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On the stability of multistep formulas for systems of Volterra integro-
. . 1 . *) differentia equations 

by 

P.J. van der Houwen, H.J.J. te Riele & P.H.M. Wolkenfelt 

ABSTRACT 

The stability behaviour of linear multistep methods is analyzed for 

systems of integro-differential equations of Volterra type which are only 

restricted by the condition that the kernel function is finitely decompos­

able. Stability regions are derived for backward differentiation type schemes 

of orders 2 up to 6 and for the trapezoidal rule. In particular, attention 

is paid to these schemes when applied to the special integro-differential 

equation, which arises from differentiating a Volterra integral equation of 

the second kind. Numerical experiments are reported, which confirm the theo­

retical stability results. 

KEY WORDS & PHRASES: Numerical ancilysis, Volterra integro-differential 

equations, Volterra integral equations of the second 

kind, stability 

This paper will be submitted for publication elsewhere. 



I. INTRODUCTION 

We shall consider systems of Volterra integro-differential equations 

of the form 

( 1 . la) df(x) 
dx = ~(x,f(x),z(x)), 

X 

z(x) = f K(x,y,f(y))dy, 

XO 

with the initial condition 

(1. 2) 

Here, ~ and Kare prescribed vector functions and f(x) is the unknown vector 

function. We assume that this problem has a unique solution. 

The main purpose of this paper is to analyze the stability behaviour 

of a large class of numerical methods for the solution of this problem. 

In section 2 a general numerical scheme is given based on a linear 

multistep formula for the integration of (l.la) and a quadrature rule for 

the approximation of the integral in (I.lb). Two special choices of this 

general scheme, based on the well-known Curtiss-Hirschfelder formulas for 

(1.la), are specified. In the sequel of this paper they will serve as a 

means of illustrating the stability analysis. One of these two schemes is 

further elaborated when it is applied to the class of "integro-differential 

equations" obtained by differentiating a Volterra integral equation of the 

second kind. This rather unconventional treatment of Volterra integral equa­

tions of the second kind was motivated by the wish to exploit the excellent 

stability properties of the Curtiss-Hirschfelder formulas when applied to 

ordinary differential equations. 

In section 3.1 the order of convergence of the general scheme is proved, 

along the lines indicated by TAVERNINI [11]. In section 3.2, the "kernel" of 

this paper, a stability analysis is carried out for this scheme, when applied 

to (I.I), where we have tried to restrict the kernel function K(x,y,f) as 

little as possible. Following the approach presented in [6] it turned out 
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which are j':'.nfteZr, dc,~on:pc;sc1.bZe, i.e. which can be written as a sum of terms 

of the form Q(x)R(y,f), Q(x) and R(y,f) being arbitrary matrices. With local 

stability we mean that numerical errors in a point x are not accumulated in 

a step·-by-step process, provided that 'a¢/3f, at/3z and clK/3f are sufficient­

ly slowly varying. With respect to the local theory three observations can 

be made. Firstly, the local stability conditions are at least necessary for 

global stability. Secondly, when compared with the conditions derived by 

BRUNNER & LA."1BERT : 11 and MATTHYS i8], which are based on the test equa-

tion 

( l. 3) 

X 

df(x) (f(x) + n lfl 

dx= -
0 

f(y)dy, 

the present analysis shows that one should be prepared for much stronger 

conditions. Thirdly, for systems of equations, verifying the stability 

conditions will require a lot of computational effort. An exception form 

the systems where the matrices 3¢/3f, and 3tP/3z * 3K/3f possess a common 

eigensystem. For this special class of integro-differential equations we 

have plotted the stability regions of the two special schemes given in 

section 2. In addition, we have derived the stability conditions for the 

scheme where (1.la) is integrated by the trapezoidal rule. On the basis of 

these results, these schemes may be qualified as "highly stable". 

In section 4, a starting scheme is described to provide the initial 

values for the multistep formulas. We chose the rather stable trapezoidal 

rule and used extrapolation to obtain sufficient accuracy. 

In section 5, numerical experiments are reported to test the stability 

theory and the order of convergence. The results of these experiments are 

in agreement with the theoretical stability conditions and order of conver­

gence. Finally, a few remarks are devoted to some experiments, carried out 

in [IO], which compare the efficiency of one of our schemes with that of an 

implicit Runge-Kutta scheme of DE HOOG & WEISS [4]. 

The contents of this paper are based on three institute reports [5], 

[ l O] and [ l 3 J • 
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2. THE COMPUTATIONAL SCHEME 

We will define a class of linear multistep methods for general Volterra 

integro-differential equations and, in particular, we will discuss these 

methods when applied to the special equation which arises from the differen­

tiation of a Volterra integral equation of the second kind. 

2.1 Integro-differential equations 

Let xn = x0+nh, n = 1, ..• ,N (~=b) denote the discretization points of 

the x-axis. Suppose that approximations f. to f(x.) are obtained in the 
J J 

points x0 , ••• ,x and let z. denote an approximation to z(x.). Then, by ap-
n J J 

plying a linee.r multistep method (defined by its coefficients {a2 ,b,Q,}) to 

the "differential" equation (l. la) we arrive at the scheme 

(2. 1) k-J,k, ... 

In order to give a step-by-step formula for f 1, we have to specify n+ 
the formula for z · we will use a quadrature rule of the form n+l-£' 

(2.2) zn+l-t = 

n+l-£ 
I 

j=O 
w l O .K(x +I 0 ,x.,f.), n+ -N,J n -N J J 

where the weights w .. satisfy a relation of the form 
i,J 

k ~ l an w l . = 0' 
Q,=O L n+ -£,J 

0 $ j $ n-k, n ~ 2k-l, 

(2.3a) 

and where we define 

(2.3b) hb l . = n+ -J w . ' n+l-Q,, J 
n-k+l $ J $ n+l, n ~ 2k-!. 

Quadrature formulas satisfying relation (2.3) can be constructed by applying 

a linear multistep method with coefficients {a2 ,bt} to a quadrature problem 

written as a differential equation. Details of such formulas can be found 
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in [12]. Choosing a linear multistep method {a2 ,b2} for (2.1) and {;2,b2} 

for (2.3) the computational scheme is completely determined (apart from 

the starting values). We will denote such a combined scheme by {a,Q,,b,Q,;;i'.2 ,b2 }. 

It is clear that a large number of combinations is possible. However, as 

already remarked in the introduction, it is our main purpose to present a 

stability analysis for a large class of kernel functions rather than to 

investigate and compare a large number of different schemes. Therefore, 1n 

order to illustrate the analysis, we have concentrated on the following 

special schemes; we have chosen for 

{a2,b2}: the Curtiss-Hirschfelder (or backward differentiation) formulas 

(the consideration was to exploit their excellent stability 

properties). In table 2.1 the coefficients are listed for 

k = 1,2, .•• ,6 (cf. [7, p.242]); 

1. the Adams-Moulton formulas, which correspond to the well-known 

Gregory quadrature. This combination will be denoted by {CH;AM}. 

In table 2.2 we give the coefficients fork= 1, ... ,5. The cor­

responding quadrature weights are given 1n table 2.3; 

2. Again the Curtiss-Hirschfelder formulas in order to illustrate 

that a much larger stability region can be obtained than for 

{CH;AM}. We will denote this scheme by {CH;CH}. The weights of 

the quadrature rule generated by CH-formulas can be found in 

[ 12]. 

