

AFDELING NUMERIEKE WISKUNDE (DEPARTMENT OF NUMERICAL MATHEMATICS) NW 44/77

SEPTEMBER

1977

J. VAN DE LUNE & H.J.J. TE RIELE

amsterdam

EXPLICIT COMPUTATION OF SPECIAL ZEROS OF PARTIAL SUMS OF RIEMANN'S ZETA FUNCTION

Preprint

stichting mathematisch

centrum

AFDELING NUMERIEKE WISKUNDE (DEPARTMENT OF NUMERICAL MATHEMATICS) NW 44/77 SEPTEMBER

J. VAN DE LUNE & H.J.J. TE RIELE

EXPLICIT COMPUTATION OF SPECIAL ZEROS OF PARTIAL SUMS OF RIEMANN'S ZETA FUNCTION

Preprint

2e boerhaavestraat 49 amsterdam

Printed at the Mathematical Centre, 49, 2e Boerhaavestraat, Amsterdam.

The Mathematical Centre, founded the 11-th of February 1946, is a nonprofit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O).

AMS(MOS) subject classification scheme (1970): 10F10, 10H05, 65H05

Explicit computation of special zeros of partial sums of Riemann's zeta function $^{*)}$

by

J. van de Lune & H.J.J. te Riele

ABSTRACT

In this report we present two different methods for the explicit computation of zeros of the entire functions

$$\zeta_{N}(s) := \sum_{n=1}^{N} n^{-s}$$

in the halfplane Re(s) > 1.

Many such (special) zeros are listed here, as far as we know, for the first time.

KEY WORDS & PHRASES: zeros, partial sums (sections) of Riemann's zeta function, simultaneous approximation of irrational numbers.

^{*)} This report will be submitted for publication elsewhere

0. INTRODUCTION

In 1948 TURÁN [6] showed that the Riemann hypothesis for $\zeta(s)$ is true if there are positive numbers N₀ and C such that for all N>N₀, N ϵ IN,

$$\zeta_{N}(s) := \sum_{n=1}^{N} n^{-s}$$
, (set, s=o+it)

has no zeros in the halfplane $\sigma \ge 1 + C/\sqrt{N}$.

In 1958 HASELGROVE [2] showed that there exist infinitely many NeIN such that $\zeta_N(s) = 0$ for some s with $\sigma > 1$.

In 1968 SPIRA [4] proved, using a computer, that $\zeta_N(s)$ has zeros with $\sigma>1$, for N = 19,22(1)27,29(1)50. In this report we shall call zeros of $\zeta_N(s)$ with $\sigma>1$ "special zeros".

As far as we know, up till now no special zero of any $\zeta_N(s)$ is explicitly known. In this report we present two different methods for the explicit computation of special zeros of ζ_N . The first method is exhaustive, since it produces all special zeros of ζ_N with imaginary part in a given interval (sections 1, 2, 3 and 4). In the second method we first compute several "almost-periods" of ζ_N and then find special zeros of ζ_N by adding the almost-periods to zeros of ζ_N with real part very close to $\sigma=1$, but not necessarily in $\sigma>1$ (section 5). Of course, this second method is not exhaustive, but it is much less time consuming than the first one.

Finally, we present a selection of the special zeros of ζ_N for N = 19,22(1)27,29(1)35,37(1)41,47, computed by the two methods.

1. PREPARATIONS

Let N≥3 be fixed. We consider the zero-set of

$$R_N(\sigma,t) := \text{Re } \zeta_N(s) = \sum_{n=1}^{N} \frac{\cos(t \log n)}{n^{\sigma}}$$

in the halfplane $\sigma < 0$. If $R_N(\sigma_0, t_0) = 0$ then

$$-\frac{1}{\sigma_0}\cos(t_0 \log N) = \sum_{\substack{n=1 \ n}}^{N-1} \frac{1}{\sigma_0}\cos(t_0 \log n)$$

so that

$$\left|\cos(t_0 \log N)\right| \le \sum_{n=1}^{N-1} (\frac{n}{N})^{-\sigma_0} < N \int_0^{1-\sigma_0} dx = \frac{N}{1-\sigma_0}.$$

Now choose a small $\epsilon>0$ ($\epsilon=\frac{1}{N}$ is sufficient) and take $\sigma_0 < 1-N/\epsilon$. Then we have

$$|\cos(t_0 \log N)| < \epsilon$$

so that we must have

$$t_0 \log N \sim \frac{\pi}{2} + k\pi$$
, $(k \in \mathbb{Z})$

or equivalently

$$t_0 \sim \frac{(2k+1)\pi}{2 \log N}$$
, $(k \in \mathbb{Z})$.

From this it follows that the zero set of $R_{\rm N}^{}(\sigma,t)$ in the halfplane $\sigma<1-N/\epsilon$ consists of simple zero curves having

$$-\infty + \frac{(2k+1)\pi i}{2 \log N} , \qquad (k \in \mathbb{Z})$$

as asymptotical points. See Figure 1.

