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Galerkin methods in circular and spherical regions

by

M. Bakker

ABSTRACT

In this paper, it is shown how the convergence results for two-point
(initial) boundary value problems, such as super convergence at the knots
and invariance of convergence order when a proper quadrature rule is used,

can be extended to more dimensions provided that circular symmetry exists.

KEY WORDS & PHRASES: Finite element method, Galerkin method, spherical

symmetry, two-point boundary value problems






1. INTRODUCTION

In this paper, we want to solve numerically the N-dimensional

boundary value problem

N 2
- Au + q(x)u = - X ——%-+ q(x)u = f(x), xelI = [0,1];
i=1 3x.
i
N
(1.1) x = [ 2 X?]%;
i=1 *
u=0, x=1.

Since u and f only depend on x, the problem easily reduces to the two-point
boundary value problem
-N+1 d N-1

du
- x = & a—g)+q(X)u=f(x),¢SxSI;

(2.1)

du
@ =u) = 0.

Note that the left boundary condition stems from the circular symmetry

of u. In the sequel, we replace N-1 by C, where C is a non-negative integer.
In §2, we will show how problem (1.2) can be solved by the Galerkin

method and how accurately this can be done. In §3 we develop (and advocate)

some practical algorithms for C = 1 and C = 2. In §4, we show how parabolic

equations can be semi-discretized to an explicit system of boundary diffe-

rential equations. Finally, in §5 we give two simple numerical examples.

2. GALERKIN'S METHOD

9

Let ® € V = {VIV € C(I); v(1) = §}. If we multiply both sides of

equation (1.2) by xC ©(x), we obtain after partial integration

1 1

(2.1) J xc(g-;-gi}? + q(x)u @) dx = J xC £(x) pdx.
0



In a way, formula (2.1) is a generalization of the weak Galerkin form
(see STRANG & FIX [6]) for Cartesian two-point boundary value problems

(C = §). We now define a suitable finite element space in which u can be

approximated.
Let
(2.2) A @ = X <X <. xS 1

be a partition of I, not necessarily uniform; let

Ij = [xj_l,xj];
(2.3) Aj = xj - Xj—l; j=1,...,N;
|a] =

max A..
]

We assume that the knots xj are chosen such that they coincide with any
possible points where f (x) or q(x) are less smooth. Let k be some constant
natural number and define for any segment E c I Pk(E) as the set of poly-
nomials of degree less than or equal k restricted to E. Next, we define

M;(A) by

¢

(2.4) M;m)==ﬁmmec (D5 ©(1) = B3 0P (1), § = 1,....N0

It is easily verified that M;(A) is a kN-dimensional subspace of V. Now

the finite element solution U € M;(A) of (1.2) is the solution of

(2.5) &L D+ @) = (£,0), ©eNi®),

where the inner product (o,B) is defined by

1
(2.6) (a,B) = f xC a(x) B(x)dx, a
0

1 B e LZ(I).

After this definition of the Galerkin or finite element solution of (1.2)
for spherical coordinates, we could proceed by formulating and proving

convergence theorems. However, that would be merely consist of copying



existing theorems, since the only difference would lie in the definition
. . m ..

of the L2(I) inner product and of the appearing H (I) norms and partition

norms. Hence, instead of proving them anew, we refer to the papers where

the proofs can be found for C = 0.

THEOREM 1. Let f£(x) and q(x) be such that the solution u of (1.2) is in
Cg(A) =V n Ck(Il)n cen an(IN); let U eM;(A) be the solution of (2.5)
and let E(x) = u(x) = U(x) be the error function. Then

(2.7) IEL, = o(Ja[**! ™ 1u

=
]
=
N
T—
-

2k
(2.8) [EGep) | = o(fa[™ Tally )y

3

where “'“2 and “i"A o are defined by

N
lal, = ['z (— , —)1%;

N m j j .
d“a dva 3
(2.9) ol =[ Z Z =, == 12,
A,m 2=1 j=¢ de de LZ(IQ)
Xy )
(a,B) 5 _ xC a(x) B(x)dx, o, B e L (12), L= 1,...,N.
L°(1)
. X
-1

PROOF. See STRANG & FIX [6] for (2.7) and DOUGLAS & DUPONT [3] for (2.8). [
3. NUMERICAL QUADRATURE

To solve (2.5) numerically, the inner products (qU,9) and (f,9)
have to be computed by some quadrature rule. As DOUGLAS et al. [3] and
HEMKER [4] pointed out, the choice of that quadrature rule is strongly
determined by the kind of finite element space in which u(x) is approxi-

mated. In this § we will device some algorithms for k = 1 and k = 2.



