
stichting 

mathematisch 

centrum 

· AFDELING NUMERIEKE WISKUNDE 
(DEPARTMENT OF NUMERICAL MATHEMATICS) 

K. DEKKER 

NW 56/78 

SEMI-DISCRETIZATION METHODS FOR PARTIAL DIFFERENTIAL 
EQUATIONS ON NON-RECTANGULAR GRIDS 

Preprint 

~ 
MC 

MEI 

2e boerhaavestraat 49 amsterdam 

S!BL!OTHEEK MATHEi\J1ATISCH CENTRUM 
-AMSlERDNvl-



P4ln:te.d at ~the. Mathema.t-i.c.al. Ce.ntJr.e., 49, 2e. BoeJLhaa.ve6.tJr.aa;t,, AmJ.deJLdam. 

The. Mathematic.al. Ce.ntJr.e., 6ounde.d the. 11-th 06 Fe.bJtu.aJL!f 1946, ,i.J., a non­
pita 6U in6.tLtu,tlo n cuming at the. pltomoilo n o 6 pUll.e. mathema.t-i.C6 and w 
app.U.c.a.t-i.oM. It ,lJ., -6pon601te.d by the. Ne.theJr.i,and6 Goveir.nme.n:t th/tough the. 
Ne.theJr.i,and6 0Jtganiza.t-i.o n 601t the. Advanc.eme.n:t o 6 PU!l.e. Re6 e.Mc.h ( Z. W. 0) • 

AMS(MOS) subject classification scheme (1970): 65M05, 65N05 



Semi-discretization methods for partial differential equations on non-
. *) 

rectangular grids 

by 

K. Dekker 

SUMMARY 

This paper presents a semi-discretization method for two-dimensional 

partial differential equations, applicable to curvilinear meshes. The method 

yields nine-point approximation formulas for the first and second deriva­

tives of a function. Error estimates for another discretization method are 

given, and both methods are compared in numerical examples. The new method 

turns out to be more accurate in our examples, whereas the calculation of 

the weights of the formulas is more time-consuming. 

KEY WORDS & PHRASES: numerical analysis, partial differential equations, 

finite differences, curvilinear grids. 

This report will be submitted for publication elsewhere. 





INTRODUCTION 

The problem of approximating the solution of time-dependent partial 

differential equations (PDE) is often solved by using direct grid methods, 

e.g. the alternating direction, the locally one-dimensional, and the hop­

scotch methods (Gourlay2, Yanenko 10). An alternative approach consists in 

splitting the problem into two subproblems: firstly, transforming the PDE 

into a system of ordinary differential equations (ODE) by discretizing the 

space variables, and secondly, solving the resulting system of ODE's with 

a suitable integrator. At the moment several packages based on this idea 

are available (Schryer6 , -sincovec7). At the Mathematical Centre some inves­

tigation is done in this area, too. Several generalized splitting methods 

have been constructed (Van der Houwen3). which can integrate ODE's with 

five - and nine-point coupling, thereby setting a need for semi-discreti­

zation-methods which yield a nine-point coupling. 

On a square mesh, the approximation of the first and second deriva­

tives of the dependent variable may be obvious. However, on non-rectangular 

grids it is not at all clear which finite difference formula is the best. 

Therefore, we will compare three semi-discretization methods in this paper. 

The first one is a special case of a method published recently by (Frey1), 

for which we give an alternative formulation admitting strict error bounds. 
4 The second method is developed by Kok e.a. , originally intended for grids 

with an explicitly given mesh, and the third one is a new method, which 

tries to minimize the truncation error of the derivative-approximations. 

In the next sections we will derive and summarize the formulas on 

which the three methods are based. Moreover, we calculate error bounds 

for Frey's method. 

In the last section we give some numerical results of the three meth­

ods. First we compute the error terms for a variety of different grids, then 

we calculate the errors in the derivatives of a set of analytically given 

functions on a fixed grid, and finally we compute the solution of an ellip­

tic PDE using the three methods. 
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THE TRANSFORMATION METHOD OF FREY 

Let a curvilinear grid R c JR.2 be given, together with the function 

values of a sufficiently differentiable function u(x,y) at the grid points. 

