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A semi-discretization algorithm for two-dimensional partial differential 

equations 

by 

J. Kok, P.J. van der Houwen & P.H.M. Wolkenfelt 

ABSTRACT 

This paper describes the semi-discretization method of a general class 

of non-linear two-dimensional time-dependent P.D.E. 'son a grid with non­

uniform meshes. Secondly, it presents the documentation of the semi­

discretization algorithm. Finally, the relation with other semi-discretiza­

tion methods to be used together with different time-integrators for solv­

ing initial-boundary value problems is indicated. 
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l . INTRODUCTION 

A more or less accepted approach of developing software for solving 

the initial boundary value problem for a time dependent partial differential 

equation is based on the method of lines or semi-discretization method. 

Suppose that: we are given the initial boundary value problem 

( l. 1) 

au 
at" 

,( au au\ 
E\t,x,y,U,ax'ay_) = O, 

where G, uO and Bare given functions and Q is a two-dimensional region 

bounded by one or more closed curves representing the boundary aQ (see 

figure 1.1). 

y 

X 

Fig. I.I A triply-connected region 

The semi-discretization method based on finite differences replaces the 

derivatives of the unknown function U with respect to the space variables 

x and y by difference quotients defined on certain sets of grid points R 

and aR belonging to the region Q and its boundary aQ, respectively. Let U 

be a grid function defined on Ru aR, then semi-discretization of problem 

(l.l) yields at each (internal) grid point of Ran ordinary differential 

equation of the form 
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(t. 2) d 
dt u(t) = G(t,u), 

with initial conditions 

( 1. 3) 

and at each (bou:ndcwy) grid point of 3R a condition ·bf the form 

( 1. 4) B(t,u) = o, 

In this paper we present an algorithm which transforms problem (1.1) 

into problem (1.2)-(1.4). The transformation is based ondivided differen­

ces using non-uniform meshes and yields a second order approximation to the 

original problem (1.1). In order to use the algorithm one should prescribe 

the functions G, Band u0 , and either the grid points or the grid lines of 

which the grid points are the points of intersection. 

In the last section, it is described in which way we can use the 

various semi-discretization methods together with time-integrators for the 

solution of (1.2) - (1.4). 

This paper has been written as a contribution to a project of the 

Numerical Mathematics department of the MC to develop numerical algorithms 

for the solution of initial boundary value problems. 

2. DISCRETIZATIONS ON A CURVILINEAR NET 

In the numerical solution of partial differential equations by finite 

difference methods it is often desirable to approximate the derivatives by 

difference quotients on a non-uniform grid. The usual derivation of 

difference quotients by Taylor expansions, however, is rather cumbersome 

as soon as the grid meshes differ from rectangles (cf. [3]). Therefore, 

we have chosen an alternative approach. Confining our considerations to 

discretizations of derivatives in two variables x and y, we introduce two 

new variables X and Y which are functions of x and y, and which define by 

the equations 



(2. 1) X(x,y) = k~, Y(x,y) = r~, k and r integers 

a curvilinear net in the (x,y)-plane. In the (X,Y)-plane this non-uniform 

grid is transformed into a uniform grid with square meshes of width~ (see 

figures 2.1 and 2.2). 

y 

X 

X 

y 

e;y) - (r-T)ll l 
:4\,. X:(x,y) = k~ 

X 

Fig. 2.2 (X,Y)-plane 
--+ X 

X(x,y) = (k-1)~ 

Fig. 2. 1 (x,y)-plane 
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The coordinates of the grid points in the (x,y)-plane will be denoted 

by 21cr and ykr" Thus, 

(2. 1) X(x. ,Yk) = k~, Y(x ,yk) = r~. Kr r kr r 

Next we express the differential operators with respect to x and yin 

terms of differential operators with respect to X and Y: 

a ax a ay a -=--+--ax ax ax ax ay ' 

(2.2) a ax a ay a -=--+--ay ay ax ay ay ' 
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cl 2 cl 2x·· cl - cl 2y cl cl X cl X cl 2 
--=--+---+- ---+ clxcly clxcly ax clxcly clY clx cly ax2 

(2.2) ay ay a2 [ax ay ay axl a2 
+ clx cly clY2 + clx cly + clx cly J clXclY ' 

a 2 a2x a a2y a (ax\2 a2 (BY)2 a2 2 ax ay a2 
cly2 = ay2 ax + ay2 ay + ay) ax2 +l,ay ay2 + ay • ay axay • 

Since the differential operators cl/clX and cl/clY are easily discretized on 

the square grid shown in figure 2.2, we only have to derive expressions 

for the derivatives clX/clx, clX/cly, clY/clx, ••• at the grid points (21cr'ykr). 

