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Explicit computation of special zeros of partial sums of Riemann's

. %* )
zeta function
by

J. van de Lune & H.J.J. te Riele

ABSTRACT

In this report we present two different methods for the explicit

computation of zeros of the entire functions
-s
s) := n
oy (s) )

in the halfplane Re(s) > 1.

Many such (special) zeros are listed here, as far as we know, for

the first time.

KEY WORDS & PHRASES: zeroe, partial sums (sections) of Riemann's
zseta funetion, simultaneous approximation of

irrational mmbers.

*) This report will be submitted for publication elsewhere



0. INTRODUCTION

In 1948 TURAN [6] showed that the Riemann hypothesis for z(s) is true
if there are positive numbers NO and C such that for all N>NO, NeIN,

N
CN(S)2= z a -, (seC, s =0+it)

has no zeros in the halfplane ¢ = 1 +C//N.

In 1958 HASELGROVE [2] showed that there exist infinitely many NeIN
such that CN(S) = 0 for some s with o>1.

In 1968 SPIRA [4] proved, using a computer, that gN(s) has zeros with
o>1, for N = 19,22(1)27,29(1)50. In this report we shall call zeros of
CN(S) with 6>1 "special zeros".

As far as we know, up till now no special zero of any ;N(s) is explicit-
ly known. In this report we present two different methods for the explicit
computation of special zeros of o The first method is exhaustive, since it
produces all special zeros of y with imaginary part in a given interval
(sections 1, 2, 3 and 4). 1In the second method we first compute several
"almost—-periods" of Tx and then find special zeros of a8 by adding the al-
most-periods to zeros of N with real part very close to o=1, but not
necessarily in o>1 (section 5). Of course, this second method is not ex-
haustive, but it is much less time consuming than the first one.

Finally, we present a selection of the special zeros of N for

N = 19,22(1)27,29(1)35,37(1)41,47, computed by the two methods.

1. PREPARATIONS

Let N=3 be fixed. We consider the zero-set of

N
Ry(o,t) = Re g (s) = ) cos (t iog n)
n=1 n

in the halfplane 0<0. If RN(oo,tO) = 0 then



N-1
1
- —%— cos(tO log N) = 2 —~ cos(tO log n)
0 n=1 0
N n
so that
N-1 -g 1 -0
0 0 N
lcos(t0 log N)| < 2](%) <N | x dx = T—tr?i; .
n= -

Now choose a small >0 (s==%~is sufficient) and take 9, < 1-N/e. Then we

have
|cos(tO log N)| < ¢

so that we must have

n

tO log N ~ 7-+ km, (keZ)
er equivalently

ty ~ (Zkt1)m (keZ).

0 2 logXN’

From this it follows that the zero set of RN(o,t) in the halfplane

o < 1-N/e consists of simple zero curves having

oo 4 2kHD)TI

2 log N ° (keZ)

as asymptotical points. See Figure 1.

It is easy to see that
RN(o,t) >0 for o 2 2

so that the entire zero set of RN(o,t) is contained in the halfplane o<2.

For o=1 (or any other fixed ceR) we have that RN(I,t) is an almost periodic

function of t and since

lo~—1'=

max RN(I,t) = RN(],O) =
n

1
teR 1
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there exist arbitrarily large values of t for which

B

N
Re(1,8) > e + )
n=]
or equivalently

(1

~12
|

l-cos(t log n) > —e +
n
1 n=1

e~z

n

Choosing >0 small enough it follows that all cosines in (1) are close to I

and hence positive so that for these particular values of t we have

—%—cos(t log n) > 0 for all celR.
I'n

~
Q
v
[m3
~
|
o~

Since the zero lines of any harmonic function on the entire plane cannot

have endpoints, it follows that a zero line of RN(O,t) "starting' at apoint

ey (2kH1)MI
2 log N

must return to some other asymptotical point of the same form (possibly not
a neighboring one). See Figure 2.

