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The calculation of eigenvectors. and invariant subspaces 

by 

M. Louter-Nool 

ABSTRACT 

This paper contains PASCAL procedures for the calculation of eigen

values of a real possibly defective and/or derogatory matrix and the cor

responding eigenvectors and invariant subspaces. 

KEY WORDS & PHRASES: real possibly defective and/or derogatory matrices, 

eigenvalues, eigenvectors, inva:r>iant suhspaces 
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1 • INTRODUCTION 

In this paper we consider the algebraic eigenvalue problem of real 

general matrices, especially of matrices having multiple eigenvalues. 

If a matrix is defective, then there is no complete set of eigenvec

tors. Most published procedures fail to recognize a matrix to be defective 

and attempt to give the same number of eigenvectors as eigenvalues. In case 

of a defective matrix or one, that is close to a defective matrix, it is 

more satisfactory to determine invariant subspaces associated with groups 

of eigenvalues. 

The vectors v 1,v2 , ..• ,vr are said to span an invariant subspace of A 

of order r, if v 1,v2 , .•• ,vr are linearly independent and Avi(i = 1,2, ••• ,r) 

lies in that same subspace. The vectors v 1,v2 , .•• ,vr are called principal 

vectors or 'grade vectors'. In GOLUB and WILKINSON [2] an algorithm is giv

en to determine such vectors. 

We have chosen the Schur-decomposition as a stable method for calcu

lating eigenvalues. 

The computed eigenvalues of defective and/or derogatory matrices can 

be widely distributed around the exact (multiple) eigenvalue. In practice, 

it is very difficult to recognize clusters of eigenvalues. 

Suppose, we have found a cluster corresponding with eigenvalue A of 

order r, then it would be convenient to find an invariant subspace of the 

same order by means of the method of Golub and Wilkinson. However, the num

ber of computed grade vectors is restricted by a chosen tolerance in the 

algorithm of Golub and Wilkinson. When the order of the cluster does not 

fit the number of grade vectors that is found, two possibilities are left: 

1. one could again calculate the grade vectors with another tolerance 

2. the cluster was ill-chosen. One could repeat the calculation with 

another cluster size. 

In section 5 we shall give some numerical results on the perturbations 

of multiple eigenvalues and on the interaction between the order of a clus

ter and the number of vectors that is found. 

In section 2 a brief account is given on the Schur-decomposition. In sec

tion 3 we shall give an elucidation of the algorithm of Golub and Wilkinson. 
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Both the Schur-decomposition and the algorithm to determine the grade 

vectors are implemented in PASCAL. In section 4 we shall describe the PASCAL 

procedures with their parameters. Moreover, the sourcetexts are listed. 

2. THE SCHUR-DECOMPOSITION 

In this section we shall describe an algorithm for finding all eigen

values of a real general matrix. In numerical analysis most of the methods 

for solving the eigenvalue problem for a matrix A of general form depend on 

the application of a series of similarity transformations, which converts A 

into a matrix of special form. If a matrix can be reduced to triangular form, 

then the diagonal elements of the triangular matrix are the eigenvalues of 

the original matrix. In this paper we shall consider real general matrices 

with eigenvalues, which may be complex. If A has complex eigenvalues and we 

reduce A to triangular form, then A will be converted into a complex matrix. 

Fortunately, complex eigenvalues always occur in conjugate pairs. Instead 

of reducing A to triangular form, it appears to be more convenient to re

duce A to a real quasi-triangular form, in which the 2x2 blocks have con

jugate eigenvalues. In STEWART [9], one can find the following theorem. 

nxn h • THEOREM 2. I. Let A E 1R. • Then t ere ex1.,sts an orthogonal matrix U, such 

that UTAU is real quasi-triangular. Moreover, U may be chosen so that any 

2x2 diagonal block of UTAU has only complex eigenvalues (which must there

fore be conjugates). 

The decomposition by unitary transformations to a real quasi-triangular 

form is associated with the name of Schur. 

As a consequence of this theorem we have at our disposal a method to 

determine the eigenvalues of A without using complex arithmetic, even when 

A has complex eigenvalues. 

The reduction of A consists of two main parts. We shall first reduce 

A to upper-Hessenberg form, i.e. to a matrix A(I), such that 

(I) = 0 a •• 
l.J 

(i > j+I). 

The latter part of the reduction is performed by means of the QR algorithm. 
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In section 2. l we shall gi_ve a brief account on the reduction to upper

Hessenberg form. In section 2.2 we shall elucidate the QR algorithm. 

2.1. The reduction to upper-Hessenberg form 

In the literature, several methods are known to reduce a matrix to 

upper-Hessenberg form (e.g. see WILKINSON [10]). We shall reduce a given 

matrix by unitary transformations necessary for the Schur-decomposition. 

This reduction is based upon pre- and postmultiplications by elementary 

reflectors, which are also known as elementary Hermitian matrices or as 

Householder matrices. 

2.2. The QR algorithm 

The QR algorithm with shifts of origin is described by the relations 

Q (A -k I)= R l s s s s 

A = R QT+k II 
s+l s s s 

(2.2.l) 

s=0,1,2, ... 

(2.2.2) 

where Q is orthogonal, R is upper triangular and k is a scalar, the shift 
s s s 

of origin. From (2.2.l) and (2.2.2), it follows that 

(2.2.3) 

In this way,, we produce a sequence of similar matrices and it turns out,· 

that with a proper choice of the shift k, the off-diagonal elements in the 
s 

last row of A can be made to approach zero very swiftly. When the QR algo-
s 

rithm is applied to a full matrix, it is computationally very expensive. 

