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Galerkin methods in circular and spherical regions 

by 

M. Bakker 

ABSTRACT 

In this paper, it is shown how the convergence results for two-point 

(initial) boundary value problems, such as super convergence at the knots 

and invariance of convergence order when a proper quadrature rule is used, 

can be extended to more dimensions provided that circular synnnetry exists. 

KEY WORDS & PHRASES: Finite element method, Galerkin method, spheriaal 

symmetry, two-point boundary value problems 





l • INTRODUCTION 

In this paper, we want to solve numerically the N-dimensional 

boundary value problem 

N 2 
- ti.u + q(x)u = - I ~+ q(x)u = f (x), X EI = [0,1]; 2 i=l ax. 

l. 

( 1. l) 
N 2 l 

X = [ I x. J 2; 
i= l l. 

U = 0, X = }. 

Since u and f only depend on x, the problem easily reduces to the two-point 

boundary value problem 

-N+l 
- X d (xN-1 du) + q(x)u = 

dx dx 
f (x) , 0 ::;; x ::;; l ; 

(2. l) 

du 
dx (0) = u(l) = 0. 

Note that the left boundary condition stems from the circular symmetry 

of u. In the sequel, we replace N-1 by C, where C is a non-negative integer. 

In §2, we will show how problem (1.2) can be solved by the Galerkin 

method and how accurately this can be done. In §3 we develop (and advocate) 

some practical algorithms for C = l and C = 2. In §4, we show how parabolic 

equations can be semi-discretized to an explicit system of boundary diffe

rential equations. Finally, in §5 we give two simple numerical examples. 

2. GALERKIN' S METHOD 

Let~ EV= {vjv E c0 (I); v(l) = 0}. If we multiply both sides of 

equation (1.2) by xc ~(x), we obtain after partial integration 

I 

(2. l) = I 
0 0 
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In a way, formula (2.1) is a generalization of the weak Galerkin form 

(see STRANG & FIX [6]) for Cartesian two-point boundary value problems 

(C = 0). We now define a suitable finite element space in which u can be 

approximated. 

Let 

(2.2) 

be a partition of I, not necessarily uniform; let 

I. = [x. 1 ,x.]; 
J J- J 

(2.3) I:!.. = x. - X • } ; J = 1 , ••• ,N; 
J J J-

I 1:i I = max I:!. •• 
J 

We assume that the knots x. are chosen such that they coincide with any 
J 

possible points where f(x) or q(x) are less smooth. Let k be some constant 

natural number and define for any segment E c I Pk(E) as the set of poly

nomials of degree less than or equal k restricted to E. Next, we define 

M~(/:i) by 

(2.4) 

It is easily verified that M~(l:i) is a kN-dimensional subspace of V. Now 

the finite element solution U E M~(l:i) of (1.2) is the solution of 

(2.5) (dU 
dx 

d(j)) + (qU ,(J)) = 
dx 

where the inner product (a,S) is defined by 

(2.6) 

I 

(a,S) = J xc a(x) S(x)dx, 

0 

After this definition of the Galerkin or finite element solution of (1.2) 

for spherical coordinates, we could proceed by formulating and proving 

convergence theorems. However, that would be merely consist of copying 



existing theorems, since the only difference would lie in the definition 

of the L2(I) inner product and of the appearing Hm(I) norms and partition 

norms. Hence, instead of proving them anew, we refer to the papers where 

the proofs can be found for C = 0. 

THEOREM 1. Let f(x) and q(x) be such that the solution u of (1.2) is in 
k k k k . c0(t.) = V n c (I 1)n ••• nc (~); let u EM0(t.) be the solut1,on of (2.5) 

and let E(x) = u(x) = U(x) be the error function. Then 

(2. 7) I lk+l-!1, 
IIEII !I, = O( L'. llull L'.,k+l), 

(2.8) 

where II.II and II.HA are defined by 
!/, Ll ,m 

(2.9) 

Ila.II !I, 

!I, 

= c I 
j=0 

N m 
II all A 

u,m = c I I 
!1,=l j=0 

!I, = 0, 1; 

3 

C x a.(x) B(x)dx, !I, = 1 , ••• ,N. 