Now we consider the zero lines of

_ § sin(t log n)

IN(U,t) := Im cN(s) = =

n=2 n

1f IN(UO,tO) = 0 then

N-1
1 . 1 .
—Eg 51n(t0 log N) = - Zz —Ea 31n(t0 log n)
N R
so that for oo<0

N-1 -0

Isin(to log M| < } (%) 0 . T_t§;~_ .
n=1 %

Similarly as before, we choose a small >0 and take co<<1—N/€ so that
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|sin(t0 log N)l < €.

Consequently
£ log N ~ km, (ke?)
or
km
t0 log N 2 (kez) .

Hence, the zero set of IN(c,t) in the halfplane ¢ < 1-N/e consists of a

system of simple zero curves having the points

ki
+ Tog N ° (keZ)

as asymptotical points. See Figure 3.
For large positive ¢ we have in case of a zero of IN(c,t)

N
-——éwsin(tO log 2) = - Z L sin(to log n)
2 0 n=3 n 0
and hence
N g g
. 2.0 2,70
lsln(to log 2)| < nZ3(E) < N(§) .

Chosing a small €>0 and taking

log(N/¢)
% 7 Tog(372)

we thus have
]sin(to log 2)| < ¢

so that

ty log 2 ~ km, (keZ)
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or equivalently

km
ty Tog 2 ° (keZ2).

; log(N/e)
It follows that the zero set of IN(G,t) in the halfplane o > iEi%i§7E

consists of simple zero curves having

kni
+c0 + ]_og 2 s (kez)

as asymptotical points. See Figure 4.
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It can be shown that every zero curve of IN(O,t) starting at some
asymptotical point + + kri(log 2)—1 is somehow connected with some asymp-
totical point - + 1lwi(log N)"l. In other words: such a zero curve crosses

over the s-plane "horizontally'.

. . -1
Moreover, every zero curve of IN(c,t) starting at -« + koﬂl(log N)
is either connected with an asymptotical point += + 17i(log 2)_1 or with an

. . . -1
asymptotical point of the form -« + mrwi(log N) .

Drawing the zero curves of IN(o,t) as dotted lines, the zero curves of

IN(U,t) and RN(O,t) have a pattern as pictured in Figure 5.

2. THE HEURISTIC PRINCIPLE

Again we denote zero curves of IN(G,t) by dotted lines.

In case of a zero of gN(s), we expect to have a pattern either as

plotted in Figure 6a or as in Figure 6b.
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Figure 6a.

Figure 6b.



This heuristical argument is also based on the empirical observation

that any zero curve of RN(c,t) starting at —o + ﬁ%ﬁ%gé%%ﬁ (k>0) is connect-
ed with the '"next" asymptotical point
_ (Lk+3)Ti . . _ .

®* TogN ° Hence, in order to have a special zero Sy = 9 +it, of Ly

we expect to have a situation as plotted in Figure 7.

t
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_________,JVISO
/
L 4
0 1 g

Figure 7.

In order to detect such a pattern of the zero curves of RN and IN one

has to compute the zeros of RN(I,t) for t>0, yielding the increasing
sequence {tk}z=1 of zeros RN(I,t). Once the zeros togm1 and oo have

been located one checks whether IN(l,t) has a zero between t and t. .

22~-1 2%
If so, it is a simple matter to locate the corresponding zero of CN(s).
A slight modification of this procedure may be used in order to

obtain zeros of N with real part just less than I.

3. FIRST METHOD: THE SYSTEMATIC SEARCH

In this section we describe our first implementation (in FORTRAN) of
the heuristical ideas for locating a special zero of LN(S).

Since

Z

RN(I,t) = 2 %—cos(t log n)

n=1



we have

N
) log n .
2 = - ==& — gin(t log n)
= Ry(1,1) nzz -

and

N
sup | § 12%_2 sin(t log n)| < ) 105 2 = M&-
telR n=2 n=2
In order to find a zero of RN(I,t) one may proceed as follows: Since
RN(I,O) = Z§=] %, we have by the maximal slope principle that RN(I,t) has
no zeros on the interval 0 < t < RN(I,O)/Mﬁ =:p-
Since RN(I,pl)> 0 the same technique yields that RN(l,t) has no zeros
in the interval P, <t < P, + RN(I’pl)/Mﬁ =: p,, etc. As soon as
RN(l,pk) < £ we compute RN(l,pk+6) and investigate whether RN(I,pk+G) < 0.
In fact we took =10 ° and 6=10-2. As soon as the first zero of RN(I,t)
has been located in this way one proceeds in a similar manner starting from
the point t = pk+6. As soon as the second zero of RN(I,t) has been located
one starts investigating whether IN(l,t) has a zero between these two zeros
of RN(I,t). If this is the case one may draw the zero curves of RN and IN
and find a special zero of §N(s).