However, when the QR algorithm is applied to an upper-Hessenberg matrix, the 

volume of work is far less. Moreover, if A0 is in upper-Hessenberg form, then 

so are the subsequent matrices A. 
s 

The shift can be chosen in different ways. In order to achieve rapid 

convergence,, it is essential that the shift should be close to an eigen

value of A0 •. Suppose A0 has merely real eigenvalues. If we take ks equal 

to a , then the convergence is quadratical for a simple eigenvalue 
nn 
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and linear for a multiple one. WILKINSON [10] suggested another shift-strat

egy, which, in practice, appears to give better results. This shift-strategy 

can be represented in the following way: 

If B(s) is denoted by 

(s) ] an-In 

(s) 
a nn 

(2.2.4) 

k . h b h . 1 f B(s) h. h . 1 (s) then 1.s c .osen to e t at e1.genva ue o , w 1.c 1.s c osest to a . 
s nn 

However, even when A0 is real, some of the eigenvalues may be complex. 

If B(s) in (2.2.4) has complex eigenvalues, then k should be complex and 
s 

so A 1. In order to avoid complex arithmetic, which is very expensive, one 
s+ 

can use a variant of the QR-algorithm, the so-called 'double' QR-algorithm. 

This algorithm is based upon two successive single QR-iteration steps 

with shifts equal to the eigenvalues of the matrix B(s). For further details 

of this method we refer to STEWART [9]. 

Though the convergence of the double QR-algorithm is comparable with 

that of the single QR-algorithm, and, moreover, with only double QR-itera

tion steps, one could determine the eigenvalues of a real matrix with both 

real and complex eigenvalues, we apply a combination of both methods. This 

combination implies, that, if the eigenvalues of the 2x2 bottom righthand 

side corner are real, we perform a single QR-iteration step, otherwise a 

double QR-ite.ration step. 

For further details see method and performance of subsection 4.2. We 

refer also to subsection 5.4. 

3. AN ALGORITHM FOR DETERMINATION OF GRADE VECTORS 

In GOLUB and WILKINSON [2] an algorithm is suggested for the deter

mination of grade vectors. In this section we shall give some further re

flections on this method. 

Moreover, we have implemented this algorithm in PASCAL for real matri

ces having real eigenvalues (see subsection 4.4). However, this method for 

calculating grade vectors can also be applied to complex matrices. 



3.1. Introduction 

We shall first give a brief account to the theory of canonical forms 

and the associated vectors. 

5 

Let us consider the (complex) matrix A of order n. There exists a non

singular matrix X, such that 

AX= XJ, (3. 1 • 0 

where J is the Jordan canonical form (J.c.f.) of A. This J.c.f. is a block 

diagonal matrix with each diagonal block being an elementary Jordan block. 

Such a block associated with an eigenvalue A. of A will be denoted by J (A.), 
1 r 1 

where 

is of order r. Apart from the ordering of blocks along the diagonal of J, 

the J.c.f. is unique. If A is a matrix of order 10 with only 2 distinct 

eigenvalues Al and A2 , and Al is associated with one block of order 2 and 

one of order 3, while Az is associated with one block of order 1 and one 

of order 4, its J.c.f. could be presented in the form 

J2(Al) 

J3(Al) 

J 1 (Az) 

J4(A2) 

Let us consider the J 3 (A 1) block, then we get from (3.1.1): 

Ax3 = A 1·x3, (A-A 1I)x3 = o, 

Ax4 = Alx4+x3, (A-A 1I)x4 = X3, 

Axs = Alx5+x4, (A-A 1I)x5 = X4, 

(3. 1.2) 
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where x. is the i-th column vector of X. 
1 

The first of these relations implies, that x3 is an eigenvector of A 

corresponding to A1• The remaining equations imply 

In general, vectors x. which satisfy the relations 
J 

p-1 
(A-LI) x. :/: 0 

1 J 
and 

are called veators of grade p. Moreover, if such vectors satisfy 

(A-A.I)x. = x. I' 
1 J J-

then they are called prinaipaZ veators. 

(3.1.3) 

(3.1.4) 

(3.1.5) 

We shall give some more definitions, which should appear in the intro

duction. 

A matrix is said to be defective, if the J.c.f. is not strictly diagonal. 

A matrix is said to be derogatory, if there is at least one A., which 
1 

is associated with more than one diagonal block in the J.c.f. • 

Let n. be the number of vectors of grade j associated with some eigen
J 

value A. Notice, that n 1 is the number of blocks associated with A in the 

J.c.f •• In general, n. is the number of those blocks, which are of dimen
J 

sions not less than j. Consequently, we may conclude 

(3. 1.6) 

for j = 1,2, ••• ,s-I, while ns+l = O. Furthermore, if A is an eigenvalue of 

multiplicity k, we have 

s 
k = l _ n •• 

j=I J 

In the next subsections, the vectors of grade J will be denoted by 
(j) (j) (j) 

xl ,xz , ••• ,xn• • 
J 

(3. I. 7) 
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3.2. The algorithm for determination of grade vectors 

Let A be a possibly defective and/or derogatory matrix of order n and 

let A be an eigenvalue of A of multiplicity k. Consider matrix B, where 

B = A - Al. 

Let us assume, that B possesses n 1, singular values equal to zero, then 

Bis called to be of nullity n 1• This implies, that A has n 1 independent 

eigenvectors'associated with A. If n 1 < k, then A does not have a complete 

set of eigenvectors. In that case, we wish to determine the invariant sub

space of order k spanned by the vectors of grade 1, grade 2 and those of 

higher grade. 

The algorithm of Golub and Wilkinson describes a method for calculating 

these vectors. In the following subsections, we shall discuss some stages 

of the process, starting with the determination of the vectors of grade 1, 

the eigenvectors. 