PROOF. See STRANG & FIX [6] for (2.7) and DOUGLAS & DUPONT [3] for (2.8). 0 

3. NUMERICAL QUADRATURE 

To solve (2.5) numerically, the inner products (qU,~) and (f,~) 

have to be computed by some quadrature rule. As DOUGLAS et al. [3] and 

HEMKER [4] pointed out, the choice of that quadrature rule is strongly 

determined by the kind of finite element space in which u(x) is approxi

mated. In this§ we will device some algorithms fork= 1 and k = 2. 
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3.1. Preservation of accuracy 

We recall that 

(a, S) 

Now let 

(3. I) <a,S>. 
J 

Xj 

= f 
X. I J-

N 

C 2 x a(x)S(x)dx, a,S EL (I.), 
J 

l (a,S)I.' 
j=l J 

2 
a,S EL (I). 

J = I , ... ,N. 

be some approximation of (a,S) 1 j which is exact if a S E P2k-l (Ij), with 

positive w. n and~- n EI., and define <a,S> by 
J,x, J,.x., J 

(3. 2) 
N 

<a, S> = L 
j=l 

<a, S> .• 
J 

For C = 0, examples of such quadrature are k-point Gauss-Legendre and (k+l)

point Lobatto shifted to the interval I .. 
J 

THEOREM 2. Let f(x) and q(x) be such that the solution u of (I.2) is in 
2k-I k . c0 (!::.) and let u E M0 (!::.) be def1.-ned by 

(3.3) <U I ,<.p I> + <qU ,<.p> 

Then E(x) = u(x) - U(x) has the following bounds 

0, I ; 

(3.3) 



5 

PROOF. See DOUGLAS et al. [3]. □ 

3.2. Construction of some algorithms 

As was remarked in the previous section, for C = 0 k-point Gauss

Legendre and (k+l)-point Lobatto quadrature (see HEMKER [4]) are suitable 

quadrature rules to solve (3.3) numerically. We want to generalize both 

rules for C > 0. We note however that, contrary to the case C = O, practical 

algorithms for finite element spaces of degree greater than 2 are hardly 

feasible. 

3.2.1. Gaussian quadrature 

form 

(3. 4) 

The basic problem is to find an approximation for (a,S)I. of the 
J 

k 
<a,S>. = 6. I w. £ a(~. 0 )S(~. 1), 

J J £= 1 J ' J ' X, J ' 

where w. 0 are. positive weights and~- 0 are interior points 
J • X, J 'X, 

of I .. 
J 

This problem can be solved by applying the theory of Gaussian 
k quadrature (see DAVIS & RABINOWITZ [2]). Let {l/J .. }._0 be a set of poly-

J ,ii- C 
nomials orthonormal on I. with respect to the weight function x , i.e. 

J 

(3. 5) 

where o:i.£ is the Kronecker symbol. Then ~j ,£ is 

and w. 0 is given by 
J ',., 

the £-th zero of l/J. k(x) 
J' 

(3.6) 
k-1 2 -1 

w. £ = [ I l/J.(C £)] , £ = 1, •.. ,k. 
J ' i=O i J ' 

Fork= 1 and C arbitrary, the solution is 
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C+2 C+2 
x. -x. I 

J J-
C+ I C+ I 

x. -x. I 
J J-

C+l C C+l x . 1 +x . 1 x . + . . • +x . 
J- J- J J 

C C-1 C x . 1 +x . 1 x . + ... +x . 
J- J- J J 

C+ I C+ I 
x. -x. 

J J-1 
w j , 1 = _,(_C ___ + __ l ),_.,..( x-.---_-x-.-1"'"""") = 

J J-

C C-1 C x. 1+x. 1x.+ •.• +x. 
J- J- J J 

C+l 

Fork> I the weights and abscissae are more difficult to compute, hence 

we only give two examples fork= 2. 

(3.9) 

where 

(3. I 0) 

C = I; k = 2 

c; • n = 
J 'X, 

6P3 (x. 1 ,x.)±ll. ✓6P4 (x. 1,x.) 
J- J J J- J 

I0P2 (x. 1 ,x.) 
J- J 

Q, = 1,2; 

w. n = ¼(x. I +x.) 
],"' J- J 

ll.R2 (x. 1 ,x.) 
± J J- J 

616P 4 (x. 1 ,x.) 
, Q,= 1,2; 

J- J 

R2 (a,b) 
2 + 7ab + b2· = a 

' 

P4 (a,b) 4 3 3 + 28a2b2 4 
= a + I0(a b + ab ) + b ; 

P3 (a,b) = 3 2 2 3 a + 4(a b +ab) + b . 

