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On the numerical solution of Volterra integral equations of the second kind 

II Runge-Kutta methods 

by 

P.J. van der Houwen & J.G. Blom 

ABSTRACT 

The purpose of this paper is to present the stability regions of a 

number of Runge-Kutta methods for the integration of second kind Volterra 

integral equations. Unlike the usual stability analysis, the kernel func­

tion is allowed to vary linearly with the independent variable. A second aim 

of the paper is to show that the addition of certain terms in the numerical 

formula increases the stability regions considerably. 
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I. INTRODUCTION 

In [4] stability conditions were derived for multistep and Runge-Kutta 

type methods when applied to second kind Volterra integral equations 

(I. I) 

X 

f(x) = g(x) + J K(x,~,f(~))d~, 

XO 
with kernel functions K approximately satisfying the relations 

(I. 2) 
a2K = 0, a fax = constant • 

In addition, a modification of both multistep and Runge-Kutta methods was 

proposed of which it was claimed to have a stabilizing effect. In this µaper, 

a number of Runge-Kutta methods are analyzed with respect to their stabili­

ty regions. It turns out that in all cases the modified forms do have larger 

stability regions, sometimes to a considerable extent. 

2. SINGLE-STEP METHODS 

In this section we present integration formulas of the form (cf.[4]) 

f(O) = f · 
n+I n' 

m (R,) 
= F (x +µ.h) + h I A.n K(x +e.nh ,x +v.nh ,f +I), 

n n J n n R,=O JN n JN n n JN n n 
(2. I) 

f = f(m)' 
n+I n+I' R, = O(l)m, 

where F (x) is an approximation to the expression 
n 

X n 

g(x) + I K(x,~,f(~))d~, 

XO 
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f(x) denoting an interpolation function through f 0 , f 1, ••. , fn. In the 

following we assume that the weights w. define a quadrature rule of the 
nJ 

form 

(2. 2) 

X n 

f n 
¢(x)dx = l w .¢(x.) + R. 

. j=O nJ J n 

For each formula we will specify: 
X 

n 

(1) The order of the quadrature error:R = F (x) - g(x) - I K(x,s,f(s))ds 
n n 

XO 
(2) The order of the truncation error:Tn = f:+I - f(xn+I), where 

f* is the solution of (2.1) n+I 

(3) The characteristic equation: 

(4) The stability region: 

when F (x) is replaced by 
n 

g(x) + Jxn K(x,s,f(s))ds 
XO 

and f by f(x ). 
n n 

C(~) = 0, the roots of which 

are the amplification factors 

by which perturbations are am-· 

plified when the integration­

formula is applied to the model 

problem (1.2). 

2.1. Summary of the theory 

To scheme (2. I) we may associate (internal) stability functions: 

DEFINITION 2.1. The (internal) stability functions ~(z,y), Rm(z,y) and 

S (z,y) of scheme (2.1) are defined•by the recurrence relations 
m 



m 
Qo(z,y) = I , Q. (z,y) = I J £=0 

(2. 3) R0 (z,y) = o, R. (z,y) = I + 
J 

s0 (z,y) = 0, S.(z,y) = µ. 
J J 

~ 
THEOREM 2. I. Let F (x) be defined by 

n 

n 

Aj 1 (z+ej 1y)Q£(z,y) 

m 

I Aj£(z+ej£y)R1(z,y), 
£=0 

m 
+ I Aj 1 (z+ej 1y)S£(z~y) 

£=0 

F (x) = g(x) + l w .K(x,x.,f.)~ 
n j=0 IlJ J J 

(2. 4) 

~w . = w - w. = 0, 
nJ n+ I j nJ 

j = 0(J)n- 1,· 

then 

When~ in addition 

3 

j = I (I )m. 

(2.5) 
2 3K/3f is a slowly changing function of sand f and 3 K/3x3f ~s 

(2. 6) 

(2. 7) 

where 

(2. 8) 

a slowly changing function of x, sand f, i.e. 