3.2.1. The determination of vectors of grade 1 

In this subsection we shall describe the vectors of grade 1. The vec

tors are defined by 

Bx= 0. (3.2.1.1) 

By means of the singular value decomposition (S.V.D) on B, we obtain 

B = U E v1f, (3.2.1.2) 

U and V being unitary matrices of order n and E being a diagonal matrix. 

From (3.2.1.1) and (3.2.1.2), it follows, that 

H H U Bx= E(V x) = Ey. (3.2. 1.3) 

The assumption, B being of nullity n 1, implies that E must contain n 1 
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diagonal elements equal to zero, supposed to be in the first n 1 positions. 

For this reason, the first n 1 components of y are arbitrary and we may take 

for yin turn each of the first n 1 column vectors of the identity matrix. 

Hence, we can choose as the eigenvectors the first n 1 column vectors of the 

matrix V. Therefore the vectors of grade 1 are orthogonal. 

3.2.2. The determination of vectors of grade 2 

Before we shall describe the second stage of the algorithm, we give 

the following lennna. 

LEMMA 3.2.2. If xis any vector of grades, 

s BX= o, 

then Bx is a vector of grade s-1 and hence Zies in the subspace spanned by 

vectors of grade s-1 and possibly by vectors of Zower grade. 

Hence, if we define 

<1)1 <t)I I <1) Bx= ([x1 x2 •• xn1 J)z, (3.2.?..1) 

T where z denotes <tui ,w2 , ••• ,wn1) , then Bx lies in the subspace spanned by 

the vectors of grade 1. Now, the problem is to find a vector z under the 

condition of x being a vector of grade 2. 

Premultiplication of (3.2.2.1) by UH of (3.2.1.2) gives 

UHBx = ([UHx~ 1)1UHx~ 1)1 •• IUHx!:)J)z. 

- H (1)1 H (1)1 I H (1) If we denote R1 - [U x 1 U x2 •• U xn1 ], then (3.2.2.2) becomes 

However, from (3.2.1.2), we know 

(3.2.2.2) 

(3.2.2.3) 

(3.2.2.4) 
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Since the first n 1 elements of rare equal to zero, z must be a vector, such 

that 

T 
R z = p ~ (0, ... ,0,v +I'"""'v) I n 1 n 

However, we still have to compute such a vector. 

(3.2.2.5) 

Suppose, we can construct a nonsingular matrix z1 of order n 1, such 

that 

n2 nl-n2 

o •. 0 x •. x 

RIZ 1= 
o .. o x •• x 

= [p1l•-IP IP +11•-IP J = pl (3.2.2.6) 
n2 n2 nl x .. x x •• x 

x .. x x .. x 

then the first n2 column vectors of z1 satisfy (3.2.2.5). Solving 

and x. = Vy., 
i i 

(3.2.2.7) 

(2) (2) (2) 
we obtain the grade vectors x 1 ,x2 , ••• ,xn~ • Obviously, the first n 1 

L 

positions of y. are again arbitrary. Taking the elements zero, then the 
i 

vectors of grade 2 are orthogonal to the eigenvectors. 

The nonsingular matrix z1 can be conveniently computed by means of an 

S.V.D-composition. The matrix R1 is partitioned into 

where R~l) being the upper matrix of R1 of order n 1 and R~ 2) being the 
• • • ( I ) • 

remaining matrix. An S.V.D. on R1 yields 

R( I) = U r _ _H 
I I Iv-I-. (3.2.2.9) 
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Taking z1 = v1, we may write 

(3.2.2. IO) 

If R~l) is of nullity n2 , the number of vectors of grade 2, according to 

the J.c.f, of A, as defined in subsection 3.1, we shall find all vectors of. 

grade 2 in the way we have outlined above. 

THEOREM 3.2.2. The nullity of R~l) is equal to n2 . 

( 1 ) 
PROOF. Let m be the nullity of R1 and suppose m < n2 • This means, we have 

not determined all independent vectors of grade 2. Then there will be at 

least one vector z, linearly independent of the first m column vectors of 

z1 , such that R1z = 0. However, this is in contradiction with the nullity 

of R~l), so Ill=Cessarily m must be greater than or equal to n2 . 

Suppose, m > n 2 . In that case, we did find more vectors, than there 

should be accordingly to the J.c.f .. Then the vectors found of grade 1 and 

2 are linearly dependent. However, we can prove these vectors to be linearly 
(1) (I) (2) (2) 

independent. Let x , •.. ,x ,x1 , ••• ,x be linearly dependent. Then 
I n 1 m 

nl m 
I' (I) \ (2) ...,_ 2 a.x. + l S.x. = 0 for some a!s and S!s 'f O • 

. I 1.1. · 1 1.1. 1. 1. 1.= 1.= 
(3.2.2.11) 

Premultiplying (3.2.2.11) by UHB yields 

Ill 

a. UH(Bx~l)) 
m 

S.(UHBx~2)) 
..... 

I + I = 0 (3.2.2.12) 
i== l 1. 1. i=l 1. 1. 

Ill H...,__ m m 
~ I a.U 0 + I s p. = I ~.p. = 0 (3.2.2.13) 

i=I 1. 
i=l 

. 1. 
i=l 

,.. 1. 
1. 