3.1. Preservation of accuracy

We recall that

%3
C 2 )
(a,B)I' = f x~ a(x)B(x)dx, a,B € L (Ij), j = 1,...,N.
]
Xj—]
N 2
(a,B) = 1 (a8, a,BeL7(D).
j=1 h|
Now let
S
. ,B>. = A. . ) )
(3.1) <a,8>; = 4, er wo g a8y IB(E )

be some approximation of (a,B)I, which is exact if o B € P2k—1(1j)’ with

positive w. and £

J .
i) 5,0 € Ij’ and define <o,B> by

N
(3.2) <a,B> = ) <83

For C = §, examples of such quadrature are k-point Gauss-Legendre and (k+1)-

point Lobatto shifted to the interval Ij.

THEOREM 2. Let f(x) and q(x) be such that the solution u of (1.2) Zs in

;k ](A) and let U ¢ M¢(A) be defined by

(3.3) <U',0'> + <qU,p> = <f,0>, @ «€ M;(A).

Then E(x) = u(x) - U(x) has the following bounds

k=2

(3.3)

i i 2k .
[EG) [ = ocfa[™ ol ), 5 = 8,...N-1.



PROOF. See DOUGLAS et al. [31. 0O

3.2. Construction of some algorithms

As was remarked in the previous section, for C = @ k-point Gauss-—
Legendre and (k+1)-point Lobatto quadrature (see HEMKER [4]) are suitable
quadrature rules to solve (3.3) numerically. We want to generalize both
rules for C > 0. We note however that, contrary to the case C = 0, practical
algorithms for finite element spaces of degree greafer than 2 are hardly

feasible.

3.2.1. Gaussian quadrature

The basic problem is to find an approximation for (a,B)I of the

form ]
k
3.4 <a,B>. = A. . a(g. B(E.
(3.4) B>, = b, ZZI LI ICPOLICRR
where w. are positive weights and §. are interior points of Ij'

Js% 354
This problem can be solved by applying the theory of Gaussian

quadrature (see DAVIS & RABINOWITZ [2]). Let {wj i}?=0 be a set of poly-

nomials orthonormal on Ij with respect to the weight function xC, i.e.

(3.5) W ;¥ p<i, s sk,

. = 8. .3
i J,Q)LZ(Ij) 1,2

where Gil is the Kronecker symbol. Then Ej’z is the %-th zero of wj,k(X)
and Wj,% is given by

kb o -1 '
(3.6) Vi T [iZO Vi DT = 1k

For k = 1 and C arbitrary, the solution is



C+2_ C+2
L N T

Ej,l T C+2 _C+l _C+l
X. -X.
J j-1
C+l, C C+1
_ C+1 Xj_]+Xj_lXj+...+Xj )
— >
2 O LT
-1 73-1"3 J
KO 0 x0Tl w
w. = o—a 71 - 371 3-1'3 i
il (C+1)(xj—xj_1) C+1 ’

For k > | the weights and abscissae are more difficult to compute, hence

we only give two examples for k = 2,

6P3(xj_],xj)iAj/6P4(xj_],xj)

E. = s & =1,25
J’Q 1¢P2(Xj_l,xj)
(3.9)
AR, (x. . ,x.)
Wig T I(x —l+xj) g 3237173 , L= 1,2,
b
6/%P4(x._1,xj)
where
Pz(a,b) = a2 + 4ab + b2;
Rz(a,b) = a2 + 7ab + b2;
P, (a,b) a® + 192 + abd) + 28a%b% + b
P3(a,b) a3 + 4(a2b + abz) + b3.
C=2; k=2
+
. i 1¢P5(xj_l,xj)_Aj/lﬁPB(xj_l,xj)
352 15P4(Xj—1’xj)
(3.10)
o R.(x. X.)
21 =3 573-1°7] _ .
Wj,l =2 PZ(Xj—l’X ) A. , &= 1,2;

+
377 24 7]
/1¢P8(xj_1,xj)



where
Pz(a,b) = a2 + ab + b2;
PS(a,b) = a5 + 4(a4b + ab4) + 1¢(a3b3 + a2b3) + bS;
Rs(a,b) = a° + 7(ab + ab®) + 28(a%b + a’bd) + b2
P8(a,b) = 38 + 1¢(a7b+ab7) + 55(#6b2 + a2b6)
+ 164(ab> + adb°) + 29pa’b* + bS.

3.2.2. Lobatto quadrature

The problem is to approximate (a,B)I by a formula of the form

J
k
<a,B> = A, zzg LAICICR LI CIVE
(3.11)
Fie1 T Fg,0 Egr e g TRy e

which is exact if o B € P2k—1(Ij)' This problem can be solved by the theory

of Gaussian quadrature either. Let {{y. .}%—]
j,11=0

normal on Ij with respect to the weight function (x - xj—l)(xj - X)XC, i.e.

be a set of polynomials orho-

X
J
(3.12) f (x—xj_l)(xj—x)xc by 00 by 0dx =8, BSE, 2 S kel

Xj—l

Then, if k > 1, the abscissae Ej are the zeros of wk—l j(x).
5

31’...’gjsk—_]

The weights are now easily found by applying (3.11) to a(x) = 1 and

B(x) = wj Z(X)’ where ¢ﬁ Z(X) is a polynomial of degree k (a so-called
9 H

Lagrance interpolation polynomial) defined by

o. (. )=8 ;0 <2, mc<k.

