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On the stability of multistep formulas for systems of Volterra integro-

)

differential equations*
by

P.J. van der Houwen, H.J.J. te Riele & P.H.M. Wolkenfelt

ABSTRACT

The stability behaviour of linear multistep methods is analyzed for
systems of integro-differential equations of Volterra type which are only
restricted by the condition that the kernel function is finitely decompos—
able, Stability regions are derived for backward differentiation type schemes
of orders 2 up to 6 and for the trapezoidal rule. In particular, attention
is paid to these schemes when applied to the special integro-differential
equation, which arises from differentiating a Volterra integral equation of
the second kind. Numerical experiments are reported, which confirm the theo-

retical stability results.

KEY WORDS & PHRASES: Numerical anclysis, Volterra integro-differential
equations, Volterra integral equations of the second
kind, stability
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1. INTRODUCTION

We shall consider systems of Volterra integro-differential equations

of the form

(1.1a) dfd(x") = o(x,£(x),2(x)), x, < x < b,
X

(1.1b) z(x) = J K(x,y,f(y))dy,
g0)

with the initial condition

(1.2) f(xo) = fo.
Here, & and K are prescribed vector functions and f(x) is the unknown vector
function. We assume that this problem has a unique solution.

The main purpose of this paper is to analyze the stability behaviour
of a large class of numerical methods for the solution of this problem.

In section 2 a general numerical scheme is given based on a linear
multistep formula for the integration of (l.la) and a quadrature rule for
the approximation of the integral in (1.1b). Two special choices of this
general scheme, based on the well-known Curtiss-Hirschfelder formulas for
(1.1a), are specified. In the sequel of this paper they will serve as a
means of illustrating the stability analysis. One of these two schemes is
further elaborated when it is applied to the class of "integro-differential
equations'" obtained by differentiating a Volterra integral equation of the
second kind. This rather unconventional treatment of Volterra integral equa-
tions of the second kind was motivated by the wish to exploit the excellent
stability properties of the Curtiss-Hirschfelder formulas when applied to
ordinary differential equations.

In section 3.1 the order of convergence of the general scheme is proved,
along the lines indicated by TAVERNINI [11]. In section 3.2, the "kernel" of
this paper, a stability analysis is carried out for this scheme, when applied
to (1.1), where we have tried to restrict the kernel function K(x,y,f) as

little as possible. Following the approach presented in [6] it turmed out
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that local stability conditions can be derived for the kernel functions
which are finitely decormposable, i.e. which can be written as a sum of terms
of the form Q(x)R(y,f), Q(x) and R(y,f) being arbitrary matrices. With local
stability we mean that numerical errors in a point x are not accumulated in
a step-by-step process, provided that 30/3f, 3%/5z and 3K/3f are sufficient-
ly slowly varying. With respect to the local theory three observations can
be made. Firstly, the local stability conditions are at least necessary for
global stability. Secondly, when compared with the conditions derived by
BRUNNER & LAMBERT [1] and MATTHYS 8], which are based on the test equa-

tion

X
(1.3) L = grx) +m f £(y)dy,
0

the present analysis shows that one should be prepared for much stronger
conditions. Thirdly, for systems of equations, verifying the stability
conditions will require a lot of computational effort. An exception form
the systems where the matrices 38/9f, and 3%/3z x 3K/3f possess a common
eigensystem. For this special class of integro-differential equations we
have plotted the stability regions of the two special schemes given in
section 2. In addition, we have derived the stability conditions for the
scheme where (l.la) is integrated by the trapezoidal rule. On the basis of
these results, these schemes may be qualified as "highly stable".

In section 4, a starting scheme is described to provide the initial
values for the multistep formulas. We chose the rather stable trapezoidal
rule and used extrapolation to obtain sufficient accuracy.

In section 5, numerical experiments are reported to test the stability
theory and the order of convergence. The results of these experiments are
in agreement with the theoretical stability conditions and order of conver-
gence. Finally, a few remarks are devoted to some experiments, carried out
in [10], which compare the efficiency of one of our schemes with that of an

implicit Runge-Kutta scheme of DE HOOG & WEISS [4].

The contents of this paper are based on three institute reports [5],
[10] and [13].



2. THE COMPUTATIONAL SCHEME

We will define a class of linear multistep methods for general Volterra
integro—differential equations and, in particular, we will discuss these
methods when applied to the special equation which arises from the differen-

tiation of a Volterra integral equation of the second kind.

2.1 Integro-differential equations

Let x = x0+nh, n=1,...,N (xN=b) denote the discretization points of
the x—axis. Suppose that approximations fj to f(xj) are obtained in the
points XgseeesX and let zj denote an approximation to z(xj). Then, by ap-
plying a lineezr multistep method (defined by its coefficients {az,bz}) to
the "differential" equation (1.1a) we arrive at the scheme

k

a, £ . . =h b o(x
0 2 n+l-2 920 2

(2.1) ), n=k-l,k,...

n+1—2’fn+l—2’zn+1-2

I 1R

L

In order to give a step-by-step formula for fn+1’ we have to specify

the formula for Z 41-g3 Ve will use a quadrature rule of the form
n+1-2
@D T L e, et

where the weights v, 5 satisfy a relation of the form

s

~

= < 71 < -k > -
a, Wn+1—2,j 0, 0<j<nk, n=22k-l,

| 112

2=0
(2.3a) N

g ~ ~

a =0, a, # 0,

220 2 0
and where we define

~ EN ~ ~
(2.3b) LN 220 ) Voiiog, 5 n-k+1 < j < n+l, n 2 2k-1.

Quadrature formulas satisfying relation (2.3) can be constructed by applying
a linear multistep method with coefficients {;z’gz} to a quadrature problem

written as a differential equation. Details of such formulas can be found



in [12]. Choosing a linear multistep method {az,bl} for (2.1) and {Zz,gz}
for (2.3) the computational scheme is completely determined (apart from

the starting values). We will denote such a combined scheme by {al,bl;zl,ggl
It is clear that a large number of combinations is possible. However, as
already remarked in the introduction, it is our main purpose to present a
stability analysis for a large class of kernel functions rather than to
investigate and compare a large number of different schemes. Therefore, in
order to Zllustrate the analysis, we have concentrated on the following

special schemes; we have chosen for

{al,bz}: the Curtiss-Hirschfelder (or backward differentiation) formulas
(the consideration was to exploit their excellent stability
properties). In table 2.1 the coefficients are listed for
k =1,2,...,6 (c£. [7, p.242]);

1. the Adams-Moulton formulas, which correspond to the well-known
Gregory quadrature. This combination will be denoted by {CH;AM}.
In table 2.2 we give the coefficients for k = l,...5,5. The cor-

responding quadrature weights are given in table 2.3;

2. Again the Curtiss-Hirschfelder formulas in order to illustrate
that a much larger stability region can be obtained than for
{CH; AM}. We will denote this scheme by {CH;CH}. The weights of

the quadrature rule generated by CH-formulas can be found in

£123.

In addition, we shortly discuss the stability conditions for the scheme

in which both {az,bz} and {ZQ,EQ} correspond to the trapezoidal rule.



k ck al*ck az*c a3*c a4*c
1 1 -1

2 3 -4 1

3 11 —18A 9 -2

4 25 -48 36 -16 3
5 137 -300 300 =200 75
6 147 -360 450 =400 225
aozl’ k=0

Table 2.1. Coefficients of the Curtiss-Hirschfelder for-

mulas for k = 1(1)6.

