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Software for semi-discretization of timé-dependent partial differential

%)

equations in one space Variable

by

M. Bakker

ABSTRACT

In this paper two FORTRAN subroutines are discussed which semi-
discretize second order parabolic partial differential equations in one
space variable to ordinary differential equations. Either of them may
. serve as an interface between the PDE and an ODE integrator.

All the user has to do is
1) the definition of a spatial grid,

2) the initialization of the function values and
3) the implementation of the three equations which determine the
| PDE.

In this way he is saved the time-consuming work of deriving an
adequate ODE himself. Both subroutines have been tested on their porta-
bility. By means of five numerical examples their possibilites are illus-

trated.

KEY WORDS & PHRASES: partial differential equations, finite element method,

parabolic equations, ordinary differential equations
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1. INTRODUCTION

Software for solving partial differential equations (PDEs) exists
already for years, albeit not in such an extent as the software for integ-
rating ODEs. Examples are CARVER [4], CSENDERS [ 5], GARY & HELGASON [7,81],
NILSEN & KARPLUS [12], POLAK et al. [14], SINCOVEC & MADSEN [17,18]. As
far as parabolic PDEs are concerned, there exist two categories of soft-

ware;

1) subroutines which discretize the PDE in the space variables and integ-
rate the resulting ODE. An example is TEDDY 2 by POLAK et al. [14].

2) Subroutines which only discretize in the space variable and leave the
integration of the ODE to one of the numerous robust integrators
(see e.g. HINDMARSCH [12], VERWER [22]). An example is the subroutine
PDEONE by SINCOVEC et al. [17]. Such a subroutine serves, in a way,

as an interface between the PDE and the ODE integrator.

It now appears that, as far as I know, only the finite difference
method was used to generate an interface subroutine belonging to group 2.
This fact may be connected with the wide-spread belief that the finite
-element method generates implicit ODEs. Strictly spoken, this is true.
However, by committing a variational crime (the term was first used by
STRANG [19]), called lumping, one can remove this inconvenience. That crime
consists of applying proper quadrature rules, even where exact integration
is possible (see RAVIART [15], DOUGLAS & DUPONT [6], HEMKER [11], BAKKER
[1,2]). Although the use of lumping is already known in the case of
Cartesian coordinates, it will also be applied when the spatial coordinates
are circular or spherical (see BAKKER [2]). So far, the first justifica-
tion for the use of the finite element method. The second is that the F.E.M.
permits a more attractive way of processing the boundary conditions.

We have striven towards a subroutine which semi-discretizes a class of
second order PDEs in one space variable, which is as broad as possible.
Furthermore we wanted to manufacture a subroutine in which the user need
not insert self-made statements and which uses no subprograms not appearing
in the parameter list; in short, a subroutine which can served as a sub-

stantive library routine and whose body need not be known to the user.



The result was the ANSI FORTRAN IV subroutines PDEF1 and PDEF2 which
have been checked on their portability by the PFORT verifier by RYDER [161].

In $2, we describe the classes of PDEs which the subroutine cover.

In 83, we discuss the methods on which the two subroutines are based.
In §4, we discuss the two subroutines and their use together with an
ODE integrator.

In 55, we give five numerical examples which are representative for
the class of PDEs covered.

In 56, we make some concluding remarks.
2. STATEMENT OF THE PROBLEM

The class of PDEs which the subroutine PDEF1 covers is of the form

3 -NC 9 NC > > > >
5t lli = X 5% (x Fi(X,t,U,UX)) + Gi(X,t,U,UX), a £ x £ b
Sui R
(2.1) OLiUi(Xst) + Bl % (x,t) = Yi(t:U)’ X = a,b;

ui(x,O) = Vi(X), i=1,...,NPDE,

where NC denotes the kind of spatial coordinates used (Cartesian if NC = O,
circular if NC = 1 and spherical if NC = 2) and NPDE denotes the number of
partial differential equations involved. Furthermore, U and 3% are NPDE-
dimensional vectors with components us and Bui/ax, respectively.

A few mild requierements have to be satisfied with respect to the
semi-discretizability of (2.1): oy and Bi are not allowed to vanish both
and the functions Fi’ Gi and v, have to be contipuous in all their vari-
ables, except for some known values of x. If these requirements are ful-
filled, (2.1) is semi-discretizable. Note, however, that this implies by
no means that a solution of (2.1) always exists.

The class of PDEs.covered by PDEF2 is also given by (2.1) with the
limitation that NC = 0.



3. SEMI-DISCRETIZATION BY MEANS OF THE FINITE ELEMENT METHOD

Let

A = .o =
PaT XS XS “Xyprs = P

be a grid of NPTS points, not necessarily equidistant. In order to approxi-

) . . . .
3T Ui(x’t) at the grid-points, we approximate Ui(x’t) by a function
Ui(x,t) represented by

mate

NPTS

v
U.(x,t) = U. . 0.(x
1( ) jil i,j @J( )’

where wj(x) are properly chosen functions with the property

(pj(X,Q,) = csj )

S

8. , the Kronecker symbol. If we use for the NPDE-dimensional vectors with
9

BUi . > > >
components U. (x,t), = (x,t) and U, . the notations U, U_ and U., respec-
1 ox 1,] X J

tively, we find that

b

au.,
NC 1 _ NC > > b
J X _B'E‘ (X9t)(pj (x)dx = [x Fi(x’t’U’UX)@j (X)]a

a
b

NC > > 5> >
- [ % LF G, £,0,0)01 60 = ¢4 6o, t,0,0)0; () 1dxs

a

i=1,...,NPDE; j = I,...,NPTS.

Note that the stock—term of the right hand side vanishes if j > | or
j < NPTS. '
Elaboration of (3.34) gives the (implicit) ODE

NETS d N N

N meogde Viye - Ni, 36U esUyprg)s

i=1,...,NPDE; j = 1,...,NPTS,

where m, , is defined by
Js



b
m = XNC x)o, (x)dx,” 1 < j, & < NPTS
j,’l @J LDZ ’ = s =
a
and where Ni i is the right hand side of (3.3).
3

In the follawing sections of this 8 we introduce two choices of wj(x)

which yield easily implementable explicit ODEs with sparse Jacobians.

3.1 Piecewise linear functions

These functions (see fig.l) are defined by the properties

1) ©.(x) is continuous on [A,B] and linear on each segment
[xg,%0,01s § = 1,...,NPTS; & = 1,...,NPTS-1.
2) @j(xz) = Gj,l’ 1 £ j, & < NPTS.

¥, (%) ©; (x) Oprs (¥

¥ %2 -1 %5 e *NPTS-1  *NPTS

Figure 1. Piecewise linear functions

In order to obtain an easily implementable semi-discretization of (3.1)
with piecewise linear functions, we apply a proper quadrature rule to

evaluate (3.3a).

3.1.1 Numerical quadrature

Let A, and u, be given by the formulas

k k

Xk+1 NC
A= I X (Dk(X)dx;
Xk
Zk+1
= C o (x)dx; k= I NPTS-1
N " ; ey }
k

(3.9



and let

A, » k=15
dk = Ak+uk—1’ k=2,...,NPTS-1;
Mnprs-12 K T NPTS
w, = Ak+uk , k=1,...,NPTS-1;
(3.10)
A X, U X
£, = _ELEEQS&JEtl ; k=1,...,NPTS-1;
k
A U, +1. U
v +H
¥ - kK Kk ... NPTS-1;
k w.
k
U, -0
> k+l "k - - =
Zk hk ; hk = X Xy k=1,...,NPTS-1.

Then we approximate (mj 2) and (Ni j) by means of the following
9 3

formulas
(3.11) mj,l = d2 aj,i’ 1 < j, & < NPTS;
. NC e 3 =
(3.]2) Ni,l = Xl Fi(Xl,t,Ul, ‘a—}z Ul)
w1 > >
+EFi(€1’t’Y]’z])
> >
+ dIG (gl,t,Y],z]),
3.13 N il Y. .7,
( . ) l,j - E‘;l Fi(gj_],t’ j 1? j_l)
- >
tH G (ij ],t,Yj_l,Zj_l)
Wj > >
+B-:-F (gj’t’Yj’Zj)
J
+ XA, G.(&.,t,Y.,2.), j=2,...,NPTS-1;



NC . > 9 =
(3.14) N; nprs © *ners TiwersetrUnprs® 3% UNPTS’

->

_ “NPTS-1 2 )
NPTS-1’“NPTS-1

-+
E ]’tsY
hNPTS—]

F; (Cxprs-

-

-
dyprs-1 ©i Enprs-1°tsYnprs—1>Zyprs-17

+

In (3.11) we use a generalization of the extended trapezoid rule,
which results in the approximation of (mj,k) by a diagonal matrix. In
(3.12)-(3.14) we use a generalization of the extended mid-point rule.

The advantage of this rule is that the functioné Fi and Gi are to be eval-
uated only NPTS-1 times. We refer to BAKKER [2] for the theoretical backg-
round of these two generalizations and remark only that the accuracy of

the semi-discretization remains unaltered (of O(h2), where h = max h.).

-3.1.2 Boundary conditions

There are two kinds of boundary conditions, viz, of Dirichlet type

(Bi = 0) and of mixed type (Bi # 0). The implementation of these conditions
in (3.12) and (3.14) is simply done by putting

(Ui,Z_Ui,l)/hl’ B. = 0;

1
g% Ui1 =
(gmogU; /B By # 03
(3.15)
(U; wprs~Usi,nprs-1)/Pyprs-10 B; = O
gitthPTSé

(v;=%;U; xprs)/Bi» By 7O

3.1.3 The resulting ODE

Summarizing, we can approximate Bui(xj)/at by
0, B. =0, j=1or j= NPTS;

Ni,j

otherwise,
d;



where N. ; and dj are given by (3.12)-(3.15) and (3.10) respectively.
b

In 84 we discuss the subroutine PDEF! in which this algorithm has

been implemented.