J,Q’ J’m 2"In

It then appears that

J
(3.13) A. w. = J x @, (x)dx, £ = 0,...,k.
J 354
J



For k = 1 and C arbitrary, the solution of (3.11) 1is

(C+1)x9 C ]x +...+xq
w. = K I .
3,0 (C+1) (C+2) ’
(3.14)
x(.: +2x c- ]x +...+(C+l)x(.:
w., = azl 3-173 i
J,! (C+1) (C+2)

For k > 1, as in the Gauss-Legendre case, the weights and abscissae are

more difficult to find. Hence we list only two examples.

C=1; k=2
A.
= 1
85,1 = %51 T 845G+ 1oy _1+x5))
3x2  +6x,  X.+x’
w., = —Ja=1 73=1"3 7
j,0 ]2(2xJ +3x.) °?
25(xJ 1 )3
(3.15) w. =
j,1 12(2xj_1+3xJ)(3xJ_1+2xj)
x% +6x. x.+3x?
w, o=—a-b 3=l J J.
32 12(3xj_1+2xj)
C=2; k=2
A (x 1+Xj)
. . =x, .+ AL+
B30 7 Xgo1 * 850 7, (x _1°%5) =
P (X —I’Xj)
w

3,0 6¢R 3 1%y

(3.16) 3
[Pz(xj_l,xj)]

. = 5
i, 6¢R2(xj_],xj)R2(xj,xj_1)

I A = L
3,2 6¢R2(stxj_1)




where
Pz(a,b) = 3a2 + 4ab + 3b2;
Rz(a,b) = 2a% + 2ab + b2;
P,(a;b) = 6a* + 16a°b + 21a’b> + 6ab> + b,

One final remark about the use of Lobatto quadrature. As HEMKER [4] has

already proved for C = 0, the basis functions of M;(A) can be selected such

that they form a system orthogonal with respect .to the Lobatto quadrature;

by this we mean the following: let the set of points {zn}ﬁzal be given by

sz = X 2 =0, ,N
(3.18)

sz+i = £2+1,i’ £ = 0,000,113 1= 1,...,k-1,
where gj ; are determined by (3.13)-(3.17). We define mw(x),...
by
(3.19) wi(zx) = 61,2’ $ <i, & < kN-1.

Now it is easily checked that
<qU,p > = )\i q(Zi) U(zi);

(3.20) <f 9> = Ai f(zi);

<(91 (pj> = >\i 61_‘];

)\1 = <(Dl s(pi>;

Hence if we write
kN-1
U(x) = 2 ai (pi(x) s

1=0

. T . .
it turns out that (aﬁ,... ) 1is the solution of

4KN-1
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kN-1
.21 ',e!> a. . q(z.)a. = A. f(z.
(3.21) jZO 01> a + 4 qzpa; = 2 E(z)),
where for any o € LZ(I) a(x) is defined by

a(x), x#x., j=1,...,N-13

J
a(x) =
w. ,o_(x.)+w, o, (x.)
(3.22) 1.k — ] +WJ+"¢ * 3 x-= %, 3= LN,
} Jsk j+1:¢ '
x.) = lim o(x); o (x.) = lim o(x) i =1,...,N=1
G._( J) X"‘Xj ( )’ +( J) X‘ij‘ x), J ’ ’ ’

which is an easily implementable algorithm, once the Lobatto weights have

been computed. Note that the matrix (<@i,¢§>) is (2k+1)-diagonal.
4. INITIAL BOUNDARY VALUE PROBLEMS

We consider the differential equation

ou _ -C o , C ou, _
(4.1) ST X 3e B 5 T a®u £k, P <x<1,

with boundary conditions
)
(4.2) 5 (0,0) = u(l,t) = ¢
and initial conditions
(4.3) u(x,9) = v(x).

We assume that v ¢ V and that q, £ and v are'sufficiently smooth.

Again, let A: 0 = Xg <X < ... <xy = 1 be a grid of I such that all
interior points of I where q, f and v are less smooth are contained in A.
Let M;(A) be defined by (2.4) for some constant k. Then one easily sees

that the relation

(4.4) G + Go, 2D+ (@0 = (£,0), 0 € M5



11

holds. As is well-known, an approx1mat10n for u(x,t) in Mk(A) can be
found by restricting (4.4) to M¢(A) and by approximations v(x) in M;(A)
properly.

