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Iterative methods for solving nonlinear equations when no good approximation 

to the solution is available 

by 

C. den Heijer 

ABSTRACT 

A class of iterative methods for solving nonlinear systems of equations 

is constructed. The methods are based on the solution (by A-stable integra

tion techniques) of an initial value problem which is related to the non

linear problem to be solved. The objective of these methods is to solve non

linear problems when no good initial approximation to the unknown solution 

is available. At the end of the paper some numerical examples are given. 
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J. INTRODUCTION 

Let X bi?. a Banach space and F: X + X a nonlinear operator. In this note 

we shall be concerned with iterative methods for solving the equation 

(I.I) F(x) = 0. 

Suppose that x* EX is a solution of (I.I). A well-known method for approxi

mating x* is Newton's method defined by 

(1. 2) 

In (I .2) x0 ,~ 

derivative of 

sequence{~} 

k=O,I, ••• 

X l.S a given approximation of * and F' (x) X 
' 

denotes the 

F at x. If the starting point x0 is ~emote from x* then 

defined in ( 1.2) generally will not * converge to X . 

Frechet-

the 

In this note we propose a class of iterative methods which may be ex

pected to be suitable for cases where the starting point x0 is remote from 

* x also. 

Consider for x0 EX the initial value problem 

t E [0,J] 

(I. 3) 

If F satisfi,es some smoothness conditions (see [7]) then (I .3) has a unique 

solution x(t), satisfying F(x(t)) = (l-t)F(x0) for all t E [0,1]. Therefore 

x(I) is a solution to the equation (I.I). It is assumed that the solution 

x * we are looking for satisfies x (I) ~ x *. 

Computing the solution x(t) to (1.3) at t = I by means of a given 

numerical integration procedure, we obtain an approximation, say x 1 R;j x(l), 

which is uniquely determined by x0 • We thus have x 1 = G(x0), where the 

operator G depends only on F and the given numerical integration procedure. 

Solving the initial value problem (1.3) once more, with x0 replaced by x 1, 

by the same :numerical integration procedure, we obtain an approximation 

x2 ~ x(I) which is related to x 1 by x2 = G(x 1), etc. 
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The iterative methods to be considered in this note are all of the 

general type 

(1.4) (k = 0 , 1 , 2 , ••• ) , 

where G depends on F and on some numerical integration procedure. 

If we use the most simple explicit integ~ation procedure, Euler's rule, 

with steplength h = 1, method (1.4) reduces to Newton's method (1.2). When 

the starting point x0 is close to x*, with rather weak assumptions on F, 

the Newton iterates{~} converge quadratically to x*. This implies that 

although Euler's rule with stepsize h = 1 is a crude first order integration 

technique, a very good approximation x 1 to x(l) is obtained when integrating 

(1.3) for x0 close to x*. Furthermore we observe that if for an x0 E X 

* Newton's method does not generate a sequence {xk} that converges to x, we 

may also consider this phenomenon as a failure of Euler's rule (with step

size h = 1) in solving (1.3). This failure is due to unstable behaviour of 

Eulet's rule when applied to the initial value problem (1.3). These observa

tions suggest that it may be of interest to use highly stable integration 

procedures for solving (1.3) instead of very accurate ones. Sunmarizing we 

may say that we would like to use integration techniques which need not be 

very accurate (first order accuracy being sufficient) but which prevent the 

numerical approximation x 1 from getting too far away from x(l). This suggests 

that it may be of interest to use A-stable integration techniques (cf.[6]) 

for solving (1.3). 

The use of A-stable integration techniques in cases where Newton's 

* method does not generate a sequence {xk} that converges to x has been a 

subject of earlier investigations (cf.[1]; in that paper Euler's rule was 

used as predictor and the Trapezoidal rule as corrector). 

As far as numerical integration methods for solving initial value 

problems are concerned we shall use the concepts described in [6]. 

2. ITERATIVE METHODS THAT ARE BASED ON A-STABLE INTEGRATION TECHNIQUES 

For a given x0 EX, let 
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f: X + X, 

(2. I) 

f(x) for all x EX. 

Then (1.3) is equivalent to 

x(t) = f(x(t)), t E [0,1], 

(2.2) 

For q ~ I and a E ]R consider the following scheme for solving (2.2) 

(2.3) 

j = 0,1, ... ,q-l. 

yj is an approximation to x(~), j = l, ••• ,q. For each a E [O,½J it can be 

shown that the methods used in (2.3) are A-stable. When a=½, (2.3) re

duces to the well-known Trapezoidal rule. This method is of second order. 

When a= 0, the integration method (2.3) is called the backward Euler method. 

This method is not as accurate as the Trapezoidal rule (it is of first order) 

but it has better stability behaviour (cf [6], p.235). 