For N=23 this procedure leads very quickly to the special zero
o = 1.008 496 93, t = 8645.524 423 32,

For N=19, on a CDC 6600 computer, it took us about ome hour computer

time to find the special zero
c = 1.001 095 51, t = 600 884.203 427 78.

SPIRA's investigations [4] show that N=19, 22 and 23 are the first
candidates for having special zeros. Clearly we wanted to see a special
zero of gzz(s). Indeed, 19 and 23 are primes whereas 22 is the smallest
composite N for which cN(s) has special zeros.

However, neither the systematic search described above nor the acceler-

ation of this procedure described in section 4 did produce any special zero
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of ;22(5) in the range 0 < t < 75 000 000. Anticipating the results of sec-—
tion 5 we already remark here that by the method described there we have

found the special zero

(N=22) o = 1.002 890 95, t = 558 159 406.148 225 57.

However, we do not know whether this special zero is the one with
smallest positive imaginary part. We have given up our effort to "fill the
gap" between t = 75,000,000 and t = 558,159,407 since it still might take

several hundreds of hours of computer time to reach this goal.

4. ACCELERATION OF THE SYSTEMATIC SEARCH

The first thing to improve was to replace Mﬁ by a better (=smaller)

estimate of

N
sup | ) 105 2 sin(t log n)| =: Dy
telR n=2
Since
221 1 2 log 3
z -EE—E-sin(t log n) = O% sin(t log 2 ) + % sin(t log 3)
n=2 "
+ lg%—£-sin(2t log 2) +
+ 10% > sin(t log 5) +
log 6 .
+ ¢ sin(t log 2 + t log 3)
o + 19%522 sin(t log 2 + t log 11)

and since the logarithms of the primes are linearly independent over the

rationals, it was possible to find the following numerical upper bound:

D22 < 4.2725 (compare: MéZ = 4.77...).
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However, it turned out that the replacement of Méz by 4.2725 did not speed
up the systematic search considerably.

The most time consuming thing in the systematic search is the evalua-
tion of the transcendental functions sin(t log n) and cos(t log n).

We now describe how the systematic search can be speeded up considerab]
(to about three times as fast as the original procedure). It is based on a
generalization of the maximal slope principle to higher derivatives.

Observe that all derivatives of RN(l,t) are bounded:

N k
a0 s | Gt 0,

n=2
so that by Taylor's expansion formula

(t-ty)
RG(1,0) = Ry(1,£0) + ——>— RI(1,t0) + ...
k-1 k
(t-t,) _ (e-t,)
T R )+ R (1,6

+

for some & ¢ (to,t). Hence

k

k-1 (t-t )" (t-t.)
0 (n) _ 0 (k)
R0 2 ) Ry Ut - Ry
and
k-1 (t-t )" (t-t )
0 (n) 0 (k)
Ry(o0) = L Ry T Ugg) + e — Ry
for all t 2t,- Writing
k-1 (t-t )" (et )k
o 0 (n) _ 0 (k)
PrL(Eeet) = nZO ar By (bt TR Ky
and
n k
k-1 (t—to) ( (t-to) ®)

Py x(totg) == 1 —r— Ry (L) ¢ xRy



we clearly have that

A

Py (Ege®)

Ry(1,8)

and

Pz,k(to,t) > RN(I,t)

for all t Zto.