3.2. Piecewise quadratic functions

If NC = 0, it is possible to take piecewise quadratics for wj(x)Q
A one limitation, however, is that
1) NPTS is odd and

2) the grid-points with even index lie exactly between their neighbours.
The functions wj(x) (see figure 2) are defined by

1) ©.(x) is continuous on [a,b] and quadratic on every segment

. NPTS-1
[le_],xzz_”], j=1,...,NPTS, ¢ = 1,...,—2—' 3
2) @ (x) =65 4, 1<, k< NeIS.
“20-1(x)
(DM(X)
I —drm bt
29-3 22-1 29+1

Figure 2. Piecewise Quadratics

As in the case of piecewise linear functions, we have to apply a
quadrature rule to evaluate (3.3). This time we use the extended Simpson
rule to approximate (mj 2) and the extended two-point Gauss-Legendre rule

3

to approximate Ni
E

Let
Lo may 5o
6}\3 x]’ ] = 13
16-(xj+2 % p)s 3= 3.5, NPIS-2;
(3.19) d. =
I
§-(Xj+] - Xj—l)’ i=2,4,...,NPTS-1;

—

Gtyprs = Xyprg-g)» 4 = NPTS;

o



and let
= 3-V3 4. h. = x,. - X,.
E25-1 = Xp3-1 * T Ps Py T F2ien T ¥2i-
_ 3+/3 )
g2j+1 = *5-1 7 T8 (x2j+1 b X2j-l)’
- > > >
(3.20) Yo5-1 = P1Ug5-1 * PoUsy * P3lUnsuy,
> > - >
Vo5 = P3Ups1 * Polsy * PyUnsyys
-> > -> >
Zys—1 = (Ugzop + 2Up5 * a3U55,)/hys
> _ > > > . s - NPTS-1
sz = (q3U2j_] + q2U2j + q1U2j+1)/hj’ ] 1,...,——zr———
where
= ]+/_3- ° = _2_ 14 = ﬂ
P 6 > PT3535 P3 6
_ 3+2/3 2 _ 3-2/3
4 =% =335 a43="%

Then m. and N, . are approximated by
e 1,]

m. , =d. 6.
3% J 350
. > 3 >
(3.21) Ni’] = - Fi(x],t,U],-gg up)
> > -

3d > > > >
+ 1[p1Gi(g1’t’Yl’zl) + P3Gi(£2’t’Y2322)]
. - - - >
(3-22) N. s =7 q2[F1(£2j—1’t’YZj—l’ZZj-]) - Fi(EZj,t,Yzj’ZZj)]
4 03d LG (B Y s Zee ) H Gu(Brest YansZa)]
2377107231 23-1°723-1 i°°23°7°723°72]

. NPTS-1
J = ]s°", __—E_“— 5



->

> > >
(3.23) 30 (8g1 400857054952 9549) TF3(Bgs 1585 Y s 15 EZp5 )]

Ny, 2541

- .

> o >
QL (8t Yo0s2o0) — FilEy e 1Y pi 192)5,p)]

] Y. 7. ) + G t,9..,2..)]
+ Ehj[PBGi(gzj_],t’ 2j_1, 2j_] P] 1(£2j’ ’ 2j’ 2j

iH. . [p:G. (& ¥ E )+p,G. ( t,¥ 7 1R
2y 0P16; (Bpgnya oY nih1920541) ¥ P36 (805405 85¥ 95495205495

. NPTS-3
j=lheen, ==

-
U

- 9
(3.24) N; ners - FiCyprsetoUxprse 3% Uners’

>
s E,Y

+
437 ; (xprg-22t>Yyprs-22%Nprs—2)

> >
4,F; (yprs—12t>Yyprs—-12Zyprs-1”

* 3dgprg *

- -
Y

NPTS-2°ZNPTS-2’

[p3G; (Exprg_g2ts

>

>
P1G; (xprs—1°t>Yyprs—1°24NpTS-1

+

) 1.

Again, we have to implement the boundary conditions in (3.21) and

(3.24). This time, we define 2 U. (3 = 1,NPTS) by

0x 1,]
—3U; %405 9705 3 B
X.,—X ’ Bi =03
5 . 37¥)
= U,
ox i,l
Yi-%U5
3 — B. # 0;
i
U; nprs-2"%Ys nprs-173Y5 ners B, = 03
— b
] *NPTS *NPTS-2
3% Ui,NPTS
¥i-%:U; NpPTS
B. ? B. # 0.

1 1
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As with the roof functions, the resulting ODE becomes

0, B. =0, j =1o0or j= NPTS;
i
_d.U =
dt i,j N
—%Ll , otherwise,

9
This algorihtm has been implemented in the subroutine PDEF2.

where Ni 3 and dj are defined by (3.21)-(3.24) and (3.19), respectively.

4. THE SUBROUTINES PDEF! and PDEF2

The algorithms from §3 have been implemented in the subroutines PDEFI
and PDEF2. Since either of them only discretizes in the space variable and
hence should be used together with an ODE integrator, a few words should
~ be spent to such an integrator. Therefore, after the descritption of PDEFI
and PDEF2, we briefly describe an ODE integrator and its use together with

the subroutines.

4.1 Description of the subroutines

The heading of PDEFI1 is

SUBROUTINE PDEF1(X,T,U,NPDE,NPTS,NC,FEVAL,GEVAL,BNDRY,
* ALFA,BETA,GAMMA,UMEAN,UXMEAN,F,G)
C INTEGER NPDE,NPTS,NC
DIMENSION X(NPTSA,U(NPDE,NPTS),ALFA(NPDE);BETA(NPDE)p'
* GAMMA (NPDE) ,UMEAN (NPDE) ,UXMEAN (NPDE) ,F (NPDE) ,G (NPDE)
C REAL T
C EXTERNAL FEVAL,GEVAL,BNDRY

MEANING OF PARAMETERS;
X (NPTS) : A PARTITION OF THE X~INTERVAL;

T THE TIME VARIABLE;

U (NPDE,NPTS) :

ENTRY: U(I,J) IS AN APPROXIMATION OF U(I,X(J)):

"EXIT : U(I,J) IS A SEMI~DISCRETIZATION OF THE
RIGHT HAND SIDE OF (2.1);

NPDE : THE NUMBER OF P.D.E.’S;

NPTS THE NUMBER OF GRIDPOINTS;

A NUMBER DESIGNING WHAT KIND OF SPACE
COORDINATES ARE USED;

NC

NC = @0: CARTESIAN COORDINATES;
NC = 1: POLAR COORDINATES;
NC = 2: SPHERICAL COORDINATES;
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FEVAL ¢ SUBROUTINE FEVAL(X,T,U,UX,F,NPDE)
DIMENSION U(NPDE) ,UX(NPDE) ,F (NPDE)

THIS SUBROUTINE EVALUATES F(I,X,T,U,UX) (I = 1,...,NPDE)

FROM THE RIGHT HAND SIDE OF (2.1) AND ASSIGNS THEM TO
THE ARRAY F:

GEVAL : SUBROUTINE GEVAL(X,T,U,UX,G,NPDE)
DIMENSION U (NPDE) ,UX(NPDE) ,G(NPDE)

THIS SUBROUTINE EVALUATES G(I,X,T,U,U0X) (I = 1,...,NPDE)

FROM THE RIGHT HAND SIDE OF (2.1) AND ASSIGNS THEM TO
THE ARRAY G;

BNDRY ¢ SUBROUTINE BNDRY(T,ALFA,BETA,GAMMA,U,NPDE,LEFT)

DIMENSION ALFA(NPDE) ,BETA(NPDE) ,GAMMA (NPDE) ,U (NPDE).
LOGICAL LEFT

THIS SUBROUTINE IMPLEMENTS THE BOUNDARY CONDITIONS
OF THE P.D.E. (2.1);

IF LEFT
IF LEFT

.TRUE. , THE LEFT B.C. ARE IMPLEMENTED;
.FALSE. , THE RIGHT B.C. ARE IMPLEMENTED;

The heading of PDEF2 is

SUBROUTINE PDEF2 (X,T,U,NPDE,NPTS,FEVAL,GEVAL,BNDRY,
* ALFA,BETA,GAMMA,UL,UR,UXL,UXR,FL,FR,GL,GR)
C INTEGER NPDE,NPTS

*DIMENSION X(NPTS),U(NPDE,NPTS),ALFA(NPDE),BETA(NPDE),
GAMMA(NPDE),UL(NPDE),UR(NPDE),UXL(NPDE),UXR(NPDE),
* FL(NPDE),FR(NPDE),GL(NPDE),GR(NPDE)

C REAL T
C EXTERNAL FEVAL,GEVAL,BNDRY
The parameters X,...,BNDRY have the same meaning as with PDEFI.

Note, however, that NPTS should be odd. The parameters ALFA,.

work arrays of dimension NPDE.

.,GR are

Both subroutines were written in ANSI FORTRAN and were tested on

their portability by the PFORT verifyer by RYDER [16].



12

4,2 An ODE integrator

For the integration of the semi-discretized PDE$ we used the sub-
routine M3RK by VERWER [22]. This is a robust explicit integrator based
upon three-step multi-point Runge-Kutta schemes. Before we go on, we
first explain why we used an explicit integrator and not an implicit

integrator based upon Gear's method.

