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A general formulation of linear splitting methods for ordinary and partial 

differential equations 

by 

P.J. van der Houwen & J.G. Verwer 

ABSTRACT 

The main purpose of the paper is to present a unified treatment of 

one-step integration methods for systems of ordinary differential equations 
➔ 

dy (➔) + . . . f + dx = f y' f satisfying a linear splitting (y) = 
k 
L f.(y). The emphasis 

i= 1 i 

is on systems which originate from semi-discretization of time dependent 

partial differential equations. A class of integration methods is defined, 

which contains all known splitting methods, such as alternating direction 

and locally one-dimensional methods, provided these methods are formulated 

for semi-discretized equations satisfying a linear splitting. 

KEY WORDS & PHRASES: Numerical Analysis, Ordinary differential equations, 
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Splitting methods. 
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I. INTRODUCTION 

In the numerical treatment of partial differential equations the 

idea of splitting is to break down a complicated multi-dimensional process 

into a series of one-dimensional, and less complicated processes. Well

known splitting methods (also referred to as fractional step methods) are 

the alternating direction methods, (PEACEMAN & RACHFORD [12], DOUGLAS [2]), 

the locally one-dimensional methods (YANENKO [16, p.23]), and the hop

scotch methods (GOURLAY [6,8]). Since the first papers of Peaceman, Rachford 

and Douglas, many authors has written contributions in this field, mainly 

on initial boundary value problems. In these contributions, splitting me

thods are generally formulated and analysed as so-called direct grid methods. 

The idea of splitting can also be applied in conjunction with the method of 

lines, an approach which is preferred by the authors. In order to elucidate 

this point of view we mention three points: 

1°. The character of a splitting difference scheme, when formulated as a 

direct grid method, is governed almost wholly by the type of the time 

discretization. The type of the space discretization is of lesser impor

tance (cf. the discussion in GOURLAY & MITCHELL [7]). 

2°. In the analysis and application of direct grid splitting methods the 

boundary treatment takes an important place and often causes severe 

problems (cf. the discussion in GOURLAY [8]). Point 1° suggests that 

in the analysis and application of a splitting difference scheme for 

initial boundary value problems the boundary treatment is better handled 

apart. This is achieved by applying the method of lines. 

3°. By defining splitting methods for semi-discretized partial differen

tial equations, or in general for systems of ordinary differential 

equations, it is possible to give a unified treatment of these methods. 

When defining these methods as direct grid methods, this is hardly 

possible. 

To our opinion point 3° is very important. Consequently, the main 

purpose of the present paper is to formulate a wide class of splitting me

thods for ordinary differential equations, which contains all known one

step splitting methods for a general class of problems. We will consider 
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non-linear systems of ordinary differential equations of the autonomous 

form 

(I. I) 

of which the right-hand side f(y) is supposed to be linearly splitted into 

k terms, i.e. 

k 
(1.2.) tc-;) = I 

i=I 
t. (y), 

l. 

➔ 

where the vector functions f. are supposed to be of sufficient differen-
1. 

tiability. The restriction to autonomous form is made for notational con-

venience and is not essential, i.e. results can be easily extended to equa

tions of the non-autonomous form 

(I. 3) 

In the definition of our integration formulas no further a priori knowledge 

of the functions£. is assumed. In the paper, several examples of schemes 
l. 

are given, which may be recognized as existing schemes, or as generaliza-

tions, when we confine ourselves to a particular problem class. 

For the preparation of this paper the book of YANENKO [16] on frac

tional step methods and the survey of GOURLAY [8] were very useful. 

2. THE CLASS OF SPLITTING METHODS 

+ 
Let yn denote the numerical approximation at x = x. Leth denote 

n n 
then-th integration stepsize, i.e. h = x 1- x • The class of splitting 

n n+ n 
methods discussed in this paper is then defined by them-th stage, one-

step scheme 
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-+(j) 
j k . -+Cl) -+ 

h l I (2. I) Yn+l = yn + L,e. f.(y 1), j = I (I )m, 
n l=O i=l J i l. n+ 

-+ -+(m) 
Yn+l = Yn+1 • 

The parameters A. 0 • serve to make this scheme a consistent approximation to 
J-C..l. 

the differential equation (I.I). But, in particular, they should be used to 

exploit the splitting property (1.2) in order to obtain a computationally 

efficient and numerically stable process. The calculation of the approxima

tion y(j)l is straightforward when the parameters A ••• , i = I(I)k, are equal 
n+ JJl. 

to zero. Otherwise, an algebraic system of generally non-linear equations 

should be solved. Observe that fork= I, i.e. when no splitting is per

formed, scheme (2.1) reduces to am-th stage, semi-explicit Runge-Kutta 

scheme (see BUTCHER [I] or NORSETT [II]). In the sequel it is always assumed 

that k ~ 2. 