The problem of approximating the first and second derivatives of u in an 

interior grid point, can be solved by considering a transformation T from 

an element E of R to a square element E' (see figure 1). This method was 

proposed by Frey; we will formulate it now in a slightly different notation. 

z = (x,y) plane 
E' 

E z 2 wt w2 w3 

zl 
T 

z6 w4 WS w6 
ZS 

z8 z9 w7 w9 w8 

Figure 1. Curvilinear and square element 

As Tis an only locally defined transformation, we may assume without 

loss of generality that zS and wS are the origins of their respective planes. 

Then, we define the grid distance~ and the element E' as follows. 

DEFINITION 1 • 

( 1) max llzill 1; here II 11 1 denotes the maximum norm, and 
i=l, .•• ,9 z denotes the vector (x,y)T. 

The grid points of E' are given by 

(2) 

Now, we can express the transformation T as a Taylor-series about z5 , 

thus introducing a linear operator A and a bilinear operator B: 



When the operators A and Bare known, we can express the derivatives 

of u in z5 by (using the chain-rule for differentiation) 

(4) 

(5) [:xx :xy] = 

yx YY 

A + < u u > B. 
X y 

3 

Here, we assume u to be the function on E' defined by u(w) = u(z) if w = Tz, 

and using central difference formulas on E', we can calculate the approxi­

mations for u ,u ,u ,u and u on E. 
x y xx xy YY 

In order to compute approximations to A and B, we consider an opera-

tor S: E' + E, such that Sw. = z. for i = 2,4,5,6,8, and Sw. = z.+0(~3) 
i i i i 

for the other gridpoints. It is easily verified, that S given by (6) satis-

fies this conditions: 

(6) ~ 2 Sw =Cw+ !Dw, with 

(7) C = 

(8) 

~ Now, recalling that Tz. = w., we see that Sis an approximation to 
-1 i i 

T , so that we are able to compute approximations A and B to A and B, 

using 

(9) z = 

Comparing terms of the same order in (9), we finally find 
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(IO) and 

"' ,....,,, ,..._,,....,,, ,..._, 
(11) B = -ADAA. 

~ Substituting A for A and B for Bin (4) and (5), we obtain approximations 

~ to u etc., which are exactly the same as the equations (11 )-(14) given 
X X 

by Frey, as some lengthy calculations may reveal. However, we did choose 

for the above formulation because it enables us to derive error bounds for 

the approximations. 

In order to perform the error analysis we first notice that the in­

verse of T can be written as (regarding x and y as functions of X and Y) 

(12) 
[

X X l -1 X y 

T w = Sw = Yx Yy 

,[X xx 
w + ½ 

Yxx 

X 
XY 

X 
YX 

x; l yy 2 3 
w + O(w) 

Yyy 

Expanding x and yin a Taylor series w5 , we obtain (for small b.) 

1::,.2 [xxxx X ] 
yyy 

+ 0(1::,.4), ( 13) oC = c-c =6 

Yxxx yyyy 

= 62 rxxxxx 
2(x +x ) 2(xXXXY+~) ~] XXXY XYYY 

oD = D-D 
12 

-Yxxxx Z(yXXXY+yXYYY) 2 (yXXXY+yXYYY) Yyyyy 

+ 0(1::,.4). 

Hence, we have II cell :5; k b. 2 and II oDII :5; k 1::,.2. Using A = c- 1 , B = -ADAA, 
C C B 

we find after some calculation (cf. Wilkinson) 

(14) oA = A-A= 

(15) 11 oBII 2= IIB-BII 2 $; 
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Obviously, the errors oC and oD depend on the curvature of the grid­

lines, and the variation in the distance between the gridpoints; oA and oB 

are influenced, too, by the condition of the transformation, and in conse­

quence on the angle between the gridlines. 

Now, let u etc. denote the central difference approximation to u; 
X 

using the error bounds given above, and the formulas (4), (5), we obtain 

the error estimates 

(16) 

where~ and n are certain points between w4 and w6 , w2 and w7 respectively. 

In order to compute the error in the second derivative, we observe that 

( 17) Sw. = z. + oz., 
1. 1. 1. 

i = 1,3,7,9, 

with e.g. oz3 = <-½xXXY-½xXYY, ~½yXXY-½YXYy>T ~3 + 0(~4) 

})z.= 0(~4). 
• 1. 

and 
1. 