1) The purpose of this paper is to demonstrate the use of the semi-
discretizers PDEF1 and PDEF2;

2) the integrator GEARB by HINDMARSCH [12] which exploits the sparseness
of the ODE (the Jacobian is of (4*NPDE-1)-diagonal type or of block-
tridiagonal type with blocks of NPDE % NPDE) was not available and

other available integrators do not exploit this sparseness.

M3RK integrates autonomous ODE's of the form

-
dy > >
d—t=F(Y), t > t.;
(4.1)

> ->

Y =YO, t=t

where ?, ¥ and ?0 are N-dimensional vectors.
The ODE that M3RK has to integrate is given by an external sub-

. routine of the form

SUBROUTINE DER(N,Y)

DIMENSION Y(N)

< the r.h.s. of (4.1a) is evaluated
and overwritten on Y >

RETURN

END

M3RK, like all robust ODE integrators, does an enormous amount of work

besides the integration itself, e.g.

1) At every integration step, a new stepsize is computed based on several
criteria such as accuracy and numerical stability;

2) the spectral radius, essential for the numerical stability, can be



13

computed automatically and regularly recomputed, as circumstances
require it;

3) if the ODE tends to become "smoother'", the stepsize is increased
gradually; at the other hand, if the problem tends to become '"nastier",
the stepsize is decreased;

4) if a stepsize appears to be too large afterwards, the integration step

is rejected and repeated with a smaller size.

4.3 The use of PDEF! and PDEF2

Since M3RK integrates autonomous vector ODEs and PDEF! reduces PDEs
to non-autonomous matrix ODEs, we have to define a correspondence between
the matrix U plus time and a vector Y. One possibility is

. . = U, . <1< 3
Y i-nynprs+; = Up,je ! S i NEDE;
INPDE#NPTS+1 ~

In that case, DER may have the form

SUBROUTINE DER(NEQ,Y)
DIMENSION Y(NEQ) ,U(*,**),A(*),B(*),C(*),D(*),E(*),F(*),G(*)
COMMON /LABEL/ NPDE,NPTS,NC,X(**)

FOR * AND ** THE ACTUAL VALUES OF NPDE AND NPTS HAVE TO
BE TAKEN; NOTE THAT NEQ = NPDE*NPTS + 1

EXTERNAL FEVAL,GEVAL,BNDRY

O 0000

DO 16 J = 1,NPDE
M = (J - 1)*NPTS
DO 18 L = 1,NPTS
U(J,L) = Y(L + M)
19 CONTINUE

C

T = Y(NEQ)
C

CALL PDEF1(X,T,U,NPDE,NPTS,NC,FEVAL,GEVAL,BNDRY,A,B,C,D,E,F)
C

DO 20 J = 1,NPDE
M = (J -~ 1)*NPTS
DO 286 L = 1,NPTS
Y{(L + M) = U(J,L)
20 CONTINUE

Y(NEQ) = 1.
RETURN
END
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The hierarchical order of the subprograms in a user's program is

illustrated in diagram 1.

1))
2)

3)

ODE integrator
+ auxiliary subprograms

subroutine DER

subroutine PDEFI!/PDEF2

PDE defined by the subroutines
FEVAL, GEVAL, BNDRY

Diagram 1. Organization of a user's program

So the only things the user has to do are, roughly spoken,

the definition of a spatial grid;

the initialization of the function values and other parameters of
the ODE integrator and

the implementation of the subroutines FEVAL, GEVAL and BNDRY.
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5. NUMERICAL EXAMPLES

In this §, we give some numerical examples to demonstrate the use of

PDEF! and PDEF2.

5.1 Numerical examples for PDEFI

Example A; a nonlinear diffusion problem.
We consider the problem

du -2 9 . 2 4 9du

(5.1a) 3t - % 5% (x"u ax), 0 < x < 1;
ou _ _ .
(5.1b) s==0, x=0;
1
2 5
(5.1¢) 5 { x7 u(x,t)dx + [u(l,t)]” = 1;
0
0 0 <x < 13
(5.14) u(x,0) =
0, x=1,

Problems of this kind occur in non-linear diffusion theory. One
easily verifies that condition (5.1c) is equivalent with u + u, = 0,
x = 1, but we will not use this condition.

Although, at first sight, this problem does not belong to the class
described in 82, one still can reduce condition (5.1c) to a Dirichlet .

condition. Suppose we have a grid

A: 0 = X, <X,< ... =1,

1°%2 “XNPTS

Then we can approximate (5.l1c) by

NETS 5
or
; NPTS-1
\ -— =
(5.22) Uyprs * *"yprs Ynprs * L W3 U5 T 1= 0s
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where Wj (j =1,...,NPTS) are suitably chosen weights e.g. wj = dj’
dj defined by (3.9), (3.10) and (3.13). From (5.2a) one sees that at any
time t UNPTS can be calculated as a non-linear function of Ul""’UNPTS—l’
hence the right boundary is of Dirichlet type.

We also notice another property. We can rewrite (5.1a) as

Bu_ -2 3 , 238y >

P — = E
(5-3) 5‘{ =X ax (X ax), v 5 ]

hence we can semi-discretize the right hand side of (5.1a) as a function
of v = 0.2*u5.

We divided [0,1] in 40 segments of equal length, so NPTS = 41,
X, = (i-1)/40, 1 = 1,...,41. The semi-discretized problem (5.1) was integ-
rated from O to 6.0, where the steady state was reached. As can be seen
from (5.3), this steady state is a constant function u,. The value of u_
. can be computed by substituting u(x,t) = u_ in (5.1c), which results in

the non-linear equation

% U, + ui =1,

fee]

with solution u_ = 0.565...
As table I and figure 3 show, the solution behaves rather wild

initially: it decreases at x = | but increases for x < 1.

T\X| .0080 .200 .400 .600 .800 1.000

.01 .000 000 000 .000 B0V .942

.10 .000 NN 000 .000 . 205 .839

.50 | .00V .00y .00 .031 .643 .711
1.00 | .000 000 000 .529 .621 .653
1.50 | .009 .00 117 .547  .603 .622
2.00 | .060 L0080 .441 .554 .59¢9 .603
3.60 | .000 .332 .516 .557 .575 .581
4.00 | .512 .526 .546 .560 .568 .571
5.0 | .560 .560 .562 .564 .566 .567
6.00 | .564 .565 .565 .565 .565 .566

Table I

Numerical values of u(x,t) from problem A
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(Oa]) TQ]’t)
u(0.8,t)
<090) L 1 1 1

Figure 3. Graph o u(l,t) and u(0,8,t)

Example B; a problem with an internal boundary condition.

The problem is given by

-2 9 29
5% 5;'(X 3%) - 1000 exp(u), 0 < x < %3
du
(5-4&) -a—t'-—
-2 2 209
x gy (x50 - exp(u), 4 <x <1
5. 4b u _ 5y - o
(5.4b) 3% - 0 x =05
(5.4¢) u=1, x=1;
u . du
(5.44) 5 1lim — = 1lim =—

(5.48) u(X,O) =

This problem has, besides the discontinuity of the initial values,
the complication that the equation for 3u/dt is discontinuous in x = 0.5
However, this discontinuity is no problem for PDEFl. The only things the
user has to do is taking care that 0.5 is one of the grid-points, and
giving adequate definitions for the functions F and G. No special formula

for x = 0.5 is needed such as a weighed mean of the left and right limit
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of the function value. So although for éompleteness the internal boundary
condition (5.4e) is also given, this condition is not actually used by
PDEF! and hence need not be processed in one of the subroutines FEVAL or
GEVAL.

Since (5.4) is more singular on [0,0.5] than on [0.5,1], we divided
both segments in 40 and 20 subsegments of equal length respectively. We
integrated the semi-discretized problem from 0.0 until 0.5 where the
steady state was reached (see table II for some results). As an extra

check, we solved the steady-state problem

T\ X .00 .10 .20 .30 .40 .50 .60 .70 .80 .90

901 | ~6.69]~0.69|~0.69|~0.69] ~0.65|~0.47|~-0.01] €.00| 0.00| 0.04
005 | ~-1.76{~1.75|~-1.72|~1.64|~1.50|~1.23}~0.21|~0.02| @.05 ©.35
010 | ~2.22|~-2.20)-2.15{~2.05{~1.88|~1.62|~0.50|~0.07| 0.17] ©0.52
.020 | ~2.56|~2.54|~2.48]~-2.37~-2.21|~1.96|~-0.82{~0.16| 0.27| 0.64
050 | ~2.80|~2.78{~2.72|~2.62}~2.46|~2.23|~1.10|~0.33| 0.23] 0.65
100 | ~2.86|~2.84}1~2.78|~-2.68|~2.52|~2.30|~1.20|~-0.42| ©0.16] ©0.62
200 | ~2.87|~2.85|~2.80|~2.70}~2.54|~2.32}~1.23|-9.45] 0.14] 0.61
506 | ~2.87]~2.85|~2.80|~2.78{~2.54{~-2.32]~1.23|~0.45| 0.14]{ 0.61

Table II

Numerical values of u(x,t) from problem B

by means of the Ritz-Galerkin method with a uniform grid of 100 segments.
We found that the maximum error was about 1.e-3. As was already evident
from the internal boundary condition (5.4d), the curve of U(x,®) shows

a crack at x = 0.5 (see figure 4).



(1.0,1.0)

(0.5,-2.31)

(0.0,-2.87)
Figure 4. Steady state of problem B

Example C.