K(x,s,f) = (L(x,s,f) + xH(x,s,f))f 

where Land Hare slowly varying functions of x, sand f; 

H = H(x ,x ,f ), 
n n n n 

J = L(x ,x ,f) + x H; 
n n n n nn 

~f. are sufficiently small perturbations off., J = 0(l)n, then 
J J 

(b) A 1::,v 1 = B ~v, 
n n+ n n 

~ (M , ••• ,M-,~F (x ) , 
n n n n 
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o· 0 
(2.9) A = , J = L 

n n 

-w J 0 0 -h 
n+ln+l n n 

-w H n+ln+I n 0 0 0 

and 

~ 0 0 R h S m nm 
0 0 0 

(2. 10) B = 0 , 
n 

0 0 0 

/J.w J /J.w -J 0 
nn n nn n 

/J.w H /J.w --H 0 
nn n nn n 

R and S being evaluated at m m 

(z,y) = (h J ,h2H) 
o o o o 

2 
= (h J(x ,x ,f ), h H(x ,x ,f )). 

o ooo n ooo 

PROOF. See [4]. 

THEOREM 2.2. Let F (x) be defined by o 

+ x H n nn 

F (x) 
o = g(x) + f w .K(x,x.,f.) + [f -g - f w .K(x ,x.,f.)], 

j~O OJ J J o o j~O OJ o J J 
(2. 11) 

j = 0 ( I )o - I, 

then 

when, in addition, conditions (2.5), (2.6) and (2.7) are satisfied, then 

(b) 
-+ + 

A /J.V +I= B /J.V, o n o o 



where 

n 
!J.V (2. 13) = (!J.f , ••• ,!J.f-, l w .K f(x ,x.,f.)!J.f.)T, n n n j=O nJ x n J J J 

(2.14) A = 0 
n 

-w H n+ln+I n 0 

and 

~+Rm 0 
(2. 15) B = 0 n 

!J.w H nn n 

PROOF. See [4] 

THEOREM 2.3. Let F (x) be defined by 
n 

(2. 16) 

then 

0 
0 

0 

h s\ nm 

I ) 
0 0 ) !J.w -H nn n 

w~en, in addition, conditions (2.5), (2,6) and (2.7) are satisfied then 

5 
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where 

(2.18) 

(2.19) 

and 

(2. 20) 

with 

PROOF. 

A-n 

B = n 

(b) 
-+ 

B /J.V , n n 

n-1 ~ (£) (£) (£) (£) T l l w . K f (x , x. 1, f. 1 Mf. 1) • 
j=O R.=O nJ x . n J+ J+ J+ 

I - hn;\.IIJII 

-hn;\.21J21 

-h ;i.. 1 J 1 nm m 
w<pJ n+ n n 
w (l)H 

n+ln n 

0 

0 

-hn;\.J2J12 

I - hn;\.22J22 

. 

0 hn;\.lOJIO 

0 h ;i.. J n mO mO 

0 -w(O) J. 
n+ln n 

0 -w(O) H 
n+ln n 

. . 

-1 

-h ;i..1 JI n m m 

- h ;i.. J n nun nun 
w (m) J 

n+ln n 
w (m)H 

n+ln n 

µlh 
11 

• 

µmhn 

0 

0 --1 

J.t = J + 0.R.h H. J n 'J nn 

(a) This statement was proved by de Hoag and Weiss [2]. 

(b) From the definition of F <x) and conditions (2.5), n 
(2. 7) it follows that 

0 

0 0 

-1 

0 

(2.6) and 



n-1 m 
(£) clK ( (£) f(£))6f(£) 6F (x) = l. I n j=O £=0 

wnj elf x,xj+l' j+l j+l 

n-1 m (£) [elK (£) (£) = I I w. (xn,xj+l 'fj+l)+ 
j=O £=0 nJ elf 

o2K (£) (£) ] (£) 
+(x-xn)elxelf(xn,xj+l'fj+l) 6fj+l 

= 6F ex) + (x-x )6G, 
n n n n 

where we have written 

6G 
n 

Is is easily seen that the following relations hold: 

6f (j) 
n+I 

m [ l (£) ~ 6F (x) + µ.h 6G + h L A, 0 J +8. 0 h H 6f I' 
n n J n n n t=O JN n JN n n_ n+ 

6G 
n 

m 
~ 6F (x) + h 6G +l + \ w(t) J 6f(£) 

n n n n L n+ln n n+l' 
£=0 

7 

These equations are easily verified to be identical to the vector equation 

A 6V = B 6V of the theorem. D n n+l n n 

DEFINITION 2.2. The characteristic equation of scheme (2.1) is defined by 

(2. 21 ) det (B -sA) = 0. 
n n 

2.2. Simpson-Runge-Kutta formulas 

Let F (x) be defined by (2.4) using repeated Simpson rule for even 
n 

values of n, and by repeated Simpson+ 3/8 rule for odd values of n > I. 