C = 2; k = 2 

l; • n = 
J 'X, 

I0P5 (x. 1 ,x.)±t.. ✓J0P 8 (x. 1,x.) 
J- J J J- J 

15P4(x. 1,x.) 
J- J 

R5 (x. 1 ,x.) 
J- J 

✓J0P 8 (x. 1,x.) 
J- J 

Q, 1 , 2; 



where 

P2 (a,b) 2 2 
= a + ab + b ; 

P,~(a,b) 
5 + 4(a4b + ab 4) 10(a3b3 + a2b3) 5 

= a + + b ; 
.) 

R,- (a, b) 5 + 7(a4b + ab4) + 28(a3b2 a2b3) b5· = a + + 
.) ' 

P8 (a,b) 8 + 10(a7b+ab7) + 55(a6b2 + a 2b6) = a 

+ 164(a5b3 + a3b5) + 290a4b4 + b8. 

3.2.2. Lobatto quadrature 

(3. 1 1) 

The problem is to approximate (a.,S) 1 _ by a formula of the form 
J 

k 
<o., S> = /J.. l W. n a.(E;. n)S(E;. n); 

J fl=0 J,"' ],"' ],"' 

7 

which is exact if a.SE P2k_ 1(Ij). 

of Gaussian quadrature either. Let 

This problem can be solved by the theory 
k-1 

{ijJ •• }. 0 be a set of polynomials orho-
J '1. 1.= 

normal on I. with 
J 

respect to the weight function (x - x. 1)(x. - x)xc, i.e. 
J- J 

(3. 12) 

xj 

I (x-x. 1)(x.-x)xC 1/J •• (x) 1/J. 0 (x)dx = o. 0 , 0:,:; 1., fl:,; k-1. 
J- J J,1. ],"' 1.,"' 

X. 1 J-

Then, if k > I , the abscissae E;. 1 , ... , E;. k- l are the zeros of ljJk- l . (x) . 
J' J' ,J 

The weights are now easily found by applying (3.11) to a.(x) = 1 and 

S(x) = ~j,fl(x), where ~j,fl(x) is a polynomial of degree k (a so-called 

Lagrance interpolation polynomial) defined by 

l.!). 0 (E;. )=0 0 ;0:::;fl,m:::;k. 
J,"' J,m "',m 

It then appears that 

(3. 13) f1 • w.. n = 
J J ')(, 

xfj C 
x ~- n (x)dx, fl = O, ... ,k. 

J ')(, 
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Fork= 1 and C arbitrary, the solution ~f (3.11) is 

C ,.. C-1 . C (C+l )x. 1+ ... x. 1x.+ ••• +x. 
J- J- J J 

(C+l)(C+2) 

(3.14) 
C C-1 C 

X. l + 2x. l X. + ••• + ( C+ 1 ) X. 
J- J- J J 

wj,1 = (C+l)(C+2) 

Fork> 1, as in the Gauss-Legendre case, the weights and abscissae are 

more difficult to find. Hence we list only two examples. 

(3.15) 

(3.16) 

C=l;k=2 

~. 1 J, 

w. 1 J , 

2 2 3x. 1+6x. 1x.+x. 
J- J- J J 
I 2 ( 2x. 1 + 3x. ) 

J- J 

3 25(x. 1+x.) 
= J- J 

1 2 ( 2x. 1 + 3x. ) ( 3x. 1 + 2x. ) 
J- J J- J 

2 2 x. 1+6x. 1x.+3x. 
w. 2 = 
J, 

J- J- J J 
12 (3x. 1 +2x.) 

J- J 

C = 2; k = 2 

~. 1 J , 

LL (x. 1+x.) 
= [l J J- J ],• x. 1 + 8. 2 + 2 ( ) J- J p2 x. 1 ,x. 

J- J 

P4 (x. 1 ,x.) 
. J-:- J 

wj ,O = 60R2 (x. 1 ,x.) 
J- J 

w. 2 J, 

3 
[P2 (x. 1 ,x.)] 