It is easy to see that

$$R_{N}(\sigma,t) > 0 \text{ for } \sigma \ge 2$$

so that the entire zero set of $R_N(\sigma,t)$ is contained in the halfplane $\sigma<2$. For $\sigma=1$ (or any other fixed $\sigma \epsilon R$) we have that $R_N(1,t)$ is an almost periodic function of t and since

$$\max_{t \in \mathbb{R}} R_{N}(1,t) = R_{N}(1,0) = \sum_{n=1}^{N} \frac{1}{n}$$

Figure 1.

there exist arbitrarily large values of t for which

$$R_{N}(1,t) > -\varepsilon + \sum_{n=1}^{N} \frac{1}{n}$$

or equivalently

(1)
$$\sum_{n=1}^{N} \frac{1}{n} \cos(t \log n) > -\varepsilon + \sum_{n=1}^{N} \frac{1}{n}$$
.

Choosing ε >0 small enough it follows that all cosines in (1) are close to 1 and hence positive so that for these particular values of t we have

$$R_{N}(\sigma,t) = \sum_{n=1}^{N} \frac{1}{n^{\sigma}} \cos(t \log n) > 0 \text{ for all } \sigma \in \mathbb{R}.$$

Since the zero lines of any harmonic function on the entire plane cannot have endpoints, it follows that a zero line of $R_N(\sigma,t)$ "starting" at a point

$$-\infty+\frac{(2k+1)\pi i}{2 \log N}$$

must return to some other asymptotical point of the same form (possibly not a neighboring one). See Figure 2.

Now we consider the zero lines of

$$I_{N}(\sigma,t) := \operatorname{Im} \zeta_{N}(s) = -\sum_{n=2}^{N} \frac{\sin(t \log n)}{n^{\sigma}}$$

If $I_N(\sigma_0, t_0) = 0$ then

$$\frac{1}{\sigma_0} \sin(t_0 \log N) = -\sum_{n=2}^{N-1} \frac{1}{\sigma_0} \sin(t_0 \log n)$$

so that for $\sigma_0 < 0$

$$|\sin(t_0 \log N)| \le \sum_{n=1}^{N-1} (\frac{n}{N})^{-\sigma_0} < \frac{N}{1-\sigma_0}$$
.

Similarly as before, we choose a small $\epsilon \! > \! 0$ and take $\sigma_0^{} < 1 \! - \! N/\epsilon$ so that

Figure 2.

$$|\sin(t_0 \log N)| < \varepsilon.$$

Consequently

$$t_0 \log N \sim k\pi$$
, $(k \in \mathbb{Z})$

or

$$t_0 \sim \frac{k\pi}{\log N}$$
, $(k \in \mathbb{Z})$.

Hence, the zero set of $I_N(\sigma,t)$ in the halfplane $\sigma < 1-N/\epsilon$ consists of a system of simple zero curves having the points

$$-\infty + \frac{k\pi i}{\log N}$$
, $(k \in \mathbb{Z})$

as asymptotical points. See Figure 3.

For large positive σ we have in case of a zero of $I_{\underset{\ensuremath{N}}{N}}(\sigma,t)$

$$\frac{1}{2^{\sigma_0}}\sin(t_0 \log 2) = -\sum_{n=3}^{N} \frac{1}{n^{\sigma_0}}\sin(t_0 \log n)$$

and hence

$$|\sin(t_0 \log 2)| \le \sum_{n=3}^{N} (\frac{2}{n})^{\sigma_0} < N(\frac{2}{3})^{\sigma_0}.$$

Chosing a small $\varepsilon > 0$ and taking

$$\sigma_0 > \frac{\log(N/\epsilon)}{\log(3/2)}$$

we thus have

$$|\sin(t_0 \log 2)| < \varepsilon$$

so that

$$t_0 \log 2 \sim k\pi$$
, $(k \in \mathbb{Z})$

Figure 3.

or equivalently

$$t_0 \sim \frac{k\pi}{\log 2} , \qquad (k \epsilon \mathbb{Z}).$$

It follows that the zero set of $I_N(\sigma,t)$ in the halfplane $\sigma > \frac{\log(N/\epsilon)}{\log(3/2)}$ consists of simple zero curves having

$$+\infty + \frac{k\pi i}{\log 2}$$
, $(k \in \mathbb{Z})$

as asymptotical points. See Figure 4.

Figure 4.

It can be shown that every zero curve of $I_N(\sigma,t)$ starting at some asymptotical point + ∞ + $k\pi i (\log 2)^{-1}$ is somehow connected with some asymptotical point - ∞ + $1\pi i (\log N)^{-1}$. In other words: such a zero curve crosses over the s-plane "horizontally".

Moreover, every zero curve of $I_N(\sigma,t)$ starting at $-\infty + k_0 \pi i (\log N)^{-1}$ is either connected with an asymptotical point $+\infty + 1\pi i (\log 2)^{-1}$ or with an asymptotical point of the form $-\infty + m\pi i (\log N)^{-1}$.

Drawing the zero curves of $I_N(\sigma,t)$ as dotted lines, the zero curves of $I_N(\sigma,t)$ and $R_N(\sigma,t)$ have a pattern as pictured in Figure 5.

2. THE HEURISTIC PRINCIPLE

Again we denote zero curves of $I_N(\sigma,t)$ by dotted lines.

In case of a zero of $\zeta_N(s)$, we expect to have a pattern either as plotted in Figure 6a or as in Figure 6b.

Figure 6b.

This heuristical argument is also based on the empirical observation that any zero curve of $R_N(\sigma,t)$ starting at $-\infty + \frac{(4k+1)\pi i}{2\log N}$ (k>0) is connected with the "next" asymptotical point $-\infty + \frac{(4k+3)\pi i}{2\log N}$. Hence, in order to have a special zero $s_0 = \sigma_0 + it_0$ of ζ_N , we expect to have a situation as plotted in Figure 7.