From

Pl p(tget) S RY(LE),  (£2tp)

0

and

D_ > sup |R'(1,t)]
N teR RN ’

it follows that, if RN(I,tO) > 0 then RN(I,t) does not have a zero on the

interval

P (t.,t)
1,k°0°70"
o StS tg * ————Tg;—~——— =t t).

t

See figure 8.
If Pl,k(to’tl) > e > 0 we can go a step further and say that RN(I,t)

has no zeros on the interval

P (t,,t.)
1,k 0217
£, S ts £, + DN =3 t2

and so on, until one reaches a point tr such that
P (t,,t.) < € (where €=]0_6 say) .
I,k* 0>’ = 72 ’

At such an instance we compute a new polynomial P] k(tr,t). Noting
s
that ’

P],k(tr’tr) = RN(I’tr)



‘g 2an3Tg
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we check whether RN(I,tr) < g. If not, we proceed with P1 k(tr,t) in the
3
same wav as described above. If RN(l,tr) < g, we check whether

RN(l,tr+6) < 0. If so, we compute the polynomial P (tr+6,t) and proceed

similarly as above in order to determine the next iéio of RN(l,t).

A similar procedure may be applied to compute the successive zeros
of IN(I,t).

The advantage of the above procedure is that a considerable number of
transcendental evaluations are replaced by polynomial calculations, which
are performed considerably faster.

For N=22 we have tested out various values of k, resulting in the ex-—

perimental observation that the total procedure was running fastest for

k=14, and in fact about three times as fast as our original procedure.

5. SECOND METHOD: SEARCH BY USE OF ALMOST-PERIODS

In this section we describe a second method for the computation of
special zeros of Ty In fact, by this method we are able to construct
(finite) sequences of zeros of CN’ all with real part close to one, some of
them with real part greater than one.

The starting point is the supposition that already a zero 0 of TN is
available, for which IRe so—ll is small. Such a zero may be found, for
instance, by applying our first method to a line o=1-g. Let T, € R be such

1

that ICN(S) - CN(s+iTl)| is small for all s on the line o=1. Such a T1

exists since cN(1+it) is an almost-periodic function of t. Then one may
expect that also !;N(s) - EN(sOtiT])l is small, and there may be a zero, )
say, of N in the neighborhood of s.+iT.. If Re s, > Re s,, we look for an-

other zero, s, say, of N in the ne?ghbolbood of s:-+iT1, gnd so on. In
order to cross the line o=1, we always demand that Re sj > Re Sj—l' If
Re sj < Re Sj—] we continue with another almost-period Tye After crossing
the line o=1 we may still continue this procedure in order to find more and
more special zeros of e
The crucial point in the above procedure is, of course, the availability

of sufficiently many almost-periods of Ly on the line o=1. We have
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LEMMA 5.1. Almost-periods of QN(S) can be computed if one is able to find
"sufficiently good" (to be specified later) approximations of the w(N)(>1)
rnumbers log pj/log ij’ (j=1323'~-’ﬂ(N); jo‘f{]az"'-aﬂ(N)}) by rational

numbers with the same denominator.

PROOF. Let k be that common denominator, i.e., k log pj/log ij = ej(mod 1)

where Ej = 0 and the other sj's are small (but not zero, since the loga-
0 . . ]
rithms of the primes are independent over Q). Let the canonical factoriza-
m(N) a.{(n)
tion of n(sN) be given by n = 1 pj . Then for T := k-2n/log Pj and
i=1 0

for any fixed seC we have

N N
;N(s+iT) = z n ° exp(-iT log n) = Z n ° exp(-ien),
n=1 n=1
where
7m(N) a.(n)
6 =T logn = (k*2n/log p. ) log I p. J
n J t o J
0 i=1
N)
= 2n I . k lo /1 .
I aJ(n) g pJ/ °g P;
j=1 0
o om(w)

( E ejaj(n))(mod 2m) .

j=1
If the ej's are small enough, we may expect the value of CN(s+iT) to be
close to the value of CN(s), for any fixed se¢C. Hence, T is an almost-
period of Ty The same argument holds, if one replaces T by -T. 0

We have used the well-known modified Jacobi-Perron algorithm [1] and
the less-known Szekeres algorithm [5] for the computation of the rational
approximations of log pjllog Pig (3=1,2,..., (N); j#jo). We first give a
description of both algorithms in the style of KNUTH [3]. Both algorithms

are simplified and put in a form suitable for our purpose.

