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Computations concerning the conjecture of Mertens*) 

by 

H.J.J. te Riele 

ABSTRACT 

In 1897, F. Mertens conjectured that IM(x)I < Ix, for all real x > 1, 

where M(x) =I< µ(n), andµ is is the Mobius function. Nowadays, it is 
n-X 

generally believed that this conjecture is false. Using a programmable desk 

calculator W. Jurkat and A. Peyerimhoff recently proved that IM(x)I > 0.779/x, 

for some real x > 1, thereby suggesting that one might try to disprove 

Mertens' conjecture with the aid of a high speed computer. After using sev

eral hundreds of hours of CPU-time of a CDC Cyber 73/173 computer system, we 

proved that IM(x) I > 0.860/x, for some real x > 1, and we now believe that. 

the Mertens conjecture can not yet be disproved, even with the fastest pres

ent day computers. 

KEY WORDS & PHRASES: Mertens' conjecture, zeros of the Riemann zeta function, 

Diophantine approximation, high precision computation 

*)This paper will be submitted for publication elsewhere. 



1. In 1897, F. Mertens ([6], p. 779) conjectured that 

(1) 

where M(x) 

IM(x) I < Ix for x > l, 

=I< µ(n), andµ is the Mobius function. Let 
n-X 

m = lim inf M(x)x- 112 , m = lim sup M(x)x- 112 . 
X ➔ oo X ➔ oo 

Using a programmable desk calculator, W. Jurkat and A. Peyerimhoff [5] re

cently proved that m > 0.779 and~< -0.638 (also compare [8]). They suggest

ed that one might try to disprove the conjecture of Mertens by using a high 

speed computer. We have followed this suggestion and have implemented their 

procedure on a CDC Cyber 73/173 system. Our best results (after several hun

dreds of hours of CPU-time) are m > 0.860 and~< -0.843, and we now believe 

that Mertens' conjecture cannot be disproved by using present day computers 

(with the method of J. and P., which is probably the best one available). 

Perhaps IM(x) I > 0.9/x is still attainable. 

This short note should be considered as additional to [5]. We describe 

how we have obtained our new bounds form and~' with emphasis on some modi~ 

fications of the method of J. and P. We use the notations of [5]. 

2 . 
I 

Let n be some (fixed) positive integer and let Pv = 2 + iyv' v = 1,2, 

... ,n, be the first n nontrivial simple zeros of the Riemann zeta function 

s(s). In our computations we work with n::::: 15000, so that these assumptions 

are certainly justified. (It was shown by R. Brent [3] that the first 

70,000,000 nontrivial zeros of l,; (s) lie on the critical line Res = ½ and 

are simple.) Let TI~ = arg(p s'(p )), where -1 < ~ ::::: and let K(t) = 
I V V V V 

(1-t)cosTit + - sinTit, 0::::: t::::: I. Figure I shows the graph of K, 
. 1T 



\) 

I 

2 

3 

4 

5 

6 

7 

8 

9 

10 

K(t) 

Figure I. 

Now the "key" function in [5] is 

(2) a (t) = 2 
n 

n 

I 
\)= 1 

y\) cos (y t-TI1jJ ) 
K (-) ---,---\l~~--,\l-

y Ip s I (p ) I ' 
n \l \l 

2 

t 

-co<t<co, 

which is shown by J. and P. to satisfy m ~ a (t) ~ m, for all t E JR. In 
- n 

Table I we give a selection of values of jp r,;'(p) 1- 1, in order to give a 
\) \) 

first impression of the behaviour of the sequence {lpvr,;'(p\l)l- 1}\l E ]N 

Table l. 