In order to detect such a pattern of the zero curves of R_N and I_N one has to compute the zeros of $R_N(1,t)$ for t>0, yielding the increasing sequence $\{t_k\}_{k=1}^{\infty}$ of zeros $R_N(1,t)$. Once the zeros $t_{2\ell-1}$ and $t_{2\ell}$ have been located one checks whether $I_N(1,t)$ has a zero between $t_{2\ell-1}$ and $t_{2\ell}$. If so, it is a simple matter to locate the corresponding zero of $\zeta_N(s)$.

A slight modification of this procedure may be used in order to obtain zeros of ζ_N with real part just less than 1.

3. FIRST METHOD: THE SYSTEMATIC SEARCH

In this section we describe our first implementation (in FORTRAN) of the heuristical ideas for locating a special zero of $\zeta_N(s)$.

Since

$$R_{N}(1,t) = \sum_{n=1}^{N} \frac{1}{n} \cos(t \log n)$$

we have

$$\frac{\partial}{\partial t} R_{N}(1,t) = -\sum_{n=2}^{N} \frac{\log n}{n} \sin(t \log n)$$

and

$$\sup_{t \in \mathbb{IR}} \left| \sum_{n=2}^{N} \frac{\log n}{n} \sin(t \log n) \right| \leq \sum_{n=2}^{N} \frac{\log n}{n} =: M_{N}^{\prime}.$$

In order to find a zero of $R_N(1,t)$ one may proceed as follows: Since $R_N(1,0) = \sum_{n=1}^{N} \frac{1}{n}$, we have by the maximal slope principle that $R_N(1,t)$ has no zeros on the interval $0 \le t \le R_N(1,0)/M_N' =: p_1$.

Since $R_N(1,p_1) > 0$ the same technique yields that $R_N(1,t)$ has no zeros in the interval $p_1 \le t \le p_1 + R_N(1,p_1)/M_N' =: p_2$, etc. As soon as $R_N(1,p_k) < \varepsilon$ we compute $R_N(1,p_k+\delta)$ and investigate whether $R_N(1,p_k+\delta) < 0$. In fact we took $\varepsilon = 10^{-5}$ and $\delta = 10^{-2}$. As soon as the first zero of $R_N(1,t)$ has been located in this way one proceeds in a similar manner starting from the point $t = p_k+\delta$. As soon as the second zero of $R_N(1,t)$ has been located one starts investigating whether $I_N(1,t)$ has a zero between these two zeros of $R_N(1,t)$. If this is the case one may draw the zero curves of R_N and I_N and find a special zero of $\zeta_N(s)$.

For N=23 this procedure leads very quickly to the special zero

$$\sigma = 1.008 496 93$$
, $t = 8645.524 423 32$.

For N=19, on a CDC 6600 computer, it took us about one hour computer time to find the special zero

 $\sigma = 1.001 095 51$, t = 600 884.203 427 78.

SPIRA's investigations [4] show that N=19, 22 and 23 are the first candidates for having special zeros. Clearly we wanted to see a special zero of $\zeta_{22}(s)$. Indeed, 19 and 23 are primes whereas 22 is the smallest composite N for which $\zeta_N(s)$ has special zeros.

However, neither the systematic search described above nor the acceleration of this procedure described in section 4 did produce any special zero

of $\zeta_{22}(s)$ in the range $0 \le t \le 75\,000\,000$. Anticipating the results of section 5 we already remark here that by the method described there we have found the special zero

(N=22)
$$\sigma = 1.002$$
 890 95, t = 558 159 406.148 225 57.

However, we do not know whether this special zero is the one with smallest positive imaginary part. We have given up our effort to "fill the gap" between t = 75,000,000 and t = 558,159,407 since it still might take several hundreds of hours of computer time to reach this goal.

4. ACCELERATION OF THE SYSTEMATIC SEARCH

The first thing to improve was to replace $\frac{M}{N}$ by a better (=smaller) estimate of

$$\sup_{t \in \mathbb{R}} |\sum_{n=2}^{N} \frac{\log n}{n} \sin(t \log n)| =: D_{N}.$$

Since

$$\sum_{n=2}^{22} \frac{\log n}{n} \sin(t \log n) = \frac{\log 2}{2} \sin(t \log 2) + \frac{\log 3}{3} \sin(t \log 3) + \frac{\log 4}{4} \sin(2t \log 2) + \frac{\log 5}{5} \sin(t \log 5) + \frac{\log 6}{6} \sin(t \log 2 + t \log 3) + \frac{\log 6}{6} \sin(t \log 2 + t \log 3) + \dots + \frac{\log 22}{22} \sin(t \log 2 + t \log 11)$$

and since the logarithms of the primes are linearly independent over the rationals, it was possible to find the following numerical upper bound:

$$D_{22} \leq 4.2725$$
 (compare: $M'_{22} = 4.77...$).

However, it turned out that the replacement of M'_{22} by 4.2725 did not speed up the systematic search considerably.

The most time consuming thing in the systematic search is the evaluation of the transcendental functions sin(t log n) and cos(t log n).

We now describe how the systematic search can be speeded up considerab] (to about three times as fast as the original procedure). It is based on a generalization of the maximal slope principle to higher derivatives.

