ (x-x_) AG .
n n n

Single step methods

Substitution of (5,7') into (5.8) yields
(5.25) Af . = [Q (hJ ,h%H ) + R (hJ ,h’H )] Af_ +
. n+1 m nn’nn m nn’nn n
2
+S (hJ ,h"H )h AG
m nn’nn n" n

Together with (5.10) we arrive at the relation

> >
(5.26) AN . =BV,

where

1 0 0
0 1 0
An = ,
0 0 een 1 0
-w 0 1

n+],n+1Hn

31
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and

Qm+R 0 oo 0 h S
m nm
1 0 .
0 1 e
B = . . . o .
n
0 0 oo 1 0 0
w H Aw H eo. MAw- H Aw_H 1
nn n-1"n n-1"n nn

Note that for vanishing Hn equation (5.26) does not depend on the quadrature
formula used in the evaluation of Fn(x). In fact, the error equation reduces
to that of the equivalent Runge-Kutta formula for ordinary differential
equations (cf. (2.4")).

We shall illustrate the application of this error equation by deriving
the stability region of the formula defined by the matrix (5.14) (trapezoi-

dal rule). Since we then simply have n = n and Awn = h/2, we obtain

(5.27) ( ! Oj <Afn+l ) _ (Qm+Rm hsm) (Afn) .
-1 1
e 1/ \sc, \hH 1/ \ag_

1

The characteristic equation is given by

t? - L1+ Q(z,y) *+ R (2,5) + byS_(2,)]c +

+Q (z,y) + R (z,y) - 3yS (z,y) = 0.

In the (z,y)-plane the stability region, i.e. the set of points (z,y) where

Ic(z,y)| < 1, is given by the inequalities

-1 < (z,y) + R (z,y) < 1+ 1y8 (z,y)
(5.28)

ySm(z,y) <0
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Multistep methods
Substitution of (5.7') into (5.20) yields
k
(5.29) Afep = AE, * RAG + B ZZO bn.ﬂ |:Jn * han] Afn+l—ﬂ'
Together with (5.10) this yields the error equation (@i = n-k+1)
-> >
(5.30) AhAVn+1 = BnAVn,
where

> T
AVn = (Afn,Afn+],...,Afﬁ,...,Afn+]_k,AGn) .

l—hnbnan
1
0 1
An= ,
0 0 0 1 0
—Wn+1n+lHn 0 ]
and
]+hnbnlJn+l hnanJn+l T 'hnbnkJn+1
1 0 0
0 1 0
Bn = R
0 0 0 0 1 0
Aw_H Aw H ... Aw-H 0...0 O
nn n-1"n nn
J being again J_ + h H . From this relation the characteristic equation
n+l n nn

is easily derived.
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