In [4] a first order approximation to these quantities is derived. Here, 

we try to find higher order approximations. We will distinguish two cases: 

firstly, the case where the grid lines (2.1) ate explicitly given and 

secondly, the case where only the points of intersection of the grid lines 

are available. The latter case was also considered in [2]. 

2.1 Formulas using grid lines 

In this section it will be assumed that the grid lines defined by 

(2.1) are explicitly given, that is, we have at our disposal the equations 

(2. 3) y = f (x), 
r X = ~(y) 

presenting the "horizontal" and "vertical" grid lines, respectively. 

y 

t 
-x 

Fig. 2.3 Curvilinear grid 

y = f (x) r 



Our problem now is the construction of functions X(x,y) and Y(x,y) with 

continuous second derivatives and such that 

(2 .4) 

X(8k (y) ,y) = k A , 

Y(x,f (x)) = r A • 
r 

When we succeed in finding such functions, the operators a/ax, a/ay, 

can be discretized within the accuracy of the discretization of the 

operators a/ax, a/ay, ••. on the square grid (kA,rA) in the (X,Y)-plane. 

Consider (2.4) for arbitrary, but fixed values y and x, respectively. 

(k+2)A 

Fig. 2.4. 

(k+3)A (r+3)A 

?(x,y) 

-r----+------,.----"""T""----Y 

Behaviour of the functions X(x,y) and Y(x,y) 

when (2.4) is fulfilled. 

Then we see that the functions X(x,y) and Y(x,y) are required to have the 

behaviour as: shown in figure 2.4. Moreover, these functions should be 

twice differentiable at all x E [gk . (y) ,gk (y)] and all 
min max 

y E [f (x),f 
r . r 

(x)J, respectively. 
min max 
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Rather than trying to construct global representations of the transfor­

mation functions X an Y, we will construct local representations in the 

neighbourhood of the grid lines x = gk(y) and y = fr(x). We may then 

imagine that these representations are sufficiently smoothly continuated 

and matched together in the "in between" regions. It is tempting to define 

X(x,y) by a Lagrange polynomial in x: 
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(2.5) X(x,y) = 

k+m2 
TT 
l=k-m1 [:x-gD (y)] 
l;&j ,{, 

in the neighbourhood of x = 8k(y). However, the partial derivatives of this 

function, in particular those with respect toy, are difficult to evaluate. 

A considerably easier evaluation is obtained by writing X = X(x,y) and 

Y = Y(x,y) implicitly as 

(2 .6) x = 'l'(X,y), y = 4>(x,Y), 

and by observing that condition (2.4) transforms into 

(2.4') 

8k (y) = 'l'(k~,y) 

f (x) = 4> (x, r~) r . 

From these relations it is seen that along the grid lines x = gk(y) the 

derivatives of the function 'l' with respect to X can be approximated in an 

extremely simple manner and similarly the derivatives of 4> with respect 

to Y along the grid lines y = f (x). For instance, along the lines 
r 

X(x,y) = k~, we may write 

a'l' 8k+J (y) - gk-1 (y) 
a X (k~ 'y) = ---=2-~---- + 

(2. 7) as~ ➔ o, 

and similar,expressions for aqi/ay, a 24>/aY2 along the lines Y(x,y) = r~. 

Having found approximations to the derivatives of 'l' and 4> with respect 

to X and Y, respectively, we only have to derive relations between these 

derivatives and the derivatives ax/ax, a 2x/ax2, ••• occurring in the 



formulas (2.2). Such relations can be obtained by differentiating equations 

(2.6) with respect to x and y: 

o'l' ax = a2'!' rax]2 + aw a2x = 
= ax ox ' O ax2 ax ax ax2 ' O 

(2 .8) 
= !!_ ay O = a24> [ay]2 aqi a2Y [a 24> ay a2qi ] ay a2y aqi 

BY ay ' aY2 oy + clY a/ ' O = aY2 ax + aYox ay + axay oY • 

From (2.7) and (2.8) approximations to the derivatives ax/ax, a2x/ax2 , 
2 2 

ay/ay and ay /ay at the grid points can be derived. In order to find the 

remaining derivatives we need some additional relations between the 

derivatives of X and Y. These are provided by differentiating equations 

(2.4). Along the grid lines we then find 

ax=_ g' (y) ax 
ay k ax ' 

ay = - f' (x) ay 
ox r ay ' 

