
ma
the
ma
tisch

cen
trum

AFDELING NUMERIEKE WISKUNDE
(DEPARTMENT OF NUMERICAL MATHEMATICS)

P.W. HEMKER

ON THE STRUCTURE OF AN ADAPTIVE
.MULTI-LEVEL ALGORITHM

Preprint

amsterdam
;~ ,,· ,

. ~,' t'

NW 65/79 MEI

1979

stichting

mathematisch

centrum

AFDELING NUMERIEKE WISKUNDE
(DEPARTMENT OF NUMERICAL MATHEMATICS)

P.W. HEMKER

ON THE STRUCTURE OF AN ADAPTIVE·
MULTI-LEVEL ALGORITHM

Preprint

~
MC

NW 65/79 MEI

2e boerhaavestraat 49 amsterdam

BlDUOlliEEK l\.V .. THr:.'::\T;::,:H CEfJTRUM

PJii.nt.e.d a.t :the. Ma.thematic.al Ce.ntJLe., 49, 2e. Boe.Jtha.a.veo.tJtaa;t., Amtd:.e11.dam.

The. Ma.thematic.al Ce.n.tlle., 6ou.nded :the 11-:th o 6 FeblU.UVl.y 1946, ,u, a. non­
pno 6.i...:t. .ln6:tltu.ti.o n a,un,lng a.t :the. pltomoUo n o 6 pwr.e m~hema..tle1> a.n.d ..Lt6
a.pp.U.ca.tlon6. I.t -i..6 .6pon6o-'l.e.d by :the. Ne.:thVli..a.nd-6 GoveJr.nment. :thttough :the.
NetheJri.a.n.d-6 01t.ga.nlza.Uon 6on :the. Advancement. 06 PUite. Rue.aJc.c.h (Z.W.O).

On the structure of an Adaptive Multi-Level Algorithm*

by

P.W. Hemker

ABSTRACT

The structure of Multi-Level Adaptive Algorithms is explained. Their

recursive character is exposed by means of the formal language ALGOL 68.

The basic structure is given in two forms: coarse grid corrections to fine

grids and fine grid corrections to coarse grids. The latter description is

more convenient for the treatment of fully automatic adaptive grids. A new

description of the FAS FMG algorithm of Brandt is given and the last sec­

tion concludes with an ALGOL 68 procedure for the solution of boundary

value problems with adaptive mesh-refinement.

KEY WORDS & PHRASES: Multi-Grid Algorithms, Multi-Level Technique, Adaptive

mesh-selection, Defect Correction Principle.

* This report will be submitted for publication elsewhere.

1. INTROWCTION

In recent papers, BRANDT [1977, 1978, 1979] considers Multi-Level

Adaptive Techniques (MLAT) for the computation of solutions to partial dif­

ferential equations. The essential feature of these techniques is that the

solution of one continuous problem on a region n is obtained by different

discretizations of the problem on a hierarchy of finer and finer grids.

The accuracy of the numerical solution finally obtained corresponds to the

accuracy that can be attained with the discretization on the finest grid

in the hierarchy and the iterative process for the solution of the discrete

system on the finest grid largely benefits from the interaction with the

discretization on the coarser ones.

There is overwhelming evidence (cf. e.g. BRANDT [1977a], MIRANKER

[1977], NICOLAIDES [1978]), that the iterative method thus obtained is

among the most efficient ones for a very large class of linear and non­

linear problems. The point is that the apparent redundancy of introducing

the coarser grids appears to be profitable when the final efficiency of the

iterative process is considered. It is an additional advantage of the Multi­

Grid approach that it allows fo~ adaptive local grid-refinement, i.e. dur­

ing the ccmputation a mesh-refinement can be generated in those parts of n
where this refinement is required for the accurate representation of the

solution.

These are all arguments in favour of the Multi-Grid (MG-)method, but

a disadvantage is that its implementation is rather intricate (cf. BRANDT

1977b). A reason for this is that one wants a program to be efficient both

with respect to computer storage and computer operations. Another reason

may be that the fundamental MG-algorithm has a much more complex structure

than most discretization and iterative solution methods. In this paper it

is our intention to clarify this basic structure of multi-level algorithms,

such that it will be easier in future both to analyze them mathematically

and to implement them in a well structured way.