Thus, the error in uXY - uXY is determined not only by the discretization 

but also by the evaluation of u in the points z. instead of Sw .• Using 
1. 1. 

u =-½ {u3+u7-u1-u9}, this last error is given by 
XY 4~ 

( 1 8) 

because oz3 + oz7 - oz 1 - oz 9 = 0. Finally we get 

(] 9) 

+ 
xx xy 

[ IIAll 2 J_l II 
2112 

[u u 1 
211 .II 211All 2k ~ ~ J a 

+ IIBII 2 
u u 

yx YY 

[
uxxxx2 (uXXXY+uXYYY) ] } 

II 2+c 
2(uXXXY+uXYYY) uyyyy 

~ u u 

2~]•2. XXX X 
+ 

u u 
yyy 2 y 

The estimates (16) and (19) show that the finite difference approxi-

mations are of second order, just as is the case for square elements. However, 
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for curvilinear elements the error constants will be larger, as more terms 

occur in the error bounds. 

A TRANSFORMATION METHOD WITH EXPLICITLY GIVEN GRIDLINES 

The method of Kok4 is based on the idea, that the gridlines are known 

functions of the coordinates z and y, such that their derivatives can be 

obtained easily. When the gridlines are not known, they are locally approx­

imated; to that end the lines in the x-direction are considered to be func­

tions of x, and a three-point interpolation formula yields 

Y9-y8 

( 20) y = f (x) 

and similarly for f ,f,P, ,g and g_ (see figure 3). 
+ + 

z2 y=f+(x) 

x=g_(y) 
y=f (x) 

Figure 2. The gridlines as second order interpolation polynomials 

Now, we will denote by f,f' etc. the function and derivative values at the 

point x5 , and similarly by g,g' the values at the point y5 • Using the same 

notation as in the previous section, the derivatives of a function u at the 

point z5 = (x5 ,y5) are given by the formulas (4) and (5), with matrix A 

defined by 

Al I 
2t., 

A22 
2t., 

= = 
g+-g- f -f ' 

(21) + -

Al2 = -g I Al 1' A21 = -f'A22• 
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and B defined by 

g -2g+g f -2f+f 
+ - B ·= -8 

+ -
BI 11 = -8 /),.' /),.' 3 222 

(f+-f_) 3 (g+-g_) 

A12 ' ' A21 f'-f' 
(22) 2 g+-g-

A22 
+ -

Bl I 2 = B]21 = B -- Al I B212=B221=B222 A -I I I A1 I 2!). , , 
22 2!). 

B122 = -{(g') 2BJ11+2g'B112+g"A11}, B21 I= -{ (f 1 ) 
2B222 +2f I B221 +f"B22l-. 

For a detailed derivation of these formulas we refer to Kok4 • 

THE MINIMIZATION METHOD 

In the previous sections we have described two discretization method 

based on a transformation of the elements. Here, we will follow an alter­

native approach. An approximation formula might be regarded as a function 

of nine parameters, the weights in the points z., i = 1, ••• ,9. Expanding 
1 

each function value in z. as a Taylor-series, we obtain for the approxima-
1 

tion formula a Taylor-series about z5 • Each term of this series has a coef-

ficient depending on several of the weights used in the formula. Now, we 

may wish these coefficients to have a predescribed value, for example one 

for the derivative to be approximated, and zero for the other coefficients 

up to and including third order. However, we obtain ten equations with nine 

unknowns in this way, and a solution generally does not exist. (Here, we 

note that in the rectangular case, a (not unique) solution exists). Restrict­

ing ourselves to the lower order terms, we get only six equations, and we 

have a wide variety of solutions to them. In the following we will compute 

that solution to the latter system, which minimizes the error constants of 

the third order terms, and hope that this solution yields a good approxima­

tion to the required derivative. 

(23) 

First, we introduce the following notations 

T 
u 

<u ,u , 
X y 

u xx --, 
rz 

u xy' 

u u 
yy XXX 
'--, 

✓2. 16 

u xxy --, 
12. 

u u 
..EX J:rj_> , , 

12 lb 
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u u 
dT xx ....ll. >, = <u u -- u x' y' ' xy' 12 12 

u u 
dT xx yy = <u x'uy, --, u s 

12. xy' 12 >, 

Here, u. denotes the function value in z. (cf. figure I), u, etc. the 
1 1 X 

derivatives in z 5 , and ~x etc. approximations to these derivatives. Further 

we note that we have added the factors /z and /6, in order to have a rota­

tion independent Euclidean norm II IIE. This is illustrated by the following 

example. 