=

o'l

et

v B~ W N

646
1427

w2

0

Table 2.2. Coefficients of the Adams-Moulton formulas

=1, a

for k = 1(1)5.

Second order formula

[YE=2

o'l

=
=



Third order formula

|r

—
]

Fourth order formula

R

Fifth order formula

L U1 L O

O YW W YW ©©

270
251
251
251
251
251

251

14
13
13

13

32
27
28
28
28

28

810
916
897
897
897
897

897

13
12

12

27
22
23
23

23

810
546
652
633
633
633

633

eo 12

28
23
24

24

270
916
652
758
739
739

739

5
13 5 |

9 <::::>

28 9

23 28 9

ce. 2423 28 9 |

251

897 251

633 897 251

739 633 897 251
720 739 633 897 251

720 ...

720 739 633 897 251 |



Sixth order formula

[448 2048 768 2048 448

475 1875 1250 1250 1875 475

475 1902 1077 1732 1077 1902 475

475 1902 1104 1559 1559 1104 1902 475

475 1902 1104 1586 1386 1586 1104 1902 475

h 475 1902 1104 1586 1413 1413 1586 1104 1902 475

475 1902 1104 1586 1413 1440 1413 1586 1104 1902 475

1475 1902 1104 1586 1413 1440 ... 1440 1413 1586 1104 1902 475 |

Table 2.3. Gregory quadrature weights

The scheme (2.1)-(2.2) requires in the n—th step the evaluation of the

functions

K(Xn+1’xj’fj)’ j =0,...,n+1,

and the solution of a system of nonlinear equations for f Moreover, k

n+l’
starting vectors fO""’fk—l are needed. In section 4 a starting scheme for
computing these vectors is presented which is based on extrapolation of the

trapezoidal rule.

2.2 The computational scheme for integral equations

Volterra integral equations of the second kind have the form
f
*
(2.4) f£(x) = g(x) + J K (x,y,£(y))dy

%0

where g(x) and K*(x,y,f) are given vector functions. Differentiating both

sides yields an integro-differential equation of the form



f é% £(x) = é% a(x) + K (x,x,£(x)) + z(x)
I

(2.5 { z(x) = é g% K*(x,y,f(y))dy
f X

L f(xo) = S(XO),

and the scheme (2.1)-(2.2) can be applied. However, when the derivatives
of g and K" with respect to x are not available we assume that they are

approximated by a numerical differentiation formula of the form

k
d L .
(2.6) = g(x) = T i:k dig(x-lh), k] < kz,

1

where h is the mesh width and the coefficients di determine the differentia-
tion formula. For instance, when a numerical differentiation formula, based

on Newton-backward interpolation, is used we have

k

[ 3%}

il t~1

aig (x-ih),

d 1
(2.6") o 8(x) = —

with a; and b0 the coefficients of the Curtiss-Hirschfelder formula (see

table 2.1).

Applying the scheme (2.1)-(2.2) to equation (2.5) and using (2.6)

yields the following scheme for iategral equations:

k k
v _ *
.17 zzo 8ot ne1-g = zzo B IR (e gy o ® g Tper—g)
k)
izk dF o) = kLKL,
where :
n+l-2 *
2.7 F = +
2.7 ne1-p ) = 8 }Lo Var1-p, 3t (oxgets)-

In the computation of the Fn+]~2(x) values we may use the relation

.. Taking a linear combination of the

2.3 t i
(2.3a) between the weights Vos1-g, ]



Fn+1_2(x) with coefficients zl results in the formula

=~

k
-y g
(2.8) Foo1(® = -a | Zlaanﬂ_R(x)—h SL-ZO

b K*(x,x f ]
» J

n+l—l’.n+1-l)J’

where we have used (2.3b).

In order to see which Fn+]-va1ues in the (n+1)-st step can be computed
from F-values which have been evaluated already in preceding steps, we have
indicated in figure 2.1 by O and ® the index points (r,s) of those values
Fs(xr) which are needed in scheme (2.1') for the calculation of fn' In addi-

tion, the Fs(xr)~va1ues needed for the calculation of fn+ corresponds to

1
index points (r,s) denoted by ® and +.

s=r+k2 s=r+k]
s / /
a+1A /+ + o+ o+ /+
I e R— oo 00 e
n-k+1 //
B RRREEEEEE ;;G) © © Gi/}? e @
nok+l o 0o © 0 O |
n‘k—--";O---O---O—---O—-;Q :
e d é E
v s ! :
/ 7/ H '
s s ' !
/ 4 ' 1
/ 7/ 1 H
s/ /s ' N
/ s | :
/ 7 ! \ S
T f T t >r
- - ~k~ K-k +
k2 k1 n-k-k n 1
Fig.2.1 0 index points needed for fn
+ index points needed for f
n+l

® index points needed for both f and f
n n+l

® index points of additional F-values occuring in (2.8).

From (2.8) and this figure it is immediate that the values of
Fn+1(xn+1—k2)"‘"Fn+1(xn+1—k1—E) can be computed by (2.8) from known
— 1 - *— 1 ~
F-values plus a few additional K*-values. The computation of Fn+1(xn+2—k1—k)
""’Fn+l(xn+1—k1) by (2.8) requlrei F-values which are not yet known un-
less the corresponding coefficient a, equals zero. (In figure 2.1 these un-

known values correspond to index points indicated by ®.) As soon as such an
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F-value is asked for by (2.8), Fn+1(x) should be evaluated by the direct
formula (2.7). The use of formula (2.7) is rather expensive in actual com-
putation, even when all K*-values are available, because of the many mul-
tiplications and additioms, particularly for large values of n. Thus, the
computational effort of the scheme (2.1'), (2.7), (2.8) is largely deter-
mined by the number of times formula (2.7) has to be used. This observation

suggests to use quadrature rules for which the coefficients a, satisfy (cf.

figure 2.1)

(2.9) a, = ag = ... = ay = 0.

In that case only Fn+1(xn+1) has to be evaluated by (2.7) and all other
F  .-values can be computed by (2.8) from preceding F-values. Quadrature

n+1
rules satisfying (2.3a) and (2.9) are the well-known Gregory rules based

on the Adams-Moulton multistep methods discussed in section 2.1 (cf. table
2.3).
In order to specify the computational effort per integration step a

choice has to be made for the remaining coefficients di’ a, and bz. When

we choose the di according to (2.6') it is necessary to de%ine the kernel
function K*(x,y,f) in points where x < y, otherwise (2.8) cannot be used.