In Section 2 we give the basic principles of the MG-algorithm and we

give an ALGOL 68 representation of it. In Section 3 we give an ALGOL 68

representation of the FAS FMG algorithm of BRANDT [1979].

2

In Section 4 we give the dual representation of the MG-algorithm and

in Section 5 we give a representation of the algorithm in the case of

locally refined meshes and adaptive mesh-refinement. Further we indicate

how adaptive order selection can be implemented.

2. BASIC PRINCIPLES

It is not our intention to give here the heuristic background or a

theoretical account for the MLAT-technique. For this we refer to BRANDT

[1977a] or the clear and comprehensive description in BRANDT [197 9] . How­

ever, we give here an overview of the essentials of the theory such that

some insight can be obtained into the structure of the algorithm.

We consider the approximate solution of the (nonlinear) operator equa­

tion

(2 .1) Lu= f

on a domain Q with boundary oQ. The domain Q is covered by a sequence of

finer and finer grids ~ 0,s1 , •.• ,~k, ••• with mesh width h0 ,h1 , ••• ,~. Usual­

ly hj+1 = hj/2. There exist operators I! (the prolongation from G to Gh)

and r: (the restriction from ~h to GH) which transfer grid functions de­

fined on a coarse grid GH to grid-functions defined on the next finer grid

Gh (vice versa), so that r: r: is the identity operator on GH.

If th . d .,..h h . 1 . h h h , on e gri u, we ave an approximate so ution y tote G -

discretization of (2.1)

(2. 2)

then we can get better approximations, i.e. approximations with smaller

residuals

(2. 3)
h z

·either be relaxation methods on the grid Gh (Jacobi, Gauss-Seidel, SOR

etc.), which are efficient for reducing the high-frequency components of

the residual, or by solving the residual equation on a coarser grid ~ 8 ;

i.e. solving

(2. 4)

h h h
using I 8y as a starting approximation. A better approximation to u is

then given by

(2. 5)
h H H h h

y + Ih (U - IJ1) •

3

These coarse grid corrections are efficient for reducing the low-frequency

components of the residual. Equation (2.2) now can be solved efficiently

by using both methods successively (in any order, whichever - at a particu­

lar stage of the iteration process - is the more relevant with respect to

the frequencies in the residual).

We can also consider the relation between both grids from another

point of view. If we solve

(2. 6)

we obtain a G8 -approximation to the solution of (2.1). As usual, the trunc­

ation error, t 8 , of (2.6) is defined by

(2. 7) H
1" '

'Where u denotes the solution of (2.1) and r 8 denotes the restriction opera­

tor which restricts a continuous function on Q to a grid function on ~H­

Analogously, the relative truncation error, T:, between G8 and Gh can be

defined by

(2. 8) H h h fH + H L I 8 u = T h'

h
where u is the solution of (2.2). Hence, once having obtained

(2. 9a)

5

MODE FUNCTION = #some procedure mode which represents a continuous (vector-

MODE NET

OP LH

OP RESTRICT

OP PROLONGATE

OP INTERPOLATE

k n valued) function :JR -+ :JR , where k is the dimension of n;
e.g. with k = 2, n = 1, we have

MODE FUNCTION= PROC (REAL, REAL) REAL#

= #some structure to represent a net function on Gh,

=

=

=

=

e.g. with k = 2, n = 1,

MODE NET= REF [,J REAL#

(NET yh) NET:

#some representation of the operator Lh in eq. (2.2)#

(NET yh) NET:

#some representation of the operator Ih#
H

(NET yh) NET:

#some representation of the operator IH#
h

(NET yh) NET:

#some interpolation operator from ~H onto Gh, possibly

more accurate than I~#

OP RESTRICTION= (INT k, FUNCTION f) NET:

FUNCTION f

PROC relax

PROC solve

#some representation of the operator Ihk (see eq. (2.7))#

= #some representation of the right hand side function fin

equation (2.1)#

= (REF NET yh, NET rh, ...) VOID:

#a procedure which performs one step of the relaxation
. . f h h h . . d 1· . f . iteration o Ly = r ; in it e ivers in ormation

about the size of the residual and the speed of conver­

gence#

directly
= (REF NET yh, NET rh) VOID:

h r on the coarsest #solves the discrete equation Lhyh =

grid G0 . Since Lh is essentially non-linear this procedure

in general needs an initial approximant to the solution

(as input in yh)#

Text 1. The modes, operators and procedures used in Text lb.

The algorithmic structure is given in Text lb in two procedures. solve
upto level and solve at level; solve upto level is the driver procedure to

6

which the number of levels m and a start approximation on the zero-level grid

~Oare given. It delivers the solution on a set of finer and finer grids

~0 ,61 , ... ,6m that all cover the whole domain~- Most of the work is done

by the recursive procedure solve on level, in which relaxation and coarse

grid corrections interchange with each other in order to reduce the residual.

PROC solve upto level = (INT m, REF [J NET yh, NET start approximation) VOID:

BEGIN NET rh = 0 RESTRICTION f;
yh[OJ := start approximation;
solve directly (yh[OJ,rh);
FOR k TO m

00 NET rh = k RESTRICTION f;

yh[kJ .- INTERPOLATE yh[k-lJ;
solve on level (k,yh[kJ,rh)

OD
END;

PROC solve on level = (INT k, REF NET yh, NET rh) VOID:
IF k = 0

THEN solve directly (yh,rh)
ELSE WHILE relax (yh, rh, converged, slow convergence);

NOT converged

FI;

DO IF slow convergence

OD

THEN NET yhc := RESTRICT yh;
NET rhc = RESTRICT rh

-RESTRICT LH yh + LH RESTRICT yh;
solve on level (k-1,yhc,rhc);
yh := yh +

PROLONGATE (yhc - RESTRICT yh)
FI

Text lb. The structure of the basic MG-algorithm.

7

(Legend to Text. 1 b)

The work done in the procedures is the following. First a starting

approximation on the coarsest grid G0 is used to solve the problem on G0 •

Since ~O only contains a small number of points, we assume that this problem

can be solved efficiently by some "direct method". This can be either the

direct solution of a linear system for linear problems or the use of e.g.

some Newton process for nonlinear problems. The solution on ~O is inter­

polated onto ~1 to obtain a starting approximation on G1 and the problem

is solved on G1 • Thus we get a solution on level 1, which is interpolated

onto ~2 , etc •• On each level k (k = 1,2, .•. ,m) the problem is essentially

solved by the successive use of relaxation sweeps (reducing the high­

frequency components in the residual) and the computation of coarse grid

corrections on level k-1 (reducing the low-frequency components in the re­

sidual). Thus, in [O:m] NET yh, one finally obtains the sequence
h· h· h· h·

{y J}. 0 of solutions to the discrete problems L Jy J = f Jon~.,
J= , ••• ,m J

j = o, ... ,m.

3. THE FAS FULL MULTI-GRID ALGORITHM

From the different variants of the MLAT algorithm (Cycle A, Band C

in BRANDT [1976, 1977] for linear problems and Cycle C FAS (BRANDT 1977)

and FAS FMG (BRANDT 1979) for nonlinear problems) the FAS FMG (full approx­

imation storage, full multi-grid) algorithm shows the best complete struc­

ture. With the basic structure of Section 2 in mind we are now able to

translate the FAS FMG flowchart into two ALGOL 68 procedures. This trans­

lation is given in Text 2. The algorithm given here is essentially the same

as the one given in Text 1, rut now some strategy has been implemented

(1) to decide on slow convergence, and (2) to solve the discrete systems

of equations with a residual error which is of the same order of magnitude

as the truncation error.