This problem was also solved by SINCOVEC & MADSEN [17]. The equation

is
du _ -1 9 Ju _
(5.5a) 3¢ = X 5;-(x §§)’ x ¢ [0,1]
0 s X = 03
(5.5b) u_ =

1.72e-9(6.25e+10-u(1,t)%), x =

|
—
we

(5.5c) u =600, t=0.

19
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This problem has the difficulty that the right boundary condition is

not compatible with the initial conditionms.

T\X .00 9.29 d.40 V.60 .80 1.00

.85 1599.88 | 599.78 | 598.78 [ 595.82 | 588.58 |575.33
.19 | 597.45 | 596.59 | 593.80 | 588.30 | 579.37 |566.90
.50 | 554.28 | 553.42 | 550.95 [ 546.98 | 541.69 |[535.36
1.00 [525.71 | 525.32 | 524.20 | 522.406 | 520.00 |517.11
2.50 | 563.89 [ 503.45 | 502.92 | 502.71 | 562.44 |502.106
5.00 | 500.06 | 500.06 | 500.066 | 5¢0.05 | 500.65 |500.04
7.50 1499.99 | 500.01 | 500.00 [ 500.00 | 500.00 |500.060

Table III

Numerical values of u(x,t) from problem C

We divided [0,1] in 20 segments of equal length and integrated the ODE
from 0.0 until 7.50 where u(x,t) had its steady state u(x,®) = 500.0
. (see table III). Comparison of the results from table V with those from

Sincovec & Madsen shows that they differ only in the last digit.

5.2 Numerical problems for PDEF2

Example D; a problem from electrodynamics

Both this problem and its steady—-state problem has been treated ex-—
tensively in BUS [3], pp.113-116 and TE RIELE [21], pp.38-72.

The differential equation is given by

2

(5.6a) du _ 0.024 3u _ g(u-v);

ot 2

ox

dv 32y
(5.6b) — = 0.17 —5 + g(u-v); x ¢ [0,1];

ot 2

9x

(5.6¢) g(a) = exp(5.73a) - exp(-11.46a)

with boundary conditions
(5.6d) uX(O,t) = v(0,t) = 0y

(5.6e) u(l,t) = 1; vx(l,t) =0
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and initial values
(5.6f) u(x,0) = 1; v(x,0) = 0.

In selecting a grid for [0,1], we have to remember that (5.6) is a
singular perturbation problem: the coefficients of U and V., are small
and the function g(a) changes rapidly with a small change of o. Consequently,
boundary layers are to be expected at x = 0 and x = 1. We therefore take the
following grid:
l.e=2 * (i-1) , i
x, = 5.0e-2*% (i-11) + 0.1, 1 = 12,13,...,26;
l.e-=2 = (i=27) + 0.9. 1

1]
—
A
UN
o
-
—
—
-

1
N
~
.
[N
co
N
.

»
w
~

T\X .060 .100 200 .300 .400 .500 .6060 .700 .80Q0 .900 1.000

L1 .221 .374 .475 .504 .51¢ .511 .512 .513 .521 .567 1.000
000 .271 .412 .467 .484 .488 .489 .494 .509 .552 .613

.5 .62 .148 .263 .356 .423 .472 .513 .555 .608 .692 1.000
060 .137 .252 .345 .415 .469 .513 .559 .614 .681 .734

1.0 .¥42 .106 .199 .287 .367 .441 .510 .578 .648 .733 1.000
000 .12 .196 .284 .364 .439 .516 .579 .649 .719 .768

1.5 .637 .894 .17%9 .264 .346 .425 .503 .578 .654 .740 1.000
.06 .B92 .178 .263 .345 .424 .502 .578 .653 .726 .774

2.6 .B35 .09 .172 .255 .336 .417 .496 .573 .651 .739 1.000
.000 .088 .172 .254 .336 .416 .495 .573 .649 ,724 773

2.5 .034 .p88 .169 .250 .331 .411 .490 .569 .647 .736 1.000
.000 .086 .168 .2560 .331 .411 .490 .568 .645 .720 .770

3.0 .633 .987 .167 .247 .327 .407 .486 .565 .643 .733 1.000
.000 .0P85 .166 .247 .327 .407 .486 .564 .642 .718 .768

3.5 .033 .086 .165 .245 .325 .4p4 .483 .562 .641 .731 1.000
.000 .984 .165 .245 .325 .484 .483 .562 .640 .716 .766

4.0 .033 .886 .164 .244 .323 .403 .481 .560 .639 .730 1.000
000 .684 .164 .244 .323 .492 .481 .568 .638 .714 .765

4.5 .¥33 .085 .163 .243 .322 .401 .480 .559 .638 .729 1.000
.00 .983 .163 .243 .322 .491 .486 .559 .637 .713 .764

Table IV
Numerical values of u and v from problem D; on the first

row, U is listed, on the second row, v is listed
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We integrated the semi-discretized problem from 0.0 to 4.5. From
the very beginning, the boundary layer structure of problem D is visible,
especially at x = 1.0 where u is very steep compared with the resf of the
interval. One also sees that the steady-state curves of u and v intermingle

between 0.1 and 0.9 (see firgure 5) and separate at the boundary.

1.0

0.764

0.0 0.5 1.0

X >
Figure 5. Steady state of problem D
Also, they practically coincide with the straight line y = 0.8x except at
the boundary layers.
Example E

This problem was also solved by SINCOVEC & MADSEN [17]. The differen-—

tial equation is

) 9 du 2
5%—= 5;—(u 5;) -u’, x e [0,1];
(5.7) u(0,t) = 504 ux(l,t) = l-sin u(l,t);
50, x = 03
u(x,0) =



This problem has the difficulties that

1)
2)

Since PDEF2 semi-discretizes more accurately, we take a uniform grid of

only 11 points: NPTS = 11,

state was reached.

the initial values are discontinuous and

the right boundary condition is not satisfied initially.

We integrated from 0.0 to 0.1 where the steady

T\X| 0.0

.2000

-4000

.6000

.8000

1.0000

001
005
.010
-.9015
020
.025
030
.035
040
.045
050
.109

50.0
50.0
50.0
50.6
56.90
50.0
50.9
50.9
50.0
50.0
50.9
50.0

68.3413
51.6163
46.8787
45.3898
44.8124
44.6149
44.5292
44.4816
44.4516
44.4309
44.4168
44.3827

79.6891
53.9119
45.0878
42.0891
40.9007
40.4883
490.3031
40.1991
40.1320
40.0867
49.0541
39.9786

85.9974
56.0277
44.209%6
39.9345
38.2334

37.6285.

37.3427
37.1765
37.06675
36.9934
36.9411
36.8162

89.0548
57.4984
43.8807
38.7495
36.7893
36.0580
35.6854
35.4598
35.3076
35.2038
35.1294
34.9532

89.9996
58.0336
43.9113
38.4699
36.5612
35.7932
35.3600
35.0838
34.8944
34.7628
34.6680
34.4431

Table V

Numerical values of u from problem E

The exact

u (%)

0
]

Comparison of u_(x) with the values of U(x,0.1) from table V shows

50./cosh x/2 - ¢ sinh x/z

0.88055353224.

that the maximum error is 8.2e-3.

6. CONCLUDING REMARKS

solution of the steady-state problem is

In the previous § we succesfully semi-discretized and integrated
five second order parabolic PDEs with various difficulties and pitfalls,

such as

initial discontinuity of the function values or the spatial derivatives;

D
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2)  internal discontinuity of the spatial derivative;
3) singular perturbation;

4) strong interdependence of boundary value and interior values.

With exception of A, none of the problems required more complex action
than the selection of a proper grid and of course correct implementation of
the PDE. Concerning A, it is an open question whether a simpler approach

had been possible.

We intentionally confined ourselves to (nearly) parabolic problems
which were not too singularly perturbed. The reason is that it is uncertain
whether the semi-discretization method used is also suitable for other
kinds of PDEs such as first order hyperbolic (see STRANG & FIX, pp.254-256)
PDEs or singularly perturbed PDEs. In the latter case it may be wiser
and cheaper to use exponentially fitted splines, as HEMKER [10] proved for
the steady-state problem.

All the same, in spite of these possible limitations, we can say that
with PDEF1 and PDEF2 we have delivered two subroutines which can semi-

discretize a broad class of time-dependent PDEs in one space variable.



25

APPENDIX

In this appendix, we give listings of the subroutines and of the

test programs.

PDEFI.

SUBROUTINE PDEF1(X,T,U,NPDE,NPTS,NC,FEVAL,GEVAL,BNDRY,

* ALFA,BETA,GAMMA,UMEAN,UX,F,G)

DIMENSION X (NPTS) ,U(NPDE,NPTS) ,ALFA(NPDE) ,BETA(NPDE),

* GAMMA (NPDE) ,UX(NPDE) ,UMEAN (NPDE) ,F (NPDE) ,G (NPDE)

THIS SUBROUTINE SERVES AS AN INTERFACE BETWEEN A
PARABOLIC PARTIAL DIFFERENTIAL EQUATION IN ONE

SPACE VARIABLE AND AN INTEGRATOR OF INITIAL VALUE PROBLEMS.

THE DIFFERENTIAL EQUATION SHOULD BE OF THE FORM

(D/DT)U(I) = (D/DX) (X**NC*F(I,X,T,U,UX)))/X**NC

+ G(I,X,T,U0,UX),I=1,...,NPDE;
WITH BOUNDARY CONDITIONS
ALFA(I)*U(I) + BETA(I)*UX(I) = GAMMA(I) ,I = 1,...,NPDE;

PDEF1 TRANSFORMS THE SYSTEM OF PARTIAL DIFFERENTIAL EQUATIONS
INTO A SYSTEM OF ORDINARY EQUATIONS BY SEMI~DISCRETIZATION IN
THE SPACE VARIABLE X; THIS SEMI~-DISCRETIZATION IS PERFORMED

BY APPLICATION OF THE FINITE ELEMENT METHOD (SEE E.G.