An alternative could be to approximate the unknown K -values by extrapola-
tion (cf. DE HOOG and WEISS [4]) or to use coefficients di for which k2==0
(cf. [13]). In the following we have chosen the di's according to (2.6'").
Finally, we consider the choice of the multistep method. As already observed
in the introduction, the reason to construct an integration formula by con-
verting the integral equation into a '"quasi" integro-differential equation
was the consideration to exploit the highly stable Curtiss-Hirschfelder
formulas (or backward differentiation formulas) used for ordinary differen-
tial equations (e.g. [7]). Combining these formulas with the Gregory rules
leads to a {CH;AM} formula mentioned in section 2.1. From the order of con-
vergence of this scheme (cf. section 3.1) it follows that we have k-th order
;= 0, k2 = k. Using (2.6'), (2.9) and (2.3b),

the resulting scheme for Volterra integral equations (2.4) then reads

accuracy as h ~ 0 if k = k-1, k

(2.1 £ - bOhK*(x ) +

0 dtn+1-1 SUREL SUES S X aF

2 n+l

)»

I o~ R
(S

n+1-2

L 0

n=k-1,k,...,
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where
n

*
F X =F (x + w ~w JK (% x.,f.) +
n+1( n+l—£) n( n+1—2) j=n22—k (n%l,J n,} ( n+1-2°73°7]
K ( £ ), &=1,2 k
e L,n+T #1227 pe17 ne1”? 2590 >3y
and
n+l

% .
) + z w K (Xn+1ng5fj)‘

Foa&) = 8& iZo m+lLd

The a, (o =0,1,...,k) and b0 are given in table 2.1, and the weights i 3
3
in table 2.3. This scheme requires in the (n+1)-st step the evaluation of

the function

g\xn_'_]) 3

K(xn+1’xj’fj)’ 3 0,1,...,n,

n-k+2,...,n+l,

K(Xjax )’ j

n+l’fn+1

and the solution of a system of equations for f To start the integration

n+l1’
we must precompute (approximations of) the quantities

fj’ j=0,1,...,k-1

RGepox80), 1,3 = 0,150,k
Fk_l(xj), j=0,1,...,k-1.
3. CONVERGENCE AND STABILITY

In this section the order of convergence and the stability properties
of scheme (2.1)-(2.2) will be derived. Our convergence analysis is based on
the work of TAVERNINI [11] which enables us to confine the analysis to the
derivation of a recurrence relation for the error f(xj)~fj. The stability
analysis is based on [6] where the stability properties of direct quadrature

rules for Volterra integral equations of the second kind were investigated.
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3.1 Convergence

Following the convergence analysis used in ordinary differential equa-
tions we first derive a bound for the residual term An+1’ when the exact

solution f(x) of (1.1) is substituted into the scheme (2.1)-(2.2):

k k n+l-g
A= ) a £(x_,._,)-h E:bRQ(xn+]_z,f(xn+l_l), .Z wn+l_£’jlixn+l_2,xj,f(x?»
2=0 2=0 3=0
k k
— - |}
=1 a f(x )P ) LI C SR
2=0 2=0
Xn+]—!L
K
R FLICHRIPLIC R J K og Y2 £())dy)
2=0 X
0
k n+l-2
- h lzoblé(xnﬂ-l’f(xnﬂ—sg’ jZO Tor1-g, ;K e 1o E D).

Assuming that the quadrature formula is of order q and that the linear multi-

step formula is of order p, we have the following bound fér An+1:

p+1 p+l

+hL.c.hdg = 0P h+0md™y, as h -~ o0,

a1 < Clh 2Cy

n+1

k
where we have taken B = 220 |b£] and where C L, and C, are constants.

1’ 2
The next step is to derive a relation between the errors

ej = fj—f(xj), j =0,...,0+1,
assuming that the starting errors satisfy
e; = 0(n%) as h+0, j = 0()k-I.

Subtracting (3.1) from (2.1)-(2.2) yields the recurrence relation for the

global error

k
- (2)
ae 1B ] B (eo,...,en

0 420 n+1

Il o159

L

where
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O

Be1(8pe-

f(x ) + e

eos@

|
) = bQ,I_CI)(X

n+l-2 n+1-2° n+l-2 n+l=-2°

n+1-2 ‘

n+l-9

- o(x f(x )s K(

n+l=9 xn+1

=57 _z,xj,f(X£)ﬂ-

320 wn+l—J?,,j

This type of difference equations was investigated by TAVERNINI [11] from
which it can be deduced that for sufficiently smooth functions & and K the

order of convergence equals
min{p,q,s}.

In the case of the differentiated integral equation (2.4) we have for

the residual term A*+ of the scheme (2.1'):

n+1
* k k *
An+1 = Z azf(xn+]_£)-h z blK (Xn+1-2’xn+1—2’f(xn+l—£))
2=0 2=0
1}(:. ka [ n+1-2 * 'I
- b d.iglx_, ,_:_J)+ w_.,._, Ki(x . f(x.))}
920 ﬂi=kllt av1-i=g jZo n+l-g,3" Fnrl-i-p¥iet )]
% k
= a f(x _,)-h z b f'(x o)
020 2 n+1-2 020 2 n+1-2
D sy 3
+ b,shg'(x_, . ) - d.g(x_ . _._ )} +
=0 21 n+1-4 ik, i n+1-i-p
Kk Xn+1-%
*
+h 3 b4 A (x £(y))dy -
2 3x m+l-g? Y0
2=0
*0
n+l-9 *
3K 1
jZo Wn+1—2,,j 9x (Xn+]-2’xj’f(xj))f

k n+l-9 f -

' 2O bz{ jZo Wn+1‘l’jlh X (Xn+1—g’xj’f(xj)) -
ko . ]

- izkl d,K (Xn+1—i—2’xj’f(xj)) } .
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Assuming that the numerical differentiation formula defined by the coeffi-

cients di has order r, i.e.

' 1 kz )| = O(") ash >0
gt 1 dieGe ’
1=kI
we have
15 1 = 0@P s o Y+ o™ as n - o.

n+l

* .
Thus, the order of the residual term An+ equals min(p+1,q+l,r+1). From

1
this we can deduce along the same lines as above that the order of con-

vergence of scheme (2.1') equals
min{p,q,r,s}.

This result suggests to combine a multistep method, a quadrature rule and
a differentiation formula of the same order k. The resulting scheme is then
of the same order. Thus, the {CH;AM} scheme specified in section 2.2 is of

order k.
3.2 Stability

The variational equation of (2.1) with z -2 defined by (2.2) is of

n+1
the form
k k .
Y = —
G- i3 =h ) bz[ ot Fnr1-0>Tne1-0Zne1-00 8 a1y
2=0 g=0 “L
n+l-2
30 3K 1
+ —= ——
5z Fne1-p2Fne1-g0Ze1-p) jZO Vn+1-2,3 5 (Xn+1-z’xj’fj)AfjJ‘

In order to convert this relation into a fixed-term recurrence relation we

assume that the derivative of the kernel function with respect to f satisfies
the relation

3K 5
(3.3) 38 v, = ) Q IR (v,6),
m=1

where Qm and Rm are arbitrary matrices depending on x and (y,£), respectively.
Substitution into (3.2) and writing
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n+l-2

(m) = - =
(3.4) A jZO Vorlg, ] m(xJ ,f. )Af m=1,...,r, 2 =20,1,...,k

yields the (r+1)(k+1)-terms relation

k
(3.5) ) a,Af =11 {~%— x

020 2 "n+l-2 n+I—Q’fn+l—2’zn+I—Q)Afn+l—l *

llwﬂw

r
30 @ |
z (Xn+1—2’fn+l—£’zn+l~2)mzl Qm(xn+]—£)AGn+1‘2J'

In addition, we have from (2.3a) for the perturbations AGéT%_l the 2(k+1)-

terms recurrence relation

E (m) n+l N
(3.6) QZO a AG n+1-2 =h j:g-E+] bn+1 JR (X f )Af m=l,...,r

where the coefficients EZ are defined by (2.3b).