Observe that all derivatives of $R_N(1,t)$ are bounded:

$$|R_{N}^{(k)}(1,t)| \leq \sum_{n=2}^{N} \frac{(\log 2)^{k}}{n} =: R_{N}^{(k)}, \quad k \in \mathbb{N},$$

so that by Taylor's expansion formula

$$R_{N}(1,t) = R_{N}(1,t_{0}) + \frac{(t-t_{0})}{1!} R_{N}'(1,t_{0}) + \dots + \frac{(t-t_{0})^{k-1}}{(k-1)!} R_{N}^{(k-1)}(1,t_{0}) + \frac{(t-t_{0})^{k}}{k!} R_{N}^{(k)}(1,\xi)$$

for some $\xi \in (t_0, t)$. Hence

$$R_{N}(1,t) \geq \sum_{n=0}^{k-1} \frac{(t-t_{0})^{n}}{n!} R_{N}^{(n)}(1,t_{0}) - \frac{(t-t_{0})^{k}}{k!} R_{N}^{(k)}$$

and

$$R_{N}(1,t) \leq \sum_{n=0}^{k-1} \frac{(t-t_{0})^{n}}{n!} R_{N}^{(n)}(1,t_{0}) + \frac{(t-t_{0})^{k}}{k!} R_{N}^{(k)}$$

for all $t \ge t_0$. Writing

$$P_{1,k}(t_0,t) := \sum_{n=0}^{k-1} \frac{(t-t_0)^n}{n!} R_N^{(n)}(1,t_0) - \frac{(t-t_0)^k}{k!} R_N^{(k)}$$

and

$$P_{2,k}(t,t_0) := \sum_{n=0}^{k-1} \frac{(t-t_0)^n}{n!} R_N^{(n)}(1,t_0) + \frac{(t-t_0)^k}{k!} R_N^{(k)}$$

we clearly have that

$$P_{1,k}(t_0,t) \leq R_N(1,t)$$

and

$$P_{2,k}(t_0,t) \ge R_N(1,t)$$

for all $t \ge t_0$.

From

$$P_{1,k}(t_0,t) \le R_N(1,t), \quad (t \ge t_0)$$

and

$$D_{N} \geq \sup_{t \in \mathbb{R}} |R_{N}'(1,t)|$$

it follows that, if $R_N(1,t_0) > 0$ then $R_N(1,t)$ does not have a zero on the interval

$$t_0 \le t \le t_0 + \frac{P_{1,k}(t_0, t_0)}{D_N} =: t_1.$$

See figure 8.

If $P_{1,k}(t_0,t_1) > \epsilon > 0$ we can go a step further and say that $R_N(1,t)$ has no zeros on the interval

$$t_1 \le t \le t_1 + \frac{P_{1,k}(t_0,t_1)}{D_N} =: t_2$$

and so on, until one reaches a point t_r such that

$$P_{l,k}(t_0,t_r) \leq \varepsilon$$
, (where $\varepsilon = 10^{-6}$, say).

At such an instance we compute a new polynomial $P_{l,k}(t_r,t)$. Noting that

$$P_{1,k}(t_r, t_r) = R_N(1, t_r)$$

we check whether $R_N(1,t_r) \leq \varepsilon$. If not, we proceed with $P_{1,k}(t_r,t)$ in the same way as described above. If $R_N(1,t_r) \leq \varepsilon$, we check whether $R_N(1,t_r+\delta) < 0$. If so, we compute the polynomial $P_{2,k}(t_r+\delta,t)$ and proceed similarly as above in order to determine the next zero of $R_N(1,t)$.

A similar procedure may be applied to compute the successive zeros of $\rm I_N(1,t)$.

The advantage of the above procedure is that a considerable number of transcendental evaluations are replaced by polynomial calculations, which are performed considerably faster.

For N=22 we have tested out various values of k, resulting in the experimental observation that the total procedure was running fastest for k=14, and in fact about three times as fast as our original procedure.

5. SECOND METHOD: SEARCH BY USE OF ALMOST-PERIODS

In this section we describe a second method for the computation of special zeros of ζ_N . In fact, by this method we are able to construct (finite) sequences of zeros of ζ_N , all with real part close to one, some of them with real part greater than one.

The starting point is the supposition that already a zero s_0 of ζ_N is available, for which $|\text{Re s}_0^{-1}|$ is small. Such a zero may be found, for instance, by applying our first method to a line $\sigma = 1 - \epsilon$. Let $T_1 \in \mathbb{R}$ be such that $|\zeta_N(s) - \zeta_N(s+iT_1)|$ is small for all s on the line $\sigma = 1$. Such a T_1 exists since $\zeta_N(1+it)$ is an almost-periodic function of t. Then one may expect that also $|\zeta_N(s) - \zeta_N(s_0^{\pm iT_1})|$ is small, and there may be a zero, s_1 say, of ζ_N in the neighborhood of $s_0^{+iT_1}$. If Re $s_1 > \text{Re s}_0$, we look for another zero, s_2 say, of ζ_N in the neighborhood of $s_1^{+iT_1}$, and so on. In order to cross the line $\sigma = 1$, we always demand that Re $s_j > \text{Re s}_{j-1}$. If Re $s_j \leq \text{Re s}_{j-1}$ we continue with another almost-period T_2 . After crossing the line $\sigma = 1$ we may still continue this procedure in order to find more and more special zeros of ζ_N .