In addition, we shortly discuss the stability conditions for the scheme 

in which both {a2,b£} and {~£,b,Q,} correspond to the trapezoidal rule. 



k ck bo*ck a1*Ck a2*Ck a3*Ck a4*Ck a5*Ck a6*Ck 

-I 

2 3 2 -4 

3 11 6 -18 9 -2 

4 25 12 -48 36 -16 3 

5 137 60 -300 300 -200 75 -12 

6 147 60 -360 450 -400 225 -72 10 

a0 =I, b2, ••. ,bk = 0 

Table 2. 1. Coefficients of the Curtiss-Hirschfelder for-

k 

2 

3 

4 

5 

C ~ 
k 

2 

12 

24 

720 

1440 

~ 
b0*c~ 

k 

5 

9 

251 

475 

mulas 

~ 
b *C 1 ~ k 

8 

19 

646 

1427 

for k = 1(1)6. 

~ ~ ~ 
b2*C~ 

k 
b3*C~ 

k 
b4*C~ 

k 
b5*c~ 

k 

-1 

-5 

-264 106 -19 

-798 482 -173 27 

Table 2.2. Coefficients of the Adams-Moulton formulas 

for k = I (1) 5. 

Second order formula 

h 
2 

2 

2 

0 

2 

5 
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Third order formula 

6 6 

5 14 5 0 
5 13 13 5 

h 
5 13 12 13 5 

12 . . 

5 13 12 • • • 12 13 5 

Fourth order formula 

8 32 8 

9 27 27 9 0 9 28 22 28 9 

h 9 28 23 23 28 9 

24 9 28 23 24 23 28 9 

9 28 23 24 24 23 28 9 

Fifth order formula 

270 810 810 270 

0 251 916 546 916 251 

251 897 652 652 897 251 

251 897 633 758 633 897 251 

h 251 897 633 739 739 633 897 251 
720 251 897 633 739 720 739 633 897 251 

251 897 633 739 720 .•• 720 739 633 897 251 



Sixth order formula 

448 2048 768 2048 448 

475 1875 1250 1250 1875 475 0 475 1902 1077 1732 1077 1902 475 

475 1902 1104 1559 1559 l I 04 1902 475 

475 1902 1104 1586 1386 1586 1104 1902 475 

h 475 1902 1104 1586 1413 1413 1586 1104 1902 475 
1440 

475 1902 1104 1586 1413 1440 1413 1586 1104 1902 475 

475 1902 1104 1586 1413 1440 1440 1413 1586 1104 1902 475 

Table 2.3. Gregory quadrature wei3hts 

The scheme (2.1)-(2.2) requires in then-th step the evaluation of the 

functions 

K (x 1 , x. , f. ) , 
n+ J J 

j = 0, ... , n+ 1 , 

and the solution of a system of nonlinear equations for f 1. Moreover, k 
n+ 

7 

starting vectors f 0 , ••• ,fk-l are needed. In section 4 a starting scheme for 

computing these vectors is presented which is based on extrapolation of the 

trapezoidal rule. 

2.2 The computational scheme for integral equations 

(2.4) 

Volterra integral equations of the second kind have the form 

f(x) 

X 
r 

g(x) + j 
XO 

* K (x,y,f(y))dy 

* where g(x) and K (x,y,f) are given vector functions. Differentiating both 

sides yields an integro-differential equation of the form 
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d d r -- fix)• - ·•Cxl + K•r.x,x,f(x)) + z(x) ! dx ' dx '·' ·· · ' · 

( 2. 5) z (x) "' 

XO 

l r<xol - g<xo), 

and the scheme (2.1)-(2.2) can be applied. However, when the derivatives 

of g and K"' with respect to x are not available -we assume that they are 

approximated by a numerical differentiation formula of the form 

(2.6) 

k,., 
L 

d g ( X) \ d . g ( x- i h) • 
dx ' - h ia;k 1 

l 

where his the mesh width and the coefficients d. determine the differentia­
l. 

tion formula. For instance, when a numerical differentiation formula, based 

on Newton-backward interpolation, is used we have 

d 
dx g(x) ~ a.g(x-ih), 

l. 

with ai and b0 the coefficients of the Curtiss-Hirschfelder formula (see 

table 2.1). 

Applying the scheme (2.1)-(2.2) to equation (2.5) and using (2.6) 

yields the following scheme for i.1tegral equations: 

k 
(2.1') I 

£=0 
a f 

!l n+l-2. 

where 

(2. 7) 

k 

L b£[hK*(xn+I-£'xn+J-£'fn+l-£) + 
£=0 

k? r 
i=k 1 

d.F (x .)] 
1 n+l-£ n+l-£-1 ' n = k-1 , k, ..• , 

n+l-Q, 
l VI 1 Q, .K*(x,x.,f.). 
j=O n+ - ,J J J 

In the computation of the Fn+l-i(x) values we may use the relation 

(2.3a) between the weights wn+l-t,j· Taking a linear combination of the 
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Fn+l-£(x) with coefficients;£ results in the formula 

(2.8) 

where we have used (2.3b). 

In order to see which F 1-values in the (n+J)-st step can be computed n+ 
from F-values which have been evaluated already in preceding steps, we have 

indicated in figure 2.1 by o and e the index points (r,s) of those values 

F (x) which 
s r 

are needed in scheme (2.1 ') for the calculation off. In addi­
n 

tion, the F (x )-values s r needed for the calculation off 1 corresponds to 
n+ 

index points (r,s) denoted bye 

/ 
/ 

/ 

s 

n+l 
n 

n-k+l 

n-k+l 

/ 

n-

/ 

/ 
/ 

/ 

and+. 

---,L-----l---1-'---------;...----+--------------~r 
-k 

2 

Fig.2.1 

-k 
1 

o index 

+ index 

e index 

• index 

n-k-k 
I 

points needed 

points needed 

points needed 

n-k-k +l 
I 

for f n 
for f n+l 
for both f and n 

points of additional F-values 

f n+l 
occuring in (2. 8). 

From (2.8) and this figure it is immediate that the values of 

Fn+l(xn+l-k2), ... ,Fn+l(xn+l-kJ-k) can be computed by (2.8) from known 

F-values plus a few additional K*-values. The computation of F 1(x 2 k ~k) 
n+ n+ - 1-

, .•. ,F 1(x 1 k) by (2.8) requires F-values which are not yet known un-
n+ n+ - 1 · ~ 

less the corresponding coefficient a 2 equals zero. (In figure 2.1 these un-

known values correspond to index points indicated bye.) As soon as such an 
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F-value is asked for by (2.8), F (x) should be evaluated by the direct 
n+l 

formula (2.7). The use of formula (2.7) is rather expensive in actual com-
. * putat1.on, even when all K -values are available, because of the many mul-

tiplications and additions, particularly for large values of n. Thus, the 

computational effort of the scheme (2.1'), (2.7), (2.8) is largely deter­

mined by the number of times formula (2.7) has to be used. This observation 

suggests to use quadrature rules for which the coefficients~£ satisfy (cf. 

figure 2. l) 

(2. 9) =a~= O. 
k 

In that case only F 1(x 1) has to be evaluated by (2.7) and all other 
n+ n+ 

F 1-values can be computed by (2.8) from preceding F-values. Quadrature 
n+ 

rules satisfying (2.3a) and (2.9) are the well-known Gregory rules based 

on the Adams-Moulton multistep methods discussed in section 2.1 (cf. table 

2.3). 

In order to specify the computational effort per integration step a 

choice has to be made for the remaining coefficients di' a£ and b£. When 

we choose the d. according to (2.6') it is necessary to define the kernel 
l. 

function K*(x,y,f) in points where x < y, otherwise (2.8) cannot be used. 

* An alternative could be to approximate the unknown K -values by extrapola-

tion (cf. DE HOOG and WEISS [4]) or to use coefficients di for which k2 = 0 

(cf. [13]). In the following we have chosen the d. 's according to (2.6'). 
l. 