Introducing the abbreviations

Ly =2l -bh¢ af g2 Tne1-0Zne1-0)
(m) _ _ 3%
(3.7 M2 B bzh dz (xn+1—2’fn+l—£’zn+l—£)Qm(Xn+l—£)’
(m) _ =~
Ng © = bzh Rm(xn+1-x’fn+1—z)’

we may write the recurrence relations (3.5) and (3.6) in the form

k -
my, @ | _
QZO -LﬁAfn+] g mz My G g | T 0,
(3.8) .
% (m)Af + a AG(m) 1 =0 m = | r
2’=0 2' l n+1_2—l s 9000 g -

Without loss of generality we assume (in this section only) that k

k. For,

if kK < k we may define the coefficients ZR and gz to be zero for & = k+lI,...,k

without affecting the method and the analysis; in the case k > k the coeffi-

cients a, and b2 are defined to be zero for & = k+],...,§. With this assump-

tion we may write (3.8) in the form
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k
-
(3.9) QZO BAC L, = 0
where
= (0) (xr) 7T L0
Zmnﬂ-fi = (Acnﬂ—i""’AGnH—Q) > A n+l-% Afnﬂ-z
and
(1 (r)1
[Li M My
05 O
(3.10) By = .
L O
LNﬁ aKI ]

Assuming that Bgl exists, we write (3.9) as

> >
AVn+] = An AVn,
where
> T
&, (A?Enﬂ yeun ,AEH+2_k)
and

-1 ~1 _plp 1
{—BO 51-30 52 cean BO Bk

(3.11) Al I . i . (::) .
O

| 1o

Let us first consider the special case where Al does not depend on n, i.e.
An = A = matrix with constant elements. For any subordinate matrix norm we

have the inequality

1A 0 < DAl 1AV 1.
n+l n

Hence, the vectors Aﬁn are uniformly bounded if WAl < 1. The well-known norm
equivalence theorem (see ORTEGA [9, p.18]) states among others that there

exists a constant c¢ > 0, such that
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av_Il

bv i, < clav l, v av .

From this it follows that every component of Aﬁh, in particular the compo-
nent Afn, is uniformly bounded. The conditions for the existence of a vector
norm for which IAl < 1, are related to the spectralradius R(A) of the matrix
A. The necessary condition is R(A) < 1 i.e. all eigenvalues are within or

on the unit circle. This condition is also sufficient provided that in the
case R(A) = 1 the Jordan blocks (in the Jordan normal form of the matrix A)
corresponding to the eigenvalues which are on the unit circle are matrices
of order 1 (see ORTEGA [9, p.24]1). It is convenient to divide the eigen-

values of A into two classes according to the following definition.

DEFINITION 3.1. An eigenvalue T of a matrix A is called:

a) strongly stable if |t¢| < 1,
b) weakly stable if || = 1 and the Jordan block corresponding to z in

the Jordan normal form of A is of order 1.

Thus for matrices A with only strongly or weakly stable eigenvalues the

existence of a norm with lAl < 1 is guaranteed.

It should be noted that the uniform boundedness of A%n can be proved
only if An is a constant matrix. In our case, however, LR’ Méi), and Néi),
and therefore the matrix An depend on n, and consequently the above require-

ment on the eigenvalues of the matrix An only has a Zocal meaning.

DEFINITION 3.2. For kernel functions of the class (3.3), the scheme (2.1)-

(2.2) satisfying (2.3a) will be called locally stable at the point X with
respect to the perturbations AGéi? when all eigenvalues of the matrix An

are strongly or weakly stable.

It is to be expected that local stability in a sequence of points

X ,X R
n’ n+l1’ >“n+m

that An is slowly varying (with respect to the stepsize h) in this interval.

implies global stability in the range [Xn’xn+m] provided

In the following, we will concentrate on the derivation of Zocal sta-
bility criteria. To this end we need the characteristic equation of (3.11).

It is easily verified (assuming det BO # 0) that
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K
y Blck_z)[det(—I)]k.

(3.12) det (A ~zI) = det(Bal)det(
n 2=0

Substitution of (3.10) into (3.12) gives the characteristic equation

k

/ (r) k-2
[k - k k=2  cee.. M [ \

YL e ) ul; g %

2 )

0 0

k _ k _

R

0 0 ,

(3.13) det : . = 0.
k k
- ~ - k-2
} Ny L 3,1
0 0 /

In order to simplify this equation we prove the following lemma.

LEMMA 3.1. Suppose BoCpm=1l,...,r, A and D are square matrices of the

same order. If
(3.14) DC =CD form=l,...,r,

then

r
(3.15)  det | : -, = det(aD - ] B C)(det D),

. O s -

- r - — r -— —
4 B, ...8 ][ 1 aA- %Y Bp ¢, BD! ... BD
1 O wr ’
c,o (O || ¢, D I
O 5.0 O
lc, D | |- C. D | _ I
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-1 T I -
(B.15') det|.] . (det D™') = det(a- ] B D C).

O =1

Multiplying both sides with (det D)r, we have for the right-hand side of
(3.15")

r r
-1 r _ _ -1
det(A -} B D C_)(det D)* = det(AD N B D

¢ D) (det D)° L.
m
m=1 m=1

Using (3.14) gives the right-hand side in (3.15), which completes the proof
for regular matrices D. In the case that the matrix D is singular, we reason
as follows. For all sufficiently (in modulus) small scalars A the matrices
D*(A) = D + AL are regular. Moreover, D*(A)Cm==(D+AI)Cm==CmD-+CmAI==CmD*(A).
Applying the lemma with the regular matrix D*(A) yields (3.15) with D re-
placed by D*(A). Since both sides are continuous functions of the parameter
A, (3.15) holds for D*(O). However, D*(O) = kig D*(A) = D and hence we have

proved the lemma for singular matrices D. 0

As in the theory of linear multistep methods for ordinary differential

equations we need the following cefinition (see e.g. HENRICI [3,p.161]).

k

DEFINITION 3.3. The polynomial QZO a,

the root condition if its k roots c. satisfy |;i[ <1 (1=1,2,...,k), and

Ck_z with a, # 0 is said to satisfy

if the roots satisfying lcil = 1 have multiplicity 1.
Next we give the following theorem

THEOREM 3.1.

i) The eigenvalues of the matrix (3.11) satisfy

(3.16a)

or

I k
(3.16b)  dety )
1,2
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k -
ii) Let the polynomial 2§0 Egtk . satisfy the root condition, then the
scheme (2.1)-(2.2) is locally stable in the sense of definition (3.2)
when the etgenvalues satisfying (3.16b) are strongly stable.

PROOF. We already showed that the eigenvalues of the matrix (3.11) satisfy
the characteristic equation (3.13). By observing that the matrix Zg Zz;k*ﬁx

in (3.13) is a multiple of the unit matrix, and therefore commutes with
all matrices of the same order, we obtain by virtue of lemma 3.1 that (3.13)

may be reduced to

T .
{ZiLi -3 Mim)N(m)}CZk~l—1} X
1

=0 i=0 m= 2
(3.17)
k _oY\r—=1
(det{ z EQI ck 2}) =0,
2=0 *

from which (3.16a) and (3.16b) immediately follow.