-1 -1 -I -1 I IP-vs'CP)I \) jp\)r,;'(P)I \) IP\)s'CP)I \) IP\)s'CP)I \) IP\)7;:'(P)I 

.89110-1 I l .77810-2 30 .31310-2 400 .15510-3 5000 .19010-4 

.41810-1 12 . 74810-2 40 .52210-2 500 .32310-3 6000 .33410-4 

.29110-1 13 .12110-1 50 . 18610-2 600 .40710-3 7000 .34710-5 

• 25210-1 -14 .99410-2 60 .14910-2 700 .17210-3 8000 .14510-4 

.22010-1 15 .67110-2 70 .11010-2 800 .17510-3 9000 .61310-5 

.13710-1 16 . 83610-2 80 .14710-2 900 .26810-3 10000 .11710-4 

.16410-1 1 7 .65810-2 90 .IJ.110-2 1000 . 25310-3 11000 .46010-4 

. 1 26 I 0- J 18 .46810-2 100 . 10610-2 2000 .82210-4 12000 .67110-5 

.13310-1 I 9 .74210-2 200 .10310-2 3000 .41410-4 13000 .21510-4 

• 142 10- 1 20 .88910-2 300 .41210-3 4000 .20310-4 14000 .63110-5 

15000 .62010-5 

-1 
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Since for any fixed t 

ance of a sequence of 

tend to decrease with 

the numbers y t - rrijJ (mod 2n), \! E JN, have the appear-
\! \) -1 

random numbers, and since the numbers K(y /y )IP s'(p ) I 
\! n V V 

increasing v (although not monotonically), it seems 

reasonable to expect that the first terms of the sum in (2) give the most 

significant contribution to the value of o (t). This inspired J. and P. to 
n 

look for values oft, such that cos(y 1t-mJ., 1) = 1 and cos(y t-nij.,) > I - o 
1 . \). \) 

(e.g. o = 10), for v = 2,3, .•. ,N+l, N being as large as possible. It follows 

that t must have the form rr(2k+i/J 1)Jy 1, where k is an integer, such that 

(3) 

for v = 1,2, •.. ,N, s = (2rr)- 1arccos(l-o). J. and P. devised an ingenious 

algorithm for the solution of this inhomogeneous Diophantine approximation 
5 5 problem, and applied it with o = l - cos (36 n) (so that s = 72), and N = 12. 

Their best result was o536 (tk) = 0.765, fork= 416220432570893, and some 

further refinements led them to the result m > 0.779. 

3. We have programmed the method of J. and P. in FORTRAN, using double 

precision arithmetic (about 28 significant digits) where necessary, together 

with one modification and one extension. 

The modification consists of making those cosines in (2) as large as 
-1 

possible, for which the numbers K(y /y) IP s'(p) I are as large as pos-v n v \! 

sible. If n is large compared with v, we may assume that the variation of 

the sequence {K(y /y )} for small values of vis small, compared with the 
\! n -I 

variation of the sequence {Ip s'(p) I } (fort+ 0 we have K(t) 
\) \) 

I - ~ n 2t 2). Therefore, in (3) we replace "v = 1,2, ... ,N" by "v = v 1,\! 2 , ••• 

... ,vN"' where IPv.s'(pv.)1-l c IPv,s'(pv.)1-l if i > j. For N = 20 this 

yields, according to tabie I (and aiter iispecting all 15000 terms of the 
- I v= 15000 

sequence {IPvs'(P)I }v=l ), v = l,2,3,4,6,9,5,8,7,12,13,19,15,10,ll,18, 

26,14,16, .... Solving (3) for N = 12 ands= ; 2, we obtained new values of 

k, and hence new values oft, which improved J. and P.'s best result by 

about 0.01. Although this improvement is not very impressive, the principle 

is important: from a table of Sn= 2 L~=l IPvs'(pv)I-I in [SJ, J. and P. 
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concluded that at least 58 terms are required in (2), in order to get m ~ 1, 

but reordering the values of IP ~'(p) 1-l in strictly decreasing order shows 
V V 

that the number 58 can be lowered to 54 if one uses the values of 

IP~• (p )1-l with indices v = l-28,30-36,39-41,43-45,48,49,53,54,57,58,63, 
V V 

64,71,72,91,97,98, instead of those with indices v = 1-58. 