G. STRANG & G.J. FIX,AN ANALYSIS OF THE FINITE ELEMENT METHOD)

DESCRIPTION OF THE PARAMETERS:

INPUT:

Xz DIMENSION X(NPTS}):;
X(1),...,X(NPTS) IS A PARTITION OF [X(1l),X(NPTS)]

T: THE TIME VARIABLE;
U: DIMENSION U(NPDE,NPTS);

U(I,J) IS AN APPROXIMATION OF U(I,X(J).,T),1
: J

l1,...,NPDE;
1,...,NPTS;

o XsXeXeReXeRekeXoRo kel loRekeReReloie koo ke RekriekeXeRe ke ke ReRe ke ke Re koo oo ke
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NPDE: THE NUMBER OF PARTIAL DIFFERENTIAL EQUATIONS;
NPTS: THE NUMBER OF GRIDPOINTS:

NC: A NUMBER DESICGNING THE KIND OF SPACE COORDINATES;
NC = 0 CARTESIAN COORDINATES;
NC 1 : CIRCULAR COORDINATES;
NC 2 : SPHERICAL COORDINATES;

FEVAL: SUBROUTINE FEVAL(X,T,U,UX,F,NPDE)
DIMENSION U(NPDE) ,UX(NPDE) ,F (NPDE)

EXIT: THE VALUES OF F(I,X,T,0,UX) ARE ASSIGNED
TO THE ARRAY F;

GEVAL: SUBROUTINE GEVAL(X,T,U,UX,G,NPDE)
DIMENSION U(NPDE) ,UX(NPDE) ,G(NPDE)

EXIT: THE VALUES OF G(I,X,T,U,UX}) ARE ASSIGNED
TO THE ARRAY G

BNDRY: SUBROUTINE BNDRY(T,ALFA,BETA,GAMMA,U,NPDE,LEFT)
DIMENSION ALFA(NPDE) ,BETA (NPDE) ,GAMMA (NPDE) ,U (NPDE)
LOGICAL LEFT
THIS SUBROUTINE DEFINES THE BOUNDARY CONDITIONS OF THE PDE
IN X(1) OR X(NPTS): IF LEFT = .TRUE.,THE BOUNDARY CONDI-
TIONS IN X(1) ARE DEFINED,OTHERWISE THE B.C. IN X(NPTS);
ALFA ,BETA AND GAMMA MAY DEPEND ON U AND T.
ALFA,BETA ,GAMMA ,UMEAN,UX,F,G:
WORK-ARRAYS OF DIMENSION NPDE.
OUTPUT:

U: DIMENSION U(NPDE,NPTS};
THE SEMI~DISCRETIZED RIGHT HAND SIDE OF THE PDE OVERWRITTEN

ON U:
WR = @.
XR = X(1)

DO 156 L = 2,NPTS

THE SEGMENTWISE ASSEMBLY OF THE RIGHT HAND SIDE BEGINS;
AT FIRST, SOME NUMBERS CHARACTERISTIC FOR NC ARE COMPUTED.

XL = %R
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L1 L -1

XR X (L)

H = XR - XL

IF (NC .EQ. 1) GOTO 1@
IF (NC .EQ. 2) GOTO 26
VL = 6.5

VR = 8.5

GOTO 36

VL = XL/3. + XR/6.

VR = XL/6. + XR/3.
GOTO 38

ol
£
0w
O

]

XL*XL/12.

XL*XR/6.

XR*XR/12.

3.*XLSQ + XLXR + XRSQ : j
XLSQ + XLXR + 3.*XRSQ .
H*VL + WR

WR H*VR

VMEAN = VL + VR

WMEAN = H*VMEAN

PR = VR/VMEAN

PL = 1.8 -~ PR

XMEAN = XL + H*PR

IF (L .GT. 2) GOTO 99

> %
o
v
L@ R
o

=
e
oW ouou

ON THE FIRST SEGMENT,AT FIRST THE BOUNDARY CONDITIONS ARE
PROCESSED; IF THEY ARE OF DIRICHLET TYPE,THE VALUE OF U(X(1),T)
IS UPDATED AND THE TIME DERIVATIVE IS PUT EQUAL TO ZERO;

IF THEY ARE OF MIXED TYPE,THE SPATIAL DERIVATIVE OF U(X(1l),T)
OF U(X(1),T) IS EXPRESSED IN U AND T AND THAT EXPRESSION IS
IS IMPLEMENTED IN THE STOCK TERM

DO 46 J = 1,NPDE

UMEAN(J) = U(J,1)

u(J,l) = 6.

CONTINUE

CALL BNDRY(T,ALFA,BETA,GAMMA ,UMEAN ,NPDE, .TRUE.)
ICT = @

DO 68 J = 1,NPDE

IF (BETA(J) .NE. 8.) GOTO 69

ICT = ICT + 1

UMEAN (J) = GAMMA(J) /ALFA(J)

CONTINUE

XPOW = 1.

IF (NC .GT. 8) XPOW = XL**NC

IF (XPOW .EQ. 6. .OR. ICT .EQ. NPDE) GOTO 96

IF (ICT .GT. @) CALL BNDRY(T,ALFA,BETA,GAMMA,UMEAN,NPDE,.TRUE.)
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DO 76 J = 1,NPDE
IF (BETA(J) .NE. 0.)
* UX(J) = (GAMMA(J) ~ ALFA(J)*UMEAN(J))/BETA(J) .
IF (BETA(J) .EQ. 6.) UX(J) = (U(J,2) - UMEAN(J))/H
76 CONTINUE
CALL FEVAL(XL,T,UMEAN,UX,F,NPDE)

NOW,THE STOCK TERMS ARE IMPLEMENTED,AS FAR AS THE
BOUNDARY CONDITIONS ARE OD MIXED TYPE.

DO 86 J = 1,NPDE
86 IF (BETA(J) .NE. 6.) U(J,1) = ~ XPOW*F(J)

HERE THE IMPLEMENTATION OF THE LEFT BOUNDARY CONDITIONS
ENDS

99 IF (L .LT. NPTS) GOTO 120

AT THE LAST SEGMENT,THE RIGHT BOUNDARY CONDITIONS,AS FAR
AS THEY ARE OF DIRICHLET TYPE ARE IMPLEMENTED BY UPDATING
THE BOUNDARY VALUES;

DO 166 J = 1,NPDE
IF (BETA(J) .EQ. #.) U(J,1) = 6.
UX(J) = U(J,NPTS)

166 CONTINUE
CALL BNDRY(T,ALFA,BETA,GAMMA,UX,NPDE,.FALSE.)
ICT = @
DO 11¢ J = 1,NPDE
IF (BETA(J) .NE. 0.) GOTO 116
ICT = ICT + 1
U(J,NPTS) = GAMMA(J)/ALFA(J)

116 CONTINUE

NOW,THE REAL ASSEMBLY BEGINS

126 DO 136 J = 1,NPDE
ULJ = UMEAN(J)
URJ = U(J,L)
UMEAN (J) = PL*ULJ + PR*URJ
UX(J) = (URJ -~ ULJ)/H
136 CONTINUE
CALL FEVAL (XMEAN,T,UMEAN,UX,F ,NPDE)
CALL GEVAL (XMEAN,T,UMEAN,UX,G,NPDE)
DO 146 J = 1,NPDE
FMEAN = VMEAN*F (J)
GMEAN = WMEAN*G(J)
u(J,Ll) = (U(J,L1) + FMEAN + PL*GMEAN) /WL
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UMEAN(J) = U(J,L) ‘
U(J,L) = -~ FMEAN + PR*GMEAN
CONTINUE
CONTINUE

FINALLY ,THE PROCESSING OF THE RIGHT BOUNDARY CONDITIONS
IS PERFORMED.

DO 1686 J = 1,NPDE
IF (BETA(J) .EQ. #6.) U(J,NPTS) = 0.
IF (ICT .EQ. NPDE) RETURN

IF (ICT .GT. 0) CALL BNDRY(T,ALFA,BETA,GAMMA,UMEAN,NPDE,.FALSE.)

XPOW = XR**NC |
DO 176 J = 1,NPDE :
IF (BETA(J) .NE. 6.) UX(J) = (GAMMA(J)-ALFA(J)*UMEAN(J))/BETA(J)
CALL FEVAL(XR,T,U4EAN,UX,F,NPDE) *
DO 186 J = 1,NPDE

IF (BETA(J) .NE. 8.) U(J,NPTS) = (U(J,NPTS) + XPOW*F(J))/WR
RETURN

END

PDEFZ.

OO0 00n

SUBROUTINE PDEF2(X,T,U,NPDE,NPTS,FEVAL,GEVAL,BNDRY,

* ALFA,BETA,GAMMA ,UL,UR,UXL,UXR,FL,GL,FR,GR)

DIMENSION X(NPTS) ,U(NPDE,NPTS) ,ALFA(NPDE) ,BETA(NPDE),
* GAMMA (NPDE) ,UL(NPDE)} ,UR(NPDE) ,UXL (NPDE) ,UXR{NPDE) ,

* FL(NPDE) ,GL(NPDE) ,FR(NPDE) ,GR(NPDE)

THIS SUBROUTINE SERVES AS AN INTERFACE BETWEEN A
TIME~DEPENDENT PARTIAL DIFFERENTIAL EQUATION IN ONE
SPACE VARIABLE AND AN INTEGRATOR OF INITIAL VALUE PROBLEHMS.