2.1. The order conditions 

In this section we will derive the order conditions for scheme (2.1) 
-+ 

up to order p = 3. To that end we formally expand y 1 in a Taylor series n+ 
at the point x: 

n 

(2.2) 
m k 

t<l) -+ -+ I I [f. (y) 
-+ 

• 'v)f. (y) Yn+l = yn + h Amli + - yn 
n l=O i= I l. Yn+l l. 

I (+(l) -+ 2-+ -+ + 
:z Yn+l - yn 'v) fi (y) ]-+ 

Yn 

+ O(h4). 
n 

Here, ( • ) denotes the usual innerproduct and 'vis the gradient operator 

(a/ayj),where yj is the j-th component of y. In a similar way, for l = I(I)m, 

l k 
= hn l l Al. [f.(y) + (y~:~ - Yn 

r=O j=I rJ J 

+ O(h3). 
n 



4 

Substitution into (2.2) yields 

(2.2') 
-+ m 

= y + h l 
n n l=O 

l k 
+ h l l 

n r=O j=l 

-t -+ . -+(r) -+ -+ ➔ -t -+ 
Ao • ([t. (y) + (y l -_y • V)f. (y)h- .V)t. (y) ,t..r J J n+ n J y 1. 

l k 
+ ½h2 ( l l 

n r=O j=l 

n 

' -t (·+ ) ")2-+f (-+)} O(h4), Ao • t. Y • V • Y + ,t..rJ J n 1. -+ n 
Yn 

where AO.= 0 for all rand j. 
rJ 

Finally, by substituting 

and rearranging terms in (2.2') we arrive at the expansion 

(2.2") 
m k Y = Y + h l l A_o• £.(y) + 

n+ 1 n n l=O i= 1 IIK-l. i n 

m k l k 
+ h 2 l l l l A_o.Ao • (f.(y) • V)f.(y)j+ + 

n l=O i=l r=O j=l IIK-i ,t..rJ J n i Yn 

3 m k { l 
+ hn l l Amli H l 

l=O i=l r=O 

k ~ -+ 2-+ -+ l A,e_.t.(y).V)f.(y)+ 
j=l rJ J n i 

l 
+ I 

r=O 

k r k } l l l A,e_ .A ((£ (y). V)f.(y)l+•v')f.(y)-+ 
j=l s=O t=l rJ rst t n J Yn l. yn 

The formal expansion, up to order three, of the local analytical solution 
-+( ) • (-+ -+ ) . . y x through the point x ,y 1.s given by 

n n 



(2. 3) 
-+ k 
y(x +h) = y + h l f.(y) + 

n n n n i=l 1 n 

k 
+ .!. h2 I 

2 n i=l 

k 

I 
j=l 

k k 
+ .!. h3 I ( l 

6 n i=l j=l 

ct.c-; >. v>1.c"y>I± + 
J n 1 Yn 

1. (y) • v/1. (y) I* + 
J 1 Yn 

5 

Using the relation 

+ + 2+ + I - ;t- + 2+ + I ~ + + ·+ + + I (f(y) .'i/) f.(y)-+- -(t(y ).V) f.(y)-+ + ((f(y ).t/)£(y)l4-•'i/)f.(y)-+ 
1 y n 1 y n v 1 y n n ·n n 

expansion (2.3) may be written as 

k 
(2.3') y(x +h) = y + h l f.(y) + 

n n n n i=l 1 n 

k k 
+ .!. h 2 l l (f. (y ) . V)f · (y) I+ + 

2 n i= 1 j= 1 J n 1 Yn 

A comparison of the expansions (2.2") and (2.3') yields the order condi

tions listed in table 2.1. 
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Table 2.1. Order conditions for scheme (2.1) 

m 
p = L Amii = 1 , i = 1 (1 )k, 

l=O 

m l 
p = 2 L L Ami.Al. = l i,j = 1 ( 1 )k, 2 , 

l=l r=O i rJ 

l 
p = 3 L Al. = cl, J = 1 ( l)k, 

r=O rJ 

m 2 1 
L Amii cl = 3' i = l(l)k, 

l=l 

m l r 1 
L L L Ami.Al .A t = 6' i,j, t = 1 (1 )k. 

l=l r=l s=O i rJ rs 

REMARK. In this paper '\e do not give a convergence proof of method (2.1). 