Finally, we consider the choice of the multistep method. As already observed 

in the introduction, the reason to construct an integration fonnula by con­

verting the integral equation into a "quasi" integro-differential equation 

was the consideration to exploit the highly stable Curtiss-Hirschfelder 

formulas (or backward differentiation formulas) used for ordinary differen­

tial equations (e.g. [7]). Combining these formulas with the Gregory rules 

leads to a {CH;AM} formula mentioned in section 2.1. From the order of con­

vergence of this scheme (cf. section 3.1) it follows that we have k-th order 
~ accuracy ash+ 0 if k = k-1, k 1 = O, k2 = k. Using (2.6'), (2.9) and (2.3b), 

the resulting scheme for Volterra integral equations (2.4) then reads 

k 
(2.J") I 

£=0 
a f 

£ n+ 1-,Q, 

n=k-1,k, ... , 



where 

and 

I 1 

n 
= F (x 1 ) + l (w 1 .-w .)K*(x 1 ,Q,,x.,f.) + 

n n+ -,Q, j=n+2-k n+ ,J n,.f n+ - J J 

* + w K (x x f ) ,Q, = 1,2, ..• ,k, 
n+ 1,n+l n+l-,Q,' n+l' n+l ' 

n+l 
Fn+l (xn+l) = g(xn+l) + l w I r<* (x 1,x. ,f ·) • 

j=O n+ ,J n+ J J 

The a,Q, (,Q, = 0,1, .•. ,k) and b0 are given in table 2.1, and the weights wi,j 

in table 2.3. This scheme requires in the (n+I)-st step the evaluation of 

the function 

K(x 1,x.,f.), j = 0,1, ••• ,n, 
n+ J J 

K(x.,x 1,f 1), j = n-k+2, ..• ,n+l, 
J n+ n+ 

and the solution of a system of equations for f 1• To start the integration n+ 
we must precompute (approximations of) the quantities 

f . , j = 0 , 1 , ••• , k-1 
J 

K(x.,x.,f.), i,J = 0,1, ••• ,k-l 
l. J J 

3. CONVERGENCE AND STABILITY 

In this section the order of convergence and the stability properties 

of scheme (2.1)-(2.2) will be derived. Our convergence analysis is based on 

the work of TAVERNINI [11] which enables us to confine the analysis to the 

derivation of a recurrence relation for the error f(x.)-f .. The stability 
J J 

analysis is based on [6] where the stability properties of direct quadrature 

rules for Volterra integral equations of the second kind were investigated. 
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3. I Convergence 

Following the convergence analysis used in ordinary differential equa­

tions we first derive a bound for the residual term A 1, when the exact n+ . 
solution f(x) of (1.1) is substituted into the scheme (2.1)-(2.2): 

k k n+l-Q, 
An+l ~ l aQ,f(xn+l-£)-h I bQ,(p(xn+l-£'f(xn+J-Q,), ) wn+l-.ll jK(xn+l-Q,'xj,f(x.))) 

t=O 2=0 J=O ' 1 

k k 

I a.Q,f(xn+l-2)-h n-_Io bif'(xn+l-2) 
Q,=0 )<., 

= 

+ h 

XO 
k n+l-t 

- h }: b.¢(x +]-" ,f(x +I-), l w +l-" .K(x +l- 0,x.,f(x.))). 
Q,=O "" n "" n ¼ j =O n "" , J n x., J J 

Assuming that the quadrature formula is of order q and that the linear multi­

step formula is of order p, we have the following bound f6r An+l: 

k 
where we have taken B = 2~0 JbQ,j and where c1, 1 2 and c2 are constants. 

The next step is to derive a relation between the errors 

e. = f.-f(x.), 
J J J 

j = O, .•• ,n+l, 

assuming that the starting errors satisfy 

as h -+ O, j = O(l)k-1. 

Subtracting (3.1) from (2.1)-(2.2) yields the recurrence relation for the 

global error 

where 



n+l-.Q, 

I 
j=O 

13 

w 1 0 .K(x 1 0 ,x.,f(x.)+e.)) 
n+ -X,,J n+ -X, J J J. 

n+l-.Q, ] 
- qi (x 1 0 , f (x 1 0 ) , '\ w 1 0 • K (x 1 0 , x. , f (x .) ) ) • 

n+ -X, n+ -X, .l n+ -X, J n+ -X, J J 
J=O ' 

This type of difference equations was investigated by TAVERNINI [II] from 

which it can be deduced that for sufficiently smooth functions qi and K the 

order of convergence equals 

min{p,q,s}. 

In the case of the differentiated integral equation (2.4) we have for 

the residual term A* 1 of the scheme (2.1 '): 
n+ 

+ h 

k 
+ I 

.Q,=0 

n+l-.Q, 

I 
j=O 

, 

* oK· 

d.g(x +] . 0 )} + 
1. n -1.-X, 

aK* L 
w 1 . '"'x (x I o,x.,f(x.))f n+ -.Q,,J o n+ -X, J J 

* l} d.K (x l . 0 ,x.,f(x.))J 
i n+ -1.-X, J J 
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Assuming that the numerical differentiation formula defined by the coeffi­

cients d. has order r, i.e. 
]. 

we have 

lg'(x) 
n 

k2 
I I 
h i=k 

I 

r 
d.g(x .)j = O(h) 

i n-i 
as h + O, 

ff A* tt = O(hp+l)+O(hr+l)+O(hq+l)+O(hr+l) ash+ 0. 
n+l 

Thus, the order of the residual term A* equals min(p+l,q+l,r+l). From n+l 
this we can deduce along the same lines as above that the order of con-

vergence of scheme (2.1 1 ) equals 

min{p,q,r,s}. 

This result suggests to combine a multistep method, a quadrature rule and 

a differentiation formula of the same order k. The resulting scheme is then 

of the same order. Thus, the {CH;AM} scheme specified in section 2.2 is of 

order k. 

3. 2 Stability 

The variational equation of (2.1) with z 1 0 defined by (2.2) is of n+ -,., 
the form 

(3. 2) 
k k f cl~ 

"=roa"lifn+I-" = h "=Iob"l.~f (x ,f ,z )M ,., ,., ,., ,., ,., o n+J-Q, n+l-,Q, n+l-Q, n+l-Q, 

In order to convert this relation into a fixed-term recurrence relation we 

assume that the derivative of the kernel function with respect to f satisfies 

the relation 

(3.3) clK al (x,y,f) = 
r 
l ~(x)Rm(y,f), 

m=l 

where~ and Rm are arbitrary matrices depending on x and (y,f), respectively. 

Substitution into (3.2) and writing 
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n+l-Q, 
(3.4) tiG(m) 

n+l-Q. = I w I n • R (x. , f.) ti£. , 
n+ -N,J m J J J 

m= I, ... ,r, Q. = 0,1, •.• ,k 
j=O 

yields the (r+l)(k+l)-terms relation 

(3.5) ~ - ~ r a~ 
l aQ,tifn+l-Q, - h l btLTI" (xn+l-Q,'fn+l-Q,'zn+l-Q,)tifn+l-Q, + 

Q,=0 Q,=0 

+ ~ c ) ~ c ) Cm) l 
az xn+l-Q,'fn+l-Q,'zn+l-2 l ~ xn+l-Q, tiGn+l-tJ" 

m=l 

In addition, we have from (2.3a) for the perturbations tiG(m) the 2(k+l)­
n+l-Q, 

terms recurrence relation 

n+l 
(3. 6) l ~ bn+l-J.Rm(xJ.,fJ.)tifJ., 

j=n-k+l 
m = I, ... ,r 

where the coefficients bQ, are defined by (2.3b). 