THE DIFFERENTIAL EQUATIONS SHOULD BE OF THE FORM

(b/DT)U(I) = (D/DX)F(I,X,T,U,UX))

+ G(1,X,T,U0,0X),I= 1,...,NPDE;
WITH BOUNDARY CONDITIONS
ALFA(I)*U(I) + BETA(I)*UX(I) = GAMMA(I) ,I =1,... ,NPDE;

PDEF2 TRANSFORMS THE SYSTEM OF PARTIAL DIFFERENTIAL EQUATIONS
INTO A SYSTEM OF ORDINARY EQUATIONS BY SEMI~-DISCRETIZATION IN
THE SPACE VARIABLE X; THIS SEMI-DISCRETIZATION IS PERFORMED

BY APPLICATION OF THE FINITE ELEMENT METHOD (SEE E.G.

G. STRANG & G.J. FIX,AN ANALYSIS OF THE FINITE ELEMENT METHOD)
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DESCRIPTION OF THE PARAMETERS;
INPUT:

Xz DIMENSION X(NPTS);
X(1)ye0.,X(NPTS) IS A PARTITION OF [ X(1) ,X(NPTS)]

T: THE TIME VARIABLE:;
U: DIMENSION U(NPDE,NPTS);

U(I1,J) IS AN APPROXIMATION OF U(I,X(J),T),I
J

1,...,NPDE; .
1,...,NPTS;

i

NPDE: THE NUMBER OF PARTIAL DIFFERENTIAL EQUATIONS;
NPTS: THE NUMBER OF GRIDPOINTS:

~~~~~~~~~ > IMPORTANT! BECAUSE OF THE METHOD OF SEMI~DISCRETIZATION
~~~~~~~~~ > NPTS SHOULD DEFINITELY BE ODD!

FEVAL: SUBROUTINE FEVAL(X,T,U,UX,F)
DIMENSION U(NPDE) ,UX(NPDE) ,F (NPDE)

EXIT: THE ARRAY F IS ASSIGNED THE VALUES OF THE
FUNCTION F(I,X,T,U,UX) OF THE P.D.E.;

GEVAL: SUBROUTINE GEVAL(X,T,U,UX,G)
DIMENSION U(NPDE) ,UX(NPDE) ,G(NPDE)

EXIT: THE ARRAY G IS ASSIGNED THE VALUES OF THE
FUNCTION G(I,X,T,U,UX) OF THE P.D.E.;

BNDRY: SUBROUTINE BNDRY(T,ALFA,BETA,GAMMA,U,NPDE,LEFT)
DIMENSION ALFA(NPDE) ,BETA (NPDE) ,GAMMA (NPDE) ,U (NPDE)
LOGICAL LEFT

THIS SUBROUTINE DEFINES THE BOUNDARY CONDITIONS OF THE PDE

IN X(1) OR X(NPTS): IF LEFT = .TRUE.,THE BOUNDARY CONDITIONS

IN X(1) ARE DEFINED,OTHERWISE THE B.C. IN X(NPTS);

ALFA ,BETA AND GAMMA MAY DEPEND ON U AND T;
ALFA,BETA ,GAMMA ,UL,UR,UXL,UXR,F,G:

WORK~ARRAYS OF DIMENSION NPDE.

OUTPUT:

U: DIMENSION U (NPDE,NPTS):
THE SEMI-DISCRETIZED RIGHT HAND SIDE OF THE PDE OVERWRITTEN
ON U:
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PREPARATORY CALCULATIONS

PLl1 = ©0.455341866126
PL2 = 6.666666666667
PL3 = 1. - PL1 ~ PL2

PL1 =(1. + SQRT(3.))/6.

QL1 = - 2.1547085383793
QL3 = ~ 0.1547005383793
QL2 = ~ QL1 ~ QL3

QL1 = - 1. - SQRT(3.)/1.5
QL3 = + 1. - SQRT(3.)/1.5
XR = X (1)

HOLD = 6.0

THE ASSEMBLING BEGINS

DO 116 L = 3,NPTS,2
Ll =L -1

L2 = L -~ 2

XL = XR

XR = X(L)

H = XR ~ XL

WL = 3./(H + HOLD)

HOLD = H

XLM = XL + H*@.21132498654052
XRM = XL + XR - XLM

XLM AND XRM ARE THE ABSCISSAE FOR TWO POINT
GAUSS~LEGENDRE QUADRATURE OVER [X(L-2) ,X(L)]

PL1H = PL1*H
PL3H = PL3*H
QL2H = QL2*8.75/H

IF (L .GT. 3) GOTO 50
THE LEFT BOUNDARY CONDITIONS ARE IMPLEMENTED

DO 18 J = 1,NPDE

UR(J) = U(J,1)

CALL BNDRY(T,ALFA,BETA,GAMMA,UR,NPDE,.TRUE.)
ICT = 0

DO 286 J = 1,NPDE

IF (BETA(J) .NE. ©6.0) GOTO 20

ICT = ICT + 1

UR(J) = GAMMA(J)/ALFA(J)

U(J,1) = 6.6

CONTINUE

31
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36

40

40

56

60

70

80

9@

IF (ICT .EQ. NPDE) GOTO 50

IF (ICT .GT. @) CALL BNDRY(T,ALFA,BETA,GAMMA,UR,NPDE,.TRUE.)

DO 36 J = 1,NPDE
IF (BETA(J) .EQ. 8.0)

*# UXL(J) = (- 3.%UR(J) + 4.*U(J,2) - U(J,3))/H

IF (BETA(J) .NE. 0.0)

* UXL(J) = (~ ALFA(J)*UR(J) + GAMMA(J))/BETA(J)

CONTINUE

CALL FEVAL(XL,T,UR,UXL,FL,NPDE)
DO 46 J = 1,NPDE

IF (BETA(J) .NE|

IF (BETA(J) .NE. 6.8) U(J,1) = - FL(J)*2.
END OF IMPLEMENTATION OF LEFT B.C.
IF (L .LT. NPTS) GOTC 86

THE RIGHT BOUNDARY CONDTIONS AS FAR AS THEY ARE
OF DIRICHLET TYPE,ARE IMPLEMENTED

DO 68 J = 1,NPDE

UXR(J}) = U(J,NPTS)

IF (BETA(J) .EQ. €.8) U(J,1) = 0.0
CONTINUE

CALL BHNDRY(T,ALFA,BETA,GAMMA,UXR,NPDE,.FALSE.)
ICT = @

DO 76 J = 1,NPDE

IF (BETA(J) .NE. 06.8) GOTO 70

ICT = ICT + 1

U(J,NPTS) = GAMMA(J)/ALFA(J)
CONTINUE

NOW THE SEGMENTWISE ASSEMBLAGE BEGINS

DO 96 J = 1,NPDE
= UR(J)
UMJ = U(J,L1)
URJ = U(J,L) ‘
= PL1*ULJ + PL2*UMJ + PL3*URJ
UR(J) = PL3*ULJ + PL2%*UMJ + PL1*URJ
UXL(J) = (QL1*ULJ + QL2*UMJ + QL3*URJ)/H
UXR(J) = ~ (QL3*ULJ + QL2*UMJ + QL1*URJ)/H
CONTINUE

c
[
Ca

i

CALL FEVAL(XLM,T,UL,UXL,FL,NPDE)
CALL GEVAL(XLM,T,UL,UXL,GL,NPDE)
CALL FEVAL(XRM,T,UR,UXR,FR,NPDE)
CALL GEVAL({XRM,T,UR,UXR,GR,NPDE)
bO 166 J = 1,NPDE

FLJ = FL({J)
FRJ = FR(J)
GLJ = GL({J)
GRJ = GRI/J)
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160
116

126

136

140

33

U(J,L2) = WL*(U(J,L2)=QL1*FLJ+QL3*FRJ+ (PL1H*GLJ+PL3H*GRJ))
U(J,L1) = QL2B* (FRJ~FLJ) + 0.5% (GLJ+GRJ) '
UR(J) = U(J,L) |

U(J,L) = ~ (QL3*FLJ ~ QL1*FRJ) + (PL3H*GLJ + PL1H*GRJ)
CONTINUE

CONTINUE

END OF THE ASSEMBLAGE; ONLY THE RIGHT BOUNDARY
CONDITIONS HAVE TO BE IMPLEMENTED

WL = 3./HOLD

IF (ICT .GT. 6 .AND. ICT .LT. NPDE)

* CALL BNDRY(T,ALFA,BETA,GAMMA,UR,NPDE,.FALSE.)
P2 = (XR -~ XLM)/(XRM -~ XLM)

Pl = 1. - P2

DO 136 J = 1,NPDE

IF (BETA(J) .EQ. 6.86) GOTO 120

UXR(J) = (GAMMA(J) ~ ALFA(J))/BETA(J)

GOTO 134

U(J,NPTS) = 0.0

UXR(J) = Pl*UXL(J) + P2*UXR(J)

CONTINUE

IF (ICT .EQ. NPDE) RETURN

CALL FEVAL(XR,T,UR,UXR,FR,NPDE)

DO 14¢ J = 1,NPDE

IF (BETA(J) .NE. 0.8) U(J,NPTS) = WL*(U(J,NPTS) + 2.*FR(J))
CONTINUE

RETURN

END

PROBLEM A

PROGRAM PDE (INPUT,OUTPUT,TAPES=INPUT,TAPE6=0UTPUT)
DIMENSION U(42),01(42),02(42),000T(42),DU(42) ,DU1(42),
* SIGMA(2) ,INFO(15)

EXTERNAL DER

COMMON /ALL/ NPDE,NPTS,NC,X(41) /UPD/ W(41l) /BND/ UBND

NPDE 1

NPTS 41

NEQ = NPDE*NPTS + 1
NC = 2



[eNeNeRORe!

oNoRe!