ALGORITHM JP (Jacobi-Perron). Given n2] positive irrational numbers
LRLPYRRRRLAP In step JP2 a positive integer k is computed such that {kui}
is small, for i=1,2,...,n (where {x} means the distance of x to the nearest
. >
l,...bn) and ¢ =

(CO’CI”"’Cn) are used. The algorithm terminates when k>kmax.

integer). Auxiliary vectors a = (a],az,...,an), b= (b



JP1. [Tnitializel. Set co<—0 and set a; <o, and ci<—0, for i=1,2,...,0.

JP2. [Take integer part of a and compute new kJ]. Set bi*~[ai] for

i=1,2,...,n and set k<c, + Z 1S3 b If k>kmax then stop.

0]
- -

- -b
JP3. [(ompute new c and al. Set CO cCyo ci i and ai*-(ai+1 1+1)/(a ),

for 1 = 1,2,...,n-1 and set cn-+k and aniel/(al—b]). Go to JP2.
Note that for n=1, this algorithm produces the denominators of the con-
vergents of the regular continued fraction expansion of G-

The Szekeres algorithm is more complicated than JP, but it will appear

to produce much better approximations than JP.

ALGORITHM SZ (Szekeres). Given n2l positive irrational numbers al,az,...,an,

with 1 > ap > dy > ... >oa. In step SZ6 a positive integer k is computed

such that {kai} is small, for i=1,2,...,n. An auxiliary vector ; =
(YO’YB""’Yn)’ auxiliary arrays A = (aij), i,j =0,1,...,n and V = (Vij)’
i,j =1,2,...,n, and an auxiliary scalar h are used. The algorithm termi-
nates, when k>kmax. In order to explain the notation in SZ3, we define a
partial ordering of n—component vectors as follows: let X = (Xl""’xn)

and ; = (y],...,y ) and let il’iz""’i be a permutation of 1,2,...,n

> >
such that le}l lxlzl > .02 Ixinl, similarly, let Ilel lszl
> IyJ |. We write X=7 if Ixi | = ly I, for u=1,2,...,n and x—<y if
u
v, 1 £ v £ n such that |x: | < |y: I, and [x. | = |ly: |, for 1 € u < v,
Jv Jy Jy Jyu
SZ1. [Initializel. Set Yo l—al, Vi et s i=1,2,...,0~1, Y, €0y
Set aij*-], i=0,l,...,nand j = 0,1,...,1 and a;. <~ 0,
i=20,l,...,n~1 and j = i+1, i+2,...,n. a
SZ2. [Compute the differences 2 ] Set v. i3 [alj - 59J1, i,j = 1,2,...,n.
i0 00
Sz3. [Select index ul. Let v. be the i-th row of V, so v. = (v. sVienseesVe Do
i 1 117712 in

Find the largest index p such that for every 1 < i < n

) - - - >
either v. <v , or v. =v .
i u i u

If YO <Yh’ then go to SZ5.
N -
SZ4. [yo > Yu]' Set v, *Y, Y, and auj<-a J+a0., j=0,1,...n. Go to SZ6.
SZ5 [y <Y, J. Set h<y, and Yo © Y, Yoo Yu*'h Set h*"aoj and &3 2
a .<a +h for j=0,1,...,n.
uj uj

SZ6. [New k1. Set k*—auo. If k<kmax, then go to SZ2, else stop.

=9
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For n=1, this algorithm not only produces the denominators of the convergents
of the regular continued fraction expansion of oy but also the denominators
of the <ntermediary convergents.

Both algorithms were coded in FORTRAN, and run on a CDC 6600 computer,
in double precision (28 significant digits) with kmax = 1020, n=6 and for
oy the six irrationals log 3/log 2, log5/log 2, log7/log2, logll/log 2,
logl3/log 2, and log 17/log 2. Let k sK,,... be the sequence of k's produced
by one of the algorithms. Define m, := max {k.a.}. In Table 1, for both

<1<
algorithms we give the values of kj 1<j<6 and mj, such that mj <m,, for
1 <1< j-1. Clearly the results of SZ are much better than those of JP, so

that we decided to choose the Szekeres algorithm for our further computations.