Hence, in this algorithm, we meet three parameters n, a and o in order

to tune the strategy; n is a parameter which decides on slow convergence,

its value depends on the difference scheme and the relaxation method used;

a is a parameter which controls the factor by which a finer grid solution

should re more accurate than a coarse grid solution, its value depends on

8

PROC solve upto level = (INT m, REF [J NET yh) VOID:
BEGIN REAL tol k := 0.0001 * al fa;

END;

solve directly (yh[OJ, 0 RESTRICTION f);

FOR k TO rn

DO NET rh := k RESTRICTION f;
yh[k1 :• INTERPOLATE yh[k-11;
tolk := tolk*alfa;
solve on level (k,yh[k],rh,to1k,tolk)

OD

PROC solve on level = (INT k, REF NET yh, NET rh, REAL tol, REF REAL
nexttol) VOID:

BEGIN REAL error, olderror := maxreal;
WHILE relax (yh, rh, error);

error ~ tol

END;

DO IF k = 0 OR error/olderror s eta
THEN olderror := error

OD

ELSE NET ye := RESTRICT yh;

FI

NET residual = rh - LH yh;
NET re= LH ye+ RESTRICT residual;
REAL tau = norm(rc - (k-l)RESTRICTION f);

REAL tole:= delta* error;

solve on level (k-1,yc,rc,tolc,tolc};

yh := yh + PROLONGATE (ye - RESTRICT yh);
nexttol := alfa * tau;
olderror := maxreal

Text 2. The FAS FMG-algorithm.

An ALGOL 68 translation of the algorithm published by BRANDT [1979]. In this

text the procedure re1ax(yh,rh,error) performs a relaxation iteration step

in the solution of Lhyh = rh and delive~s in error an estimate of the norm

f . ·a l ~ a h h ha o its resi ua: error~ ur -Ly 1.

9

the mesh ratio and the order of accuracy of the discretization method;

o is a parameter which tunes the requirement that a coarse grid correction

should not be computed much more accurate then the relaxation corrections

with which it shares the task of reducing the residual. More details about

these parameters can be found in BRANDT [1979].

4. THE DUAL REPRESENTATION OF THE MG-ALGORITHM

In the procedure solve on level in Section 2 the MG-algorithm can

clearly 1::e recognized from the point of view where coarse grid problems

serve as fine grid correctors. Having obtained the fine grid solution on

~, we trivially can obtain G -accurate solutions on lower levels by m m

FOR k FROM m BY -1 TO 1
DO y[k-1] := RESTRICT y[kJ OD; •

However we can also reorganize the algorithm such that (i) these grid­

functions are obtained immediately, and (ii) fine grid solutions can be

recognized as generating corrections - in the form of corrected solutions

and relative truncation errors - to the coarse grid solutions. To this end

we have to turn the recursive part of the algorithm inside out. Thus we

find the basic algorithm in its dual representation. It computes the fine

grid solution y[m] and its restrictions to coarser grids essentially the

same way as in the representation in Text 1 in Section 2.

The use of the dual representation is that it will enable us to intro­

duce partial mesh-refinement (see Section 5). In that case finer grids do

not extend over the whole range of rl (the "fine grid solution" is not de-·

fined on 0) but finer grids are introduced on parts of n only.

We can understand the recursive part of the procedure correct for finer
nets in Text 3 by noting that for each call of the form

correct for finer nets (k,y,r)

we have

10

PROC solve upto level= (INT m, REF [J NET y, NET startapproximation) VOID:

BEGIN (0 NET r;
FOR i TO m DO y[iJ := NIL OD;
y[OJ := startapproximation;
r[OJ := 0 RESTRICTION f;
WHILE solve directly (y[OJ,r[OJ);

NOT correct for finer nets (O,y,r)

DO SKIP 00;
END;

PROC correct for finer nets= (INT k, REF [J NET y, r)BOOL:

IF k = UPB r

THEN TRUE

ELSE BOOL converged; REAL olderror, error:= maxreal;

FI;