We note that the integration method (2.3) is implicit for a* I. Suppose 

we have found approximations y. for i = 1,2, ••• ,j < q. Then in order to 
1. 

compute yj+l' we have to solve the (in general nonlinear) problem Hj(z) = O, 

where 

H.(z) = z - y. - .!.{(1-a)f(z)+af(y.)}. 
J J q J 

Instead of solving H.(z) = 0 exactly (which will in general be impossible) 
J 

we content ourselves with approximations z. toy. (j = l, ••. ,q). We might 
J J 
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for example use an explicit integration method (e.g. Euler's rule) as pre

dictor and use the implicit method a's corrector. However in this way the 

good stability properties of the implicit methods are generally spoilt (see, 

for example [6], p.235). We shall therefore obtain {z.} as follows. Let 
J 

z0 = y0 . For Os j < q let zj be the approximation to yj. Then in the ex-

pression defining H.(z) we replace y. by z. and z. 1 is the first Newton 
J J J J+ 

iterate for the problem H.(z) = 0 with starting point z .• (We suppose J •, J 
H!(z.) exists and is invertible). This means that 

J J 

(2.4) 

j = 0,1, ..• ,q-l; 

where 

for all z E X. 

Therefore, the iterative method which is based on the integration technique 

(2.4) has an interation function G defined by 

(2.5) 

G(x) = z (x), 
q 

zj+l (x) = 

where x EX and 

= z.(x)-! {I-! (1-a)[F'(z.(x))]-IF"(z.(x))[F'(z.(x))]-lF(x)}-l 
J q q J .J J 

F'(z.(x))F(x) for j = 0,1, .•. ,q-1. 
J 

It can be shown that if F satisfies some smoothness conditions then all methods 

of type (2.5) are (at least) quadratically convergent. 

We notice that for a=½ and q = 1 (2.5) becomes the iteration function 

of a method which is known in the literature as the method of tangent hyper

bolas (cf[8], p.188 for a bibliography on this method). Furthermore, for 
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a= O and q = I (2.5) is the iteration function of a method which has been 

investigated in [3]. In that paper it was supposed that X = JR'. In the com

putations that were performed on some problems in JR', the method exhibited 

convergence behaviour better than the convergence behaviour of Newton's 

method, especially when the starting points were not close to the desired 

solution. 

In higher dimensional vectorspaces compu~ation of F"(z) requires in 

general an exorbitant amount of work. Therefore methods with iteration func

tion of type (2.5) are rather cumbersome from the computational point of 

view. In the next section we shall modify (2.5) in such a way that F"(z. (x)) 
J 

need not be computed. 

3. ITERATIVE METHOD'S WHICH REQUIRE NO EVALUATION OF THE SECOND DERIVATIVE 

In this section we shall construct a class of derative methods which 

are related to the iterative methods of type (2.5). However these methods 

do not require the evaluation of the second derivative of F. 

Let x,z EX. For any£> 0 a p > 0 exists such that for all e, 

0 < 161 < P, 

When e is small, i{F'(z+e[F'(z)J- 1F(x))-F'(z)} is therefore approximately 
-I 

equal to F"(z)[F'(z)] F(x). Thus we can approximate the iteration function 

G, defined in (2.5) by an iteration function G, 

(3. I) 

ccx) = '; (x), 
q where x EX and 

';. l (x) 
J+ 

~ 1 ~ I-a ~ ~ -I = z.(x)--[F' (z.(x))- - 8 {F'(z.(x)+6[F'(z.(x))] F(x)) 
J q J q J J 

F'(;.(x))}J- 1F(x), J = 0,1, ... ,q-I. 
J 

It can be shown that if F satisfies some smoothness conditions then all 

methods of type (3.1) are (at least) quadratically convergent. 
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We notice that for q = 1, methods of type (3.1) have been investigated 

by several authors. See for example ([9],p.164), where it is assumed that 

X = lR'. For the case that Xis an arbitrary Banach space an example is 

given, for instance, in [SJ. In that paper the iterative method (3.1) with 

0 =½and a=~ is considered. However, just as with the method of tangent 

hyperbolas, the main purpose of investigating these iterative methods was 

their convergence behaviour near x*. In this ~ote we are mainly interested 

in the convergence behaviour of iterative methods when the starting point 

x0 is remote from x*. 

4. NUMERICAL EXAMPLES 

The iterative methods (3.1) have been applied to two problems in which 

Newton's method fails. 

We noticed previously that nonconvergence of Newton's method, starting 

in x0 EX, may be conceived as an instability of Euler's rule with stepsize 

h = 1, when integrating the initial value problem (1.3). At first sight, 

instead of our way of handling the problem by using method (2.3), (2.4) or 

(3.1) with O ~a~½, one might hold to Euler's rule, while improving its 

stability behaviour by using a smaller stepsize h. Iterative methods which 
A 

are based on this integration technique have an iteration function G, where 

(4.1) 

A 

G(x) = ~ (x), 
q 

z. 1(x) = z.(x) 
J+ J 

is given, x EX, and 

1 -1 -[F'(z.(x))] F(x), 
q J 

J = 0,1, ••• ,q-1. 

Note that (4.1) can be obtained from (3.1) by choosing a= 1. In order to 

find out which approach is best, we tested both methods of type (3.1) 

(with a= 0 and a=½) and type (4.1). 