In order to prove the second part of the theorem, we have to prove
that the eigenvalues which satisfy (3.16a) are strongly or weakly stable.
From the root condition it follows that all eigenvalues which satisfy (3.16a)
are within or on the unit circle. Hence, it remains to show that the eigen-
values on the unit circle are weakly stable. Let ¥ be a root of % Ezck"z

with |¥| = 1. From the root condition it follows that Z is simple. If the

matrices in (3.10) have order s then ¥ is a root of (3.17) with multiplicity
s(r-1). The next step is to prove that there exist s(r—1) independent eigen-
vectors of A corresponding to the eigenvalue ZT. Let e(Z) be such an eigen~

. - > .
vector with component vectors (e],...,ek). Solving

Ae(@) =T e®@
we find
- ~k=1- - >
1 g ek""’ek-l z ek
and

(3.18) ( y BREk"Q>Zk - 0.
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Thus, the number of independent eigenvectors (D) equals the number of
independent vectors e, which satisfy (3.18). Denoting the components of

k by (e(o),...,2£r)) and solving (3.18) we find the system of equations

b

AN O) (¥ (1)sk-2)2(1) (€ (r)~k—i)—>(r)_
(3.19a) z L ) X + \% M2 s jek + ...+ \g Mz 4 ek = 6

k
(3.19b) (f Ném)zk—szﬁlgm -3,

(1)

Since each vector N has s components, i=0,...,r, we have s(r+!) unknowns
which must satisfy (3.19a)—(3.19b). Recall that we have to prove that s(r-1)
unknowns can be chosen independently. This is achieved by chosing the com—

=(0) +(0)

ponents of ey equal to zero, 1i.e. e < 6, in which case (3.19b) is sa-
tisfied. The number of unknowns is then reduced to sr, and we are left with

the s equations

k
(3.20) (2 M(]) k- ) él) o+ (2 Mér)zk—z)zér) - 3.
0

From (3.20) it is immediate that s(r—1) components can be chosen arbitrarily,

g

and therefore one can find s(r—1) independent vectors Zk'
Equation (3.16b) can completely be expressed in terms of the Jacobian
matrices 30/3f, 9%/9z and 3K/3f in a number of points close to (x ,f nZ )

and (x SR S ,f ), respectively. A straightforward calculation ylelds by

substltutlon of Li gm) and N(m)
kK k
] — —
(3.16b") det{ 11 [aza I-3a ,b; af X e1-1° Ene1oi*Zne1-1
2=0 1=0 *
~ 2238 3K kerk—2—1)
bgbih"52(Xn+1—i’fn+1—i’zn+1—i)-gf(Xn+1—i’xn+1—2’fn+l-l4g } 0.

In the case where the matrices 94/3f, 3%/0z and 3K/3f can reasonably be

approximated by constant matrices, equation (3.16b') reduces to

(3.21) det{S(c)Ep(r,)I-O(c)h 21-0(0)5 Fom’ 5 g?} 0
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where {p,0} and {5,8} are the characteristic polynomials associated to the

linear multistep methods {aﬁ,bl} and {Eg,ﬁg}, respectively, that is

k k-2

p(z) = al C ’ a(g) = 2 blC 5
=0

I %

2=0

and similar expressions for {S,g}. For scalar integro-differential equations
the determinant operator in (3.21) may be omitted and the equation reduces
to the characteristic equation given by BRUNNER & LAMBERT [ 1] and MATTHYS
[8]. From the stability region defined as the set of points 012%352-22-%%)
where equation (3.21) has its roots within the unit circle, an indication

is obtained for which step sizes and values of the derivatives, scheme (2.1)-
(2.2) has a stable behaviour.

In this paper it is our aim to get stability regions for systems of
equations with not necessarily constant 36/3f, 3%/3z and 3K/d3f. Within the
rather large class of kernel functions satisfying condition (3.3), equation
(3.16b") may serve as a starting point in the derivation of stability regions.
Such derivations may often be simplified by using the following lemma (for

a proof we refer to e.g. [6]):

LEMMA 3.2. Let A(g) be an (sxs) matrix—valued function of the scalar ¢
with eigenvalues oy (t), i =1,2,...,8. Then the roots of the equation
det{A(z)} = 0 are within the unit circle when the roots of the equations

uj(c) =0, j=1,...,8 are within the unit circle.

By virtue of this lemma equation (3.16b') can be simplified in all cases
where the matrices 39/3f, 39/3z and 3K/3f have a common eigensystem {ej}:
the double sum of matrices in (3.16b') then also has eigenvectors ej with
eigenvalues aj(C), say, so that (3.16b"') can be replaced by aj(c) = 0,
j=1,2,...,s.

Before analyzing some special formulas, the stability of the integro-

differential equation itself will be investigated.

3.2.1 Inherent stability

We apply the same type of stability analysis to the variational equa-

tion of (1.1), i.e. the equation
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X

(3.22)  Soare =2 areo + 2 f 22 Gy, E())BE(y)dy,

%0

as we did for the variational equation (3.2). Again, restricting the kernel

functions to the class satisfying (3.3) and introducing the additional per-

turbations

X

AG(m)(x) = [ Rm(y,f)Af(y)dy,

X

0

we obtain a system of ordinary differential equations of the form

r
P Af(x) = %%-Af(x) + %g-mzl Qm(x)AG(m)(x),

= AG(m)(x) = Rm(x,f(x))Af(x), m=1,2,...,r.

This system is inherently stable when all eigenvalues of its Jacobian matrix
are in the left half plane. Since the characteristic equation of the Jacobian

matrix is, by virtue of lemma 3.1,
[det(z1)1"! det{ct%?fi (x,£(x),2(x)) - cI] +
(x f(x), Z(X)) (x x,£(x))} =

we may conclude that the integro—-cifferential equation is unstable at the

point x when the roots of the equation

(3.23)  det{z’1-z 22 (x £(x),z(x)) - — (x £(x),2(x)) 55 (x,%,£(x))} =
are in the rZght half plane. In order to get more practical conditions from
this equation we have to restrict the function & to special classes of func-

tions. Such a class is the set of functions @ which satisfy the condition
that

(3.24) (x f(x),z(x)) and-—— (x,f(x), z(x)) (x x,£(x)) share the same

etgensystem.
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When & belongs to this class, equation (3.23) can be reduced by using lemma

3.2 to the equation
2 -
(3.25) t”-tE -n=0,

where £ and n are the eigenvalues of 32 and gi gf, respectively, corresponding
to a common eigenvector. Thus, a necessary condition for inherent stability

of the integro-differential equation (1.1) satisfying (3.3) and (3.24) is
(3.26) Re £ < 0, Ren < 0.

In the following we will assume that this condition is satisfied at the

.

point x_.,

3.2.2 Stability regions of the {CH;CH} and {CH;AM} formulas

Let {ak,bz} be defined by table 2.1, then equation (3.16b') reduces
to

(3.27)  det{p (DI = byhe (D) 2= (x_, .t )

z
n+1’ " n+l’ "n+l

oK

> (x 3F

= by h? c (c) ) (x }=0.

5z Fn+1?Tne12 %0+ n+t?Fne12Tne

Furthermore, let {gﬁ,gz} correspond either to the Curtiss-Hirschfelder or
the Adams-Moulton formulas and le: & and K satisfy the conditions (3.3)
and (3.24). Then, by theorem 3.1 part ii) and lemma 3.2 we have local sta-
bility when the roots of the equation

' ~ _ k"’ - 2 kN ——
(3.27")  p(@)p(z) = byhT B (TIE ,; ~ boh T T(EIn | = 0

are within the unit circle for all eigenvalues pairs {g

30 30 oK o+l
matrices {af’ T SE} "y corresponding to their common eigenvectors. For
n

} of the

negative values of En+1 +1 the stability regions of the {CH;CH} and

{CH;AM} formulas are given in [12] and [13], respectively, and are repro-

duced in the appendix.

and
1L

To the particular case of second kind Volterra integral equations

these stability regions do also apply when the eigenvalues §n+] and N4l
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are understood to be the eigenvalues of the matrices

1) 3K

Sf (xn+1’fn+l’zn+1) Y (Xn+1’xn+1’fn+1)

and '
EEEi(x X £ )
9x9f " n+1’"n+1’ ntl

30 3K
32 Fne 0 Ene 2 2D 3K

) =X

n+1’Xn+]’fn+1
*

oK £ )

<2
Lh ;Zk di of (Xn+}-i’xn+l’ n+1

1

and provided that these matrices have a common eigensystem.