EXAMPLE I. Consider the function u(x,y) = x 2-y2• The second derivatives are 

<u u u u > = <2,0,0,2> and their Euclidean norm is 2v'2. A rotation 
xx' xy' yx' YY 

of i yields the function u(s,n) = 2sn, with second derivatives given by 

<0,2,2,0>, again with Euclidean norm 2v'2. As u equals u , the latter term 
xy yx 

can be deleted to shorten the notation. However, the norm is influenced by 

this deletion and ll<u ,u ,u >IIE is no longer rotation independent. Thus, 
xx xy YY 

we have to divide u and u by a factor 12 in order to preserve this xx yy 
property. 

Now, a nine-point approximation method is defined by a matrix of 

weights W(Sx8) 

(24) d = Wu. 

Furthermore, expanding ui 1n a Taylor-series around z5 , we have 

(24) 4 u =Md+ O(ti ), 

where Mis a 8x9 matrix, only depending on the size and shape of the element 

E (see figure I). The error in the approximation can be expressed by 

(26) d - d = WMd + higher order terms - d 
s s' 

and we call F defined by 

(27) F . . = (WM) . . - o .• , 1 
1J 1J 1J 

1, ••• ,5, j = 1, ••• ,9, 
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the error matrix. Obviously, F depends only on the given element, and the 

approximation method chosen, and the minimizing problem is nothing else 

than constructing a kind of inverse of M. To be more precise, we want to 

minimize IIFIIE under the constraints F .. = O, i,j = 1, ••• ,5 (these are the iJ 
first and second order terms), as is illustrated in figure 3. 

?W M 

I mi 
I 
I 

I I 

5 I I ni 
I mal I 

' 
Ml 

I 
M2 I 

I 
I F2 I 

I 

5 4 8 I 

5 4 

Figure 3. The minimizing problem 

The solution may be found by numerical algebra techniques. First, we compute 

the pseudo inverse M7 of M1 (Wilkinson & Reinsch9), such that M7M 1 =I.Now, 

let M~ be the matrix consisting of the three vectors which are orthogonal 

to M1• Then we solve the overdetermined systems 

(28) X a 3 by 5 matrix, 

in the least squares sense, and the desired optimal solution W is given opt 
by 

(29) 

It is easily verified that this solution is optimal, by considering 

(30) 

In the next sections, the computations of Wopt were made by using the 

NAG-library5 routine FOlBHF, which performs singular value decompositions. 
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REMARKS. 

I. We note that the matrix M1 has rank 5, if and only if no quadratic 

form exists, which is satisfied by the nine points z .• As a quadratic 
1 

form is defined by five points, M1 will always have full rank, unless 

the grid is chosen very awkwardly (e.g. all points on a circle, on two 

straight lines). Thus M; indeed exists. 

2. It may be advisable to scale the matrix M before executing the formu­

las (28) and (29), in order to avoid ill-conditioning. Division of the 
2 first two columns of M by~, the next three by~ and the last four by 

~3 (~ as defined in (I)) will be appropriate. Afterwards, the first two 
2 rows of W t should be divided by~, the next ones by~. op 

3. In the derivation of W t' we did not use any specific property of the op 
nine points given, except that they did not lie on a quadratic form. 

Thus, the method can be used for boundary points, too, when we select 

8 points in the neighbourhood of the boundary point, all lying within 

the domain or on the boundary (see figure 4). (Note that the numbering 

is irrelevant). 

Figure 4. An element on the boundary 

However, as the distances zi-zS are larger for boundary points than 

for interior points, the approximations will be less accurate. 

4. It may happen that the matrix (M;Mt) is not of full rank. This case 

occurs if the three-dimensional space Mt is not spanned by the columns 

of M2, or equivalently, if the nine columns of M do not span the whole 
8 

space JR • For example, when the element is uniform and rectangular, 

M spans only a 7-dimensional subspace of JR.8 • 
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When the above described situation arises, the solution of equation 

(28) is not unique; using the pseudo-inverse of (M;Mi), we obtain the 

unique solution vector with minimal norm in th1s solution space, for 

each of the five columns of the right hand side. However, on square 

elements we do not obtain the usual central difference formulas by 

this method, although these formulas obviously lie in the solution 

space of (28). 

This difficulty can be overcome 
2 2 h . Wh h" x.y. tote matrix M. en tis 
i i 

by adding the vector m10 with elements 

vector is not linearly dependent on the 

other columns of M, we will obtain within the solution space of (28) 

the vector which is perpendicular to m10 • 

For the proof, that the new solution lies in the original solution 

space, we refer to the appendix. 