IF NET (y[k+l]) :=: NET(NIL)
THEN #enter level k+l for the first time#

y[k+lJ := INTERPOLATE y[kJ;
r[k+lJ := (k+l) RESTRICTION f

ELSE y[k+lJ := y[k+lJ + PROLONGATE (y[kJ - RESTRICT y[k+lJ)

FI;

WHILE NOT
IF error:= olderror; relax (y[k+lJ, r[k+lJ, error);

converged :=error< tolerence;
converged

THEN correct for finer nets (k+l, y, r)
ELSE (error/olderror) s eta #i.e. slow convergence#
FI

DO SKIP OD;

y[kJ := RESTRICT y[k+lJ;

r[kJ := RESTRICT r[k+lJ - RESTRICT LH y[k+lJ+ LH RESTRICT y[k+lJ;

converged

Text 3. The dual representation of the basic MG-algorithm.

In this text t-he meaning of the procedure relax is the same as in Text 2.

11

(1) at entrance: the coarse grid (level k) solution has been found, since:

(4. 1) nonn{rh[kJ - LH yh[kJ) s tolerence;

(2) on exit with the value TRUE:
y[m], y[j], r[j], j = k,k+l, ... ,m-1 have been changed, and

r[m], y[j], r[j], j = 0,1, ... ,k-l have not,

y[m] contains the solution of the problem discretized on G, moreover,
m

y[j] = RESTRICT y[j+l], j = k,k+l, ... ,m, (i.e. at all levels the G -
m

accurate solution is delivered);

r[j], j = k,k+l, .•• ,m-1,m, contains the relative truncation error of

the ~.-discretization with respect to the G -discretization;
J m

(3) on exit with the value FALSE only

r[k], y[k] and y[k+l] have been changed and we shall not return at the

level k before y[k] has been adapted - by coarse grid corrections -

such that with the given r[k] the inequality (4.1) has been satis­

fied.

REMARK. Notice that the ALGOL 68 phrase "WHILE a; NOT b DO SKIP OD 11 can be

understood as "REPEAT a UNTIL b11 •

5. PARTIAL AND ADAPTIVE GRID REFINEMENT

The discretization applied in connection with the MG-technique mostly

uses uniform nets (either for finite difference or finite element methods).

This implies that the set-up of the discrete equations is simple and re­

quires very little administration of geometrical details. Mesh-refinement

is obtained by adding finer and finer mesh-levels G. • If. a partial mesh--
J

refinement is sufficient, this refinement can be restricted to (smaller

and smaller) parts of the original domain~- The only requirements are

(i) that a few (e.g. two) coarse grids cover the original domain~ and

(ii) that the domain of each grid is covered by the domain of the next

coarser one. A coarse-grid "father" can have different grid "sons", i.e.

finer grids that extend over a subdomain. We restrict ourselves to the case

.where "brother"-grids (sons of the same father) extend over disjoint sub­

regions of the father-region. Thus we obtain a tree-structure of net-func­

tions that together form a grid-family. The data structure for such a grid

12

family is in ALGOL 68 easily represented by

MODE GRIDF = STRUCT (NET net, REF [J GRIDF sons).

Each object of the mode GRIDF contains a NET as in Section 2 and an array

of references to its sons, which themselves are of the mode GRIDF again.

If this array of sons is of length zero, there are no sons, i.e. there are

no finer grids in the region covered by this GRIDF.
The only tool we further need in order to formulate our MG-algorithm

on a grid-family instead of on a set of coextensive grids G0 ,G 1 , ... ,Gm, is

an operator SUBREGION so that the expression gridson SUBREGION gridfather
denotes the grid which is the restriction of the grid gridfather to the

region that is covered by the grid gridson. Such an operator

OP SUBREGION= (GRIDF gridson, REF GRIDF gridfather)
REF GRIDF: . . . ,

the details of which depend on the explicit structure of a NET, can be im­

plemented in ALGOL 68 without difficulties. An auxiliary operator:

OP<:== (REF GRID a, GRID b)VOID: net OF a .- net OF b;

is convenient for the assignment of net-values of grid b to grid a.