PROBLEM 1. This problem arises from a finite-difference approach to the two

point boundary value problem 



(4.2) 

where 

F(x) 
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d 2 d 2 <ls {s ds U(s)} - s f(U(s)) = O 0 < s < 1 

U' (O) = 0, U(l) = 1, 

f(u) -1 u 
= E: u+K (see [4], pp.162-168). 

For n :?: l ' E: and K positive consider the (n+l)-dimensional problem 

= O, where for x t t = (s0 ,s1,.,.,sn) and F(x) = (~0 (x),~ 1(x), ••. ,~n(x)) 

~. (x) 
J 

-1 /1 == (n+l) 

(j = 1, .•. ,n-1) 

and s. = i./1(i = ½,1, .•. ,n+½). 
1 

On physical grounds the solution of (4.2) looked for, should be positive. It 

can be shown that F(x) = 0 has a unique pos1t1ve solution x*. The starting 
0 0 0 t O 2 

point XO was chosen to be XO= <so,s1,• .. ,sn), where sj = (1-e::K)[sj] + E:K 

(j = O, I, ... ,n). It can be shown that for the solution x(t) of (1.3), 

x( 1) * = X 

The computations were performed for n = 100 and K = 0.1. For E: we took 

e:: = 0. 1 , 0. 05 , 0. 0 I and O.001 . 

PROBLEM 2. As a second example we consider the problem F(x) = O, where for 
t 

x = <s1 ,s2) , 

F(x) 
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which was tound in [2]. The starting·point is x0 = (0.4,3}t. The solu

tion curve x(t), t E [0,1] of (1.3) terminates at the solution x* = x(l) = 
= (0.299449,2.83693)t of F(x) = O. This equation also has a solution (0.5,n)t 

and, moreover, Newton's method starting at x0 'converges to the further solu

tion (-0.26,0.62)t. 

All computations were performed on a CD Cyber 73-28 computer. Any iterative 

process was considered to yield a sequence {xic} converging to a solution of 

the equation F(x) = 0 whenever for some k ~ 1 

The norm used was the Euclidian norm. Only if a method succeeded in generat-

I 

* ing a sequence {xk} that converged to the desired solutionx, the number of 

iteration steps, required for the ~topping criterion to be satisfied is 

given. 

: method 

q Ct 

1 0 

1 0.5 

2 0 

2 0.5. 

4 0 

4 0.5 

Table 4.1 

Method 3.1, a = 10-4• 

Problem 1 , K = 0. 1 , n = 100. 

problem 

e:=O. 1 e:=0.05 e:=0.01 e:=0.001 

2 4 5 7 

2 3 FAILURE FAILURE 

2 3 4 5 

2 2 3 4 

2 3 4 4 

1 2 2 2 

Table 4.2 

Method 3.1, a= 10-4 . 

Problem 2. 

method 

q Ct 

1 0 7 

1 0.5 5 

2 0 5 

2 0.5 3 

4 0 4 

4 0.5 3 



method 

q 

1 

2 

4 

8 

Table 4.3 

Method 4.1. 

Problem 1, K = 0.1, n = 100. 

problem 

e=0.1 e=0.05 e=0.01 e=0.001 
' 

3 FAILURE FAILURE FAILURE 

2 4 FAILURE FAILURE 

i 
2 3 4 FAILURE 

2 3 3 FAILURE 

I 
I 

Table 4.4 

Method 4.1. 

Problem 2. 

method 

q 
I 

1 

2 

4 

8 

9 

FAILURE 

FAILURE 

4 

3 

REMARK. We have given the results of method (3.1) only for a= 10-4• The 

computations for method (3.1) were also performed for a= 10-3 and a= 10-5 • 

Apart from some minor differences in the number of iteration steps the re

sults were the same. 

CONCLUSION 

The methods of type (3.1) that were tested, appear to have a convergence 

behaviour superior to the convergence behaviour of Newton's method (which 

is equivalent to (4.1) with q=l), especially when the starting point x0 is 

remote from x*. Even in comparison with iterative methods that are based 

on Euler's rule with small stepsizes ((4.1) with q>l) method (3.1) is found 

out to be better. The work per step required for method (4.1) (with a* 1) 

is roughly twice the work required for method (3.1) - with the same q ~ 1. 

Even if we compare methods (4.1) with methods.of type (3.1) that require 

the same amount of work per iteration step the former (especially with 

a=O) turn out to be better. 

Among the methods of type (3.1), the ones that are based on the back

ward Euler method (a=O) appear to be more reliable than the ones that are 

based on the Trapezoidal rule (a=½). However if small stepsizes are taken 

(i.e. q large) then the latter methods generate sequences that converge 

faster to the solution than the former ones. 



We note that the practical significance of the methods (3.1) might be 

increased by using approximations aF{z) to F'(z) in the formulas involved 

(in much the same way as this is done for Newton's method, see for example 

[8]). 

In the future we intend to investigate such approximations of the 

methods (3.1). We also plan to investigate the methods (3.1) in more detail, 

both theoretically and by more extensive numerical experiments. 
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