Since the vectors p.(i = l, •.. ,m) are linearly independent all S!s 1. 1. 
. (1) x(l) 

should be zero. Moreover, the vectors x 1 , ••• , are linearly independent, 
n I 

(see subsection 3.2.2), so all a!s should be zero too in relation (3.2.2.11). 1. 
This implies mis equal to n2 • 
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3.2.3. The determination of vectors of grade 3 and of higher grade 

Analogous to relation (3.2.2.1), we define 

(3.2.3.1) 

so Bx lies in the subspace spanned by vectors of grade I and grade 2. Pre

multiplication by the matrix u8 of (3.2.1.2) and extension of the vector z 

to a nonsingular matrix Z of order n 1+n2 yields 

(3.2.3.2) 

If we take 

where Z = 
I 

I 
Z = [ 21 Jw, where w is a nonsingular matrix of order n 1+n2 and 

v 1 (see (3.2.2.9)), the relation (3.2.3.2) reduces to 

U8 BX = ( [ H ( 2 ) J J H ( 2 ) I J J J I J J) u XI • • u X p I • • p p I • • p w. 
n2 n2 n2+ nl 

(3.2.3.3) 

The vectors p 1,p2 , ... ,p have already been dealt with and gave us the vec-
(2) (2) (2)n2 

tors x 1 ,x2 •·:·,xn2 . 

Suppose, z is a vector, such that (3.2.3.1) yields a vector of grade 

3. If w is defined by 
a 

w = a z + 
a 0 

(3.2.3.4) 

e +· being the (n2+i)-th column vector of the identity matrix, then w too 
n2 1 a 

is a vector, such that (3.2.3.1) yields a vector of grade 3, or, in case 

a0 = 0, one of lower grade. 

It is evident, that the purpose of the algorithm is to find a set of 

independent grade vectors. In order to avoid the matrix W to contain more 

than one vector wa' the column vectors p 1,p2 , ... ,pn2 are omitted. Equation 

(3.2.3.3) becomes 

1;18BX = ( [ H ( 2 ) I J H ( 2 ) j I j J ) " u x 1 • • u x p + 1 • • p z2 • 
n2 n2 nl 

(3.2.3.5) 

Notice, R2 again is an n by n 1 matrix and consequently, z2 is of order n 1. 
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A partition of R2 into R~l) and. R?) according to (3.2.2.8) and an S.V.D. 

on R ( 1) 
2 

(3.2.3.6) 

gives us z2 = v2 • The vectors of grade 3 are obtained analogous to (3.2.2.7), 

where the vectors pi are now the first n3 column vetors of the matrix P2 . 

In general, at the (s+l)-th stage, we replace the first n column vec
s 

tors of the matrix 

p 
s-1 = R Z I' s-1 s- (3.2.3.7) 

. . (s) (s) (s) H (s) which have given us the grade vectors x 1 ,x2 , ••• ,xn by U x 1 , 
H (s) UH (s) N . h h . . s 1· b" U x2 , ••• , :x • ot1.ce, t at t e rema1.n1.ng vectors are 1.near com 1.na-

ns 
tions of vectors of grade s-1 and of lower grade. The so-obtained matrix 

R is partitioned into R(l) and R{ 2 ) and by means of an S.V.D. on 
s s s 

R (I) we 
s ' 

get the matrix Z = V. The algorithm is now complete. The process 
s s (I) 

termi-

nates when the nullity of R is zero. 
s 

Obviously, at the (s+l)-th stage, the last n 1-n column vectors of R(l) 
s s 

(i.e. the upper parts of the remaining vectors of P s-l) are linear indepen-

dent. So, a column vector p of P with zeros in the first n1 positions can 
s UH (s). UH (s) UH (s) only be produced by at least one of the vectors x 1 , x2 , ••• , xns 

This implies, that we do produce vectors of the requisite grade s+l and no 

vectors of lower grade. 
( 1 ) . 

Analogous to theorem 3.2.2., one can prove, the nullity of Rs to be 

equal ton 1, the number of vectors of grade s+l according to the J.c.f •• s+ 
As we have mentioned previously, all successive S.V.D!s are performed 

on a matrix of order n 1 and the process terminates when the nullity of R:l) 

is equal to zero. Notice, that in case n 1 = 1 (only one Jordan block is as

sociated with A), R(l) will be, at each stage, a Ixl matrix, so, in that 
s 

case, the process terminates, when the first element of UHx}s) is nonzero. 

Finally, we remark, that the vectors of grade 1 are qrthogonal and by 

taking the first n 1 components of the subsequent solutions of Ey = p (see 

(3.2.2.7)) to be zero, all vectors of grade higher than one are orthogonal 

to those eigenvectors. But, thus is not true of any of the subsequent sets 
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of vectors. 

4. THE PROCRDURES 

In this section we shall describe the PASCAL-procedures [SJ, which are 

an implementation of the algorithms of the sections 2 and 3. All procedures 

were tested on the Control Data Cyber 73/173. In section 4.1, the types, 

that are usE~d, are listed. In the sections 4.2, 4.3 and 4.4 we shall give 

a brief description of the procedures hessenberg, psthesmat, schur and 

gradevec with their parameters. The sourcetexts of the procedures are listed 

at the end of each subsection. 

4.1. The types 

<lures 

In this section we shall list the types, that are used in the proce-

inxl = 

subl = 

sub2 = 

mat! = 

vecl = 

vec2 = 

complex 

veccl = 

nmax; 

nmaxl;(* nmaxl = nmax - I*) 

nmax2;(* nmax2 = nmax - 2*) 

array [ inx I , inxl] of real; 

array [sub]] of real; 

arrai [sub2] of real; 

= record re, im: real end; 

array [inxl] of complex; 

pelement = -element; 

element= record number: integer; next: pelement end; 

recaux = record tol, correction: real; 

maxit, counts, countd: integer 

end 

gradeaux = record tol, min, max: real end; 

4.2. The procedures hessenberg and psthesmat 

In this subsection we shall describe two procedures: 

I. procedure hessenberg. 



14 

This procedure transfo~s a given matrix A to upper-Hessenberg form H 

by means of premultiplying and postmultiplying the given matrix by 

orthogonal matrices. 