3.2.3 Stability conditions for the trapezoidal rule

A frequently used method is based on the application of the trapezoidal
rule both for the approximation of the integral and the derivative in equa-
tion (1.1). This results in the coefficients (k =k = 1)

a.=a. =1, a, =a, =-1 b.=b.=b, =b, =1

Equation (3.16b') assumes the form

2 2
- -1 -
(3.28) det{[I %th+1 ih Yn+1,n+1]C
[21 - ihX + $hX + 1n2y + 1%y Iz +
2 n+1 n ‘" ‘n+l,n * “n,n+l
[I +ihXx - 1n?y 1} =0
%% 4 n,n ’
where we have written
20 _ 30 9K
an_sf(xn’fn’zn)’ Yn,m.-az(xn’fn’zn)af(xn’xm’fm)'

In order to continue the analysis we restrict the functions ¢ and K to the

class of functions for which all matrices Xn and Yo occurring in (3.28)
b

possess the same eigensystem with eigenvalues En and L By theorem 3.1
s
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and lemma 3.2 equation (3.28) can be reduced to

2

2 ; 2
- - 1 - -1 - 1
(3.28") (1 %h£n+] <h nn+l,n+]]C (2 2r1(En+1 gn) *+ 4h (nn+l,n+nn,n+l)jc

2
+ [1 + 4hE - 4h'n 1 =0.

For real values of the eigenvalues £ and n the stability region easily
follows from Hurwitz' criterion. A straightforward calculation yields the

conditions

<0, nn+l,n+1 <0

Bz, *6) *+ i (n ) <0,

n+1,n+l-nn,n
(3.29)

2
+
h (nn+1,n+1+nn+l,n nn,n+l+nn,n) <0,

h(E_,,~£) *+ th°(n n ) < 4,

- - +
n+l,n+l nn+l,n n,n+! nn,n

where we have assumed that the equation is inherently stable at the point
(cf. condition (3.26)). Note that these conditions are more restrictive

n+l,n+] < 0). But

it is also evident that (3.29) only restricts the integration step h substan-

X
n+1
than those given by BRUNNER and LAMBERT [1] (En+] < 0, n

tially when £ and n, and therefore the matrices 33/3f and 56/5z 5K/3f, are
rapidly varying with their arguments. In such cases, however, the integra-
tion step should be suffiently small in order to get enough accuracy. Hence,
it is expected that the conditions (3.29) yield quite acceptable integra-
tion steps in actual computation.

We will illustrate the use of conditions (3.29) by applying them to
the equation

4

dx £(x)

-b + (b+1) cos x + ((b+c)x-a) (f(x) - sin x) + bz(x)
(3.30)

L}

X
2(x) J £(y)dy
0
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where a, b and ¢ are given parameters. This equation is, in fact, the differ-

entiated form of the Volterra integral equation

X
(3.30") f(x) = (1-c)sin x + a-bx+((b+c)x-a)cos x + J (-a+bx+éy)f(y)dy.
0

Evidently, we have
g, = (bro)x - a, n = b,

so that (3.29) leads to the stability conditions (at the point X

)

+1

(b+C)(Xn*h) < a, (b+C)(Xn+%h) <a, b<0,
(3.31)
(b+c)h2 < 4,

The first three conditions are automatically fulfilled when we restrict the
class of equations to inherently stable-equations. The fourth condition
limits the stepsize in cases where b+c > 0. It may be interesting to compare
the conditions (3.31) with those obtained for the trapezoidal rule when di-
rectly applied to the integral equation (3.30'). A stability analysis carried
out in [6] results in the same conditions as (3.31) except for the fourth one
which becomes ch2 < 4. Thus, we may conclude that differentiation of the in—

tegral equation relaxes the stability conditions if ¢ >> 1 and b+c = O.

4. A STARTING SCHEME, BASED ON EXTRAPOLATION OF THE TRAPEZOIDAL RULE

In order to start the two schemes (2.1)-(2.2) and (2.1") we need, in

addition to the given initial vector f the vectors fl’f f . These

0’ 227 Tk-1

vectors should be computed with an error of magnitude O(hk) as h > 0. We
will use the following starting schemes which are based on extrapolation

of the trapezoidal rule. Starting vectors for (2.1)-(2.2) are computed with

the scheme (we assume Xg = 0)
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. h
-8+ Broctm-nn, el L2t ) +oan, 20y
non n=1,2,...,k-13
n
h_ " h _h
zn-h .Z K(nh,xi,fi)
h/2 h/2
@ s /2 Do (a-1)n/2, /2, h/2)+q>( an/2,£22, 2 %))
0 n=1,2,...,2(k=-1);
h/2 _h oo h/2
o ~§'2 K(nh/2,%,,£." ")
i=0
4 _h/2 1 .h _ _
£ =5 E ~ 5 oo n=1,2,...,k-1.

Starting vectors for (2.1") are computed with the scheme (for xg = 0)

J=
n
(4.2) fg/z = g(nh/2) +% 7 K*(nh/Z,jh/Z,f?/z) n=1,2,...,2(k=1);
j=0
4 h/2 1 .h
fn=—3—f2r/1 -3 £, n=1,2,...,k1

In [10] it is proved that for k 2 2 the scheme (4.2) has an error of magni-
tude O(hS). This also holds for the scheme (4.1), which can be seen by writ-

ing the integro-differential equation (1.1) as an integral equation

{f (X)\ /fO\ J /Q(Y,fl(Y),fz(Y))\d
\e (x)} \o/ 2 KGy, £ () /7
0
and by verifying that application of the scheme (4.2) to this "integral equa-
tion" is equivalent with the scheme (4.1).
Since the trapezoidal rule has a local error of order O(h3) as h » 0,
it is sufficient to apply only the first line of the scheme (4.2) when k = 2
or k = 3. However, when k = 4 or k = 5, we have to apply the full scheme, in
order to get the required order k. For k = 6, we may either continue the
extrapolation process or try to improve the starting vectors by other methods.

h/4

When extrapolation is used, we first compute the vectors f , 0= 1,2,-~,4(k'1),
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and then we form the combinations

16

16 4 h/4 _1 h/2
1 4

n 37 2n 15

1
|

Hh

-
=
it

= 1,2,0..,k-1.
One easily proves that this expression approximates f(nh) at least within
0(h6), as h ~ 0. The stability conditions for this starting scheme are given
by (3.29).

In [10] another 0(h6) starting scheme is given, based on a high order
Newton~Cotes quadrature formula, but special attention must be paid to the
solution of the nonlinear equations involved, in order to assure the con-
vergence of the scheme. Therefore we have preferred the schemes based on

the trapezoidal rule.
5. NUMERICAL EXPERIMENTS

In this section we present the results of numerical experiments with
the scheme {CH;AM}, given in section 2.1, both for Volterra integro-differ-
ential equations (section 5.1) and for Volterra integral equations (section
5.2). Moreover, we present results of numerical experiments with the scheme
{CH;CH} for Volterra integro-differential equations (section 5.1), in order
to illustrate the improved stability properties of this scheme, compared
with the {CH;AM} scheme. Finally, in section 5.3 we pay attention to the
performance of the {CH;AM} scheme, in comparison with an implicit Runge-
Kutta scheme of DE HOOG and WEISS ([4]).