With the aid of the mode GRIDF and the operators SUBREGION and

we describe the MG-algorithm for an arbitrary grid-family by the two proce­

dures in Text 4.

In order not to repeat the small complication of the first interpol­

ation (initialization) on a new level for y, in the last procedure we have

identified the two interpolation operators INTERPOLATE and PROLONGATE; a

distinction between both operators would lead to an algorithmic structure

for the initialization similar to the one in Section 4.

We notice that for a PDE the J::oundary conditions for a subregion

PROC solve= (REF GRIDF y, NET startapproximation)VOID:
BEGIN GRIDF r := y RESTRICTION f;

initialize at zero all nets of the family (y);
net OF y := startapproximation;

WHILE solve directly (net OF y, net OF r);
NOT correct for finer grids (y,r)

DO SKIP OD
END;

PROC correct for finer grids= (REF GRIDF yhf, rhf)BOOL:
BEGIN BOOL ready := TRUE;

END;

FOR i TO UPB (sons OF yhf)
DO REF GRIDF yh = (sons OF yhf)[iJ,

rh = (sons OF rhf)[iJ;
yh := yh + PROLONGATE (yh SUBREGION yhf - RESTRICT yh)
WHILE NOT

I~ relax(net OF yh, net OF rh, ...); converged
THEN correct for finer nets (yh,rh)
ELSE slow convergence
FI

DO SKIP OD;

yh SUBREGION yhf <:= RESTRICT yh;
rh SUBREGION rhf <:= RESTRICT rh

- RESTRICT LH yh + LH RESTRICT yh;
ready := ready AND converged

OD; ready

Text 4. The MG-algorithm for tree-structured partially refined grids.

13

This algorithm solves the equation Lu= f on the trees of grids called

GRIDF y. In this procedure the operators PROLONGATE, RESTRICT and LH, work­

ing on a GRIDF gridf, have the same effect on net OF gridf as their analogs

working on a NET in the previous sections. The expression gridf RESTRICTION
f creates a grid-family similar to (congruent with) gridf and initializes

all its net-functions with the corresponding values of the FUNCTION f.

14

n c n are determined by either a part of the boundary conditions of nit­
a

self (if n is partly along the boundary of n) or by the most recently ob­
a

tained approximation to the solution on its gridfather (which - at conver-

gence - takes the same values as the gridson itself!)

In contrast with the representation given in Section 2, in the repre­

sentation of the algorithms given in Section 4 and 5, at any time before

the finest grid solution has finally been obtained, the gridfamily can be

extended in any subregion and at any level, in order to adapt the grid to

the solution. This means that bothy and r should be extended in a similar

way and that the offspring of y should be initialized at approximate values

of the solution and the corresponding offspring of r should be initialized

at the corresponding function values off. In the course of the computa­

tion the algorithm automatically corrects all values at all levels.

We illustrate this in Text 5, which is part of an actual ALGOL 68 pro­

gram which solves a (two-point) boundary-value problem. Beside the exten­

sion of the tree of grids, in this program - as in Text 2 - some strategy

has been implemented to decide on convergence and slow convergence. The

program has been used to find and to resolve boundary layers in linear and

nonlinear problems of the form

EY" + N(x,y,y') = f on (a,b),

y(a) = ya, y(b) = yb.

Numerical results of the MG-method for this problem will be reported later.

(We do not mean that in practice two-point boundary-value problems should

be solved by iterative means (!) but Text 5 can easily be extended for 2-

and 3-dimensional problems.)

Beside adaptive grids it is also easily possible to implement adaptive

order of convergence. To this end one should have an operator LH of which

the order of accuracy of the discretization depends on the mesh-size and/or

on the subregion of Q where it is applied. We notice that the high

order of accuracy of the solution is obtained by evaluation of the discrete

operator LH on the finest grids only (i.e. only by the computation of rela­

tive truncation errors). There is no need to solve any more complex

15

algebraic system than for a low order discretization, since the discrete

system to solve and the iterative method to solve it are not affected by

the order of discretization. In this sense the method used is very similar

to the method of deferred corrections (cf. STETTER 1978}.