The crucial point in the above procedure is, of course, the availability of sufficiently many almost-periods of ζ_N on the line σ =1. We have

LEMMA 5.1. Almost-periods of $\zeta_N(s)$ can be computed if one is able to find "sufficiently good" (to be specified later) approximations of the $\pi(N)(>1)$ numbers log $p_j/\log p_{j_0}$, $(j=1,2,\ldots,\pi(N); j_0 \in \{1,2,\ldots,\pi(N)\})$ by rational numbers with the same denominator.

<u>PROOF</u>. Let k be that common denominator, i.e., k log $p_j/\log p_{j_0} \equiv \varepsilon_j \pmod{1}$ where $\varepsilon_j \equiv 0$ and the other ε_j 's are small (but not zero, since the logarithms of the primes are independent over \mathbb{Q}). Let the canonical factorization of $n(\leq \mathbb{N})$ be given by $n = \prod_{j=1}^{m(\mathbb{N})} \alpha_j \binom{n}{j}$. Then for $T := k \cdot 2\pi/\log p$, and j_0 for any fixed $s \in \mathbb{C}$ we have

$$\zeta_{N}(s+iT) = \sum_{n=1}^{N} n^{-s} \exp(-iT \log n) = \sum_{n=1}^{N} n^{-s} \exp(-i\theta_{n}),$$

where

$$\theta_{n} = T \log n = (k \cdot 2\pi/\log p_{j}) \log \prod_{j=1}^{\pi(N)} p_{j}$$

$$= 2\pi \prod_{j=1}^{\pi(N)} \alpha_{j}(n) k \log p_{j}/\log p_{j}$$

$$= (\prod_{j=1}^{\pi(N)} \varepsilon_{j} \alpha_{j}(n)) (\mod 2\pi).$$

If the ε_j 's are small enough, we may expect the value of $\zeta_N(s+iT)$ to be close to the value of $\zeta_N(s)$, for any fixed $s \in \mathbb{C}$. Hence, T is an almost-period of ζ_N . The same argument holds, if one replaces T by -T.

We have used the well-known modified Jacobi-Perron algorithm [1] and the less-known Szekeres algorithm [5] for the computation of the rational approximations of log $p_j/\log p_{j_0}$ (j=1,2,..., (N); j≠j₀). We first give a description of both algorithms in the style of KNUTH [3]. Both algorithms are simplified and put in a form suitable for our purpose.

<u>ALGORITHM JP</u> (Jacobi-Perron). Given $n \ge 1$ positive irrational numbers $\alpha_1, \alpha_2, \ldots, \alpha_n$. In step JP2 a positive integer k is computed such that $\{k\alpha_i\}$ is small, for i=1,2,...,n (where $\{x\}$ means the distance of x to the nearest integer). Auxiliary vectors $\vec{a} = (a_1, a_2, \ldots, a_n)$, $\vec{b} = (b_1, \ldots, b_n)$ and $\vec{c} = (c_0, c_1, \ldots, c_n)$ are used. The algorithm terminates when k > kmax.

- JP1. [Initialize]. Set $c_0 \leftarrow 0$ and set $a_i \leftarrow \alpha_i$ and $c_i \leftarrow 0$, for i = 1, 2, ..., n. JP2. [Take integer part of \dot{a} and compute new k]. Set $b_i \leftarrow [a_i]$ for
 - i = 1, 2, ..., n and set $k \leftarrow c_0 + \sum_{i=1}^n c_i b_i$. If k > kmax then stop.
- [Compute new \vec{c} and \vec{a}]. Set $c_0 \leftarrow c_1$, $c_i \leftarrow c_{i+1}$ and $a_i \leftarrow (a_{i+1} b_{i+1})/(a_1 b_1)$, JP3. for $1 = 1, 2, \dots, n-1$ and set $c_n \leftarrow k$ and $a_n \leftarrow 1/(a_1 - b_1)$. Go to JP2.

Note that for n=1, this algorithm produces the denominators of the convergents of the regular continued fraction expansion of α_1 .

The Szekeres algorithm is more complicated than JP, but it will appear to produce much better approximations than JP.

ALGORITHM SZ (Szekeres). Given n≥1 positive irrational numbers $\alpha_1, \alpha_2, \ldots, \alpha_n$ with 1 > α_1 > α_2 > ... > α_n . In step SZ6 a positive integer k is computed such that $\{k\alpha_i\}$ is small, for i = 1, 2, ..., n. An auxiliary vector $\vec{\gamma} =$ $(\gamma_0, \gamma_1, \dots, \gamma_n)$, auxiliary arrays $A = (a_{ij})$, $i, j = 0, 1, \dots, n$ and $V = (v_{ij})$, i, j = 1,2,...,n, and an auxiliary scalar h are used. The algorithm terminates, when k>kmax. In order to explain the notation in SZ3, we define a partial ordering of n-component vectors as follows: let $\vec{x} = (x_1, \dots, x_n)$ and $\vec{y} = (y_1, \dots, y_n)$ and let i_1, i_2, \dots, i_n be a permutation of $1, 2, \dots, n$ such that $|\mathbf{x}_{i_1}| \ge |\mathbf{x}_{i_2}| \ge \ldots \ge |\mathbf{x}_{i_n}|$; similarly, let $|\mathbf{y}_{j_1}| \ge |\mathbf{y}_{j_1}| \ge \ldots$ $\geq |\mathbf{y}_{jn}|. \text{ We write } \vec{\mathbf{x}} \simeq \vec{\mathbf{y}} \text{ if } |\mathbf{x}_{\mu}| = |\mathbf{y}_{j\mu}|, \text{ for } \mu = 1, 2, \dots, n \text{ and } \vec{\mathbf{x}} \prec \vec{\mathbf{y}} \text{ if } \\ \exists \nu, 1 \leq \nu \leq n \text{ such that } |\mathbf{x}_{j\nu}| < |\mathbf{y}_{j\nu}|, \text{ and } |\mathbf{x}_{j\mu}| = |\mathbf{y}_{j\mu}|, \text{ for } 1 \leq \mu < \nu.$ SZ1. [Initialize]. Set $\gamma_0 \leftarrow 1-\alpha_1$, $\gamma_i \leftarrow \alpha_i - \alpha_{i+1}$, i = 1, 2, ..., n-1, $\gamma_n \leftarrow \alpha_n$. Set $a_{ii} \neq 1$, i = 0, 1, ..., n and j = 0, 1, ..., i and $a_{ii} \neq 0$,