(2.9) 
a2x [ 72 a2x 

2 
g\(y) a X "( ) ax 

- = - g' (y)J - - 2 axay - gk y ax ' ay2 k ax2 

a2y 2 2 a2y 
[f' (x)] ~- 2 f' (x) f''(x) clY 

-- =- axay - ay • 
ax2 r ay2 r r 

From (2.7) - (2.9) approximations at the grid points can be derived to all 

derivatives occurring in formula (2.2). In the expressions given below all 

functions are assumed to be evaluated at the grid point (~r,Ykr) where 

(2. IO) ~r = ~(ykr), ykr = f (~ ) • r r 

Then we may write 

ax 21:l 2 
ax = 

~+]-~-] 
+ 0(1:l ) ' 

(2. I I) 
ax , ax 
ay = - g k ax ' 
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(2 • l l) 

and similar expressions for the derivatives of Y. 

The expressions given in (2.11) only apply to grid points (~r,ykr) 

for which the functions ~-l' gk+l' fr-I and fr+] are available. 

Thus, (2.11) applies to boundary grid points provided that the neighbour­

ing external grid line is also prescribed (see figure 2.5). 

Fig. 2.5. External grid lines (- - -) 

\ 
\ 

\ 
\ 
\ 

\ 
\ 
I 

An alternative would be the definition of asynnnetric difference 

approximations to the derivatives cl'!:'/clX, a2'¥/ax2, ••• (cf. (2.7)) at the 

boundary points. For instance, along a "left" boundary grid line 

X(x,y) = k~, we may define 
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a'¥ -38k + 4f\:+1 - f\:+2 
0(82) ax (k8,Y) = + 

28 
(2. 7 ') 

3211' 28k - Sgk+l + 4f\: - 8k 
as 8-+ 0. 

(k8,y) +2 +3 + 0(8 2) 
ax2 

= 
82 

The expressions in (2.11) which are changed by using (2.7') instead of (2.7) 

are given by 

ax __,. __ _,__2_8 ____ + 0(8 2) , 
dX = -3gk + 48k+1 - ~+2 

(2.11 1 ) 28k - 58k+1 

2.2 Formulas using only grid points 

2 
0(8 ) ' 

In the preceding section the availability of a twice differentiable 

representation of the grid lines was assumed. In many cases, however, we 

only have the coordinates of the grid points at our disposal. Expressions 

(2.11) may still be used when the quantities 8k+I' 8k-t' g'k+l' g'k, g'k-l 

and~ are replaced by numerical approximations in terms of the grid point 

coordinates (see figure 2.6). 

y 

X = gk(y) 

= gk-l(y) 

(~k+lr'Yk+lr) 

y = f (x) 
r 

y = f (x) 
r-1 

X = gk+l (y) 

fig. 2.6 Situation at the grid point (xkr'Ykr) 

X 
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Suppose that we are given the slope g't(Ylr) and curvature gl(ylr) 

of the grid line x = gl(y) in all grid points (xlr'ylr). Then we may use 

the approximations 

(2. I 2) 

where l = k-1, k, k+I in case of (2.11) and l = k, k+I, k+2, k+3 in case of 

(2.11'). 

Finally, the values of gk(ykr) and gk(ykr) are to be approximated. 

Using three reference points we obtain 

(2. I 3) 

where 6~r = ~r+I - ~rand 6ykr = ykr+I - ykr" In order to get second 
order approximations to ~(ykr) one should use at least four reference 

points. Let us write 

(2. 14) ~'(y ) = 
~ic kr 

+3 
I a.~ ., 

j=-3 J r+J 

then this expression is second order accia>ate when the coefficient vector 
-+ a= (a.) satisfies the equation 