2. procedure psthesmat. 

This procedure calculates the postmultiplication matrix U from the 

data generated in procedure hessenberg. The transpose of the postmulti

plication matrix is equal to the premultiplication matrix. So, H=UTAU. 

The heading of the procedure hessenberg is: 

procedure hessenberg (~ a: matl; n: inxl; var b: 

vecl; ~ pi: vec2); 

The meaning of the formal parameters is: 

var a: matl; 

n 

var b 

entry: the given matrix; 

exit : the upper triangular matrix (incl. diagonal) 

is a part of the upper-Hessenberg matrix; the 

strictly lower triangular matrix contains the data 

for procedure psthesmat; 

inxl; 

the order of the matrix; n s nmax; 

vecl; 

var pi 

exit: the subdiagonal of the Hessenberg matrix; 

vec2; 

exit: this array contains data for procedure psthesmat. 

The heading of procedure psthesmat is: 

procedure psthesmat (var a, u: matl; n: inxl; 

~ pi: vec2); 

The meaning of the formal parameters is: 

var a: matl; 

entry: the data concerning the postmultiplication' 

matrix as generated by procedure hessenberg; 



var u matll; 

exit: the postmultiplication matrix; 

n inxl; 

the order of the matrix; n ~ nmax; 

var pi: vec2; 

entry: the array as generated by procedure hessenberg. 

Both procedures make use of the following external functions/procedures 

from [6]: 

function arreb: real; 

function matmat(l, u, 1.' j : inxl; var a,b: matl): real; 

function tarrnnat (.l, u, 1., j : inxl; var a,b: mat 1): real; 

procedure elmcol(l, u, i, j : inxl; var a,b: matl; s: real); --
procedure elmrowvec(l, u, i, j : inxl; var a,b: mat 1; s: real); 

Method and performance: 

Let us assume a given matrix A of order n is stored in the array 
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A[l .. nmax, l •. nmax]. The procedure hessenberg reduces A to upper-Hessenberg 

form H by pre- and post- multiplying it with orthogonal matrices. The matrix 

His overwritten on A with details on the transformations in the lower tri

angular matrix. The subdiagonal of His stored in the array B[l .. nmaxl]. 

The array PI[l .. nmax2] contains some further details on the transformations. 

The procedure psthesmat calculates the postmultiplication matrix U 

from the information stored in the lower triangular matrix of A and the 

array PI. 

The procedure hessenberg is an implementation of the algorithm des

cribed in [9]. However, here we skip a transformation, if the column on 

which our attention is focussed is already (approximately) in the desired 

form; i.e. i:f the maximum of the absolute values of the elements, that 

oueht to be zero is smaller than a certain constant. 
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Source texts: 

procedure hessenberg (~ a: mat]; n: inxl; var b: vecl; 

var pi: vec2); 

~ k, k I , i, j : inx I ; 

max, norm, rho, sigma: real; 

begin(* hessenberg *) 

norm:= O; for i := 

for j : = I to n do 

ton do 

if abs (a[i,j]) > norm then norm:= abs (a[i,j]); 

fork:= I ton - 2 do 

begin kl := k + I; max:= O; 

for i := n downto k + 2 do 

if abs (a[i,k]) > max then max:= abs (a[i,k]); 

if max< arreb * norm then 

begin pi[k] := O; b[k] := a[kl,k] end 

else 

begin if abs (a[kl,k]) > max then max:= abs (a[kl,k]); 

for i := kl ton do a[i,k] := a[i,k]/max; 

end 

sigma:= sqrt (tammat (kl, n, k, k, a, a)); 

if a[kl ,k] < 0 then sigma := - sigma; 

a[kl ,k] := a[kl ,k] + sigma; 

pi[k] :=sigma* a[kl,k]; 

b[k] := - max* sigma; 

(* premultiply *) 

for j := kl ton do 

elmcol (kl, n, j, k, a, a, -tammat (kl, n, k, j, a, a) 

/pi[k]); 

(* postmultiply *) 

for i := I ton do 

elmrowcol (kl, n, i, k, a, a, -matmat (kl, n, i, k, a, a) 

/pi[k]) 

end; b[n-1] := a[n,n-1] 

end(* hessenberg *); 



procedure psthesmat (var a, u: matl; n: inxl; var pi: vec2); 

~ k, k I , i, j : inx I ; 

begin(* psthesmat *) 

kl := n - I; 

u[n,n] := I; u[kl,n] := O; u[n,kl] := O; u[kl,kl] := I; 

fork:= n - 2 downto I do 

begin if pi[k] <> 0 then 

end 

for j := kl ton do 

elmcol (kl, n, j, k, u, a, 

, -tannnat (kl, n, k, j, a, u) / pi[k]); 

for j := kl ton do 

begin u[k,j] := O; u[j,k] := 0 end; 

u[k,k] := I; kl := k 

end(* psthesmat *); 

4.3. The function schur 

17 

In this subsection we shall describe the function schur. This function 

calculates the real and/or complex eigenvalues of a real upper-Hessenberg 

matrix. 

The heading of the function schur is: 

function schur (var a: matl; n: inxl; var eig: veccl; 

~ aux: recaux): integer; 

schur := the number of eigenvalues not calculated. So 

schur = 0 means, that the process is completed 

within the maximum allowed number of iterations. 