NUMERICAL EXAMPLES 

In this section we will give some numerical results, produced by the 

methods described in the previous sections. These methods will be denoted 

by their generating weight-matrices w2 (Frey's method), w3 (Kok's method) 

and w4 (the minimization method). 

In the first subsection we will compute the entries of the error 

matrix F defined by (27) for various elements. Here, it turns out that w2 , 

w3 and w4 produce identical error matrices on rectangular elements, where­

as the F generated by w4 has the smallest norm on curvilinear elements. 

In the next subsection we approximate the derivatives of a set of 

analytic functions with the various methods on several non-rectangular 

grids. Again, w4 gives the best results, as it shows the highest order of 

convergence when the functions are smoothed. 

Finally, we solved an elliptic problem on a curvilinear grid, and 

tabulated the error between the analytic solution and the solution of the 

discrete system for various numbers of gridlines. 

A. The error matrices F for the methods w2 , w3 and w4 

In this series of tests we computed the entries of F for elements given 
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by the formulas (see also figure 5) 

fx2t 

LY2f 

(3 I) 

zl = 

Z7 

= dx[cos a 

sin a 

-sin:] 

cos u, 

fxst [ cos (o+S) 

'LY3f 
= dy 

sin(a+S) 

z2+z 4+c5 dxdy {dxl 
dyj ' 

-dx 
z4+z 8+c5 dxdy { dy}• 

yt 

-sin(o+S)l 

cos(a+S) 

( + c3dy} f-1 
c4dy ' L 

z3 = 

Zg = 

dx 

a 

z2+z6+c 5 dxdy f dx} 
1_-dy' 

-dx} 
z6+z 8+c5 dxdy {-dy. 

2 
tc1dx 

• zg 

Figure 5. The element defined by (31) 

For the parameters in (31) we have chosen the default values 

+ c3dy} 
C4dY • 



13 

a ·- o, 

B ·- Tr/2, 
(32) 

dx = dy = l , 

cl = c2 = c3 = C4 = cs = o, 

and in each test we varied some of these parameters, namely 

a) B 
iTr 

1, ••• ,9, yielding diamond, =- l. = a 
18 

b) dy l. 
1, ••• ,10, yielding rectangle, = JO' l. = a 

(33) c) dy l. 
B 

l O+i 
1, ••• ,10, yielding a parallelogram, = JO' = 4() Tr' l. = 

d) l. 
1, ••• ,10, yielding distorted C5 = 20' l. a square, 

l. 
= 20, i = 1, ... ,10, yielding a curvilinear 

element, 1.n which each quadrilateral remains a parallelogram, 

f) dy = • 5, B 
l. 

= 30' Cz 

i = I , ••• , IO, yielding a curvilinear element. 

In the tables 1-6- we listed the non-zero values of f 11 , f 12 , f 13 , f 21 • 

f 22 and f 23 which are defined by the matrix Fin the following way: 

2 
(34) 

3 

F a Sx9 matrix 
' I 

F ' Fl2 
I F13 I I I I 

I I ---------------

F2 I F22 
I 

F23 I 

2 3 4 

f .. 
l.J 

II F .• II E• 
l.J 

As the values off .. turned out to be independent of a, we dropped this 
l.J 

parar:ieter from the tests. 
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B w2 W3 W4 

7T/18 .810 .810 .014 

27T/18 .792 .792 .057 

37T/18 .764 .764 • 126 

47T/18 .727 • 727 .216 

57T/18 .686 .686 .320 

61r/l8 .646 .646 .423 

77T/18 .610 .6)0 .507 

87T/18 .586 .586 .560 

7T /2 .577 .577 .577 

Table 1. £ 13 element for (33a) 

Fl B w2 W3 I 
• 1 

.2 

.3 

I .4 

• .5 

.6 

.7 

.8 

.9 

10 
I 

ll1r/40 .536 .536 

121r/40 .503 .503 

131r/40 .478 

I 
.478 

141r/40 .461 • 461 

157T/40 .453 .453 

l61r/40 .455 .455 

1 71r I 40 .467 .467 

187T/40 .491 .491 

197T/40 .527 .527 

7T/2 .577 .577 
I 

C Table 3. f 13 for element (33) 

dy W2,W3,W4 

• 1 .408 

.2 .409 

.3 .410 

.4 .413 

.5 .421 

.6 .434 

.7 .455 

.8 .485 

.9 .525 

10 .577 

Table 2. £ 13 element (33b) 