- i = 0,1,...,n-1 and j = i+1, i+2,...,n. [Compute the differences v_{ij}]. Set v_{ij} $\neq |\frac{a_{ij}}{a_{i0}} \frac{a_{0j}}{a_{00}}|$, i,j = 1,2,...,n. SZ2.
- SZ3. [Select index μ]. Let \vec{v}_i be the i-th row of V, so $\vec{v}_i = (v_{i1}, v_{i2}, \dots, v_{in})$. Find the largest index μ such that for every $1 \leq i \leq n$

either
$$\vec{v}_i \prec \vec{v}_\mu$$
, or $\vec{v}_i \simeq \vec{v}_\mu$.

If $\gamma_0 < \gamma_u$, then go to SZ5.

- SZ4. $[\gamma_0 \ge \gamma_{\mu}]$. Set $\gamma_0 \leftarrow \gamma_0 \neg \gamma_{\mu}$ and $a_{\mu j} \leftarrow a_{\mu j} + a_{0 j}$, $j = 0, 1, \dots n$. Go to SZ6.
- SZ5 $[\gamma_0 < \gamma_\mu]$. Set $h \leftarrow \gamma_0$ and $\gamma_0 \leftarrow \gamma_\mu \gamma_0$, $\gamma_\mu \leftarrow h$. Set $h \leftarrow a_{0j}$ and $a_{0j} \leftarrow a_{\mu j}$, $a_{\mu j} \leftarrow a_{\mu j} + h$, for j = 0, 1, ..., n.
- SZ6. [New k]. Set $k \leftarrow a_{u0}$. If $k \leq kmax$, then go to SZ2, else stop.

For n=1, this algorithm not only produces the denominators of the convergents of the regular continued fraction expansion of α_1 , but also the denominators of the *intermediary* convergents.

Both algorithms were coded in FORTRAN, and run on a CDC 6600 computer, in double precision (28 significant digits) with kmax = 10^{20} , n=6 and for α_i the six irrationals log 3/log 2, log5/log 2, log7/log2, log11/log 2, log13/log 2, and log 17/log 2. Let k_1, k_2, \ldots be the sequence of k's produced by one of the algorithms. Define m. := max { $k_i \alpha_i$ }. In Table 1, for both algorithms we give the values of k_j and m_j, such that m_j < m_i, for $1 \le i \le j-1$. Clearly the results of SZ are much better than those of JP, so that we decided to choose the Szekeres algorithm for our further computations.

Table 1

Results of runs with the Jacobi-Perron Algorithm and the Szekeres Algorithm

ALG. j	k.j	^m j
JP 1 3 8 9 10 17 25 26 31 35	1 2 168 877 882 278575 1170241231 18158873714 9176933208351 259812674489863	.460 .401 .365 .331 .219 .164 .158 .0675 .0654 .0349
SZ 1 8 19 30 49 57 71 80 83 113 116 125 149 169 218 225 234 239 246 263 296 297 299 300 325 339 343 392 407 419 447	$\begin{array}{c} 2\\ 4\\ 9\\ 31\\ 311\\ 764\\ 2414\\ 5855\\ 14348\\ 88209\\ 119365\\ 272356\\ 2316275\\ 23993538\\ 890512495\\ 2039172447\\ 2929684942\\ 5312742147\\ 9640622028\\ 69123516771\\ 1903569470016\\ 2244797172219\\ 1740704456733\\ 2907809851158\\ 13059799506657\\ 61833456490027\\ 65818958118979\\ 7164194803257268\\ 38101473715080026\\ 102025501759257846\\ 1778599299350212805\\ 1685640231520813937\\ \end{array}$.401 $.350$ $.304$ $.289$ $.201$ $.181$ $.139$ $.111$ $.0910$ $.0871$ $.0798$ $.0483$ $.0276$ $.0221$ $.0184$ $.0178$ $.0167$ $.0115$ $.0106$ $.00715$ $.00704$ $.00615$ $.00548$ $.00522$ $.00353$ $.00344$ $.00180$ $.00167$ $.00115$ $.00107$ $.00053$ $.00046$

As indicated in section 3, we first applied our method to N=22. In order to find almost periods for N=22, we ran the SZ algorithm with N=19, i.e. $\pi(N) = 8$ and $i_0 = 1,2,3$ and 4. This yielded sufficiently many almost periods, and with the strategy described in the beginning of this section, we found many special zeros of $\zeta_{22}(s)$.