The matrix lV = (w .), n = 2,3, ... , j = O(l)n is then defined by (constant 
nJ 

step sizes) 
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(2.22) h 
W = 24 

8 

9 

8 

32 8 

27 27 9 

32 16 32 8 

17 27 27 

8 32 16 32 

For n = we may define 

(2.23) 1? 1 (x) 

9 . . 
17 27 27 9 

16 32 16 32 8 

We shall call the class of formulas defined by (2. 1), (2. 4) and (2. 22) 

Simpson-Runge-Kutta formulas. 

The quaa~ature error R of this class behaves as 
n 

(2.24) 

The char"acteristic equation (2. 21) for the case where h J and h2H n n n n 
have a common set of eigenvectors with eigenvalues z and y, was derived in 

[4]. By working out the determinant we find for odd values of n the polyno­

mial 

r; 6 

(2.25a) 

1 1 1 
- [2 + ~ + - zR + - yR + 3 ySm] 3 m 3 m 

+ [1 
23 5 5 

+ 20'nl - -yR - - zR - - yS 
24 m 8 m 8 m 

r . ! 7 + - ·~ + - zR - 12 m 

2 [- zR 3 m 

1 zR + [-4 m 

1 -r- zR 
'24 m 

1 1 
+ 24 yRm 

5 
+ 24 yRm 

1 ' 
+ 24 yRm 

+ 

17 
+ TI ySm] 

2 yS J + 3 m 

1 yS J + 4 m 

5 r; 

J 4 
r; 

7;3 

7;2 

r; 



For even values we find 

(2.25b) 

+ [ 1 + 20 - .2.. zR - _!2. yR - .2.. yS ] r;; 3 
111 12 m 24 m 12 m 

+ [-~ + zR 5 yS j r;;2 + 24 yRm + m m 

I 1 1 - [- zR + 24 yRm + 4 ySm] r;; 4 m 

1 1 
+ t24 zRm + -yS J = 24 m o. 

When we use (2.11) instead of (2.4) for the calculation of F (x), the same 
n 

9 

order relation (2.24) for the quadrature error is obtained. The characteris-

tic equation (2.21) is obtained by application of theorem (2.2). Omitting 

the details we finally find for odd values of n 

(2.25a I) + [O + R - 23 yS] r;;3 
111 m 24 m 

+ .!_!_ yS r;;2 - 2- yS r;; + 214 ySm = O, 24 m 24 m 

and for even values of n 

(2. 25b') + [O + R - _!2. yS] r;; 2 
111 m 24 m 

In the following we only present the stability region jr;;(z,y)I ~ 1 in the 

third quadrant of the (z,y)-plane since the integral equation itself is only 

stable in that area (cf. [4]). 



2.2. 1. Exp2'.icit formulas 

When A. = 0 fort 2 j scheme (2.1) does not require the solution of 
J 9, 

implicit equations. From a computational point of view such formulas may 

be attractive when no instabilities are developed. 

Third and fourth order' Sirrrpson-Beltjukov formulas 

In [1] Beltjukov gives a formula in which (j=1(1)3, £ = 0(1 )3) 

H 
0 0 ~). 1/2 0 0 0 

(L ) = 2/9 0 (8 .. ) = 1/2 0 0 
J 9, . J J!, 

1/4 3/4 0 0 
(2.26) 

0 0 0 0 

( I :31 (v. ) = 0 0 0 ' (µ j) = . 
JJ!, 

0 1/3 0 

The truncation error of this formula behaves as 

(2.27) 

Thus, by virtue of (2.24), (2.27) and theorem 2.1 we may conclude that (2.4), 

(2.22), (2.23) and (2.26) generate a fourth order Simpson-Runge-Kutta for­

mula. Its stability functions are easily found to be (apply (2.3)) 

Q3(z,y) 
1 1 

= 6 (z+y)(z~y)(2+z+y), 

(2.28) R3 (z,y) = 1 
+6 (z+y)(6+z+y), 

s3 (z,y) = 1 1 +-6 (z+y)(3+z+y). 