The meaning of the formal parameters is: 

var a: matt; 

entry: the upper-hessenberg matrix; 

exit : the matrix is used as working space, so its' 

contents is disturbed; 
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n inxl; 

the order of the matrix; n ~ nmax; 

var eig: veccl; 

the eigenval°ues of the matrix; 

if only n-k eigenvalues are calculated, then these values 

are stored in eig[k+I •• n]; 

var aux: recaux; 

entry: 

aux.tel: real; 

the absolute tolerance for the QR-iteration; 

aux.correction: real; 

see method and performance (this subsection); 

aux.maxit: integer; 

the maximum allowed number of iterations; 

exit: 

aux.countd: integer; 

the number of QR-double iterations performed; 

aux.counts: integer; 

the number of QR-single iterations performed; 

Function schur makes use of the following external procedures from [6]: 

procedure rotcol (l, u, i, j: inxl; var a: matl; c, s: real); 

procedure rotrow (l, u, i, j: inxl; var a: matl; c, s: real); 

The local functions/procedures of function schur are: 

I. 

2. 

function rot2 (~ a,S: real): real; 

given the scalars a and S, this function returns the scalars y and 

o (y2+o2 = I) and gives as a result the scalar v, such that 

a\ (a)-·( v \ 
y/ \ S - 0}. 

function rot3 (~ a, S, y, TI: real): real; 

given the vector (a,S,y)T, this function returns the scalars 

v 1, v2, v3 and TI and gives as a result the scalar v, such that 



3. 

T 2 where V = ( v 1 , v 2 , v 3) and 1T = ! . II VII 2 . 

procedure qrsingle (.l, u: inxl; shift: real); 

this procedure performs one single QR-iteration step on the matrix 

a[.l .. u,.l •. u]. For information about the parameter shift, see method 

and performance (this subsection). 

4. procedure qrdouble (.l, u: inxl; shift: real); 

this procedure performs one double QR-iteration step on the matrix 

a[.l .. u,.l .• u]. For information about the parameter shift, see method 

and performance (this subsection). 

5. function deflation (u: inxl): inxl; 

this function gives as a result the row number of the first element 

on the subdiagonal (from u downto 1), which is smaller than aux.tol. 

Method and performance: 

The method used in function schur for calculating the eigenvalues 

of a real upper-Hessenberg matrix Hof order n stored in the array 

A[l .. nmax,l .. nmax] is a combination of the QR-single and QR-double itera

tion. If the eigenvalues of the lower righthand 2 by 2 matrix (say B) of 

the considered principal submatrix H' of Hare real or complex, then res

pectively a QR-single or QR-double iteration step is performed. 

19 

In the same way as described in [l, section 241], an iterate His par

titioned into 4 submatrices, if for some k, the absolute value of the k-th 

element of the subdiagonal is smaller than a certain tolerance. 

Before an actual iteration step is applied on an iterate H', an expli

cit shift is subtracted from the diagonal elements of H'. The value of this 

shift equals the last diagonal element, here called 1¾::k' of H' plus a small 

perturbation£ (see (4.3.1)). The QR-iteration step (i.e. either a QR-single 

or a QR-double step) is performed on the shifted matrix H'. The (explicit) 

shift of the QR-single iteration is chosen to be equal to the absolute 

smallest eigenvalue of (B-(hkk+E)I). The (implicit) shifts of the QR-double 

iteration are chosen to be equal to the eigenvalues of (B-(~k+E)I). 



20 

Finally, hkk+E is added back to_ the diagonal elements. 

The shift hkk is disturbed by 

£ = Jaux.correction * H'[k,k-1] * H'[k-1,k-2] 

to attempt any unexpected nonconvergence of the iteration. A suitable choice 

for aux.correction is the square root of the machine precision. 

The eigenvalues of submatrices of order and 2 are calculated directLy, 

so that the process is completed if successive partitionings have led to 

principal su~matrices all of order 1 or 2. 

Source text: 

function schur (var a: mat 1; n: inxl; ~ eig: veccl; 

~ aux: recaux): integer; 

var og, ogl, bg, i, 1: integer; 

corr, delta, det, discr, s: real; 

function rot2 (var c, s: real): real; 

~ delta, max: real; 

begin max:= abs (c); 

if abs (s) > max then max:= abs (s); 

c := c / max; s := s / max; 

delta:= sqrt (sqr (c) + sqr (s)); 

c := c / delta;s := s / delta; 

rot2 :=max* delta 

end(* rot2 *); 

function rot3 (var a, b, c, pi: real): real; 

~ bb, cc, max, sigma: real; 

begin max:= abs (a); bb := abs (b); cc := abs (c); 

if bb > max then max:= bb; if cc> max then max:= cc; 

a:= a/ max; b := b / max; c := c / max; 

sigma := sqrt· (sqr (a) + sqr (b) + sqr (c)); 

if a< 0 then sigma:= - sigma; 

a:= a+ sigma; pi :=a* sigma; 

rot3 :=max* sigma 

end(* rot3 *); 



procedure qrsingle (1, u: inxl; shift: real); 

var k, kl: integer; 

cl, sl, c, s, rot: real; 

begin a[l,1] := a[l,1] - shift; 

fork:= 1 to u-1 do 

begin kl := k+l; a[kl,kl] := a[kl,kl] - shift; 

c := a[k,k]; s := a[kl,k]; 

rot:= rot2 (c,s); 

if k > 1 then 

begin a[k,k-1] :=rot* sl; rot :=rot* cl end; 

a[k,k] := rot; 

rotrow (kl, u, k, kl, a, c, s); 

rotcol (1, k, _k, kl, a, c, s); 

a[k,k] := a[k,k] + shift; 

cl := c; sl := s 

end; 

a[u,u-1] := a[u,u] * sl; a[u,u] := a[u,u] *cl+ shift; 

with aux do counts :=counts+ l 

end(* qrsingle *); 

procedure qrdouble (1, u: inxl; shift: real); 