The numerical experiments have been carried out with test problems
with known exact solution. Our purpose was to test the convergence and sta-
bility properties of our schemes, rather than design and implement an auto-
matic integro-differential (cq. integral) equation solver. No special strat-
egies have been incorporated in our implementations. Integration was perform-
ed with constant stepsize. The nonlinear equations, arising in the case of
test problems which are nonlinear in f, were "exactly'" solved (i.e., almost
within machine precision) by the Newton—-Raphson method. As a first approxi-

mation of fn the value of fn was used. The stopping criterion of the

+1 -12

iteration process was based on a Newton correction of 10 . The starting

values fl,fz,...,fk_1 were computed with the starting schemes given in
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section 4. All calculations have been performed on a CDC CYBER 73-28/173-8

installation, using 14 significant digits.

5.1 Integro-differential equations

In this section we give results of numerical experiments with the

{CH;AM} and the {CH;CH} scheme, respectively.

Problem 5.1.1. (linear)

"

A

o
-

X
;

Jf'(X) = exp(x) - £(x) - J exp (x~y)f(y)dy, 0 <
0

lzo) = 1,

with exact solution f(x) 1. Our purpose is to demonstrate that the global
error is O(hk) as h » 0. In table 5.1.1a and 5.1.1b we give the relative

error at x = 2 for the {CH;AM} and the {CH;CH} scheme.

rel. error at x = 2
h k=2 k=3 k=4 k=5 k =6
1/4 1.0]0—2 1.110—3 1.7]0—4 4.910—5 3.510—6
1/8 2.610—3 1.5]0-4 1.210—5 1.510—6 8.510-8
1/16 6.510—4 1.910—5 7.7]0—7 4.110—8 1.510—9
1/32 1.610—4 2.510-6 4.910—8 1.210—9 2.510—11
1/64 4.110-5 3.110—7 3.1]0—9 3.610—11 3.410—13
1/128 1.010—5 3.910—8 1.910-10 6.210—13 9.210—14

Table 5.1.1.a. Results with the {CH;AM} scheme

for problem 5.1.1.
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rel. error at x = 2
h k=2 k =3 k=4 k =5 k=6
1/4 3.610-2 6.010—3 9.110—4 1.310—4 1.910~5
1/8 9.810—3 8.910—4 7.910—5 7.310—6 7.1]0-7
1/16 2.510—3 1.210—4 5.510—6 2.710-7 1.410-8
1/32 6.410—4 1.510—5 3.610—7 9.310—9 2.410—10
1/64 1.610—4 1.910—6 2.310—8 3.110—10 6.510—12
1/128 4.110—5 2.410—7 1.510—9 1.910—11 2.110-11

Table 5.1.1.b. Results with the {CH;CH} scheme

for problem 5.1.1.

From these tables the asymptotic convergence factor (%)k is obvious;
further the {CH;AM} scheme is more accurate than the {CH;CH} scheme. This
is due to the fact that the quadrature rule in the {CH;AM} scheme corres-
ponds to a more accurate linear multistep method, viz. Adams-Moulton, than

the quadrature rule in the {CH;CH} scheme.

Problem 5.1.2. (linear)

x
:

f'(x) = 50-50.75 exp(-x) - 0.25 £(x) - 50 J f(y)dy, 0 <x <x
' 0

£(0) =1,

with exact solution f(x) = exp(-x). This linear problem depends strongly
on the "Volterra' part of the equation. Our aim was to verify the stability

theory for the {CH;AM} and the {CH;CH} scheme. Since the values

L

= — = -0.25 and n=a- = =50

e
@
Hh
Q)
Hhi =

do not depend on x,y or £, our local stability conditions may be used as
conditions for global stability. In table 5.1.2a and 5.1.2b we indicate by
S and U respectively, whether or not the point (hE,hzn) belongs to the
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stability region (see appendix) of the corresponding scheme. The second

entry in these tables is the absolute error at the endpoint of integration

X = 128h.
h k=2 k=3 k=4 k=5 k=6
1/2 S,8.OIO—15 $,3.5 0—9 U,6. 410 U,2. 810 5 U,3.010+18
1/4 S,].Slo—lz u,l. 210 1 U, 9.4 +4 U, 3.4 +10 U,2.210+14
1/8 S,5.1]0-6 u,7. 310 3 U,9. 610 -4 U,3. 810 -6 S,].110—9
1/16] $,6.6 ;-6 5,8.9 =7 S,4.8,,=7 S,4.8,, s, 9.710-10
1/32 S,S.S]O-S S,5.910-6 S,8.210—9 S,4. 110 S,9. 310
Table 5.1.2a. Stability test of the {CH;AM} scheme
with respect to problem 5.1.2
h k=2 k=3 k=4 k=5 k =6
1/2 S,2.510—14 S,7. 110 12 U,7. 510 u,7. 910 u,7. 810 20
1/4 | S, 3.9 —14 U,9. 110 4 U, 3.4 U,4.610+12 U,2.31O+17
1/8 | s,6. 110 -1 U,6.2,72  T,l. 210 U,1.8,, $,1.2, -5
1/16] S,2. 210 -4 S, 6.4 5 S,5. 210 S,5. 9lO 7 S,2.410~9
1/32 S’1‘710 -4 S,1. 610 5 8,7.6 5,4.710 S,2.4]0~11

Table 5.1.2b. Stability test of the {CH;CH} scheme
with respect to problem 5.1.2

The behaviour of the numerical solution agrees with the predicted
behaviour; for the case h = 1/8, k = 3,4,5 this may be less apparent, but
this is explained by the fact that the point (hg,hzn) is close to the bound-

ary of the stability region resulting in an amplification factor lC[ close
to 1.
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While this test showed the presence of a region of instability near the
h2n - axis, the following test will show that the stability regions of the
{CH;CH} scheme are much larger than those of the {CH;AM} scheme.

Problem 5.1.3. (non-linear)

(£1(0) = [d(x) - af(®) - B2(x)1°-1, 0<xx<16
X

1z(x) = f (x + Yy)éfB(y)dy,
0

L£(0) = 1.

With 5+1
Bx

A6 = 1+ o+ Sy L T,

the exact solution becomes f(x)

"

1. For €n+1 and nn we have (computed

+1
along the exact solution)

gn+l = —3a, n

S S
nrl = TIBE L ()

Hence ]nn+1| increases monotonically, whereas £n+1 remains constant. We

have considered the case

o =40, B=15 y=2, &=23/2, h=1/8.

The values of o and h were chosen such that the vertical line h& = -3ho is
within the stability regions of the {CH;CH} schemes. Hence it is expected
that the {CH;CH} schemes will integrate this problem in a stable manner.
From the stability regions of the {CH;AM} schemes one can predict, theoret-
ically, the values of h2n, and therefore the values of x for which the

{CH;AM} scheme will be stable. Approximate x-values are listed in table5.1.3a.

k|2 3 4 5 6
X< | » 5,20 3.67 3.07 2.77

Table 5.1.3a. Predicted stability ranges for x for

the {CH;AM} scheme with respect to problem 5.1.3
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Having stated our prediction, a final numerical experiment must give
a decisive answer. In table 5.1.3b we have listed for the {CH;AM} scheme
the true error f(xn)—fn at the point x = 1 and at some other relevant points.
The points were chosen as follows: for a k-th order {CH;AM} scheme we have
listed one point close to the x-value for which instability is predicted
by the theory (cf. table 5.1.3a) and another point at which the integration
process was (mostly prematurely) terminated. In the table of results the
prediction point is marked with a dotted line. In table 5.1.3c we list the
results of the {CH;CH} scheme at the same x-points. Inspection of these ta-

bles reveals that:

(i) the {CH;CH} scheme is indeed stable; in fact, the true error is
damped out.