In a similar way we conclude from theorem 2.2 that (2.11), (2.22), (2.23) 

and (2.26) generate a third order Simpson-Runge-Kutta formula. 



1 1 

-2.5 -2.0 -1.2 
y 

z 

-1.0 

-1.3 

-2.0 

-2.4 

Fig 2.1 Stability region of the Beltjukov-Simpson formula 

The stability regions l~I ~ I,~ being the roots of (2.25) and (2.25'), 

respectively, are the inside areas in the third quadrant bounded by the 

solid and broken lines, respectively. In the latter case the overall region 

of stability is given by the intersection of these two ares (n even and 

n odd). In the next figures the same conventions are used. 

Fourth order Sirrrpson-Pouzet foY'rrtulas 

Presumably the first Runge-Kutta type formula was given by Pouzet [3] 

in 1960. Its parameter matrices are 
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1/2 0 0 

o"jt) 
0 1/2 0 

0 0 1 

1/6 1/3 1/3 

(2. 29) 

0 0 0 

(vjt) 
0 1/2 0 = 
0 0 1/2 

0 1/2 1/2 

The truncation error is given by 

(2. 30). 5 T = O(h) ash+ 0, 
n 

0 0 1 /2 0 0 0 0 

0 0 
, (ejt) 

0 112 0 0 0 = 
0 0 0 0 0 0 

1/6 0 0 

0 0 1/2 

0 0 
, (µj) 

1/2 = • 
0 0 

0 

Hence, (2.4), (2.22), (2.23) and (2.29) generate a fou;r,th order Simpson -

Runge-Kutta formula. Replacing (2.4) by (2.11) again yields a fourth order 

formula. 

The stability polynomials are given by 

(2.31) 

s4 (z,y) = 1 + ½ (z+y){2+(l+½z+!y)(l+½z+}y)}. 

The corresponding stability regions are shown in figure 2.2. by the solid 

and broken line, respectively. 
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' ' ' ' ' 

-1.9 

~ 

~ 
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~ 
~ 
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~ 
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~ 

y 

Fig 2.2 Stability region of the Simpson-Pouzet formula 

z 

-2.0 

-3.2 

A fast third order formula and its stabilized second order modification 

The formulas of Beltjukov and Pouzet both require two evaluations of 

the function F (x) in each integration step. Since these evaluations form n 

13 

the bulk of the computational effort, it is suggested to look for formulas 

which require only one evaluation of F (x) per integration step. This is n 
achieved by choosingµ.= I for j = l(l)m. Let us consider the class of 

J 
explicit, two-stage formulas, i.e. m = 2, Ajt = O, fort~ j. From 

[4, eq.(3.6)-(3.9)] we may derive that this class is second order consis­

tent, i.e. 

(2.32) 

provided that 

A20 + A21 = l, 

v20A20 + v21A21 = !, 
AlOA21 = ~, 
' - I A21 - 2• 
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These equations lead to the following parameter matrices 

(),j.Q,) ! : 0 ~ ) ' (µj) :),(aj,l-1 0 0 ) ' = = 

½ 0 
(2.33) 

r : ~ l (vjt) 
0 

= 

½ 

Thus, (2.4), (2.22), (2.23) and (2.29) generate a third order Simpson-Runge­

Kutta formula which is roughly twice as cheap as the fourth o:r:der formulas 

of Beltjukov and Pouzet. Replacing (2.4) by (2.11) decreases the order by 

one but yields a larger stability region as may be derived by substituting 

the functions 

(2.34) 
Q2 (z,y) = ½(z+y)(l+z+y), 

R2 (z,y) = s2 (z,y) = I+ ½z + ½y, 

into the characteristic equations (2.25) and (2.25'). The stability regions 

are given in figure 2.3 by the solid and broken lines, respectively. 