Results of runs with the Jacobi-Perron Algorithm

Table 1

and the Szekeres Algorithm

ALG. k. m,
] J
JP 1 1 .460
3 2 .401
8 168 .365
9 877 .331
10 882 .219
17 278575 .164
25 1170241231 .158
26 18158873714 .0675
31 9176933208351 .0654
35 259812674489863 .0349
SZ 1 2 .401
8 4 .350
19 9 .304
30 31 .289
49 311 .201
57 764 .181
71 2414 .139
80 5855 11
83 14348 .0910
113 88209 .0871
116 119365 .0798
125 272356 .0483
149 2316275 .0276
169 23993538 .0221
218 890512495 .0184
225 2039172447 .0178
234 2929684942 .0167
239 5312742147 .0115
246 9640622028 .0106
263 69123516771 .00715
296 1903569470016 .00704
297 2244797172219 .00615
299 1740704456733 .00548
300 2907809851158 .00522
325 13059799506657 .00353
339 61833456490027 .00344
343 65818958118979 .00180
392 7164194803257268 .00167
407 38101473715080026 .00115
419 102025501759257846 .00107
447 1778599299350212805 .00053
448 1485640231520813937 .00046




As indicated in section 3, we first applied our method tc N=22. Ip

orde~ to find almost periods for N=22, we ran the SZ algorithm with N=19,
i.e. w(N)=8 and i0=1,2,3 and 4. This yielded sufficiently many almost
periods, and with the strategy described in the beginning of this section,
we found many special zeros of czz(s).

Although we already had found a few special zeros of C19 by the
systematic method, we also applied the almost period method to C19' As an
illustration of the power of this method, we select the following result:

(s) =0 for s=o0,+ ito, where

‘19 0
o, = 1.002 793 85, t = 987 047 804 950 437 138.210 000 67

and for k=1,2,...,58 the numbers tk==t0+kP, where

P = 119 473 414 699 017 719 233.343 2

are approximations, with absolute error of, at most, 0.1, of the imaginary
parts of special zeros of Zig° These zeros are listed in Table 2 (o rounded
to 8, t to 5 decimals). We have also listed the first zero in this "almost-—
arithmetic progression' with real part < I (namely the zero with imaginary

part * t0-+59P).

Table 2
59 special zeros of Cl9’ the imaginary parts of which
form an "almost" arithmetic progression, and the first

" . . . .
non—-special" zero in this progression.

g t
1,00279385 987,47804990437138,21000
1,00287894 120400462504003156371,55227
1400295917 239933877203025875604,39453
1,00303464 359407291902043594338,2%680
Le0u310532 478880706601061314971,57906
tyoe3i712y §9R154121300079033304, 92133
1,00323237 717827535999096752538, 26360
100328676 837300950698114471771,60587
1,003340%8 956774365397132191304,54513

Te00338727 1076247780096145910238,29040



Table 2 (cont'd)

1.,0034294)
1,003846685
1,00349959
1,003527S¢6
1,00355087
1,00356948
1,00358339
1.0035926%
100359720
1,00359712
1,00359237
100358294
1,00356893%
1,00355803%¢
1,0235270¢
1,00849914
1,00346660
1,00342954
1,20338783
1,00334159
1,00329071
1,70323534
1,20317535
1400311082
100304179
1,00296821
1,00289013
110028075Q
1.00272¢33
1,00262865
100253260
100243208
1,00232686
1|0°221735
1,00210347
1,00198488
1.,00186194
1.00173467
1,0016028%
1,00146665
1,00132697
1,00118127
1,001031823
1,00087878
1,00071993
1,00055737
1.,00039(068
1,00021931
1,00004367