W4 

.245 

.272 

.299 

.327 

.358 

.391 

.429 

.473 

.522 

.577 



cl 

.05 

• I 

• I 5 

.2 

• 25 

.3 

.35 

.4 

.45 

• 5 

~---·-

cs 

.05 

• 1 

• 1 5 

• 2 

• 25 

.3 

.35 

.4 

.45 

.5 

f12 

w2 w3 

.122 • 1 22 

0245 .245 

.367 .368 

.490 .492 

.612 .618 

.735 .749 

.857 .890 

.980 1.05 

1 • I 0 I. 24 

I • 22 1.47 

---·-~- - L~ 

f13 f22 

w2 w3 w4 w2 w3 w4 

.577 .577 .576 • 100 , .. 100 0 

.577 .577 .573 .200 .200 0 

.577 .577 .568 .301 .301 0 

.577 .577 .560 .402 .402 0 

.577 .577 .549 .504 .405 0 

.577 .577 .533 .607 .607 0 

.577 .577 .513 • 711 • 711 0 

.577 .577 .488 .816 .816 0 

.577 .577 .458 .922 .922 0 

• 577 .577 .423 1 • 031 1 • 031 0 

d Table 4. f 13 and f 22 for element (33) 

fl3 f22 

w4 w2 w3 w4 w2 w3 w4 w2 

0 .582 .582 .407 .010 .017 0 .182 

0 .595 .595 .404 .040 .070 0 .364 
0 .618 .619 .399 .090 • I 59 0 .543 

0 .653 .655 .392 • I 60 .286 0 • 719 

0 .700 .706 .383 .250 .458 0 .893 

0 .760 • 775 .371 .360 .683 0 1. 063 

0 .836 .868 .356 .490 .977 0 1.23 

0 .926 .991 .337 .640 I • 3 7 0 1.40 
0 1.03 I. I 6 .312 .810 I. 92 0 I,. 56 
0 I. 15 I • 3 9 .280 1.00 2. 74 0 I. 73 

i--..-----

Table e 5. f 12 , £13 , f 22 and £23 for element (33) 

15 

f23 

w3 wt. 

,. 183 .064 

.365 • I 28 

.548 • I 91 

.734 .252 

.931 .310 

1. I 51 .364 

1.42 .414 

1. 77 .459 

2.28 .497 

3.09 .530 



fl2 
C2 

w2 w3 w4 

-.05 .081 .081 0 

-. I • 163 • 163 0 

- • 15 .244 .245 0 

-.2 .326 .327 0 

-.25 .407 .410 0 

-.3 .488 .494 0 

-.35 .570 .578 0 

-.4 .651 .662 0 

-.45 .733 .748 0 

-.5 .814 .833 0 

:t:-

fl3 f 21 f22 

w2 w3 w4 w2 w3 w4 w2 w3 

.480 .480 • 274 0 .004 0 .056 .056 

.485 .485 .268 0 .018 0 • I I 8 • 126 

.493 .494 .261 0 .043 0 • I 87 .219 

.506 .507 .252 0 .086 0 .265 .340 

.523 .525 .241 0 • 156 0 .354 .495 

.547 .548 .229 0 .268 0 .454 .692 

.577 .579 .216 0 .444 0 .567 .940 

.615 .616 .201 0 .719 0 .692 1.25 

.661 .661 • 186 0 I. 15 0 .830 I. 65 

• 716 • 714 • I 71 0 I. 84 0 .981 2.16 

f Table 6. £12 , £13 , £21 and £23 for element (33) 

0\ 

f23 

w4 w2 w3 w4 

0 • I 15 • I 15 .053 

0 .228 .229 • I 07 

0 .339 .344 • I 61 

0 .449 .462 .217 

0 .557 .586 .273 

0 .664 .720 .329 

0 .769 .873 .386 

0 .875 1.06 .443 

0 .983 1.29 .500 

0 1.09 1.60 .555 
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Finally we tested in which way the f .. were influenced by a change of 
1J 

the scaling factors dx and dy. The results for the element defined by (33f) 

with i = 5 are given in table 7. Obviously, all error constants are 0(~2) 

dx•dy IO -I01og f - 1 Olog f - 101og f - 101og f ,...IOlogf - log f 12 13 21 22 23 11 

w2 w3 W4 w2 w3 W4 w2 w3 w4 w2 w3 w4 w2 w3 W4 w3 

I .4 .4 - .3 .3 • 6 - .8 - .5 .3 - .3 .2 .6 1.0 
_! 