It is observed that (2. 1) is a one-step integration method of the type 
-+ -+ h -+(h -+ -+ ) + . • . Yn+l = Yn + n 4l n'Yn,Yn+l , 4l denoting the increment function. Conver-

gence results for one-;step methods defined by general increment functions 

are well known in the literature (see e.g. HENRICI [9] or STETTER [25]). 

2.2. The amplification matrix and the stability function 

A widely accepted approach in the stability analysis of integration 

methods for systems of ordinary differential equations is to analyse the 

stability of the methods for linear systems 

(2.4) 
-+ 

~= 
dx 

-+ Jy, 



where J denotes a constant matrix of which the eigenvalues possess non

positive real parts. Following this approach we write (cf. (1.2)) 

(2.5) 
k 

J = I 
i=l 

J., 
1 

7 

and apply scheme (2.1) to equation (2.4). An elementary calculation yields 

(2.6) R (h J 1 , .... ,h Jk);, m n n , n 

where the matrix R is defined by the formal relations 
m 

(2. 7) 
J 

I + l 
l=O 

k 

l Ajli zi R,e_(z1•····,zk), 
i=I 

J = 1, ••.. ,m. 

Here, I denotes the unit matrix and Z. = h J., i = 1, ... ,k. The matrix 
1 n 1 

Rm(z 1, •.. ,Zk) is called the amplification matrix of the scheme. In order 

to derive stability results for schemes from class (2.1) one has to inves

tigate this matrix. 

When pe:rforming such a stability investigation we must make assump

tions about the matrices J .. It is of course desirable that these assump-
1 

tions are relevant for the differential equation under consideration. In 

this respect it is of importance to note that the matrices J. stand for the 
1 

Jacobian matrices of the functions£ .. For example, when discussing semi-
1 

discretized partial differential equations a relevant assumption in the 

stability analysis is that the ma.trices J. share the same eigensystem and 
1 

are diagoniza.ble. In conformity with the stability theory of integration 

methods for ordinary differential equations we then investigate the sta

bility of the scalar recurrence relation 

(2.8) 
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where z. represents an eigenvalue of h J .• The rational function R : a;k ➔ «: 
1 · n· 1 m 

is accordingly called the stabiZity function of the scheme. It shall be 

clear that the analysis of the stability function is simpler than the ana

lysis of the amplification matrix, which is sometimes inpracticable. 

2.3. An illustrative example of a two-term splitting method 

In this section we derive a second order splitting method for equa

tions which are splitted as (k = 2) 

(2.9) 

We take m = 2, i.e. the method will use 2 stages. For p = 2 the order con

tions then read 

i = 1,2, 

(2. I 0) 

In order to exploit the splitting property (2.9) we choose A112 = A221 = O. 

By this choice the implicitness of the scheme is distributed over two stages. 

For calculational convenience we further put >.. 101 +All]= A102 + A112 • This 

condition simplifies the second order conditions in (2.10). After some cal-

culations we thus arrive at the following parameter matrices 

AIOI A 1 11 0 

(>..jll) = , 

2(AI01Hlll)-I 
0 

2(AlOl+Alll) 20..IOl+Al 1 I) 
(2.11) 

:>i.101+>..lll 0 0 

(>.. jl2) = 

I 
+ A212(AIOl+AIII-I) A212 ! -A212(>..10l+Al 11) 2 



where A101 , Alll and A212 are still free parameters which can be used to 

adapt the stability of the scheme. 

The formal expressions for the amplification matrix (cf. (2.7)) is 

given by (note that the matrices z1 and z2 are generally non-commutative) 

(2.12) 

9 

Our choice A221 = A112 = 0 implies that the denominator of R2 does not 

contain z: and z; terms. We prefer to be able to deal with functions fi 

with large Lipschitz constants, such as functions originating from semi

discretization of a partial differential equation. Hence we will next 

require that in the numerator these terms also vanish. Substitution of the 

parameters listed in (2.11), and equating coefficients to zero, yields 

Alll = i and A212 = O, so that 

(2.12') 

The matrices (2.11) become 

(2.11') 

2A-1 
zr-

I 
li 

0 

0 

0 

0 

0 
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A still being a free parameter. The two-term splitting scheme generated. 

by (2.11') is given by 

(2.13) 

If we put A=!, we finally obtain 

(2.13') 

REMARK 2.2. For the non-autonomous equation (1.3) the most natural exten

sion of (2.13') 1s 

(2.13") 

It should be noted however that the x-increments are not uniquely deter

mined. For example, if we write x + ~h in all functions in (2.13") see-
n n 

ond order accuracy is preserved. 