PROC solve= (REF GRIDF y, REAL tol)VOID:

BEGIN REAL tole := 0.1, alfa := 0.25, eta := 0.75;
PROC solve directly= (REF GRIDF y, r)VOID:
BEGIN REAL error;

WHILE relaxation(y, r, error);
NOT (error< tol)

DO SKIP OD
END;

PROC correct for finer grids= (REF GRIDF yhf, rhf)BOOL:
BEGIN BOOL ready := TRUE;

FOR i OF UPB (sons OF yhf)
DO BOOL converged; GRIDF tau;

REAL taunorm, error, olderror .- maxreal;

REF GRIDF yh = (sons OF yhf)[iJ,
rh = (sons OF rhf)[iJ;

yh := yh + PROLONGATE(yh SUBREGION yhf - RESTRICT yh);

WHILE
WHILE NOT

IF relaxation(yh, rh, error);

converged :=error< tole
THEN correct for finer grids (yh, rh)
ELSE (error/olderror) > eta #i.e. slow convergence#
FI

DO olderror := error OD;

tau := LH RESTRICT yh - RESTRICT LH yh;

IF UPB (sons OF yh) f 0
THEN FALSE
ELIF taunorm := NORM tau;

(tole:= taunorm*alfa; tole< tol I tole.- tol);

16

error > tole
THEN converged
ELIF converged := TRUE;

taunonn * a1 fa** 2 > tol

THEN create sons{yh, tau, to1/alfa ** 2);
rh := yh RESTRICTION f;
(tole "' : = a lf a ; to le < to 1 l to 1 c : = to 1) ;

NOT correct for finer levels (yh, rh)
ELSE FALSE
FI

DO olderror := error OD;

yh SUBREGION yhf <:= RESTRICT yh;
rh SUBREGION rhf <:= RESTRICT rh + tau;

ready.- ready AND converged
OD; ready

END;

GRIOF r := y RESTRICTION f;

WHILE solve directly (y, r);
NOT correct for finer grids (y,r)

DO SKIP 00

END;

Text 5. An ALGOL 68 procedure for a Multi-Level Algorithm with Adaptive

Mesh-refinement for the solution of Lu= f.

A solution y is obtained such that U Ly - ffi < tol. The procedure call

create sons (yh, tau, t) creates sons for the GRIDF yh on those parts of Q

where net OF tau> t, i.e. where the values of the netfunction tau are

greater than a given value t.

ACKNOWLEDGEMENT

The author is grateful to Dr. H. te Riele and H. Schippers for the

careful reading of the manuscript and for many helpful remarks.

REFERENCES

BRANDT, A., (1977a), Multi-Level Adaptive Solutions to Boundary Value

Problems, Math. Comp. 31 (1977) 333-390.

17

BRANDT, A., (1977b), Multi-Level Adaptive Solutions to Partial Differential

Equations - Ideas and Software, Proceedings of Symposium on

Mathematical Software. (Mathematics Research Center, University

of Wisconsin, March 1977), (John Rice, ed.) pp. 277-318,

Academic Press, New York.

BRANDT, A., (1979), Multi-Level Adaptive Techniques (MLAT) for Singular

Perturbation Problems. (In: Numerical Analysis of Singular

Perturbation Problems, P.W. Hemker and J.J.H. Miller eds.,

Academic Press, London, 1979.)

MIRANKER, W.L., (1977), Hierarchical relaxation, IBM Res. Rept. RC 6884.

NICOLAIDES, R.A., (1978), On the observed rate of convergence of an itera­

tive method applied to a model elliptic difference equation,

Math. Comp. 32 (1978) 127-133.

STETTER, H.J., (1978), The Defect Correction Principle and Discretization

Methods, Num. Math. 29 (1978) 425-443.

VAN WIJNGAARDEN et al. Eds. (1976), Revised Report on the Algorithmic

Language ALGOL 68, Springer-Verlag, New York, Heidelberg,

Berlin (1976) •