-1.9 

'-: 

" " " " " " " " " " " "'-
" "-

"-
"'-
" " "-

Fig 2.3 Stability region corresponding to (2.33) 

y 

z 

-I.I 

" -2.0 



An adaptive third order formula 

The relatively small stability region of formula (2.33) leads us to 

consider higher point formulas (again withµ.= I for j = l(I)m and to use 
J 

the extra parameters to enlarge the stability region. Form= 3 the condi-

tions for a third order truncation error T become [4] 
n 

It is 

(2. 35) 

A30 + A31 + A32 = I, 

v30A30 + V31A31 + V32A32 = ½, 
A31 + A32 = ½, 
AIOA31 + (A2o+A21)A32 = ½-

easily verified that the parameter matrices 

( 'io 
0 0 0 

( (Aj,11,) = I-:21 A21 0 0 , (µj) = 

0 1 0 2 

(ajt) = ( ~) · 0 
0 0 

0 (v j,11,) = 

) 

~) 0 0 

0 0 

0 

satisfy the consistency conditions irrespective the values of AIO arid A21 • 

The stability functions of scheme (2.35) read 

(2. 36) 
= !(z+y)[l + (I-A 21 )(z+y) 

= s3 (z,y) =I+ ½(z+y) + 

2 
+ AIOA2l(z+y) J 

½A2 I (z+y/ 

15 

Since AIO and A21 are free parameters we may use them to monitor the ampli­

fication factors corresponding to a particular eigenvector component in the 

perturbations ~f., i = O(I)n. For instance, when the matrices h J and 
i n n 

h!Hn has the eigenvalues z0 and y0 for this eigenvector, we may choose AIO 

and A21 such that 

(2. 37) 

yielding the amplification factors s1 = , 2 = , 3 = , 4 = O, s5 = , 6 = I for 

odd values of n (cf.(2.25a)) and s1 = , 2 = , 3 = 0, , 4 = , 5 = I for even 
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values of n (cf.(2.25b)). In the case of scaZar integral equations where J n 
and H have only one eigenvector, condition (2.37) would give unconditionaZ 

n 
stabiZity. It is easily seen that (2.37) is solved by 

(2.37') 
1 + (zo+yo) + ½<zo+yo)2 

(zO+yO)(I+}(zO+yO)) 

I 
I 
I 

: --- -_-- ..... - -.. -- - -~ - --- - - -- -- - --- - - - - --- --- ---- - - - --- --- -- - --- - --- . -

! I 
-----------------·-· 1--·-·-·+·-·- -·-·-·-·-·-·--

),_2 I i . 

+2 

+I 

-- __ / j l -2 -I 
~-~-~-------------+-----~-=-=-=-=-=--=-=-=-=-=--=-=-9·=--=-~-=-~~--1~-~----_-_-_----+--------+---+ zo+Yo 

-4 -1-✓3 ----
' ' ' . ,. 
---+--=- ---· -- -- -- -----------

\ 
\ 
\ 
\ 
\ 
I 
I 
\ 
I 

}..I" ' A\ 
•) 11 2 I 1 

I 
I 
I 
I 
I 

Fig 2.4 Parameters AIO and A21 as functions of zO + yO 

-I 

In figure 2.4 the behaviour of AlO and A21 as functions of zO + yO is shown 

revealing ;hat AIO becomes singular at zO + yO = -2 and zO + yO = O, and 

A21 becomes singular at zO + yO = O. Let us choose 

(2. 38) 
A21 = -1 for zO +Yo~ ~I 

' , 
A21 according to (2.37') for zO + yO ~ -I 
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and let AIO be free for the moment. In the region z0 + y0 $ -I the charac­

teristic equations (2.25a) and (2.25b) then reduce to (at (z0 ,y0)) 

(2.25') 

which may be written in the form 

2 
Cs-l)(s -(l+Q3Czo,Yo))s + Q3Czo,Yo)) = o. 

The roots are within or on the unit circle when 

where 

Let us choose 

(2.39) 
AIO according to (2.37') 