REMARK 2.3. The intermediate approximation y(l)l is a first order approxin+ 
mation to the local analytical solution at x = x +!h. n n 

The particular schemes from class (2.1), which are discussed in this 

paper, may all be recognized as existing schemes, or as generalizations of 

existing schemes, when we confine ourselves to a particular problem class. 



To illustrate this we give three applications of scheme (2.13'), or its 

equivalent (2.13"), which are known in the literature. 

2.3.1. The odd-even hopscotch method 

11 

Let fi and yi denote the i-th component of the vector functions f 
and y, respectively. Assume that f originates from semi-discretization of 

a one- or multi-dimensional parabolic partial differential equation which 

may be linear or non-linear. Assume further that each component fi, i odd 

(even), only depends on yi and yj j Ii, with j even(odd). Next define 

the functions 11 and 12 in (2.9) by 

ti-+ i odd, 
f~(y) 

f (y), 
= lo i even, 

f~(y) (<Yl, i even, 
= 

0 , i odd. 

Then, method (2.13 1 ) becomes an odd-even hopscotch method for semi-discre

tized equations (see GOURLAY [6], see also VERWER [15]). 

2.3.2. The alternating direction method of Peaceman and Rachford 

Assume that f originates from semi-discretization of a two-dimen

sional parabolic equation of which the differential operator can be written 

as a sum of two one-dimensional operators. Let £1 and 12 represent these 

two semi-discretized operators. Then, method (2.13') becomes an alternating 

direction method of the Peaceman-Rachford type for semi-discretized equa

tions (see PEACEMAN & RACHFORD [12]). Here it is assumed that in (2.13') 

the semi-discretization gives rise to systems of non-linear algebraic 

equations with a tridiagonal Jacobian matrix. 

2.3.3. A method of Samarskii 

Assume that in (2.9) 11 and 12 can be defined such that a1 1 /a; _and 

af2/ay are triangular and negative definite. Then, we obtain an algorithm 
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of_a type suggested by SAMARSKII [13] (Samarskii considers the linear case 

f(x,y) = A(x)y + g(x)). 

2.3.4. Some stability theorems 

We conclude this section with giving some known stability results on 

the amplification matrix (2.12'), which are of direct relevance to the appli

cations mentioned above. For a precise interpretation of these results we 

refer to the given literature (see also YANENKO [16] for a discussion of 

stability). Remember that in (2.12') Z. = h J. depends on the stepsize hn, 
1 n 1 

which is not necessarily constant (cf. sec.tion 2. 2). 

THEOREM 2.1. Let the matrices J 1 and J 2 have the following properties: 

a) 

b) 

J 1 and J 2 commute, 
T T J 1 + J 1 and J 2 + J 2 are non-positive definite, then IIR2 (z 1,z2)11 2 ~ I, 

for every stepsize h. 
n 

This theorem expresses the desirable property of unconditional sta

bility for varying stepsizes. When the matrices J 1 and J 2 are not constant, 

but satisfy the assumptions at each integration step, the theorem remains 

valid. For non-connnuting matrices we have 

THEOREM 2.2. Let hn = h, h constant. Let the matrices J 1 + J; and J 2 + J; 

be non-positive definite. Then R~(z 1,z2) is uniformly bounded inn for 

every stepsize h. 

This theorem expresses the desirable property of unconditional sta

bility for constant stepsizes. Here the matrices J 1 and J 2 must remain· 

constant. 

Both theorems innnediately follow from 

LEMMA 2.1. Let M denote a square real matrix with transposed matrix MT, 

such that M + MT is non-positive definite. Let p > O, then 

a) p·I - Mis non-singular, 

b) 
-I -I II (p I - M) II 2 ~ p 

c) H(pl + M)(pl - M) 
-I 

11,, ~ I. 
,:. 
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This lemma was originally posed by KELLOG [10], who stated and proved the 

lemma for linear operators on Hilbert spaces. For our, more simpler case, 

the lemma can be easily proved using elementary matrix theory. 

Finally a result concerning the stability function (cf. (2.8)) 

related to (2.12'). 

The proof follows immediately from the well-known result: 

j(2 + z)/(2 - z)j ~ I if Re z ~ 0. 

3. OTHER EXAMPLES OF EXISTING SPLITTING METHODS 

In section 2.3 we derived a two-term splitting method which, for 

the proper definition of the functions 11 and 12, appeared to be an alter

nating direction method of the Peaceman-Rachford type. In the present sec

tion we give some further examples of splitting methods which are known in 
+. 

the literature, and which all belong to class (2.1). Here, f is supposed to 

originate from semi-discretization of a k-dimensional parabolic equation 

of which the differential operator can be written as a sum of k one-dimen

sional operators. The functions f. then should represent these one-dimen-
i 

sional operators which may be linear and non-linear. 