THEOREM 3. Let U: [f,=] - Mg(A) be the solution of the initial value
problem (in Galerkin form)
9

Ge

oU
x> Bx

0,0 + G2, 22 + (qU,0) = (£,0), 0 < MA); £ 2 P

(4.5)

UG0),9) = (v,0), © € M‘gm);

and let U € CE(A) be the solution of (4.1)-(4.3). Then, the error function
E(x,t) = u(x,t) - U(x,t) has the following bounds

IEC,t), = o(lal¥*!
(4.6)

2k .
lE(xj,t)I = 0(1a1"); j=0,...,N-1.

PROOF. See BAKKER [1]1. [

Now it is obvious that one should try to apply one of the quadrature
rules from §3 to (4.6). There is, however, one problem One needs the proper-
ty that the "inner product" <o,B> induces a norm on M (A) equivalent to the
L (I) norm. The Lobatto rule < > has this property (see BAKKER [11]), t
Gauss-Legendre rule < > not. So, at first, we introduce different notations
for the generalized Lobatto and Gauss-Legendre quadrature rules. The former
is denoted by < > the latter by < >
THEOREM 4. Let U : [@,~] +‘M;(A) be the solution of the differential
equation

3. )

3
< 30 + <520 3 L T <aU,e> = <£,0> 5

4.7

k
<UG0) 0> = V9> 5 0 € M¢(A).
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2k-1

and let U : [P,») - C¢ (A) be the solution of (4.1). Then the error

function E(x,t) = u(x,t) - U(x,t) has the bounds.

IEG O, = 0(1al™*h;
(4.8)

2k .
IE(xj,t)l =0(|al"); i = 0,00..,N-1.

PROOF. See BAKKER [1]. [

After this theorem, we evaluate the resulting 0.D.E.

If we represent U(x,t) by

(4.9) UG,t) = ] as () 0 ),

where the basis {wj(x)}?i;l is defined by (3.18)-(3.19), we easily verify,

by combining (3.18)-(3,20) with (4.7) that the vector (aﬁ’al""’akN—])

satisfies the 0.D.E.

d
dt 1

[l
I
>
e

7 1 - = F
<£9i,£9j>aj q(zi)ai + f(zi)

(4.10)

a; (9)

]
<
~
N

He
~
-
[
|
=2
-
-
|
—

5. NUMERICAL EXAMPLES

In order to demonstrate the use of Galerkin methods in spherical

regions, we solved two simple problems: a boundary value problem and an

initial boundary value problem.

5.1. Problem A

We consider the boundary value problem: find the solution
U e C'(I) of
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d du, _
= C % "

(5.1) —;‘{-

2, L <x <13
u'(9) = u(1) = 9.

The exact solution is given by

2

X

A

in(z) - , B <x <4

2 _1
16 8
u(x) =

‘%(l—xz) +-% n (x) , ¥ <x < 1.

Note that u"(x) does not exist for x = § but that u € C'(I) n Cm(ﬂ,%)

n Cw(%,l). We divided I into 10 and 20 segments of equal length. In

both cases x = } was one of the mesh-points. After that, we solved (5.1)
by means of Galerkin's method for k = 1 and k = 2. In table I, we list the

maximum error at the gridpoints.

. K 1 2
N
19 6.2810*3 2.54]0—7
20 2.22]0—3 ].6210_8
Table I max [E(x.)[.
i
i=@,...,N-1

5.2. Problem B

We consider the initial boundary value problem

2%-= i-sg-(x %%) - xzu + x(l=x), x e I, t >0
(5.2) uX(ﬂ,t) =u(l,t) =0

U(X,ﬂ) = 0.
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Problem (5.2) was semi-discretized uniformly to the ordinary differential
equation (4.11) for k = 2, ¢ = 1 and N = 10. For the semi-discretization
we used generalized 3-point Lobatto quadrature. The resulting explicit
0.D.E. was integrated by a fourth order Runge-Kutta method. With time

steps of ]0“3.

T\x 0.9 p.2 p.4 p.6 9.8

9.5 4.421910—2 4'360610_2 3.939910—2 2.992310—2 1.583510—2
1.0 4.678710T2 4.602310—2 4.139110—2 ‘3.129610-2 1.6507]0—2
1.5 4.692210—2 4.6149]0—2 4.149510—2 3.136810—2 1.654210—2

2.9 4.692210—2 4.614910-2 4.149510—2 3.1368]0—2 1.654210—2

Table II; results of (5.2)

As a check, we solved the steady-state problem by means of the power

series expansion

n
u,(x) = ] a x;
n=0
ag = A = 0.0469345729;
a1 = a2 = 03
- -1
3.3 93
_ 1+a
&4 T
a, = an£4 , n>=5
n

and compared u_(x) with the steady-state values from table II. We found

a maximum error of 1.210—5.
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