Then the amplification factors corresponding to all points (z0 ,y0) with 

z0 + y0 $ -2 (in figure 2.5 indicated by the dotted area) are less than or 

equal to unity in absolute value. When the point (z0 ,y0) to which the scheme 

is to be adapted is such that z0 + y0 2 -I we have AIO = 2 and A21 = -I the 

stability region of which is shown in figure 2.5 by the shaded area. Thus, 

the formula defined by (2.35), (2.38) and (2.39) is unstable when (z0 ,y0) 

lies in the blanc region in figure 2.5, which is approximately given by 

This leads to a small region of "forbidden" values for the integration step h. 
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-2.0 -0.8 -0.7 

unstable -o.s 

-0.7 
staLle 

-2.0 

Fig 2.5 Stability region corresponding to (2.35) with A10 and A21 defined by 

(2.38) and (2.39). 

2.2.2. Weakly implicit formulas 

When Ajt = 0 for£> j scheme (2.1) requires the successive solution of 

at most m equations. Whe shall call such schemes weakly implicit to distin­

guish them from fuUy implicit scheme's which require the s·olution of m simul­

taneous equations. 

A third order one-point formula and its stabilized second order modification 

Form= 1 the conditions for second order consistency, i.e. 



(2. 40) ash-+ O, 

read (cf.[4]) 

>..IO+ >..11 = l 

v I O>.. l O + v I 1 >.. 1 I = ½ ' 

' - I /\11 - 2 

which lead to the parameter matrices 

(2. 41) 
(µ.) = (1), 

J 

with stability functions 

(2.42) 

- z + y 
QI (z,y) - 2 - (z+y) ' 

2 
R 1 ( z ' y) = S 1 ( z , y) = 2 - ( z +y) • 

The stability regions corresponding to (2.4) (solid lines) and (2.11) 

(broken lin,es) are presented in figures 2.6 and 2.6'. 
y 

-28.5 -3.5 
z 

n odd. 

-1.7 

-2.3 

-2.6 

Fig 2.6 Stability region corresponding to (2.41) 

19 



20 

/ 

/ 
/ 

/ 

/ 

/ 
/ 

/ 

/ 
/ 

/ 

/ 
/ 

/ 
/ 

/ 

/ { y::.1z-4 n odd. / . 2 • 
/ . 

I 
ye I 7z:-24 ;-'t 

n even 1 

I 
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y 

Fig 2.6' Stability region corresponding to (2.41) 

z 

-4.0 

-24.0 

"Two point"forrnul,,as of fourth order and their stabiUzed third order modifi­

cations 

First of all we remark that fourth order formulas require at least 

two F -evaluations. This may be concluded from the following three consis­
n 

tency conditions (cf.[4] 

m 

l "mRYt = 2' 
R,=] 

m 
l" 2=_31· 

t=l mtµt 

Since µmis already fixed at the value 1, at least oneµ£ should differ 

from O or 1 in order to satisfy the~e conditions. 

Secondly, form= 1 no third order formulas exist. This follows from 

the following two consistency conditions (follow from the fourth and eighth 

condition of equations (3.6) - (3.9) in [4]) 
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Let us now consider the case m = 2. The conditions for a fourth order 

truncation error are (cf.[4]) 

VzoA20 + v2IA21 + v22A22 = 2' 

l 
µ1A21 + \22 = 2' 

(AIO+Ail)A21 + A.22 = 2' 

2 I 
µIA21 + A.22 = 3' 

I 
(AIOVIO+Allvll)A21 + 2A22 = 6' 

l 
:>,_llµIA21 + 2\22 = 6' 

I 
All(:>,_I0+:>,_11):>,_21 + 2A22 = 6' 

v21 (AIO+All)A.21 + v22A22 = 3' 

2 I 
A21<A1o+All) + A22 = 3' 

I 
(:>,_10810+),_11 811)A21 + A.22 = 3' 

I 
v21:>,_21 + v22:>,_22 = 2' 

These equations are greatly simplified when we put 

(2. 43) 

This irrnnediately yields 

(2. 44) 

Substitution into the remaining equations leads to the conditions 
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3v21 + "22 = 2, 