QOO0

16
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10

20

DEFINITION OF GRID AND INITIAL VALUES PLUS
ASSIGNMENT OF THE GAUSSIAN WEIGHTS NEEDED FOR
THE COMPUTATION OF UBND AT EACH CALL OF DER

L}

W(l) 8.

DO 16 L = 1,NPTS

X{L) FLOAT(L ~ 1)/FLOAT(NPTS ~ 1)
U(L) g.

IF (L .EQ. 1) GOTO 18

XL = X(L-1)

XR = X(L)

H = (XR ~ XL)/12.

W(L~-1) = W(L~1) + H*(3.*XL**2 + 2.*XL*XR + XR**2)
W(L) = H*(XL**2 + 2.*XL*XR + 3.%*XR¥*#*2)
CONTINUE

U(NPTS) = 1.

UBND = 1.

WRITE(6,3) (X(I),I = 1,41,8)

FORMAT (1H ,4H T\X,6F7.3)

#on

FURTHER INITIALIZATION OF THE PARAMETERS OF M3RK

TOL = 1.
INFO(1)
INFO(2)
INFO(3) 200006
SIGHMA (1) = 48./X(2)**2
T = 8.
U(NEQ) = T
DO 96 KL = 1,180

READ(5,*) TE

CALL M3RK(T,TE,NEQ,H,HMIN,SIGMA,TOL,DER,

vu,ul,02,u00T,DU,DULl,IFLAG,INFO)

CALL UPDATE (UOUT)

WRITE(6,1)

WRITE(6,2) TE, (UOUT(I),I = 1,41,8)

FORMAT (1H )

FORMAT(1H ,F4.1,6F7.3)
CONTINUE
STOP
END

~4
0
1

How B

SUBROUTINE DER(NEQ,Y)
DIMENSION Y(NEQ),U(1,41),A(l),B(l),C(l),D(l),E(l),F(l),G(l)

EXTERNAL FEVAL,GEVAL,BNDRY
COMMON /ALL/ NPDE,NPTS,NC,X(41)

AT FIRST, Y(NPTS) IS UPDATED

CALL UPDATE(Y)

DO 18 L = 1,NPTS
U(l,L) = .2*Y(L)**5
T = Y(NEQ)

CALL PDEFl(X,T,U,NPDE,NPTS,NC,FEVAL,GEVAL,BNDRY,A,B,C,D,E,F,G)

DO 280 L = 1,NPTS
Y (L) = U(1l,L)
RETURN

END
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SUBROUTINE BNDRY (T,ALFA,BETA,GAMMA,U,NPDE,LEFT)
DIMENSION ALFA(NPDE) ,BETA (NPDE) ,GAMMA (NPDE) ,U(NPDE)
LOGICAL LEFT

COMMON /BND/ UBND

IF (.NOT. LEFT) GOTO 16

ALFA(1l) =
BETA(1l) = 1.
GAMMA (1) = @

RETURN

ALFA(1l) = 1.

BETA(l) = 0.

GAMMA (1) = 0.2*UBND**5
RETURN

END

SUBROUTINE FEVAL(X,T,U,UX,F,NPDE)
DIMENSION U(NPDE) ,UX(NPDE) ,F (NPDE)
F(1) = UX(1)

RETURN

END

SUBROUTINE GEVAL({X,T,U,UX,G,NPDE)
DIMENSION U (NPDE) ,UX(NPDE) ,G(NPDE)
G(l) = 0.

RETURN

END

SUBROUTINE UPDATE(Y)
DIMENSION Y (42)

COMMON /UPD/ W(41) /BND/ YBND
S =20.

DO 16 L = 1,40

S =S + W(L)*Y(L)

Cl W(4l)

C3 S ~ 0.2

COMPUTATION OF YBND BY MEANS OF NEWTON-~-RAPHSON METHOD

DY = (Cl*YBND + @.2*YBND**5 + C3)/(Cl + YBND**4)
YBND = YBND ~ DY

IF (ABS(DY) .GT. 5.E-3) GOTO 20

Y(41) = Y¥YBND

RETURN

END
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PROBLEM B

PROGRAM PDE(INPUT,OUTPUT ,TAPES=INPUT,TAPE6=0QUTPUT)
DIMENSION U(62),U1(62),02(62) ,00UT(62) ,DU(62) ,DULl(62),
* SIGMA(2) ,INFO(15)

EXTERNAL DER

COMMON /ALL/ NPDE,NPTS,NC,X(61)

NPTS 61

NPDE 1

NEQ = NPDE*NPTS + 1
NC = 2

DEFINITION OF GRID AND INITIALIZATION OF VALUES

OO0

DO 16 I = 1,NPTS
IF (I .LT. 41) X(I)
IF (I .GE. 41) X(I)
U(1) = 0.

16 CONTINUE
U(NPTS) = 1.

FLOAT(I - 1)/886.
FLOAT(I ~ 41)/46. + 6.5

FURTHER INITIALIZATION OF THE PARAMETERS OF M3RK

oNoNe!

TOL = 1.0E~4
INFO(1) g
INFO(2) 2
INFO(3) 20000
T = 6.0
U(NEQ) = T
WRITE(6,2)5H T\X, (X(1),I = 1,41,8),(X(I),I=45,57,4)
2 FORMAT(1H ,A5,16F7.3)
WRITE(6,1)
1 FORMAT(1H )
DO 9@ KL = 1,10
TE = .661
READ(5,*) TE
CALL M3RK(T,TE,NEQ,H,HMIN,SIGMA,TOL,DER,
* y,01,02,000T,DU,DUL,IFLAG,INFO)
WRITE (6,4) TE, (vuouT(I1),I = 1,41,8),(UOUT(I),1=45,57,4)
4 FORMAT(1H ,F5.3,10F7.3)
9¢ CONTINUE
STOP
END

HI
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SUBROUTINE DER(NEQ,Y)

DIMENSION Y (NEQ),U(1,41),A(1),B(1),C(1),D(1),E(1),F(1),G(1)
EXTERNAL FEVAL,GEVAL,BNDRY

COMMON /ALL/ NPDE,NPTS,NC,X(61)

DO 16 L = 1,NPTS

u(l,L) = Y(L)

T = Y (NEQ)

CALL PDEF1(X,T,U,NPDE,NPTS,NC,FEVAL,GEVAL,BNDRY,A,B,C,D,E,F,G)
DO 26 L = 1,NPTS

Y(L) = U(1,L)

Y(NEQ) = 1.

RETURN

END

SUBROUTINE BNDRY(T,ALFA,BETA,GAMMA,U,NPDE,LEFT)
DIMENSION ALFA (NPDE) ,BETA (NPDE) ,GAMMA (NPDE) ,U (NPDE)
LOGICAL LEFT

IF (.NOT. LEFT) GOTO 10

ALFA (1) 2.

BETA (1) 1.

GAMMA (1) = 0
RETURN
ALFA (1) .
BETA (1) o
GAMMA (1) = 1.
RETURN

END

1
]

SUBROUTINE FEVAL(X,T,U,UX,F,NPDE)
DIMENSION U (NPDE) ,UX(NPDE) ,F (NPDE)
F(1l) = UX(1l)

IF (X .LT. ©6.5) F(1) = UX(1)*5.
RETURN

END

SUBROUTINE GEVAL(X,T,U,UX,G,NPDE)
DIMENSION U (NPDE) ,UX(NPDE) ,G (NPDE)
G(1l) = EXP(U(1))

IF (X .LT. ©6.5) G(1) = 1000.*G(1)
RETURN

END
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PROBLEM C

PROGRAM PDE(INPUT,OUTPUT,TAPES=INPUT,TAPE6=0UTPUT)
DIMENSION U(22),U1(22),02(22) ,00UT(22) ,DU(22) ,DU1(22),
* SIGMA(2) ,INFO(15)

EXTERNAL DER

COMMON /ALL/ NPDE,NPTS,NC,X(21)

21
1

NPTS
NPDE
NC =
NEQ = NPDE*NPTS + 1

=N

DEFINITION OF GRID AND INITIALIZATION OF VALUES

(eNeNe!

DO 16 I = 1,NPTS
X(I) = FLOAT(I ~ 1)/FLOAT(NPTS - 1)
U(I) = 600.

10 CONTINUE

FURTHER INITIALIZATION OF THE PARAMETERS OF M3RK

[eXeKe!