IO 2 1.4 1.4 - 1.3 1.3 1.6 - I. 9 - 1.5 1.3 - I. 2 I. 2 I. 6 2.0 
10-1 l2. 4 2.4 - 2.3 2.3 2. 6' - 2.9 - 2.5 2.3 - 2.2 2.2 2.6 3.0 

-1 
IO 2 13. 4 3.4 - 3.3 3.3 3.6 - 3.9 - 3.5 3.3 - 3.2 3.2 3.6 4.0 
10-2 ~-4 4.4 - 4.3 4.3 4.6 - 4.9 - 4.5 4.3 - 4.2 4.2 4.6 5.0 

Table 7. The dependence of fij on the gridsize for element ( f) with i = 5 

B. The error in the approximation of known functions 

The results of the previous subsection indicates that we may expect 

method w4 to give the most accurate results in the approximation of the 

derivatives; using this method, the third derivatives of the function to 

be approximated occur in the truncation error with minimal constants. Here, 

we will investigate the actual error in the approximation, and for that end 

we have chosen the following set of testfunctions 

(35) f. . (x,y) = g.(a.h.(x,y)), 1,J,a 1 J 

with 

For each testfunction f, a given element and a given approximation method, 

we computed a mixed error E(f) defined by 

(36) 
I- ~2 ~2 2 2 2 

df) = -5v'{Cf -f ) +Cf -f ) +½(f -f ) +1 (f -f ) +Cf -f ) } , x x y y xx xx 2 yy yy xy xy 
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where denotes the calculated approximation. To eliminate the influence 

of the function considered, we formed a mean value over the set of test­

functions given by 

(37) 
I 4 2 

sd(a) - -8 l l -log(E(fi J' a)). 
i=l j=l • ' 

The values of sd(c:) are listed in table 8; the approximations were made 

on an element given by Frey' (see table 9) and on the square element de­

fined by (31) and (32). In the latter case the three methods gave identical 

results as could be expected. 

Ct element of table 9 square element 

w2 W3 W4 w2=w3=w4 

1 .97 .95 1.02 .82 
10-1/2 2.32 2.09 2. 71 2.47 

10-1 3.49 2.81 4.36 4. 1 0 
10-3/2 4.63 3.46 5.99 5.73 

10-2 5.57 4.09 7.62 7.35 
10-5/2 6.88 4. 72 9.24 8.98 

10-3 8.01 5.34 10.88 10.60 

Table 8. The values of sd(a) for the element given by 

Frey, and a square element 

]_ x. v. 
]_ - ]_ 

I -.7500 .2813 

2 - • 187 5 .6563 

3 .5313 1 . 0000 

4 -.6250 -.2813 

5 0 0 

6 • 7138 . 187 5 

7 -.5625 -.8433 

8 .0938 - 0 7188 

9 .8125 -.6875 

Table 9. The coordinates of the element given by Prey 



C. Application to an elliptic problem 

We considered the equation 

x+y 
tiu = 2e . on a, 

x+y 
u(x,y) = e on an, 
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with the domain n given by(seefigure6): {(x,y)!lx!:s;J,-!:s;y~O}u{(x,y)jx2+y2:s;J} 

(0, I) 

(-1,0) (I 'O) 

(1,-1) 

Figure 6. The domain n 

The analytic solution is given by u(x,y) = ex+y. We regarded the three 

straight lines and the arc as the four boundaries, and divided each one in 

N equal parts. Then we connected the corresponding points on the upper and 

lower boundary and defined the interior nodes to be 

(39) z .. i,J 
= (j 2i-N N-j iTT _ j_ + N-j iTT\T 

\N -N- - N cos N' N N sin N/ 

Of course we could have used a more sophisticated mesh generation scheme, 

but the subdivision given above is quite suitable for our testing purposes. 