Introducing the abbreviations 

(3. 7) 

N~m) = -bnh R (x l n'f l n), 
N N m n+ -N n+ -N 

we may write the recurrence relations (3.5) and (3.6) in the form 

k 

[LQ,tifn+l-Q, + 
r 

M (m) tiG (m) l I I = o, 
Q,=0 m=l Q, n+l-tJ 

(3.8) ~ k 
[ N(m) M + -;{ tiG (m) l I = o, m = I, ... ,r. 

Q,=0 
Q, n+ 1-Q, i n+l-tJ 

Without loss of generality we assume (in this section only) that k = k. For, 

if k < k we may define the coefficients ~Q, and b1 to be zero for Q, = k+l, ••• ,k 

without affecting the method and the analysis; in the case k > k the coeffi-
~ cients aQ, and bQ, are defined to be zero for Q, = k+l, .•• ,k. With this assump-

tion we may write (3.8) in the form 
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(3.9) 

where 

,\,1' (0) 
,._, n+l-lL 

and 

IL;_ M( !) ... M~r)l 
t r, 

I 

0 i ( ) , N' l atI 
(3.10) 

I t 
B = l £ . . 

0 I . 
lN~r) ~ j a.Q,I 

l 

AssUI!Jing 
-l 

exists, ,;..,rite (3.9) that 80 we as 

t:.v ➔ 
= A tvn, n+J n 

where 

➔ ➔ G T AV = (AG 1•··•,~ 2 k) n+l n+ n+ -

and 

r -J -J 
-1 

-BO Bl-BO 82 -BO Bk 

I 0 0 (3. 1 l) A = 
n I 

I 

0 l I ·o 

Let us first consider the special case where A does not depend on n, i.e. n 
A =A= matrix with constant elements. For any subordinate matrix norm we n 
have the inequality 

Hence, the vectors l>.V are uniformly bounded if II All ::; I . The well-known nonn 
n 

equivalence theorem (see ORTEGA [9, p.181) states among others that there 

exists a constant c ~ 0, such that 



➔ 

II /J.V II n co 

➔ 

s cll,W 11, 
n 

+ 
V /J.V 

n 
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From this it follows that every component of /J.V, in particular the compo­
n 

nent /J.f , is uniformly bounded. The conditions for the existence of a vector n 
norm for which IIAII ::;; 1, are related to the spectralradius R(A) of the matrix 

A. The necessary condition is R(A) ::;; 1 i.e. all eigenvalues are within or 

on the unit circle. This condition is also sufficient provided that in the 

case R(A) = the Jordan blocks (in the Jordan normal form of the matrix A) 

corresponding to the eigenvalues which are on the unit circle are matrices 

of order 1 (see ORTEGA [9, p.24]). It is convenient to divide the eigen­

values of A into two classes according to the following definition. 

DEFINITION 3.J. An eigenvalues of a matrix A is called: 

a) strongly stable if Isl < I, 

b) weakly stable if Isl = 1 and the Jordan block corresponding to sin 

the Jordan normal form of A is of order 1. 

Thus for matrices A with only strongly or weakly stable eigenvalues the 

existence of a norm with IIAII s 1 is guaranteed. 
+ It should be noted that the uniform boundedness of /J.V can be proved 

n (i) (i) 
only if An is a constant matrix. In our case, however, Lt, Mt , and Nt , 

and therefore the matrix A depend on n, and consequently the above require­n 
ment on the eigenvalues of the matrix A only has a local meaning. n 

DEFINITION 3.2. For kernel functions of the class (3.3), the scheme (2.1)­

(2.2) satisfying (2.3a) will be called locally stable at the point x I with 
n+ 

respect to the perturbations /J.G~!? when all eigenvalues of the matrix An 

are strongly or weakly stable. 

It is to be expected· that local stability in a sequence of points 

x ,x 1, ••• ,x implies global stability in the range [x ,x + J provided n n+ n+m n nm 
that A is slowly varying (with respect to the stepsize h) in this interval. 

n 
In the following, we will concentrate on the derivation of local sta-

bility criteria. To this end we need the characteristic equation of (3.11). 

It is easily verified (assuming det B0 j 0) that 
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(3. 12) 

Substitution of (3.10) into (3.12) gives the characteristic equation 

(3.13) det 

• ~ ~ I k-Q ). 
l aQ, r; 
0 

= o. 

In order to simplify this equation we prove the following lemma. 

LEMMA 3.1. Suppose B ,C, m = I, ... ,r, A and Dare square matrices of the m m 
same order. If 

(3. 14) DC = CD 
m m 

then 

(3. 15) 

for m = 1 , ••• , r, 

r 
== det(AD - l 

m=I 
B C ) (det D)r-l. 
mm 

PROOF. First we prove the lemma for regular matrices D. Since 

r 
B D-l(, A Bl • • • B I A - I B D-I r -10 m m' l 

0 -D-IC 
m== I 

CJ D D I I 
= . 

0 0 . 0 C -D-IC -1 
.. r D D r 

we find 

I 



A Bl B 
r 

Cl D 0 
(det D- 1) 

r r 
B D-lC ). (3. I 5') det = det(A- I m m 

0 m=l 
• le D 

r 

Multiplying both sides with (det D)r, we have for the right-hand side of 

(3.15 1 ) 

det(A -
r 
l B D- 1c )(det D)r = 

m m 
m=l 

det(AD -
r 
I 

m=l 
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Using (3.14) gives the right-hand side in (3.15), which completes the proof 

for regular matrices D. In the case that the matrix Dis singular, we reason 

as follows. 

* 
For all sufficiently (in modulus) small scalars 6 the matrices 

* * Moreover, D (6)C = (D+6I)C = C D + C 61 = C D (fl). 
m m m m m 

D (~) = D + ill are regular. 

Applying the lemma with the regular matrix D*(6) yields (3.15) with Dre-

placed by n*(~). Since both sides are continuous functions of the parameter 

* * 6, (3.15) holds for D (0). However, D (O) * lim D (6) = D and hence we have 

proved the lemma for singular matrices D. 
6-+() 

□ 

As in the theory of linear multistep methods for ordinary differential 

equations we need the following c'.efinition (see e.g. HENRICI [3,p.16]). 

DEFINITION 3.3. The polynomial l a 0 sk-Q, with a 0 ~ 0 is said to satisfy 
,Q,=0 X, 

the root condition if its k roots s, satisfy Is• I ~ 1 (i = 1,2, ... ,k), and 
i i 

if the roots satisfying Is• I = I have multiplicity I. 
i 

Next we give the following theorem 

THEOREM 3. 1 • 

i) The eigenvalues of the matrix (3. 11) satisfy 

(3. 16a) ~ ~ k-Q, 0 
l a.Q,2'; = 

Q,=0 
or 

(3.16b) 
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ii) Let the polynomiai ~ a0 7;;k-.Q, satisfy the root condition, then the 
.Q,==0 i<, 

scheme (2.1)-(2.2) is locally stable in the sense of definition (3.2) 

when the eigenvaiues satisfying (3.16b) are strongly stable. 

PROOF. We already showed that the eigenvalues of the matrix (3.11) satisfy 
. k ~ k-.Q, the characteristic equation (3.13). By observing that the matrix r 0 aQ,i;; I 

in (3.13) is a multiple of the unit matrix, and therefore commutes with 

all matrices of the same order, we obtain by virtue of lennna 3.1 that (3.13) 

may be reduced to 

det{ I k f ~ r 
M~m)Nim)]7;;2k-t-i} x I L a£Li - I 

!l==O i=O m=l 

(3.17) 

(d•ttt atl 
k-t}\r-1 

I;; / = o, 

from which (3.16a) and (3.16b) irmnediately follow. 