J 

I 0 

-6 r-3 -6 r-2 -6 r-1 0 6r+I 6r+2 6r+3 0 
-+ 

62 --2 62 2 2 2 
a = 

(2. 15) r-3 6 r-2 r-1 0 6 r+I 6 r+2 6 r+3 2 

-63 -63 -63 0 
3 63 3 

.0 
r-:3 r-2 r-1 6 r+I r+2 6 r+3 

where 6 . = lyk +•-yk 1. The first derivative g\ (ykr) is then still 
r+J r J r · 



given by (2.13) with second order accuracy. The approximation (2.14) -

(2.15) can be used at 
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lefthand boundary points 

righthand boundary points 

a_3 = a_2 = a_ 1 = 0 

a = a = a = 0 
3 2 1 

"almost" lefthand boundary points by choosing 

"almost" righthand boundary points 

remaining internal points 

a_3 = a_2 = a 3 = 0 

a = a = a = 0 3 2 -3 
a_3 = a3 = 0 

2.3 Approximation of the original differential operators 

Having derived numerical approximations to the derivatives of the 

transformation functions X and Y, we are able to define the difference 

approximations to the original differential operators. Let us approximate 

the differential operators in the coordinates X and Y by central differ­

ences and write 

ax 
x 1 Ll, 

ax X2Ll, a2x 
Xllll' 

a2x 
x22,'.l' 

a2x 
x12,'.l' -= ay = -2 = -- = axay = ox ox ay 2 

(2. 16) 

ay 
Y1ti, 

ay 
y 2,'.l' 

a2y 
yllll' 

a2y 
y22ti, 

a2y 
YI2Ll. -= ay = -2 = --= axay -ox ox ay 2 

From (2 .2) it then can be derived that second order accurate approximations 

[o/ax], [o/ay], ••• to o/ax, o/ay, .•• are given by the following "molecule" 

representations: 
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k:YJ-
r-l(Xl y2 +X2 y I) 2YIY2 + yl2 l(X?2•X2Y1)] 

I 
2X1X2 - Xl2 -4(X1X2+Y 1Y2) 2X 1x2 + x 12 2 

½(X1Y2+X2Yl) 2Y 1Y2 - y12 -½(Xl y2 +X2 y 1) 

[;::] [ 
-X2Y2 2Y; + Y22 X2Y2 

j ½ 
2 -4(x2+y2) 2 = 2X2 - X22 2X2 + X22 2 2 

X2Y2 2y2 - y22 -X2Y2 2 

CONCLUDING REMARKS 

The project for developing numerical algorithms for the solution of 

initial boundary value problems has resulted in a modular construction of 

a class of algorithms. 

One module is the calculation of approximations of the space deriva­

tives for the right hand side evaluations, one other module is one of the 

available integrators for the time-integration of the resulting transformed 

problem (1.2)- (1.4), and finally an interface provides for the representa­

tion of the grid, the solution of the boundary condition and the control of 

all subprocesses involved. In this setup several methods for approximating 

the space derivatives can easily be exchanged and the same holds for the 

various time·-integrators we want to apply. 

In an earlier version of this construct the formulas given in Section 

2.3 were used. Together with several time-integrators for semi-discretized 

parabolic equations, this version was run with several test problems for 

various grids and boundaries. Here the main advantage of the construct be­

came clear, Le. the possibility to process problems with all kinds of rec­

tangular as well as curvilinear grids and with unlimitedly kinked boundaries. 

Following the conclusions of a comparison by DEKKER (see[!]) it was 

decided that a later version of the algorithm would be realized with Dekker's 

method for minimizing the truncation errors of the derivative approximations, 

at the same time allowing a wider class of boundary conditions. The main 

reason for this exchange was the expected better approximation of the space 

derivatives on curvilinear grids, although Dekker's method proved to be more 
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expensive in both computation time and memory. Results of tests with Dekker's 

semi-discretization method will be given in the near future. 

The realization of the algorithm, containing now Dekker's method and 

an interface for delivering right hand side evaluations of the initial value 

problem originated by semi-discretization, is described 1.n [5]. The semi­

discretization method is exchangeable, while the time-integrator 1.s a para­

meter of the algorithm. In this shape the algorithm will be used for the 

investigations at the Mathematical Centre of suitable time-integrators for 

problems originated from initial boundary value problems. 

It is clear that Dekker's method, using nine grid points only for 

approximating derivatives, uses less information than the here described 

discretization method that has the possibility to derive the transformation 

function for transforming the real space (containing the grid and the 

grid lines) to the discretization space where the grid is uniform with square 

meshes. It can use the complete grid lines and it is not restricted to sub­

grids of thr,e.e horizontal and vertical lines for computing the approxima­

tions locally. It is therefore expected that the method presented here will 

be important in the proceeding investigations of methods for solving initial 

boundary value problems. 
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