Since the boundary conditions determine the values of u at the boundary 
2 nodes, we can set up a system of (N-1) linear algebraic equations, by using 

the discretization methods from the previous sections. The linear systems 

were solved by successive overrelaxation. In table 10 we tabulated the dif­

ferences between the analytic solution and the solution of the discrete 

problem, using the maximum norm. 
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\ 

N - 10log max-error 

W2 W3 W4 

2 1.5 1.5 1.4 

3 I. 6 0.7 1.6 

4 1.3 0.7 I. 7 

5 I • 3 0.8 1.9 

6 1.4 0.9 2.0 

8 1.6 1.0 2.3 

IO 1.8 1.2 2.5 

12 I. 9 I. 3 2.6 

16 2. I 1.4 2.9 

20 2.3 1.5 3. I 

Table 10. The maximum error in the approximation of the solution of (3.8) 

Finally, we solved the same problem on domains with sizes k and To 
of the original ones. We list the results in table II, together with the 

computation time needed to set up the linear system, as measured on the 

Cyber 72 computer. Note, however, that these timings serve merely as an 

indication of the complexity of the methods; they were implemented only 

for testing purposes, and were not optimalized with respect to efficiency. 

I I 
size 7io size To 

N 10 10 
101 - lo~ max-error - og max-error time in seconds 

w2 w3 W4 w2 W3 W4 w2 w3 W4 

2 2.4 2.4 3.4 3.3 3.5 5.4 .02 .02 • I 2 

4 2.5 I. 7 3.6 3.6 2.4 5. I • I 7 .05 1.09 

8 2.9 2.0 4. I 4.0 2.7 5.7 .91 .27 6.05 

16 3.4 2.3 4.7 4.5 2.9 6.3 4.24 I. 18 27.7 

I I Table II. The maximum error and timing on domains with size -- and-. 
/io 10 
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APPENDIX: 

Here we give the proof of the assertion in remark 4. 

Let m1, •.. ,m9 denote the columns of M, defined by (25). Suppose that these 

vectors do not span· R8 , and let m10 be a vector which is linearly inde­

pendent of m1, ••• ,m9• 

Now, we consider three linear subspaces of JR8 , v 1 with dimension 5 

spanned by m1, .... ,m5 , v2 with dimension 2 and v3 with dimension I such that 

v2 ~ v1, v3 ~ v1 e v2 and v1 e v2 is spanned by m1, ••• ,m9 • Let v 1, ••• ,v5 
form a basis for v1, v 6 and v7 a basis f~r v2 , and v 8 for v3 • 

Then, a row w. of w t' satisfying the minimization property, can be written 
l. op 

as 

7 
(I) w. = 

l. I 
j=I 

O'. • • V., 
l.J J 

l. = 1, .•. ,5, 

with the properties 

(2) (w.,m.) = o .. , 
l. J l.J 

j = 1, ..• ,5, 

9 
(3) I minimal 

j=6 

or equivalently (a. .• , J = 1, .•. ,5 are fixed by (2)) 
l.J 

cl 
(4) -~-- f(a.. 1, ••. ,a.. 7) = O, j = 6,7. 

00'.. • l. l. 
l.J 

* Now, we will show that the solution w. to the minimization problem under 
l. 

the constraint (2) 

10 
(5) I 

j=6 
* 2 (w.,m.} 
l. J 

minimal, 

satisfies the relations (4) too, and thus lies in the solution space of 

the original minimization problem. 
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7 
* Let us write w. = l. t a:J. vJ. + yi v8 • Rewriting of (5) yields 

j=1 

10 
* 2 9 { 7 . } 2 }'. I I * yi(v8,mj) + (w. ,m.) = aik(vk,mj) + 

j=6 l. J j=6 k=I 

+ ul * yi(v8,m10)}
2 a .. (v.,m10} + = 

1.J J 

As m10 does not lie in v1ev2, it is not orthogonal to v3 , and there­

fore (v8 ,m 10) does not vanish. Thus, minimality of (5) implies 

(6) 

and 

(7) 

7 
l a~.(v.,m 10) 

j=1 l.J J 

whereas the solution of 

(8) * (w. ,m.) = 
l. J 

J = 6,7, 

0 .• ' l.J 
j = 

* uniquely determines aik = aik' k = 1, .•• ,5. 

1, ... ,5, 

As {ai6,ai7) is the solution to eq. (4), it solves (7) too, and we find that 

* w. can be written as l. 

From (7) and (8) it follows that w: satisfies the original minimization l. 
problem given by (2) and (3), and it is the unique solution within the 

solution space of (2) and (3), with the property 

which property is a consequence of (6). 
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