Although we already had found a few special zeros of ζ_{19} by the systematic method, we also applied the almost period method to ζ_{19} . As an illustration of the power of this method, we select the following result:

 $\zeta_{19}(s) = 0$ for $s = \sigma_0 + it_0$, where $\sigma_0 = 1.00279385$, $t_0 = 987047804990437138.21000067$

and for $k = 1, 2, \dots, 58$ the numbers $t_k = t_0 + kP$, where

P = 119 473 414 699 017 719 233.343 2

are approximations, with absolute error of, at most, 0.1, of the imaginary parts of special zeros of ζ_{19} . These zeros are listed in Table 2 (σ rounded to 8, t to 5 decimals). We have also listed the first zero in this "almostarithmetic progression" with real part < 1 (namely the zero with imaginary part $\approx t_0 + 59P$).

Table 2

59 special zeros of ζ_{19} , the imaginary parts of which form an "almost" arithmetic progression, and the first "non-special" zero in this progression.

σ	t
1.00279385	987047804990437138.21000
1,00287891	120400462504008156371.55227
1,00295917	239933877203025875604,89453
1.00303464	359407291902043594838,23680
1,00310532	478980706601061314071,57906
1,00317121	598354121300079033304,92133
1.00323237	717827535999096752538,26360
1,00328876	837300950698114471771,60587
1,00334038	956774365397132191004,94813
1,00538727	1076247780096149910238,29040

Table 2 (cont'd)

1,00342941	1195721194795167629471.63267
1.00346685	1315194609494185348704 97495
1,00349959	1434668024193203067938.31722
1,00352756	1554141438892220787171.65949
1,00355087	1673614853591238506405,00176
1.00356948	1793088268290256225638,34404
1,00358339	1912561682989273944871.68631
1,00359263	2032035097688291664105.02859
1.00359720	2151508512387309383338.37086
1.00359712	2270981927086327102571.71314
1.00359237	2390455341785344821805.05542
1.00358294	2509928756484362541038.39770
1,00356893	2629402171183380260271.73997
1.00355030	2748875585882397979505.08225
1,00352700	2868349000581415699738.42453
1.00349914	2987822415280433417971.76681
1,00346660	3107295829979451137205,10910
1,00342954	3226769244678468856438,45138
1,00338783	3346242659377486575671.79366
1,00334159	3465716074076504294905.13595
1,00329071	3585189488775522014138,47823
1,00323534	3704662903474539733371 82052
1,00317535	3824136318173557452605,16280
1.00311082	3943609732872575171838,50509
1.00304179	4063083147571592891071,84738
1.00296821	4182556562270610610305.18966
1,00289013	4302029976969628329538,53195
1,00280750	4421503391668646045771,87424
1,00272038	4540976806367663768005.21653
1.00202865	4560450221066681487238,55883
1.00253266	4779923635765699206471,90112
1.00243208	4899397050464716925705,24341
1,00232656	5018870465163734644938,58570
1,0221735	5138343879862752364171,92800
1,00210347	5257817294561770083405,27029
1,00198488	5377290709260787802638 61259
1.00186194	5496764123959805521871,95489
1.00173467	5616237538658823241105,29718
1,00160285	5735710953357840960338,63948
1,00146665	5855184368056858679571,98178
1.00132607	5974657782755876395805,32408
1,00118127	6074131177434574115035.50638
1,00105105	
1,000070007	- CARACELANAERACAJAAEA20 - CO230 - CARACELANAERACAJAJEA20 - CO230 - CARACELANAERACAJAJEA20 - CO230
1 000/1993	843633144133174/6/3/30,07367 667303/8663606660073 ATEEO
1 00030737	0)/6/240)02007047747/C00007 6401/0837/04008371/375 27780
1 00034024	- QQ714706/V747706/146V0#3//Q7 - 68169714706/V747706/146V0#3//Q7
	- COILFIIGUJGHYVVVVHJJHJV4/KVKV - KOIA/HRIAAINAINAINAJHJV4/KVKV
10000430/	- 073044319034001013607640AC - #A#24 - 7680619C1568740AC - #A#24
• AAADO700	104=110010041000011400440401

In order to find almost periods for ζ_N , $23 \le N \le 28$, we ran the sZ algorithm with N=23, i.e. $\pi(N) = 9$, and $i_0 = 1,2,3$ and 4.

Unfortunately the SZ algorithm did not produce satisfactory results for $\pi(N) \ge 10$, unless we extended the precision of the calculations. Instead of doing this we decided to try to find zeros of ζ_N , N≥29 with the use of the almost periods found with the SZ algorithms, for the cases $\pi(N) = 8$ and $\pi(N) = 9$. This had to work, and in fact it did, by the independency of the logarithms of the primes over Q.

In Table 3 we give a selection of special zeros found with the two methods described above. σ and t are rounded to 8 decimals. All zeros with imaginary part greater than 5.10⁸ were found by the method of almost periods described in this section.