, 99986388

1125724 194795167622471 63267
1318194609494185348704,97498
1434668024193203067938,31722
1554141438892220787171,65949
167361 4853591238%06405,00176
1793088268290256225638,34404
1912561682989273944871,68631
2032035)976R8291664105,02859
215150851233730938%338,3708¢
2270981927086327102571,71314
2390455341785344821805,05542
25099287564R43625410%8,3977¢
26294921 741833R0260271,73997
2748875585832397979505,08228%
286834950058 1415698738,4248%
2987822415280433417971,76681
3107295829979451137205,10910
32267692446784568856438,45138
34624265937 7486573671,79366
3465716074076504294905,13%95
35851B9488775522014138,47823
3700662903474539733371,82052
382U136318173557452605,16280
394360°782872575171838,50509
4063083147571592891071,84738
4182856562270610640305,18966
03020299769626283%29538,33195
0421503391 6686460483771,87424
U540976806367663T768005,21653
UsbUU50221066681487238,55883
4779923535765699206471,920112
4899397350464716925705,24341
Sn18B870465163734644938,58570
S138343879862752364171,%22800
525781729456177008340%,27029
G377230709260787822638,61259
5496764 123959805%21871,9%489
S616237538658823241105,29718
573574 0953357840960338,63948
5855184363056858679571,98178
5974657 7R2755876393805,32408
6OPUI31 1974548941 18)38, 66638
6213604612153911837272,00868
633307R(26852929556505,35098
6452551441551947275738,69329
6572024856250964994972,03559
HEDIATRLTUIUI982T 1 U205,37789
681097 10856490900433438,72020
6930445100%48018152672,06250
70429918515047035871905,40481
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In order to find almost periods for CN’ 23 £ N £ 28, =e ran the .2
algorithm with N=23, i.e. w(N) = 9, and iO = 1,2,3 and 4.

Unfortunately the SZ algorithm did not produce satisfactory results
for m(N) = 10, unless we extended the precision of the calculations.
Instead of doing this we decided to try to find zeros of Ty N=29 with the
use of the almost periods found with the SZ algorithms, for the cases
m(N) = 8 and m(N) = 9. This had to work, and in fact it did, by the in-
dependency of the logarithms of the primes over Q.

In Table 3 we give a selection of>épecial zeros found with the two
methods described above. ¢ and t are rounded to 8 decimals. All zeros with
imaginary part greater than 5.108 were found by the method of almost

periods described in this section.
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Table 3
A selection of special zeros of [ N = 19,22(1)27,29(1)35,37(1)41,47,

computed with the systematic and with the almost period method

N o t

19 1400109551 600884,20342778
19 1,03235653 11771253,22839263
a2 1,20289095 558159406,14822557
a2 1400159434 46892766549 ,42816696
23 1400849693 B6U5,52442332
23 1.00819091 938296,181225%6
23 1,00010041 2330124,70064096
23 1,00006983 3202110,39681165
23 1,00103136 3277066,40578762
23 1,007215%89 3946708,69254419
23 1,01126485 4547478,18108028
23 1,00571318 4893650,03983065
23 1400019718 5629488 ,54597714
23 1,00113%366 ©164062,17543663
23 1,00256708 78158959,06171757
23 1,00165133 8007793,91903903
23 1,01044335 R5)2832,39912066
23 101168877 9432483,05547926
23 1,0019309% 9SB4842,76629013
23 1,0082937¢ 11771253,27977385
23 1,0091%3875 13387637,274%1388
23 1,00408121 16794145,94826183
23 1,060288078 18%40790,53294455%
23 1,00152197 19811202,31452277
23 1,00141400 20749500,16765432
23 1,000764891 22343785,04497%16
23 1,00839454 23079623,19611120
23 1,00376614 26882617,70286760
23 1,01267753 27034977,40765425
23 1,00069855 27981919,41520594
23 1,00483374 29252330,88830235
23 100348478 29750694,85030826
23 1,00604019 30837971,91770344
23 1,00396132 31096062,63391930
23 1,0037R926 31591101,11935353
23 1,0133R428 32520751,77163493
23 1,00033024 33055325,40544247
23 1,00216134 33207685,11072094
23 1.00219355 3355368%,36071613%
23 1,70068643 34859521 ,99944266
23 1,01064524 34899057, 14427724
23 1,20808078 36323746,28414194
23 1,01861685 3p476105,991817%0
23 1,205344254 38244BR1,72222851)
23 1,00517427 39890249,50342533
23 1,00296299 39744526,57339768
23 1,00305384 40279100,502455481
23 1,00933119 41014938,64597475
23 1,70355840 4iUIR23 65641527
23 1420059483 4aN47876,235953%04
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Table 3 (cont'd)}