In order to prove the second part of the theorem, we have to prove 

that the eigenvalues which satisfy (3.16a) are strongly or weakly stable. 

From the root condition it follows that all eigenvalues which satisfy (3.16a) 

are within or on the unit circle. Hence, it remains to show that the eigen-
k ~ k-!l values on the unit circle are weakly stable. Let t be a root of ~ a 7;; 

Q,=0 R, 
with l?I = 1. From the root condition it follows that~ is simple. If the 

matrices in (3.10) have orders then tis a root of (3.17) with multiplicity 

s(r-1). The next step is to prove that there exist s(r-1) independent eigen-
~ ➔ ~ vectors of A corresponding to the eigenvalue 7;;. Let e(7;;) be such an eigen­n 

. h (➔ ➔ ) • vector wit component vectors e 1, ••• ,~. Solving 

we find 

and 

(3. I 8) 
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➔ ~ Thus, the number of independent eigenvectors e(~) equals the number of 

independent vectors tk which satisfy (3.18). Denoting the components of 
➔ -+-(0) -+-(r) • . 
ek by (ek , ..• ,ek ) and solving (3.18) we find the system of equations 

(3. I 9a) 

(3.19b) m = I, ... ,r. 

Since each vector t~i) has s components, i = O, ••• ,r, we have s(r+l) unknowns 

which must satisfy (3. 19a)-(3.19b). Recall that we have to prove that s(r-1) 

unknowns can be chosen independently. This is achieved by chasing the com-
+(O) • +(O) * ponents of ek equal to zero, i.e. ek = u, in which case (3.19b) is sa-

tisfied. The number of unknowns is then reduced to sr, and we are left with 

the s equations 

(3.20) + ••• 

From (3.20) it is immediate that s(r-1) components can be chosen arbitrarily, 

and therefore one can find s(r-1) independent vectors tk. 

Equation (3.16b) can completely be expressed in terms of the Jacobian 

matrices a~/af, a~/az and aK/af in a number of points close to (x ,£ ,z) 
n n n 

and (x ,x ,f ), respectively. A straightforward calculation 
n n n 

substitution of L., M~m) and N~m) 
i i :,., 

yields by 

(3.16b') det{ ~ .~ [i 0 a;I - ;nb;h ~~f (x .,f .,z .) 
Q,~O i~O :,., L :,., • a n+l-i n+l-i n+l-i 

In the case where the matrices a~/af, a~/az and aK/af can reasonably be 

approximated by constant matrices, equation (3.J6b') reduces to 

(3. 2 I) 

D 
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where {p,o} and {p,;} are the characteristic polynomials associated to the 

linear multistep methods {aJl,,bJI,} and {;2 ,b2}, respectively, that is 

p (z;) = 
k k-2 
l at z; ' cr(z;) = 

t=O 

k 

I 
Jl,=0 

b ,..k-t 
JI,':, ' 

and similar expressions for {p,;}. For scalar integro-differential equati~ns 

the determinant operator in (3.21) may be omitted and the equation reduces 

to the characteristic equation given by BRUNNER & LAMBERT [l] and MATTHYS 

[8] h ab ·z. . d f" d h f . (h 3qi i:::2 34> clK) • From t e st -z, -z,ty reg-z,on e 1.ne as t e set o points af' u az at 
where equation (3.21) has its roots within the unit circle, an indication 

is obtained for which step sizes and values of the derivatives, scheme (2. I)­

(2 .2) has a stable behaviour. 

In this paper it is our aim to get stability regions for systems of 

equations with not necessarily constant 3qi/2lf, 3qi/3z and aK/af. Within the 

rather large class of kernel functions satisfying condition (3.3), equation 

(3.16b') may serve as a starting point in the derivation of stability regions. 

Such derivations may often be simplified by using the following lemma (for 

a proof we refer to e.g. [6]): 

LEMMA 3. 2. Let A(z;) be an (s*s) matrix-vaZued function of the scalar z; 

with eigenvaZues a.(z;), j = 1,2, •.. ,s. Then the roots of the equation 
J 

det{A(z;)} = 0 are within the unit circle when the roots of the equations 

a.(z;) = 0, j = 1, ... ,s are within the unit circZe. 
J 

By virtue of this lemma equation (3.16b') can be simplified in all cases 

where the matrices 3qi/3f, 34>/az and aK/af have a common eigensystem {e.}: 
J 

the double sum of matrices in (3.16b') then also has eigenvectors e. with 
J 

eigenvalues a.(z;), say, so that (3.!6b') can be replaced by a.(z;) = O, 
J J 

j = 1,2, ..• ,s. 

Before analyzing some special formulas, the stability of the integro­

differential equation itself will be investigated. 

3.2.1 Inherent stability 

We apply the same type of stability analysis to the variational equa­

tion of (I.I), i.e. the equation 



(3.22) d 
dx tf(x) 

X 

d~ Af() + _d~ f = 3f u X dZ 

XO 
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3K 3f (x,y,f(y))tf(y)dy, 

as we did for the variational equation (3.2). Again, restricting the kernel 

functions to the class satisfying (3.3) and introducing the additional per­

turbations 

R (y,f)tf(y)dy, 
m 

we obtain a system of ordinary differential equations of the form 

d 
dx tf(x) 

~ tG(m)(x) = R (x,f(x))tf(x), m = 1,2, ... ,r. 
dx m 

This system is inherently stable when all eigenvalues of its Jacobian matrix 

are in the left half plane. Since the characteristic equation of the Jacobian 

matrix is, by virtue of lemma 3.1, 

[det(~I)]r-l det{~[~: (x,f(x),z(x)) - ~I]+ 

+ ~; (x,f(x),z(x)) :~ (x,x,f(x))} = O, 

we may conclude that the integro-clifferential equation is unstable at the 

point x when the roots of the equation 

(3.23) :: (x,f(x),z(x)) ~! (x,x,f(x))} = 0 

are in the right half plane. In order to get more practical conditions from 

this equation we have to restrict the function~ to special classes of func­

tions. Such a class is the set of functions~ which satisfy the condition 

that 

(3.24) a~ a~ aK 
TI(x,f(x),z(x)) and 32 (x,.f(x),z(x)) af (x,x,f(x)) share the same 

eigensystem. 
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When <P belongs to this class, equation (3.23) can be reduced by using lemma 

3.2 to the equation 

(3.25) z;; 2 - z;i:; - n == o, 

• a<P a<P aK 
where i:; and n are the eigenvalues of af and azat' respectively, corresponding 

to a connnon eigenvector. Thus, a necessary condition for inherent stability 

of the integro-differential equation (1.1) satisfying (3.3) and (3.24) is 

(3.26) Re;< O, Ren< 0. 

In the following we will assume that this condition is satisfied at the 

point xn+l' 

3.2.2 Stability regions of the {CH;CH} and {CH;AM} formulas 

Let {a1,bt} be defined by table 2.1, then equation (3.16b') reduces 

to 

(3.27) 

Furthermore, let {ii,bi} correspond either to the Curtiss-Hirschfelder or 

the Adams-Moulton formulas and le: II> and K satisfy the conditions (3.3) 

and (3.24). Then, by theorem 3.1 part ii) and lemma 3.2 we have local sta­

bility when the roots of the equation 

(3.27') 

are within the unit circle for all eigenvalues pairs{; 1,n 1} of the 
n+ n+ 

t . { a\I> a<P aK} d. h • • ma rices af' az a£ n+l correspon ing tot eir common eigenvectors. For 

negative values of ;n+l and nn+l the stability regions of the {CH;CH} and 

{CH;AM} formulas are given in [12] and [13], respectively, and are repro­

duced in the appendix. 