+ "22 
4 

"21 =3, 

AIO + All 
I 

=3, 

AIO"IO + AII"II 
l 

= Ta ' 
I 

All= 6' 
2 2 4 

3"21 + "22 =3, 

AI08 IO + Al 18 11 
1 

= 9 ' 

which finally result in the parameter matrices 

(µ.) 
J = ( 31

1 
) (8 • n) 

J X, 
= \solo 

(2.45) 

~). 
Together with the approximations (2.4) and (2.11), respectively, these para­

meters generate a family of fourth order and third order Simpson-Runge­

Kutta formulas with stability functions 

(2.46) 

3(z+y) 

s2{z,y) = ----
4 - (z+y) 

[ 6(z+y) ] 
4 + 6 - z - cI - e )y • 

3 10 

I , 
In figure 2.7 the stability regions are shown for e10 = 3 . 



y 

-11. 6 -1. 7 
z 

-1. 4 

-s.o 

I Fig.2.7 Stability region corresponding to (2.45) with e10 = 3 . 
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The formulas (2.45) require the solution of -two equations in one vari-­

able. It was pointed out by Schilder [SJ that it is possible to construct 

formulas, which require the solution of only one equation in a single 

:~r4i7~ble. It(A:·t:~·1r Ir:r th(:::~·( ~rces 
(

8
:
0 

4 
810 1-

(e jt) = 

(vjt) -\v:0 ½-½v!O : ) 

together with respectively (2.4) and (2.11), generate a fdurth and third 

order formula with stability functions 

~) ' 
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(2.48) 

2 In figure 2.8 the stability regions are given for e10 = 3 . 

- 5.9 
y 

- 2.3 

2 Fig 2.8 Stability region corresponding to (2.47) with e10 = 3 

z 

-1.9 

-3.6 
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Fourth order Simpson-Newton-Cotes formula and its third order stabilization 

Instead of solving consistency conditions, one may construct formulas 

by using quadrature rules. Let us consider 
X +µ.h 

formulas where (j=I(I)m) 

(2.49) (x +µ .h ) + 
n J n 

n ( K:xn 
X 

n 

~ 
+ µ.h, x, f(x)) dx, 

J n 

whereµ = 1 and f(x) denotes an interpolation function through f(j)l .The 
m n+ 

Runge-Kutta scheme is then obtained by replacing the integral by a quadra-

ture rule. The most simple application of this approach is the use of the 

trapezoidal rule for f(l)l and the Simpson rule for f 1 = f( 2) • This imme-n+ n+ n+l 
diately leads to the parameter matrices 

=( ! I :)· =(~)· =( ~ 
I 

~), (2.50) (),_. - ) 4 (µ.) (8j9,) 
2 

J9, 2 J 

3 

=(: 
1 ~) (v j2) 
2 

I 
2 

The truncation error is obviously of fourth order ash ➔ 0. The stability 

functions become 

(2. 5 I) 

z + y 
6 - (z+y) 

6 R2 (z,y) = --=---:---=-
6 - (z+y) 

6 s2 (z,y) = --=---:---=-6 - (z+y) 

I 
r 4(z~y) ] 
ll+--1-

4 - (z~y) 

scz+y) l 
I - J ' 

3(4-.(z~y)) 

4(z+y) 
1 

3(4-(z~y)) 

from which the stability region in figure 2.9 result. 
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y 

-11. 8 - 2.3 
z 

-1.8 

-4.8 

Fig 2.9 Stability region correponding to (2.50) 

Fourth order Simpson-Newton-Cotes formulas 

Choosing the reference points x + µ.h at x, x + hn/4, x + h /2 
n Jn n n 2 n n 

and at x 1, and defining f(l)I by the trapezoidal rule, f(+)l by Simpson's n+ n+ n 
rule at the points (x ,x +h /4,x +h /2), and f I by Simpson's rule at · n n n n n n+ 
the points (x ,x +h /2,x +h ), we arrive at the parameter matrices n n n n n 

(2.52) 