23
¢3
23
23
23
23
23
23
e3
el
23
e3
e3
el
23
23
el
23

24
24
cd

1006036263
101243966
1,00180913
1,000690%2
1,003552%¢6
1,00159992
100050265
1,00248352
1,00604546
100175842
101226664
1,00528559
1,0080972%
1,00997921
1400257039
1,01718912
1,00015407
1,00325336

Lo004u4187
1,00356213
100266176

£,00044920
1,0028145]
1,00296925
1,00042574

1,00147172
1,00172491¢
1.00014747
1,0012113%
1,0091{%827
4001081889
1,00635285
1420260254
100042845
1,0020623%8
100008033
1o00080101

1a00941028
1,00014698
1,0000307%

100370506
1,00263365
1,0028%5421
1,00516811
1,00247002

1,70035753

43393244,01834429
44970292,86562675
45301993 ,163%37 1658
45454352 ,87687934
47686010,30077727
48238B713,74929047
53926240,63493770
S7987325,85676374
59%64374, 70585854
613331{50,4%688606
66H81512,73165926
75922641 ,31586465
198275746,89594875
22136401%5,61065165
307680947 ,42369788
558159406,13575644
1206740410567 ,01135674
1206780949399, 66201277

32520751,7859951¢C
36476106,00198972
558139406,14677888

12520751,89223907
1948209609528,90258422
2417014270341 ,99476594

19875494142563090677,75149100

3202110,4353%7085S
FUI2483 09742690
7034977 ,36406349
311096062,%8930278%
32520751,81725186
34899057 ,100419¢8
36323746,32695248
319590249,446365969
41014938 8527968
66481512,58T7920064
198275746 ,84905529
221364015,56387153

61242054160408938,59965064
61876989682005520,51533424
3643992940067580u11,70965177

258915897 7%52418,11781520
31626643501569868,61843350
Pr6325152G06206301 ,92606158
5478708916576279669,14757267
168005639371162389355,3563067

2582158977332418,105446556



Table 3 (cont'd)

30
30

31
31
31
31
3
31
31

LY
32
32

33
33
33

34
34
34
34U
34

35
35
38
38
35

37
37
37

38
38
38

39
39
39

40

40

49

41
41

47

3467y

0001
W00091143

1
4
1,00710369
1.012378%2
1o 1173696
leniall3sde
1,00697816
1,009358716
1,00654906

1,001565847
{ 04092022
Lo000040T7Y

1,00311308
1,00006912
1,00006291

1400224274
1,00244777
1,20251563
{,00429911
1,0056815¢

100271904
1,00546689
1,00632459
1,00306822
100382418

1,00386526
100373374
1,0034331¢

fe0ueialidn
1oul0e22tld
1,00963417

1,00801942
1,01207617
1,01045689

1,00138033
100341149
1o0015270¢C

1,00099738
1,003866%2

100039216

31018545620237323,21687853
123h70280836423551,51367576

52331955,65876128
2589158977352418,10678941
3161854%620237328,204R9056
31626643541569868,60340243
20b325152540206301,9115272°2
547870291657627%:69,13509577

168005639371162389355,3484815%

25R9158977352418,10213851
31618545620237328,20489056
31626643541569868,599952R6

2589158977352418,09084140
31620643541%569868,58813015
S478705916576279669,12056897

2589158977352418,07991295
31618545620237328,18212929
31626643541569868,57704514

206%25152546206301 ,88684313
S478708916570279669,10985066

25R9158977352418,06933499
3161854%620237328,17185247
31626643541569863,56710359
2063%3251525462066301,87536194
SU47R708916574279%669, 09848015

2589158977352417,06806263
2063251525462066301,R6968026
SUTBTINBI16576279669,09860138

2589158977352418,05885220
20632515254620630],86203972
SUTRT0B91657627%067,09024589

PS589 188977352419, (4998720
206325152546206301,85241258
SA4TR70E916576279660,48040409

25R9158977352418,04412159
206325152546206301,84834351
547B70489165762795667,07653396

2532188277354 18,05290742
2063525152546206301 ,83891135¢0

20748499,96408269

)
~4