To the particular case of second kind Volterra integral equations 

these stability regions do also apply when the eigenvalues i:; 1 and n 1 n+ n+ 
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are understood to be the eigenvalues of the matrices 

and 

a2K* 
--(x X f ) axaf n+I' n+I' n+l 

k 
-1 2 aK* 

h l d.-;;:-f (x +l-"'xn+l'fn+I) i=k 1. o n i: 
- I 

and provided that these matrices have a common eigensystem. 

3.2.3 Stability conditions for the trapezoidal rule 

A frequently used method is based on the application of the trapezoidal 

rule both for the approximation of the integral and the derivative in equa­

tion (I.I). This results in the coefficients (k = k = I) 

Equation (3.16b') assumes the form 

(3.28) 

where we have written 

a~ a~ aK 
X ="f(x ,f ,z ), Y =-;;-(x ,f ,z )-;;-f (x ,x ,f). n o n n n n,m oz n n n o n m m 

In order to continue the analysis we restrict the functions~ and K to the 

class of functions for which all matrices X and Y occurring in (3.28) n n,m 
possess the same eigensystem with eigenvalues s and n • By theorem 3.1 n n,m 
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and lermna 3.2 equation (3.28) can be reduced to 

(3, 28 I) 

+ [l + lh~ - lh2 J = 0 
2 ~n 4 nn,n . 

For real values of the eigenvalues~ and n the stability region easily 

follows from Hurwitz' criterion. A straightforward calculation yields the 

conditions 

(3.29) 

where we have assumed that the equation is inherently stable at the point 

x 1 (cf. condition (3.26)). Note that these conditions are more restrictive n+ 
than those given by BRUNNER and LAMBERT [ l J ( ~ l < 0, 11 l l < 0) . But n+ n+ ,n+ 
it is also evident that (3.29) only restricts the integration step h substan-

tially when~ and n, and therefore the matrices 31/3f and 31/3z 3K/3f, are 

rapidly varying with their areuments. In such cases, however, the integra­

tion step should be suffiently small in order to get enough accuracy. Hence, 

it is expected that the conditions (3.29) yield quite acceptable integra­

tion steps in actual computation. 

We will illustrate the use of conditions (3.29) by applying them to 

the equation 

d 
+ (b+I) cos x + ((b+c)x-a)(f(x) - x) + bz(x) dx f(x) = -b sin 

(3.30) 
X 

z(x) = f f(y)dy 

0 
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where a, band care given parameters. This equation is, in fact, the differ­

entiated form of the Volterra integral equation 

(3.30') 

X 

f(x) = (1-c)sin x + a-bx+((b+c)x-a)cos x + I (-a+bx+cy)f(y)dy. 

0 

Evidently, we have 

so that (3.29) leads to the stability conditions (at the point x 1) n+ 

(3.31) 

(b+c)(x +h) < a, (b+c)(x +½h) < a, 
n n 

2 (b+c)h < 4. 

b < O, 

The first three conditions are automatically fulfilled when we restrict the 

class of equations to inherently stable·equations. The fourth condition 

limits the stepsize in cases where b+c > O. It may be interesting to compare 

the conditions (3.31) with those obtained for the trapezoidal rule when di­

rectly applied to the integral equation (3.30'). A stability analysis carried 

out in [6] results in the same conditions as (3.31) except for the fourth one 

which becomes ch2 < 4. Thus, we may conclude that differentiation of the in­

tegral equation relaxes the stability conditions if c >> l and b+c ~ O. 

4. A STARTING SCHEME, BASED ON EXTRAPOLATION OF THE TRAPEZOIDAL RULE 

In order to start the two schemes (2.1)-(2.2) and (2.1") we need, in 

addition to the given initial vector f 0 , the vectors f 1,f2, ••• ,fk-l" These 

vectors should be computed with an error of magnitude O(hk) ash+ 0. We 

will use the following starting schemes which are based on extrapolation 

of the trapezoidal rule. Starting vectors for (2.1)-(2.2) are computed with 

the scheme (we assume x0 = O) 
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(4. l) 

n 
Zh = h t" h h) l K(nh,x. ,f. 
n i=O 1 1 

h/2 _ h ~" K( h/Z fh/2) z - -2 l n ,x., . n . 0 1 1. 
1= 

n = l , 2, ••• , k-1 • 

n = l , 2, ••• , k-1 ; 

n = 1 , 2 , ••• , 2 (k-1 ) ; 

Starting vectors for (2.1") are computed with the scheme (for x0 = 0) 

(4 .2) 

n 
h t" * h f = g(nh) + h l K (nh,x.,f.), 
n j=O J J 

n = 1 , 2, ••• , k- 1 ; 

f n 

h ~" * . h/2 = g(nh/2) + -2 l K (nh/2,Jh/2,f. ), 
. 0 J J= 

n = 1,2, ••• ,k-1. 

n = 1,2, •.. ,2(k-1); 

In [10] it is proved that fork~ 2 the scheme (4.2) has an error of magni­

tude O(h5). This also holds for the scheme (4.1), which can be seen by writ­

ing the integro-differential equation (I.I) as an integral equation 

and by verifying that application of the scheme (4.2) to this "integral equa­

tion" is equivalent with the scheme (4.1). 

Since the trapezoidal rule has a local error of order O(h3) ash ➔ 0, 

it is sufficient to apply only the first line of the scheme (4.2) when k = 2 

or k = 3. However, when k = 4 or k = 5, we have to apply the full scheme, in 

order to get the required order k. Fork= 6, we may either continue the 

extrapolation process or try to improve the starting vectors by other methods. 
h/4 When extrapolation is used, we first compute the vectors f , n= 1,2, .. ,4(k-I), 
n 
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and then we form the combinations 

n = I , 2, ••• , k-1 • 

One easily proves that this expression approximates f(nh) at least within 

O(h6), ash+ O. The stability conditions for this starting scheme are given 

by (3.29). 

In [10] another O(h6) starting scheme is given, based on a high order 

Newton-Cotes quadrature formula, but special attention must be paid to the 

solution of the nonlinear equations involved, in order to assure the con­

vergence of the scheme, Therefore we have preferred the schemes based on 

the trapezoidal rule. 

5. NUMERICAL EXPERIMENTS 

In this section we present the results of numerical experiments with 

the scheme {CH;AM}, given in section 2.1, both for Volterra integro-differ­

ential equations (section 5,1) and for Volterra integral equations (section 

5.2). Moreover, we present results of numerical experiments with the scheme 

{CH;CH} for Volterra integro-differential equations (section 5.1), in order 

to illustrate the improved stability properties of this scheme, compared 

with the {CH;AM} scheme. Finally, in section 5.3 we pay attention to the 

performance of the {CH;AM} scheme, in comparison with an implicit Runge­

Kutta scheme of DE HOOG and WEISS ([4]). 

The numerical experiments have been carried out with test problems 

with known exact solution. Our purpose was to test the convergence and sta­

bility properties of our schemes, rather than design and implement an auto­

matic integro-differential (cq. integral) equation solver. No special strat­

egies have been incorporated in our implementations. Integration was perform­

ed with constant stepsize. The nonlinear equations, arising in the case of 

test problems which are nonlinear inf, were "exactly" solved (i.e., almost 

within machine precision) by the Newton-Raphson method. As a first approxi-

mation off the value off was used. The stopping criterion of the 
n+l n _ 12 . 

iteration process was based on a Newton correction of JO • The starting 

values f 1,f2 , ... ,fk-l were computed with the starting schemes given in 
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section 4. All calculations have been performed on a CDC CYBER 73-28/173-8 

installation, using 14 significant digits. 