I 
8 

I 
6 

I 
4 

I 
2 

I 
8 

0 

I 
4 
I 
2 

0 

I 
12 

2 
3 

0 

2 

0 

0 

I 
6 

I 
4 

I 
2 

I 
4 
I 
4 

I 
4 

0 

I 
2 

I 
2 

0 

0 
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It is easily seen that this formula has a fifth order truncation error so 

that both combinations (2.4) - (2.52) and (2.11) - (2.52) yield a fourth 

order formula. The stability functions are given by 

Q4(z,y) 
z + y [ 1 + 4 (2z+y)(32+12z+3y) ] = , 

6 - z - y · · (24-2z-y)(32-4z-y) 

(2.53) R4 (z,y) 
2 [ (z+r)(96+20z+l3r) ] = 3 + 16 6 - z - y (24-2z-y)(32-4z-y) 

, 

s4 (z,y) 
2 

[ 3 + 
(z+r)(96+4z+Sr) ] = 8 6 - z - y (24-2z-y)(32-4z-y) 

and the stability region becomes that presented in figure 2. 10. 
y 

-11.4 -1 o. 1 -3.8_ -3.3 
. z 

-5.0 

-9.3 

-11.8 

Fig 2.10 Stability region corresponding to (2.52) 
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2.2.3. Fully implicit formulas 

Although weakly implicit formulas possess larger stability regions 

than explicit formulas, provided that the modified form (2.11) of the func­

tion F (x) is used, we still have no unconditional stability in the region 
n 

z < 0, y < O. Therefore, we now consider a few fully implicit formulas. 

A fourth order two-point formula and its third order stahilization 

By putting Alo= A20 = O, All + A12 = µ 1 and A22 = ¼ in the consisten­

cy conditions (cf.[4]) the order equations considerably simplify and easily 

lead to the solution 

(: 
5 I 

a(~), I 0 
e 4 

IT -12 se--3 
(L ) = ' ( µ j) ( e j 9) J .Q, 3 I 

\ 0 4 4 
(2. 54) 

a \: 

5v - ½) • \) 

(v j J',) 
I 
3 

where 8 and v are free parameters. The truncation error behaves as 

(2.55) 

and, setting e I = 3 , the stability functions become 

Q2(z,y) = O, 

(2.56) R2 (z,y) = 4 
27(z+y) + (36-1 Sz-Sy) 

3 (z+y) (3z+y) + (36-15z-5y)(4-z-y) 

s2 (z,y) = 4 9(z+i) + (36-!Sz-Sz) 
3(z+y)(3z+y) + (36-15z-5y)(4-z-y) 

The stability regions are given in figure 2.11. 



y 
- 2.9 

-9.0 -------.,,,..,. -.,,,..,. .,,,..,. 
.,,,..,....-

.,,,..,. -_,,,. .,,,..,. .,,,..,. 
.,,,..,....-

/ --
Fig 2.11 Stability region corresponding to (2.54) withe= j 

Fourth order Simpson-Newton-Cotes formulas 

Fifth order and higher order truncation errors can be obtained by 

using quadrature rules and basing the method on formula (2.49). Let us 
I 

choose the reference points at xn, xn + hn/2 and xn+I and define f~!~ by 

29 

a formula with "external" point xn+I and fn+I by Simpson's rule. This leads 

to a RunRe-Kutta method with the parameter matrices 

\t 
8 

- I ) (µj)·=(:). 24 

¼ (2.57) 0-•r) = 
J. 4 

6 

\: 
I 

: I· (: 
I 

: ) (0 j ,Q,) 
2 

(vjJJ) 
2 = = 
I 
2 
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The truncation error is evidently given by 

(2.58) ash+ O, 

so that both (2.4) and (2.11) yield fourth order methods. The stability 

functions are given by 

Q2(z,y) = 
3(z+y)(4+2z+y) 

2(6-2z-y)(6-z-y) + (z+y)(2z+y) 

(2.59) R2 (z,y) 
12(6-2z-y) + 48(z+y) 

= 2(6-2z-y)(6-z-y) + (z+y)(2z+y) 
, 

s2 (z,y) = 
12(6-2z-y) + 24(z+y) 

2(6-2z-y)(6-z-y) + (z+y)(2z+y) 

and the stability regions are presented in figure 2.12. 
-2.8 

y 

--------------------------------+---z 

-2.0 

---------------------- -6.0 

Fig 2.12 Stability region corresponding to (2.57) 
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