J- J 
60R2 (x. 1 ,x.)R2 (x.,x. 1) 

J- J J J-

P4(x. ,x. 1) 
= J J-

60R2 (x. ,x. I) 
J J-
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where 

P2(a,b) 
2 

4ab 2 = 3a + + 3b; 

R2(a,b) = 2a2 + 2ab + b2. 
' 

P 1 (a,b) = 4 
16a3b + 2Ia2b2 3 4 6a + + 6ab + b . 

,4 

One final remark about the use of Lobatto quadrature. As HEMKER [4] has 

already proved for C = O, the basis functions of M~(L',) can be selected such 

that they form a system orthogonal with respect,to the Lobatto quadrature; 

by this we mean the following: let the set of points {zn}~~l be given by 

(3. 18) 

z = s Q, = 0, ... ,N-1 ,· i = I , ... , k-1 , tk+i £+1,i' 

where sj ,i are determined by (3.13)-(3.17). We define tr\1(x), •.. ,<,okN-l (x) 

by 

(3.19) tp.(z 0 ) = 8. 0 , 0::; i, Q,::; kN-1. 
.L X, 1.,X, 

Now it 1.s easily checked that 

(3.20) 

<qU,<.p > 

<:E ,tp. > 
l. 

= A. q(z.) U(z.); 
l. l. l. 

L f(z.); 
l. l. 

<lp. ~-> = \. 8 . . ; 
l. J l. l.J 

\. = <tp. ,tp.>; 0 ::; 1., J ::; kN-1. 
l. l. l. 

Hence if we write 

kN-1 
u ex) = I 

i=O 
a. tp. (x), 

l. l. 

T 
it turns out that (a0, ... ,akN-l) 1.s the solution of 
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(3.21) 

where for 

(3. 22) 

kN-1 
I <t[)! ,q>!> a. +L q(z.)a. '= A. f(z.), 

j=O 1. J J 1. 1. 1. 1. 1. 

any a E L2(I) a(x) is defined by 

Cl (x) , x.' 
J 

J = l, ... ,N-1; 

a(x) = 
w. ka. (x.)+w. 1 111a.+(x.) 
J, - J J+ ,I" J 

w. k+w. I 111 J, J+ ,"1-1 

a (x.) = lim a (x); 
- J xtxj 

' X = X •, 
J. 

lim a.(x), 
x+x, 

J 

J = I, ... ,N-1, 

J = I, ... ,N-1, 

which is an easily implementable algorithm, once the Lobatto weights have 

been computed. Note that the matrix ( <tp! ,q>!>) is (2k+ I )-diagonal. 
1. J 

4. INITIAL BOUNDARY VALUE PROBLEMS 

We consider the differential equation 

( 4. 1) au -c 
-= X 
at 

a (xc au) - q(x)u + f(x)' 
ax ax 

with boundary conditions 

(4.2) au (0,t) = u(l,t) = 0 
ax 

and initial conditions 

(4.3) u(x,0) = v(x). 

0 < X < 1, 

We assume that v EV and that q, f and v are sufficiently smooth. 

Again, let~: 0 = x0 <x 1 < ... <~ = I be a grid of I such that all 

interior points of I where q, f and v are less smooth are contained in~. 

Let M;(t,) b,e defined by (2.4) for some constant k. Then one easily sees 

that the relation 

(4.4) ( au ) + ( au ae;:,) + ( ) = 
at'(p ax' ax qu,(p 



holds. As is well-known, an approximation for u(x,t) in M~(t,) can be 

found by restricting (4.4) to M~(t,) and by approximations v(x) in M~(t,) 

properly. 

k THEOREM 3. Let U: [0, 00 ] + M0(li) be the solution of the initial value 

problem (in Galerkin form) 

( a u ) (au atp) ( ) ( f ) k ( A ) at ,lP + ax' ax + qU ,lP = ,lP ' <.P E M0 I.J. ; 

(4.5) 

(U (, 0) ,tp) 

1 1 

and let u E C~(ts) be the solution of (4.1)-(4.3). Then, the error function 

E(x,t) = u(x,t) - U(x,t) has the following bounds 

(4.6) 

J O, .•. ,N-1. 