5.1 Integro-differential equations 

In this section we give results of numerical experiments with the 

{CH;AM} and the {CH;CH} scheme, respectively. 

Problem 5.1.1. (linear) 
X 
r J f' (x) = exp(x) - f(x) - J exp(x-y)f(y)dy, 0 S X ~ 2, 

"I 0 

lf(O) = 1, 

with exact solution f(x) = 1. Our purpose is to demonstrate that the global 

error is O(hk) ash ➔ O. In table 5.1.la and 5.1.lb we give the relative 

error at x = 2 for the {CH;AM} and the {CH;CH} scheme. 

h 

1/4 

l /8 

1/16 

1/32 

1/64 

1/128 

I rel. error at X = 2 

k = 2 k = 3 k = 4 k = 5 k = 6 

1.010-2 1.110-3 1.710-4 4.910-5 3.510-6 

2.610-3 1.510-4 1.210-5 1.510-6 8.510-8 

6.510-4 1.910-5 7.710-7 4. 110-8 1. 510-9 
l .6 10-4 2.510-6 4.910-8 1.210-9 2.510-11 

4.110-5 3.110-7 3.110-9 3.6 10-11 3. 4 l 0-13 

1.010-5 3.910-8 1.910-10 6.210-13 9.210-14 

Table 5.1.1.a. Results with the {CH;Afl} scheme 

for problem 5.1.1. 

I 



I h 

1/4 

1/8 

1/16 

1/32 

1/64 

t28 

rel. error at X = 2 

k = 2 k = 3 k = 4 k = 5 k = 6 

3.610-2 6.010-3 9. 110-4 1.310-4 1.910-5 

9.810-3 8.910-4 7.910-5 7.310-6 7.110-7 

2.510-3 1. 210-4 5.510-6 2.710-7 1.410-8 

6.410-4 1.510-5 3.610-7 9.310-9 2.410-10 

1 .610-4 1. 9 l 0-6 2.310-8 3.110-10 6.510-12 

4.110-5 2.410-7 1.510-9 1.910-11 2.110-11 

Table 5.1.1.b. Results with the {CH;CH} scheme 

for problem 5.1.1. 
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I 

From these tables the asymptotic convergence factor (½)k is obvious; 

further the {CH;AM} scheme is more accurate than the {CH;CH} scheme. This 

i.s due to the fact that the quadrature rule in the {CH;AM} scheme corres­

ponds to a more accurate linear multistep method, viz. Adams-Moulton, than 

the quadrature rule in the {CH;CH} scheme. 

Problem 5.1 .2. (linear) 

{
f'(x) = 50-50.75 

f(O) = 1, 

X 
r 

exp(-x) - 0.25 f(x) - 50 j f(y)dy, 

0 

with exact solution f(x) = exp(-x). This linear problem depends strongly 

on the "Volterra" part of the equation. Our aim was to verify the stability 

theory for the {CH;AM} and the {CH;CH} scheme. Since the values 

cl<P 
~ = af = -0.25 and 

do not depend on x,y or f, our local stability conditions may be used as 

conditions for global stability. In table 5.J.2a and 5.l.2b we indicate by 

Sand U respectively, whether or not the point (h~,h2n) belongs to the 
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appendl.'x) of the corresponding scheme. The second stability region (see 

tables l.·s the absolute error at the endpoint of integration entry in these 

x = 128h. 
e 

h 

l /2 

I /4 

1/8 

1/16 

1/321 

h 

1/2 

l /4 

1 /8 

1/16 

1/32 

k = 2 k. = 3 k = 4 k = 5 k = 6 

S,8.0 10-tS s, 3. 510-9 U,6.4 10+2 U,2.8 10+5 U,3.o 10+I8 

S,t.5 10-12 U,1.2 10-1 U,9.4 10+4 U,3.4 10+10 u,2.2 10+14 

S ,5. I 10-6 U,7.3 10-3 U,9.6 10-4 U,3.8 10-6 S, I. 110-9 

S,6.6 10-6 S,8.9 10-7 S,4.8 10-7 S,4.8 10-7 S,9.7 10-10 

S,5.8 10-s S,5. 910-6 S,8. 210-9 S ,4. 110-8 S,9.3 10-12
1 

Table 5. l .2a. Stability test of the {CH;AM} scheme 

with respect to problem 5.1.2 

k = 2 k = 3 k = 4 k = 5 k = 6 

S,2.5 10-14 S,7.1 10-12 U,7.5 10+1 U,7.9 10+11 U,7.8 10+20 

S,3.9 10-14 U,9.1 10-4 U,3.4 10+5 U,4.6 10+12 U,2.3 10+17 

S,6.1 10-7 U,6.2 10-2 U,I.2 10-r u, 1.810-2 S,1.2 10-5 

S,2. 210-4 S,6.4 10-5 S ,5. 210-9 S,S.9 10-7 S,2.4 10-9 

S, 1 • 7 I 0-4 S,I.6 10-s S, 7 .610-8 S,4.7 10-8 S,2.4 10-11 

Table 5.1.2b. Stability test of the {CH;CH} scheme 

with respect to problem 5.1.2 

The behaviour of the numerical solution agrees with the predicted 

behaviour; for the case h = 1/8, k = 3,4,5 this may be less apparent, but 

this is explained by the fact that the point (h~,h2n) is close to the bound­

ary of the stability region resulting in an amplification factor l~I close 
to I. 
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While this test showed the presence of a region of instability near the 
2 h n - axis, the following test will show that the stability regions of the 

{CH;CH} scheme are much larger than those of the {CH;AM} scheme. 

Problem 5.1.3. (non-linear) 

f f'(x) • J[:(x) - af:x: - Sz(x)] 3-1, 

lz(x) = 
0 

(x + yy) f (y)dy, 

f(O) = 1. 

0 :,; X :,; 16 

With 

d(x) 
Sxo+l o+l 

= 1 +a+ y(o+l) [(l+y) -1], 

the exact solution becomes f(x) = 1. For I; 1 and n 1 we have (computed n+ n+ 
along the exact solution) 

I; = -3a, n+l 

Hence [n 1 [ increases monotonically, whereas I; 1 remains constant. We n+ n+ 
have considered the case 

a = 40 , B = I 5 , y 2, o = 3/2, h = 1/8. 

The values of a and h were chosen such that the vertical line hi;= -3ha is 

within the stability regions of the {CH;CH} schemes. Hence it 1s expected 

that the {CH;CH} schemes will integrate this problem in a stable manner. 

From the stability regions of the {CH;AM} schemes one can predict, theoret-
2 ically, the values of h n, and therefore the values of x for which the 

{CH;AM} scheme will be stable. Approximate x-values are listed in table5.1.3a. 

k 2 3 4 5 6 

x< 00 5.20 3.67 3.07 2.77 

Table 5.l.3a. Predicted stability ranges for x for 

the {CH;.AM} scheme with respect to problem 5.1.3 
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Having stated our prediction, a final numerical experiment must give 

a decisive answer. In table 5.l.3b we have listed for the {CH;Af1} scheme 

the true error f(x )-f at the point x = I and at some other relevant points. 
n n 

The points were chosen as follows: for a k-th order {CH;AM} scheme we have 

listed one point close to the x-value for which instability is predicted 

by the theory (cf. table 5.l.3a) and another point at which the integration 

process was (mostly prematurely) terminated. In the table of results the 

prediction point is marked with a dotted line. In table 5.l.3c we list the 

results of the {CH;CH} scheme at the same x-points. Inspection of these ta­

bles reveals that: 

(i) the {CH;CH} scheme is indeed stable; in fact, the true error is 

damped out. 

(ii) the {CH;AM} scheme indeed becomes unstable fork~ 3; however, for 

this problem the theory predicts instability for smaller values of x 

than shown in actual computation. 