TOL = 1.0E~4
INFO(1) ]
INFO(2) 2
INFO(3) 20000
T = 0.0
U(NEQ) =T
WRITE(6,2) SH T\X, (X(I),I = 1,21,4)
2 FORMAT(1H ,A5,6F8.2)
WRITE (6,1)
1 FORMAT (1H )
DO 99 KL = 1,7

IF (KL .EQ. 1) TE = 0.05
IF (KL .EQ. 2) TE = 0.10
IF (KL .EQ. 3) TE = 0.50
IF (KL .EQ. 4) TE = 1.0
IF (KL .EQ. 5) TE = 2.5
IF (KL .EQ. 6) TE = 5.0
IF (KL .EQ. 7) TE = 7.5

WRITE(6,1)
CALL M3RK(T,TE,NEQ,H,HMIN,SIGMA,TOL,DER,
* y,u1l,02,00UT,DU,DULl,IFLAG,INFO)
WRITE(6,4) TE, (UOUT(I),I = 1,21,4)

4 FORMAT(1lH ,F5.2,6F8.2)

99 CONTINUE
STOP
END
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SUBROUTINE DER(NEQ,Y) .
DIMENSION Y(NEQ),U(1,21),A(1),B(1),C(1),D(1),E(1),F(1),G(1)
EXTERNAL FEVAL,GEVAL,BNDRY

COMMON /ALL/ NPDE,NPTS,NC,X(21)

DO 16 L = 1,NPTS

Uu(l1,L) = Y(L)

T = Y(NEQ)

CALL PDEF1l(X,T,U,NPDE,NPTS,NC,FEVAL,GEVAL,BNDRY,A,B,C,D,E,F,G)
DO 26 L = 1,NPTS

Y(L) = U0(l,L)

Y(NEQ) = 1.

RETURN

END

SUBROUTINE BNDRY(T,ALFA,BETA,GAMMA,U,NPDE,LEFT)
DIMENSION ALFA (NPDE),BETA (NPDE) ,GAMMA (NPDE) ,U (NPDE)
LOGICAL LEFT

ALFA(1l) = 0.
BETA(1) = 1.
GAMMA (1) = 0.

IF (.NOT. LEFT) GAMMA(1l) = 1.72E-9%(6.25E+10 — U(1l)**4)
RETURN

END

SUBROUTINE FEVAL({X,T,U,UX,F,NPDE)
DIMENSION U(NPDE) ,UX(NPDE) ,F (NPDE)
F(l) = UX(1)

RETURN

END

SUBROUTINE GEVAL(X,T,U,UX,G,NPDE)
DIMENSION U(NPDE) ,UX(NPDE) ,G (NPDE)
G(l) = 0.

RETURN

END
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PROBLEM D

PROGRAM PDE (OUTPUT,TAPE6=0OUTPUT)
DIMENSION U(75) ,U01(75),02(75) ,00UT(75) ,DU(75) ,DU1(75),
* SIGMA(2) ,INFO(15)

EXTERNAL DER

COMMON /ALL/ NPDE,NPTS,X(37)

NPTS
NPDE

37
2

NEQ = NPDE*NPTS + 1

DEFINITION OF GRID AND INITIALIZATION OF VALUES

DO 18 I =

IF (I
IF (I
IF (I
Uu(I)

- LT.
.GE.
.GE.
1.

1,NPTS
11) X(I)

FLOAT(I -~ 1)*.01

11 .AND. I .LT. 27 ) X(I) = FLOAT(I ~ 11)*.65 + 0.1

27) X(I)

U(I + NPTS) = 0.
16 CONTINUE

FLOAT(I ~ 27)*.01 + 0.9

FURTHER INITIALIZATION OF THE PARAMETERS OF M3RK

TOL = 1.0E~4
INFO(1) = 0
INFO(2) = 2
INFO(3) = 20000
T = 0.0

U(NEQ) = T

WRITE(6,2) 4H T\X, X(1),(X(I),I =

2 FORMAT (1H
WRITE(6,1)
1 FORMAT(1lBH )
DO 98 KL = 1,10
(KL ~ 1.)*0.5
.EQ. 1) TE = 6.1
WRITE(6,1)
CALL M3RK(T,TE,NEQ,H,HMIN,SIGMA,TOL,DER,
* y,ul,02,00UT,DU,DULl,IFLAG,INFO)
WRITE(6,4) TE,UOUT(1l), (UOUT(I),I
WRITE(6,5)
4 FORMAT (1H
5 FORMAT (1H
94 CONTINUE

TE =
IF (K

STOP
END

L

,A4,10F6.3,F7.3)

uouT(38) , (UOUT(I),I
,F4.1,10F6.3,F7.3)
,4X,10F6.3,F7.3)

11,27,2) ,X(37)

11,27,2) ,U(37)
48 ,64,2) ,U(74)
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SUBROUTINE DER(NEQ,Y)

DIMENSION Y (NEQ),U(2,41),A(2),B(2),C(2),D(2), E(Z) JF(2),G(2),
* P(2),Q(2),R(2),S5(2)

EXTERNAL FEVAL,GEVAL,BNDRY

COMMON /ALL/ NPDE,NPTS,X(37)

DO 10 L = 1,NPTS

U(l,L) = Y(L)

U(2,L) = Y(L+NPTS)
19 CONTINUE

T = Y(NEQ)
CALL PDEF2(X,T,U,NPDE,NPTS,FEVAL,GEVAL,BNDRY,
* AIBIC'DIEIFIGIPIQIRIS)

DO 20 L = 1,NPTS

Y(L) = U(1,L)

Y (L+NPTS) = U(2,L)
20 CONTINUE

Y (NEQ) = 1.

RETURN

END

SUBROUTINE BNDRY(T,ALFA,BETA,GAMMA,U,NPDE,LEFT)
DIMENSION ALFA(NPDE) ,BETA (NPDE) ,GAMMA (NPDE) ,U (NPDE)
LOGICAL LEFT

IF (.NOT. LEFT) GOTO 10

ALFA(l1) = @.
BETA(1l) = 1.
GAMMA (1) = 0.
ALFA(2) = 1.
BETA(2) = 0.
GAMMA (2) = 0.
RETURN

19 ALFA(1l) = 1.
BETA (1) = 0.
GAMMA (1) = 1.0
ALFA(2) = 0.
BETA(2) = 1.
GAMMA (2) = 0.
RETURN
END

SUBROUTINE FEVAL(X,T,U,UX,F,NPDE) .
DIMENSION U(NPDE) ,UX(NPDE) ,F (NPDE)
F(l) = UX(1l)*0.024

F(2) = UX(2)*0.17

RETURN

END

SUBROUTINE GEVAL(X,T,U,UX,G,NPDE)
DIMENSION U(NPDE) ,UX(NPDE) ,G(NPDE)
P = EXP(5.73*(U(1) ~ U(2)))

G(l) = -~ P + 1./P**2
G(2) = ~ G(1)
RETURN

END
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PROBLEM E

PROGRAM PDE (OUTPUT,TAPE6=0OUTPUT)
DIMENSION U(12),U01(12),U02(12),000T(12),DU(12) DUl(lZ),
* SIGMA(2) ,INFO(15)
EXTERNAL DER
COMMON /ALL/ NPDE,NPTS,X(11)

NPTS 11
NPDE 1
NEQ = NPDE*NPTS + 1

]

DEFINITION OF GRID AND INITIALIZATION OF VALUES

oo

DO 16 I = 1,NPTS
X(I) = FLOAT(I - 1)/FLOAT(NPTS ~ 1)
u(I) = 100.
16 CONTINUE
U(NPTS) = 58.

FURTHER INITIALIZATION OF THE PARAMETERS OF M3RK

naon

TOL = 1.0E~4
INFO(1) )
INFO(2) 2
INFO(3) 20000
T=0.0
U(NEQ) = T
WRITE(6,2) S5H T\X, (X(I1),I =1,11,2)
2 FORMAT(1H ,A5,F5.1,5F8.4)
WRITE(6,1)
1 FORMAT(1H )
DO 90 KL = 1,12
TE = (KL -~ 1.)*0.605
IF (KL .EQ. 1) TE = 0.001
IF (KL .EQ. 12) TE = 0.1
WRITE(6,1)
CALL M3RK(T,TE,NEQ,H,HMIN,SIGMA,TOL,DER,
* y,ul,02,00U0T,DU,DULl,IFLAG,INFO)
WRITE(6,4) TE,(UOUT(I),I = 1,11,2)
4 FORMAT(1H ,F5.3,F5.1,5F8.4)
90 CONTINUE
STOP
END
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SUBROUTINE DER(NEQ,Y) ‘ :
DIMENSION Y(NEQ),U(1,11),A(1),B(1),C(1),D(1),E(1),F(1),G(1),
* p(1),0(1),R(1),S(1)
EXTERNAL FEVAL,GEVAL,BNDRY
COMMON /ALL/ NPDE,NPTS,X(11)
DO 16 L = 1,NPTS

16 U(1,L) = Y(L)

T = Y(NEQ)
CALL PDEF2(X,T,U,NPDE,NPTS,FEVAL,GEVAL,BNDRY,
* A,B,C,D,E,F,G,P,Q,R,S)

DO 20 L = 1,NPTS
20 Y(L) = U(1l,L)

Y(NEQ) = 1.

RETURN

END

SUBROUTINE BNDRY(T,ALFA,BETA,GAMMA,U,NPDE,LEFT)
DIMENSION ALFA (NPDE) ,BETA (NPDE) ,GAMMA (NPDE) ,U (NPDE)
LOGICAL LEFT

IF (.NOT. LEFT) GOTO 19

ALFA(l) = 1.
BETA(l) = 0.
GAMMA (1) = 50.
RETURN

16 ALFA(1) 0.

BETA(1l) = 1.
GAMMA (1) = 1. - SIN(U(1))
RETURN

END

SUBROUTINE FEVAL(X,T,U,UX,F,NPDE)
DIMENSION U(NPDE) ,UX(NPDE) ,F (NPDE)
F(1) = U(1)*UX(1)

RETURN

END

SUBROUTINE GEVAL(X,T,U,UX,G,NPDE)
DIMENSION U (NPDE) ,UX(NPDE) ,G(NPDE)
G(l) = ~ U(1)**2

RETURN

END
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