PROOF. See BAKKER [l]. □ 

Now it is obvious that one should try to apply one of the quadrature 

rules from §3 to (4.6). There is, however, one problem. One needs the proper

ty that the "inner product" <a.,S> induces a norm on M~(li) equivalent to the 
2 L (I) norm. The Lobatto rule<> has this property (see BAKKER [I]), the 

Gauss-Legendre rule<> not. So, at first, we introduce different notations 

for the generalized Lobatto and Gauss-Legendre quadrature rules. The former 

is denoted by< ,>L' the latter by< ,>G. 

k 
THEOREM 4. Let U: [0, 00 ] + M0(li) be the solution of the differential 

equation 

(4.7) 
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and Zet u : [0,~) + C~k-l(~) be the solution of (4.1). Then the error 

funetion E(x,t) = u(x,t) - U(x,t) has the bounds. 

(4.8) 

J=0, •••• ,N-1. 

PROOF. See BAKKER [1]. 0 

After this theorem, we evaluate the resulting O.D.E. 

If we represent U(x,t) by 

(4.9) 
k.N-1 

U(x,t) = l 
j=0 

a.(t) (l).(x), 
J J 

where the basis {(l).(x)}~-11 is defined by (3.18)-(3.19), we easily verify, 
J J= 

by combining (3.18)-(3,20) with (4.7) that the vector (a0 ,a1, ••• ,ak.N_1) 

satisfies the O.D.E. 

_1 k~-1 
11.. l <lP! ,(l)!>a. - q(z.) a. + f (z.) 
1.0 1JJ 11 1 

J= 
(4. 10) 

a.(0) = v(z.), i = 0, ••• ,k.N-1. 
1 1 

5. NUMERICAL EXAMPLES 

In order to demonstrate the use of Galerkin methods in spherical 

regions, we solved two simple problems: a boundary value problem and an 

initial boundary value problem. 

5. I. Problem A 

We consider the boundary value problem: find the solution 

u E C' (I) of 
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1 , 0 s X < 1. 
2, 

(5. 1) 
1 d du - - - (x -) = x dx dx 

2, ! < X s 1 . 
2 , 

U I (0) = u ( 1) = 0. 

The exact solution is given by 

7 1 x 2 
16 - 8 in(z) - 4 

u(x) = 

I 2 1 
2 (1-x ) + 8 tn(x) ,½<x<l. 

Note that u"(x) does not exist for x = ½ but that u E C' (I) n C00 (0,D 

n C00 (½, 1). We divided I into 10 and 20 segments Of equal length. In 

both cases x =½was one of the mesh-points. After that, we solved (5.1) 

by means of Galerkin's method fork= 1 and k = 2. In table I, we list the 

maximum error at the gridpoints. 

N~ 
2 

10 6.2810-3 2.5410-7 

20 2.2210-3 1. 6210-8 

Table I; max !E(x.)!, 
i=0, ... ,N-l 1 

5.2. Problem B 

(5.2) 

We consider the initial boundary value problem 

au= _2._ (x au) - x2u + x(l-x), x EI, t ~ 0 
at X ax ax 

u (0,t) = u(l,t) = 0 
X 

u (x,0) = 0. 
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Problem (5.2) was semi-discretized uniformly to the ordinary differential 

equation (4 .. 11) fork= 2, c = 1 and N = 10. For the semi-discretization 

we used generalized 3-point Lobatto quadrature. The resulting explicit 

O.D.E. was integrated by a fourth order Runge-Kutta method. With time 

steps of 10--3. 

T\x 1/J. 1/J 1/J. 2 1/J. 4 1/J. 6 1/J. 8 

1/J. 5 4.421910-2 4.3606-i"0-2 3.939910-2 2.992310-2 1.583510-2 

1.0 4.678710-:2 4.602310-2 4.139110-2 ,3.129610-2 1.650710-2 

1.5 4.692210-2 4.614910-2 4.149510-2 3.136810-2 1.654210-2 

2. 1/J 4.692210-2 4.614910-2 4.149510-2 3.136810-2 1.654210-2 

Table II; results of (5.2) 

As a check, we solved the steady-state problem by means of the power 

series expansion 

00 

n 
a X 

n 

a0 =A= !/J.!/)469345729; 

al = a = O· 
2 

, 

1 
a3 = 

9 

a4 = 1+A 
76 

an = an-4 n ~ 5 -2-
n 

and compared u (x) with the steady-state values from table II. We found 
00 

a maximum error of 1.2 10-5. 
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