X 

1.000 

2. 750 

3.000 

3.625 

5. 125 

5.250 

6.375 

9.375 

14.250 

k = 2 k = 3 k = 4 k = 5 k = 6 

+5.710-5 -5.810-5 -2.110-6 -2. 110-6 +l.3 10-7 

-2.210-5 -8.210-6 -2.310-7 -1.210-7 +I.3 10-7 

-2.010-5 -7. 110-6 -2.010-7 ----------
--- 1 • 1 l O - 7 _ +].510-7 

-1.610-5 -5.310-6 -1.510-7 -1.210-7 -6.210-7 

-1.110-5 -3.310-6 -9.010-8 -5.510-6 -1.810-3 

I 
-1.010-5 -3.210-6 -8.710-8 +9. 910-6 * 
-8.210-6 -2.410-6 -7. 310-8 -4.310-3 * 
-5. 210-6 -I .5 10-6 -5.610-3 * * 
-3.110-6 -5.310-4 * * * 

* * * * 

Table 5.I.3b. Results of the {CH;AM} scheme for 

problem 5.1 .3 
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X 

1 .000 

2.750 

3.000 

3.625 

5.125 

5.250 

6.375 

9.375 

14.250 

16.000 

k = 2 k = 3 k = 4 k = 5 

+4.410-4 -4.010-5 -2.510-6 -2.210-6 

-5.910-5 -8.310-7 -5.510-7 -2.210-7 

-5.510-5 -8.810-7 -4.510-7 -1.410-7 

-4.610-5 -8.910-7 -3.110-7 -1.410-7 

-3.210-5 -7.610-7 -1.710-7 -9.210-8 

-3.110-5 -7.410-7 -1.610-7 -9.010-8 

-2.510-5 -6.410-7 -1.210-7 -7. I I 0-8 

-I .6 10-5 -4.410-7 -7. 110-8 -4.410-8 

-9.910-6 -2.810-7 -4.110-8 -2.710-8 

-8.610-6 -2.510-7 -3. 610-8 -2.310-8 

Table 5.l.3c. Results of the {CH;CH} scheme 

for problem 5.1.3 

5.2 Integral equation 
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k == 6 I 

+3.710-7 

+3.910-8 

-9.510-9 

+7.410-9 

+9.810-9 

-1.210-8 

-3.910-9 

+I. 210-9 

+7.410-10 

+6 .610-10 

Results are presented of numerical experiments with the {CH;AM} scheme 

(2.1") for Volterra integral equations of the second kind. These experiments 

closely resemble a number of tes·.s carried out in [10]. However, in order 

to treat the starting procedure, the Newton-Raphson iteration, etc. in the 

{CH;AM} scheme in the same manner as done in the experiments for integro­

differential equations in the preceding section, we have repeated these 

tests. The results are only slightly different from those reported in [10]. 

Problem 5.2. I. (Renewal equation from FELLER [2]) 

X 

f(x) = ½x2exp(-x) + ½ J (x-y) 2exp(-x+y)f(y)dy, 

0 

0:,x:,2, 

1 I r.::- - ;;; with exact solution f(x) = 3 - 3 exp(-3x/2){cos(½xr3) + /3 sin(½xd)}. In 

table 5.2. 1 we give the relative error at x = 2, for various choices of h 
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k "f" th asymptotic convergence factor of (1/2) . and k. One easily ver1 1es e 

I 
I h 

I /4 

1/8 

1/16 

1/32 

l/64 

k = 2 k = 3 k = 4 k = 5 k = 6 

3.110-2 I 8 ··2 • 10 4.510-3 1.810-3 5.210-4 

5.910-3 1.810-3 1.810-4 5.810-5 9.710-6 

1.310-3 2.110-4 8.310-6 2.010-6 1.910-7 

3.010-4 2.510-5 4.410-7 6.810-8 3.410-9 

7.310-5 3. 110-6 2.610-8 2.310-9 5.710-111 

b 5 2 1 Results with the {CH,·AM} scheme Ta le •.. 

for problem 5.2.1 

ProbZem 5.2.2 (non-linear) 

X 

f(x) = -15x+l7(exp(x)-l) + J {16(y-x)-l}exp(f(y))dy, 0 ~ x ~ xe, 

0 

with exact solution f(x) = x. The purpose of this nonlinear problem is to 

verify the stability theory for the {CH;AM} scheme for Volterra integral 

equations of the second kind. We have 

-exp (f 1), n+ 

-16exp(f 1). 
n+ 

and 

In table 5.2.2 we have indicated, by S for stable and U for unstable, the 

stability behaviour of the {CH;AM} scheme, as predicted by the stability 

regions given in the appendix. The second entry is the absolute error at 

the endpoint of integration x = 128h. In case the integration had to be e 
stopped prematurely because of the development of instabilities in the 

numerical solution, the index of the last computed function value has been 

added between parentheses. Clearly, the observed behaviour agrees with the 
predicted behaviour. 



h 

1/2 

1/4 

1/8 

1/16 

1/32 

k = 2 k = 3 k = 4 k = 5 k = 6 

s,7.9 10-2 U,2.2 10-2 U,6.9 10-3 U,1.6 10-1(23) U,2._1 10-1(18) 

S,2.2 10-2 S,3.5 10-3 U,6.0 10-4 U,4.6 10-1(65) U,3.4 10-1(37) 

S,6.0 10-3 S,4.9 10-4 S,4.5 10-S S,4.4 10-6 U,2.0 10-3 

S, 1.510-4 S,6.6 10-s S,3.1 10-6 S,I.5 10-7 S,8.1 10-9 

S,3.9 10-4 S,8.5 10-7 s,2.0 10-7 s,s.2 10-9 s, 1.410-10 

Table 5.2.2. Stability of the {CH;AM} scheme with 

respect to problem 5.2.2. 

5.3. Comparison with a method of de Hoog and Weiss 

37 

In [4] de Hoog and Weiss have proposed implicit Runge-Kutta schemes 

which have stability properties, comparable with ours. In [10] we have 

compared the performance of a O(h7) scheme of de Hoog and Weiss with the 

O(h6) - variant of our {CH;AM} scheme. This O(h7) scheme of de Hoog and 

Weiss is optimal in the sense that its order of convergence is achieved with 

a minimum number (namely four) of points used in one Runge-Kutta step. It 

turned out that the order of convergence of the scheme of de Hoag and Weiss 
7 4 decreases from the expected value O(h) to about O(h ), as the value of 

!aK/3£1 increases, whereas the expected order of convergence of our scheme 

is not affected by the value of I 3K/ofl. As a consequence, our scheme turned 

out to be more efficient than that of de Hoog and Weiss, for problems for 

which laK/afl is large. An explanation of the order decrease of the scheme 

of de Hoog and Weiss may be given by the fact that the error "constant" in 

the expansion of the error, committed when applying the scheme of de Hoog 

and Weiss, itself satisfies a linear Volterra integral equation of these­

cond kind, with kernel 3K/af (see [4], theorem 4.1). So this error "constant" 

depends heavily on the value of I 3K/ofl. 
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APPENDIX. Stability regions of the {CH;AM} and the {CH;CH} schemes 

We present here the stability regions in the (h~,h2n)-plane of the 

{CH;AM} and the {CH;CH} schemes, determined by equation (3.27'). The shaded 

areas indicate stability. Since the integral equation itself is stable 

only in the third quadrant (cf. section 3.2.1), we have confined ourselves 

to this quadrant (and a small strip in the fourth quadrant). The regions 

are displayed fork= 3, 4, 5 and 6 (fork= 2 the stability region contains 

the whole third quadrant). 
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Details near the origin 
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