In the present section we do not discuss specific stability properties 

of the various schemes, as this falls outside the scope of the paper. We 

observe that when the amplification matrix is factorized, results are most 

easily obtained using Kellog's lemma. In case_ of a non-factorized matrix 

results can be obtained by means of the stability function. 

3.1. A three-term splitting method of Gourlay and Mitchell 

Let k = m = 3, and define 
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(3.1) 

This type of method has been suggested by GOURLAY & MITCHELL [7]. A nice 

property of this three-stage scheme is that it is of second order, factori

zed, and unconditionally stable for a relevant class of problems. This is 

due to the combination of the alternating direction and locally one-dimen

sional principles. The generating matrices for (3.1) are given by 

= (: 

0 0 

;) (A jll) 0 0 

0 0 

(: 
1 0 

:) 
2 

(3.2) (Ajl2) = 1 0 2 , 

I 
½ 2 

(Aj~) = (: 

0 0 

:) ! ½ 

! I 
2 2 

From these parameter matrices the second order conditions of table 2.1 are 

easily verified. 

3.2. Examples of k-term splitting methods 

In the present subsection mis always equal to k. 

3.2.1. Locally one-dimensional methods of Yanenko 

(3.3) j = l(l)k, 
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Method (3.3) is called the locally one-dimensional method (YANENKO [16, 

p.23]). The free parameter a usually equals½ or 1. The method is of first 

order, which immediately follows from the parameter definition: A .. 1 . = 1-a, 
J1- 1 

A ... = a, i = l(l)j, j = l(l)k, and zero otherwise. 
J 11 

3.2.2. The method of approximation corrections of Yanenko 

-+(O) -+ 

Yn+l = Yn' 

(3.4) 
-+(j) 

= 
-+(j-1) + !h f.(y(j)) j = l(l)k-1, Yn+l Yn+l n J n+l ' 

k 
-+ (-+(k-1)) -+ -+ I Yn+l = yn + h f. y 1 . n i=l 

i n+ 

This type of method also proceeds from YANENKO [16, p.128], who called it 

the method of approximation corrections. It is charaterized by the fact 

that stability is achieved in the preliminary stages, while accuracy is 

obtained at the last stage •. The method is of first order. The parameters 

are given by A ... =~' i = l(l)j, j = l(I)k-1; Akk 1. = 1, i = l(!)k, 
J11 - 1 

artd zero otherwise. 

3.2.3. The method of stabilizin~ corrections of Dou~las and Gunn 

-+( 1) k -+ l 1 -+ 1 -+( l) 
Yn+l = yn + h .(y) + h l(y +1), n i=2 1 n n n 

(3.5) 
-+(j) -+(j-1) - h f. (y ) 1 -+(j) j 2( 1 )k, Yn+l = Yn+l + h . (y 1)' = 

n J n n J n+ 

-+ -+(k) 
Yn+l = Yn+l' 

Fork~ 3 this type of splitting method was introduced by DOUGLAS & 

RACHFORD [3], and later, in its general form, formulated by DOUGLAS & 

GUNN [SJ (see also YANENKO [16, p.126]). Method (3.5) is called the method 

of stabilizing corrections. At the first stage, an accurate approximation 

is evaluated, while all succeeding stages are corrections and serve to 

improve the stability. Method (3.5) is also of first order, and its 
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parameters are given by A. 0 . = 1, i = j+l(I)k, j = l(l)k; A ••• = 1, 
J l. Jl.l. 

i = l(l)j, j = l(l)k, and zero otherwise. 

3.2.4. Generalized Douglas methods 

(3.6) 
➔(j) 
Yn+l 

-;~ 

Yn+l 

k 
--y +!hfl(y)+h I 

n n n n i=2 

7 ➔ I 7 ➔(]) 
t. (y ) + 2 h t 1 (y l) , 

1. n n n+ 

= ➔(j-1) 
Yn+l 

I f ➔ 2h .(y) I f ➔(j) + 2h .(y +l), j = 2(l)k, 
n J n n J n 

= 
+(k) 
Yn+l. 

Method (3.6) is a second order analogue of method (3.5). The three-term 

scheme of this class originates from DOUGLAS [4]. As far as we know, the 

general case has not been discussed in the literature. The parameters are 

given by A. 0 . = L 1. = l(l)j; >.. 0 . = 1, i = j+l(I)k; L .. =Li= l(l)j; 
J l. J l. Jl.l. 

for j = l(l)k, and zero otherwise. 
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