~ al, a2, a3, pi, rot, tau: real; 

j, k, kl, k2, k3, k4, 11, ul, min: integer; 

begin 11 := 1 + 1; ul := u - I; 

fork:= 1 - 1 to u - 3 do 

begin kl := k+l; k2 := k+2; k3 := k+3; k4 := k+4; 

if k > = 1 then 

begin al := a[kl,k]; a2 := a[k2,k]; a3 := a[k3,k] end else 

begin 

a[l,1] := a[l,1] - shift; 

a[ll,11] := a[ll,11] - shift; 

a2 := a[ul,ul] - shift; 

a3 :=-a[u,ul] * a[ul,u]; 

al 

a2 

a3 

:= 

:= 

:= 

(a[l,1] * (a[l,1] - a2) + a3) / a[ll,l] + a[l,11]; 

a[l,1] + a[ll,11] - a2; 
a[l+2,11] 

- 21 
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end; 

rot:= rot3 (al, a2, a3, pi); 

if k < 1 then a[k3,kl] := 0 else a[kl,k] := -rot; 

a[k3,k3] := a[k3,k3] - shift; 

(* premultiply *) 

for j : = k 1 to u do 

begin 

tau := (al * a[kl,j] + a2 * a[k2,j] + a3 * a[k3,j]) / pi; 

a[k),j] := a[kl,j] - tau* al; 

a[k2,j] := a[k2,j] - tau* a2; 

a[k3,j] := a[k3,j] - tau* a3 

(* postmultiply *) 

if k4 > u then min:= u else 

begin min:= k4; a[k4,kl] := O; a[k4,k2] := 0 end; 

for j := 1 to min do 

begin 

tau:= (al * a[j,kl] + a2 * a[j,k2] + a3 * a[j,k3]) / pi; 

a[j, kl] 

a[j,k2] 

a[j ,k3] 

end; 

:= a[j ,kl] 

:= a[j ,k2] 

:= a[j ,k3] 

- tau* 

- tau* 

- tau * 

a[kl ,kl] := a[kl ,kl] + shift 

al := a[ul,u-2]; a2 := a[u,u-2]; 

a[ul,u-2] := rot2 (al,a2); 

rotrow (ul, u, ul, u, a, al, a2) 

rotcol (1, u, ul, u, a, al, a2); 

al; 

a2; 

a3 

a[ul,ul] := a[ul,ul] + shift; a[u,u] := a[u,u] + shift; 

with aux do countd := countd + 1 

end(* qrdouble *); 



function deflation (u: inxl): inxl; 

~ bg: inxl; 

b: boolean; 

begin bg := u; b := true; 

while b and (bg > I) do 

if abs (a[bg,bg-1]) > aux.to! then 

bg := bg - I else 

begin b := false; a[bg,bg-1] := O end; 

deflation:= bg 

end (*deflation*); 

begin og := n; for i := ton do eig[i].im := O; 

with aux do 

begin countd := O; counts := O; 

while (og > 0) and ((counts+ countd) < maxit) do 

begin bg := deflation (og); ogl := og - I; 

1 := og - bg; 

if 1 = 0 then 

begin eig[og].re := a[og,og]; og := ogl end 

else 

begin 

if 1 > I then 

corr:= sqrt (correction* abs (a[og,ogl]*a[ogl,og-2])); 

delta:= (a[ogl,ogl] - a[og,og]) / 2; 

det := a[og,ogl] * a[ogl,og]; 

discr := sqr (delta)+ det; 

if discr < 0 then 

if 1 = I then 

with eig[og] do 

begin re:= delta+ a[og,og]; 

im := sqrt (- discr); 

eig[ogl].re := re; 

eig[ogl].im :=-im; 

og := og - 2 

end 

23 
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else qrdouble (bg, og, a[og,og] + corr) 

else 

Eegin if abs (delta) > = tol then 

begin delta:= l / delta; 

end 

end 

s := - delta* det / (sqrt(sqr(delta)*det+l)+l) 

end else -----
if det < sqr(delta) thens := 0 else s := sqrt(det); 

if 1 = then 

begin eig[og].re := a[og,og] + s; 

eig[ogl].re := a[ogl,ogl] - s; 

og := og - 2 

end else -----
qrsingle (bg, og, a[og,og] + s + corr) 

end 

end (* aux *); schur := og 

end(* schur *); 

4.4. The procedure gradevec 

In this subsection we shall describe the procedure gradevec. By means 

of this procedure the grade vectors of a real defective and/or derogatory 

matrix A associated to a real eigenvalue A are calculated. 

The heading of the procedure gradevec is: 

procedure gradevec (var a: mat l; n, nmax: inxl; lambda: 

real; col: inxl; var list: pelement; var pv: mat!; 

var aux: gradeaux); 

The meaning of the formal parameters is: 

var a 

n,max 

mat!; 

the given matrix; 

inxl; 

n is the order of the matrix; nmax is the length of the 

rows and columns in the calling program; nmax::::: n; 



lambda 

col 

real; 

the given eigenvalue; 

inxl; 

the column number in which the first grade vector is 

stored (input); 

var list: pelement; 

var aux 

exit: a dynamic variable to a list of elements; an element 

is a record block with two fields: the first field of the 

first element contains the number of vectors of grade one 

(the eigenvectors) associated with lambda; the second field 

is a dynamic variable of type element to the next element, 

which contains the number of vectors of grade 2 and a dynamic 

variable to the next element etc. 

the dynamic variable of the last element of list has the 

value nil; if list= nil, no grade vectors have been found; 

matl; 

exit: the grade vectors are stored in the array 

pv[l •• n,col •• col+(k-1)] where k equals the sum of the first 

fields of the elements of list; 

gradeaux; 

entry: 

aux.tel: real; 

the absolute tolerance for the singular values; 

(see method and performance (this subsection)); 

exit: 

aux.min: real; 

the minimum value of the singular values not 

neglected; 

aux.max: real; 

the maximum value of the singular values 

negle~ted; 

25 

Procedure gradevec makes use of the following external procedures from [6]: 

function giant: real; 
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function matmat (l, u, i, j: in~l; var a,b: matl): real; 

function tannnat (l, u, i, j: inxl; var a,b: matl): real; 

procedure ichcol (l, u, i, j: inxl; var a: matl); 

procedure plsvalr (var a: matl; n, m, ja, ju, jv: inxl; 

isw: integer; var wk, q: vecl; var u,v: matl); 

The local functions/procedures of procedure gradevec are: 

I. 