The extension, mentioned above, consists of using 15,000 zeros of the 

Riemann zeta function, instead of 536, as J. and P. did. The zeros were com

puted in two steps: 

(i) separation of the zeros by using the Riemann-Siegel formula [4], and 

improving the accuracy of they 's to about 12 digits by means of an 
V 

algorithm of Brent [2] for finding a zero of a continuous function 

which changes sign in a given interval; 

(ii) improvement of the accuracy of they 's to about 28 digits (necessi-
v 

tated by the large values oft involved in (2)), by three iteration 

steps of the Newton process (the last step as a check), using the 

Euler-Maclaurin formula for the computation of ~(s) and ~•(s) [4]. 

In the same program the values of TiijJ and IP ~•(p )I-I, needed in (2), were 
V V V 

computed with an accuracy of about 14 digits. As far as possible, the com-

puted zeros were compared with existing tables (l4], and a list of the first 

650 zeros, the first 400 accurate to at least 62 digits and the remaining 

250 to at least 28 digits, kindly sent to the author by Prof. Peyerimhoff), 

and they were found to be in perfect agreement. More details about our com-
-I 

putations, and a table of yv' IPv~'(pv) I and Tiijiv, Is vs 15000, may be 

found in [ 7]. 

4. We have run the algorithm of J. and P. with E = 5/36 and v = 1,2,3,4, 

6,9,5,8,7,12,13,19 in (3), This yielded many values of k for which (3) holds 

true, and the best three are given in the first column of table 2a. The 

second column gives a value oft, close to 1r(2k+iµ 1)/yl' for which cr 15000 (t) 

has a local maximum, and the last column shows the corresponding value of 

a 15000 (t). For comparison, we have a~so listed the corresponding results for 

the best value of k found by J. and P. Our best result for iii. is iii.> 0.860. 

In table 2b we list three values of k such that a 15000 (t) is very small, 

fort near TI(2k+l+iµ 1)/y 1. These k could be very cheaply computed from the 

results obtained form. This is caused by the fact that the (finite) set of 
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diffe~enaes of consecutive elements of the set of numbers k for which (3) 

holds depends only on the numbers yv+l/y 1, and not on the numbers in the in

homogeneous part of (3), provided that the numbers l,Yv 1/y 1,Yv2/y 1, .. •,YvN/yl 

and E are rationally independent (cf. Theorem 3 in [5]). Although it is not 

known whether this hypothesis is true, its correctness is generally con

sidered as very probable (cf. [l]). If we now look for values oft such that 

cos(y 1t-mJ; 1) = -1 and cos(yvt-mJJ) < -1 +o, for v = v 1, ... ,vN , then it 

follows that t = 1r(2k+l+l/J 1)/yl' where k is such that 

(4) 1) I < E (mod 1 ) , 

for v = v 1,v 2 , ... ,vN, E = (21r)-l arccos(l-o). This again is an inhomo

geneous Diophantine approximation problem with the same homogeneous part 

as (3). Assuming the rational independence of the numbers 1,Yv1IY 1, .. •,YvN/y 1 
and E (which will be justified by the results), we could use the difference 

set computed for problem (3), in order to compute many numbers k satisfying 

(4). The three best values of k are given in table 2b, and from the third 

column we infer that m < -0.843. 

Table 2a 

k t (near 7T(2k+l/ll)/yl) al 5000 ( t) 

106857751982468 47500538601353.0955 0.8326 

257965757930993 114671254215031.9656 0,8353 

770305562634443 342417170808137.1055 0.8601 

416220432570893 185018815735982.3572 0.8185 

(J. and P.) 

Table 2b 

k t(near 1r(2k+l+$ 1)/y 1) 0 15000 (t) 

285460779943 741 126893375027342.2209 -0.8433 

1513345501403836 672714193149139.5329 -0.8300 

2763987636623953 1228651164668513.8647 -0.8337 
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