REFERENCES

- [1] BERNSTEIN, L., The modified algorithm of Jacobi-Perron, Memoirs of the Amer. Math. Soc., Number 67, 1966.
- [2] HASELGROVE, C.B., A disproof of a conjecture of Pólya, Matematika, <u>5</u> (1958), 141-145.
- [3] KNUTH, D.E., The art of computer programming, Vol. 1, Fundamental Algorithms, Addison-Wesley, 1968.
- [4] SPIRA, R., Zeros of sections of the zeta function, II, Math. Comp., <u>22</u> (1968), 163-173.
- [5] SZEKERES, G., Multidimensional continued fractions, Ann. Univ. Sc.
 Budapest. de Rolando Eötvös nom., 13 (1970), 113-140.
- [6] TURAN, P., On some approximative Dirichlet polynomials in the theory of the zeta function of Riemann, Danske Vid. Selsk. Mat. Fys. Medd., <u>24</u> (1948), 3-36.

\mathbf{c}	
2	3
-	

Τ	aЪ	16	3

A selection of special zeros of ζ_N , N = 19,22(1)27,29(1)35,37(1)41,47,

computed with the systematic and with the almost period method

N	σ	t
19	1.00109551	600884_20342778
19	1,00235653	11771253,22839263
55	1.00289095	558159406,14822557
22	1.00159434	46892766540,42816696
23	1.00849693	8645,52442332
2.2	1.00019091	938296,18122556
23	1.00010041	2330124,70064096
23	1 00102124	3202110,39681165
<u></u> 21	1 00324880	3277065,40576752 7047700 - 10076752
6.2 D.1		3446798,69254419
23 57	1.00531715	4547478,19108028
<u> </u>	T # 202/1212	4573650.03985065
23	1.00019718	5629488,54597714
< 2 2 2	1,00119100	6164062,17543663
د ک	1.00256798	7815899.06171757
23	1.00165130	8007793,91903903
23	1.01044335	8502832,39912066
23	1.01168877	9432483.05547926
23	1.00193093	9584842.76629013
23	1,00829376	11771253.27977385
23	1.00913875	13387837.27431388
23	1.00408121	16794145.94826183
23	1.00288075	18540790,53294455
23	1.00152197	19811202.31452277
23	1.00141400	20749500.16765432
23	1.02076491	22343785.04497516
23	1.00859454	23079623,19611120
23	1.09376614	26882617 70286760
23	1.01267753	27034977,40765425
23	1,00069855	27981919,11520594
23	1.00483571	27232330,88830233
23	1.00348478	29750594 85030825
23	1,00504019	5085/9/1.91//0544
23	1,00396132	31976082,63371730 71804.04 41078787
25	1,00578920	21041101*11430000
23	1,01558428	うどうどり/つ1。//103475 アズムビビスタビールヘビルルラルア
23	1,00055024	33933363°4034464/
2 5	1.00210134	77557688 76071617
د <i>ع</i>		2/1050234 000//1307 2333300/*306/17013
<i>C</i> 3 37	1.01000090 1.01000090	<u> スパロロウィンビオ チャッキオケック</u> スパロロロクにデザー イガバングプング
<u>ک</u> ک ۲	1 0000078	コキシュアシンノのショナキャレノノビキ
23	1 01041485 1 0104047	26476105 09181750
23	1 ⁶ Å 1 0 0 1 6 0 0 1 ⁶ Å 1 0 0 1 6 0 0	3047010307710173V 38244881 72222851
C)) 7	1	ZORGUDAG CUIADEII
23	1 80014500	コックアリロックロックロックロックコン スタブリロックト タブススタブムス
C 3 37	1 000077 1 0000781	40279100 SC245581
<u>د</u> ک ۲۳	1 0077110	
63 77	1 g () () ブラう11 7 1 g : 7 2 2 1 1 7	<u>11108008</u> 656/12507
<u>2</u> 5		ー 1
25	1.00024422	HC:H(S(D.CJ)D)H

Table 3 (cont'd)

30 30	1.00134674 31613545620237328.21687853 1.00091143 123670980836423551.51367576
31 31 31 31 31 31 31	1.0071036952331955.658761281.012378522589158977352418.106789411.0117369631618545620237328.204890561.0121384631626643541569868.603402431.00697816206325152546206301.911527221.009387165478708916576279669.135095771.00654906168005639371162389355.3484815
32 32 32	1.00165867 2589158977352418.10218851 1.00092022 31618545620237328.20489056 1.00064974 31626643541569868.59995286
33 33 33	1.003113082589158977352418.090841401.0000691231626643541569868.588130151.000062915478708916576279669.12056897
34 34 34 34 34	1.002242712589158977352418.079912951.0024477731618545620237328.182129291.0023156331626643541569868.577045141.00429911206325152546206301.886843131.005681565478703916576279669.10985066
35 35 35 35 35	1.002719042589158977352415.069354991.0054668931618545620237328.171852471.0063245931626643541569863.567103591.00306822206325152546206301.875361941.003824185478708916576279669.09848015
37 37 37	1.003865262589158977352418.068062631.00373874206325152546206301.869680261.003433105478708916576279669.09860138
38 38 38	1.006121402589158977352418.058852201.01062213206325152546206301.862039721.009634175478708916576279669.09024589
39 39 39	1.008019422589158977352418.049987901.01207617206325152546206301.852412581.010456895478708916576279669.08040409
40 40 49	1.001380332589158977352418.044121591.00341149206325152546206301.848343511.001527005478708916576279667.07653356
41 41	1.00099738 2589158977352418.05290762 1.00386682 206325152546206301.83891350
47	1.00039216 20749499.96408269