(ii) the {CH;AM} scheme indeed becomes unstable for k = 3; however, for
this problem the theory predicts instability for smaller values of x

than shown in actual computation.

X k=2 k=3 k =4 k=5 k=6
1.000 +5.710—5 -5.810-5 -2.110~6 —2.110—6 +1.3]O—7
2.750 —2.2]0-5 —8.210-6 —2.3]0-7 —1.210—7 +1.310-7
3.000 —2.010—5 —7.110—6 —2.010-7 _—:1;119:1’ +1.510-7
3.625 —1.610—5 —5.310-6 __:1L519:Z_ —1.2]0—7 —6.210—7
5.125 —1.110—5 -_:ELELQ:E_ —9.010—8 5 510-6 1 810—3
5.250 —1.010-5 —3.210-6 -8 710—8 +9.9]0—6 *
6.375 -8.210—6 —2.410 6 -7.310—8 ~4.3]0-3 *
9.375 —5.210-6 —1.5]0~6 —5.6]0—3 * *

14.250 —3.110~6 —5.310-4 * * *
16.000 —2.710-6 * * * *

Table 5.1.3b. Results of the {CH;AM} scheme for
problem 5.1.3
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X k=2 k=3 k=4 k=25 k=6
1.000 +4.410—4 —4.010-5 —2.510—6 -2.210—6 +3.710—7
2.750 -5.910—5 -8 310 7 5.510~7 -2 210-7 +3.910~8
3.000 —5.510—5 —8.810—7 4.510~7 -1.4]0'7 —9.510~9
3.625 —4.6]0-5 -8.910—7 3.110 7 *1.410—7 +7.410-9
5.125 -3.2]0—5 —7.610—7 1.710-7 -9.210—8 +9.810-9
5.250 —3.1]0—5 -7.410—7 1 610—7 —9.010—8 —1.210—8
6.375 —2.5]0—5 —6.410—7 1 210-7 -7 1]0-8 —3.9]0-9
9.375 —1.610—5 ~4.4]O-7 7.110—8 ~4.410—8 +1.2]0—9

14.250 —9.9]0—6 —2.810—7 4 110-8 —2.710—8 +7.4]0-10
16.000 —8.610—6 -2.510—7 —3.610-8 —2.310—8 +6.610—]O

Table 5.1.3c. Results of the {CH;CH} scheme

for problem 5.1.3

5.2 Integral equation

Results are presented of numerical experiments with the {CH;AM} scheme
(2.1") for Volterra integral equations of the second kind. These experiments
closely resemble a number of tes s carried out in [10]. However, in order
to treat the starting procedure, the Newton-Raphson iteration, etc. in the
{CH;AM} scheme in the same manner as done in the experiments for integro-
differential equations in the preceding section, we have repeated these

tests. The results are only slightly different from those reported in [10].

Problem 5.2.1. (Renewal equation from FELLER [2])

x
f(x) = %xzexp(—x) + 3 J (x~y)2exp(—x+y)f(y)dy, 0<x<2,
0

with exact solution f(x) = %-— %—exp(~3x/2){cos(%x/§) + /3 sin(ix/3)}. In

table 5.2.1 we give the relative error at x = 2, for various choices of h
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and k. One easily verifies the asymptotic convergence factor of (1/2)

h k =2 k=3 k =4 k =5 k =6

1/4 | 3. 1]0 -2 1.810-2 4. 510 3 I. 810 3 5. 210 4
1/8 | 5. 910 3 1.8 —3 1.8IO =4 5.810-5 9.710—6
1/16] 1. 310 3 2. 110 -4 8.310-6 2.010-6 1.9 -7
1/32 3.010-4 2.510 -5 4.4 -7 6.810-8 3. 410 9
1/64) 7. 3]0 5 3. 110 -6 2. 610 8 2.310-9 5.710—11

Table 5.2.1. Results with the {CH;AM} scheme
for problem 5.2.1

Problem 5.2.2 (non-linear)

X
£(x) = -15x+17 (exp(x)-1) + f {16(y-x)-1}exp(£(y))dy, 0 < x < Xy
0

with exact solution f(x) = x. The purpose of this nonlinear problem is to
verify the stability theory for the {CH;AM} scheme for Volterra integral

equations of the second kind. We have

*
oK !
EYa (xn+1’xn+l’fn+1) = —exp(an), and
52

3%3E X

0t 1041 ’fn+1) = -16exp(f

n+l)'

In table 5.2.2 we have indicated, by S for stable and U for unstable, the
stability behaviour of the {CH: ;AM} scheme, as predicted by the stability

regions given in the appendix. The second entry is the absolute error at

c _ .
he endpoint of integration X, = 128h. In case the integration had to be

stopped prematurely because of the development of instabilities in the

numerical solution, the index of the last computed function value has been

added between parentheses. Clearly, the observed behaviour agrees with the

predicted behaviour.
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h k=2 k=3 k = 4 k=5 k=6

1/2 | 8,7.9,0=2 U,2.2 -2 U,6.9 -3 U,1.6,,-1(23) U,2.1 -1(18)
1/4 | 8,2.2,,-2 $,3.5, -3 U,6.0 =4 U,4.6,,-1(65) U,3.4,,~1(37)
1/8 | 8,6.0 03 §,4.9, ~4 §,4.5 =5 S,4.4 6 U,2.0, 43
1/16 | §,1.5,,=4 $,6.6 =5 §,3.1 =6 §,1.5 -7 5,8.1,,~9
1/32] 8,3.9,,~4 §,8.5 -7 §,2.0,,~7 §,5.2 /-9 S,1.4,,-10

Table 5.2.2. Stability of the {CH;AM} scheme with
respect to problem 5.2.2.

5.3. Comparison with a method of de Hoog and Weiss

In [4] de Hoog and Weiss have proposed implicit Runge-Kutta schemes
which have stability properties, comparable with ours. In [10] we have
compared the performance of a 0(h7) scheme of de Hoog and Weiss with the
0(h6) - variant of our {CH;AM} scheme. This O(h7) scheme of de Hoog and
Weiss is optimal in the sense that its order of convergence is achieved with
a minimum number (namely four) of points used in one Runge-Kutta step. It
turned out that the order of convergence of the scheme of de Hoog and Weiss
decreases from the expected value O(h7) to about O(h4), as the value of
[BK/af[ increases, whereas the expected order of convergence of our scheme
is not affected by the value of |dK/3f|. As a consequence, our scheme turned
out to be more efficient than that of de Hoog and Weiss, for problems for
which |3K/3f| is large. An explanation of the order decrease of the scheme
of de Hoog and Weiss may be given by the fact that the error "constant" in
the expansion of the error, committed when applying the scheme of de Hoog
and Weiss, Ztself satisfies a linear Volterra integral equation of the se-
cond kind, with kermel d5K/3f (see [4], theorem 4.1). So this error "constant"

depends heavily on the value of IBK/afI.
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APPENDIX. Stability regions of the {CH;AM} and the {CH;CH} schemes

We present here the stability regions in the (hg,hzn)-plane of the
{CH;AM} and the {CH;CH} schemes, determined by equation (3.27'). The shaded
areas indicate stability. Since the integral equation Ztself is stable
only in the third quadrant (cf. sectiomn 3.2.1), we have confined ourselves
to this quadrant (and a small strip in the fourth quadrant). The regions
are displayed for k = 3, 4, 5 and 6 (for k = 2 the stability region contains
the whole third quadrant).
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