2. 

3. 

4. 

5. 

6. 

procedure ichval (var a,b: real); 

this procedure interchanges the values of a and b; 

function svdsort (var a, u, v: matl; n: inxl; var sigma: vecl): integer; 

given the matrix a of order n; the S.V.D-composition on a, consisting 

of arrays u and v and sigma, is calculated. Furthermore, the singular 

values are sorted such that the singular values smaller than aux.tol 

are stored in the first positions of array sigma. Moreover, the column 

vectors of u and v are sorted correspondingly. 

svdsort := the number of singular values smaller than aux.tol. 

If svdsort > O, then a new element is added to list. 

procedure preuh (var r: matl); 

in this procedure the grade vectors, calculated in the previous step 

(already stored in pv) are premultiplied by u-transpose (see construc

tion of R (3.2.3.7)); 
s 

procedure pstv2 (var p,r: matl); 

the matrix r is postmultiplied by the matrix v2 (=V2 in (3.2.3.6)) 

and stored in the matrix p. Moreover, the first n. column vectors 
i 

of pare divided by sigma; 

procedure storepv (var p: matl); 

if storepv is called the first time, pv is filled with the first n 1 
column vector of the matrix vl (= V of (3.2.1.2)), otherwise, with 

the first n. column vectors of p premultiplied by vi; 
i 

procedure supervisor (var p,r: matl); 

this is a recursive procedure calling itself alternatingly with actual 

parameters p,r and r,p. The procedure terminates when no more singular 

values smaller than aux.tol are obtained. 
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Method and performance: 

The procedure gradevec calculates 'all' grade vectors associated to 

a particular real eig.envalue A of a real defective and/or derogatory matrix 

A. The eigenvalues of A should have been found using some stable algorithm 

such as the QR-algorithm (e.g. by means of the function schur subsection 

4.3)). However, when A is really defective, the computed eigenvalues\. may 
1 . 

be arbitrary bad. One should find a cluster of computed eigenvalues around 

the exact eigenvalue. The problem is how to determine which eigenvalues 

belong to a ~ertain cluster. If one could recognize a cluster of r eigen-
- -values close to\ (where r\ = E \.) one should expect to find r grade vec-

- r i 
tors associated to\. However, the procedure gradevec terminates when no 

more singular values smaller than aux.tel are found. So, if gradevec finds 

s grade vectors ands/ r, one has to change the value of aux.tel. Some 

control is possible by means of aux.min and aux.max. When the quotient 

aux.min/aux.max is sufficiently great, there is a good reason to assume A 

is very close to\. Supposes is still unequal tor, then it is to recom

mend to change the cluster format. In most cases, one will find another 

~• = (s~' = E \.), which is very close to\. See also the numerical results 
s 1 

of gradevec in subsection 5.6. 

In figure 4.4.l a flow chart of procedure gradevec is given. 
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start 

A := A->,.I 

n 1 : =SVDSORT 

SUPERVISOR 

no 

STORE 
ul, vi 
SIGMA 

r----------- --- - ----- - -----7 

call 
STOREPV 

call 
PREUH 

ni:=SVDSORT 

call 
PSTV2 

no 

STORE 
PV 

STORE 
R or P 

STORE 
u2,v2,s 

STORE 
P or R 

I 
I 
I 
I 
I 

I 
I 

L----------------------~ 
Figure 4.4. A flow-chart of procedure gradevec. 

A := A+H 

ready 



Source text: 

procedure g:radevec (var a: matl; n, nmax: inxl; lambda: real; 

col: inxl; var list: pelement; var pv: matl; 

var aux: gradeaux); 

var i, n 1, ni, num: integer; 

ul, u2, vl, v2, p, r: matl; 

sigma, s: vec3; 

pt: pelement; 

first: boolean; 

procedure ichval (var a, b: real); 

vars: real; 

begins := a; a:= b; b :=send; 

function svdsort (var a, u, v: mat]; no: inxl; var sigma: vec3): 

integer; 

label l; 

var k, 1: integer; 

wk: vec3; 

z: pelement; 

begin 

with aux do 

begin 

k := 1; 1 :=no+ I; 

plsvalr (a, no, no, nmax, nmax, nmax, I, wk, sigma, u, v); 

repeat if sigma[k] >= tol then 
' -

begin 

repeat 1 := 1 - l; 

if 1 = k then goto 

until sigma[l] < tol; 

ichcol (1, no, k, 1, u); 

ichcol (1, no, k, 1, v); 

ichval (sigma[k], sigma[l]) 

end; k := k + 1 

29 
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until k = 1; 

I : if k > 1 then 

begin new (z); zA.number := k - 1; 

if first then list:= z else ptA next:= z; pt := z 

end; 

for 1 := I to k - I do 

if sigma[l] > max then max:= sigma[l]; 

for 1 := k to no do 

if sigma[l] < min then min:= sigma[l] 

end; svdsort := k - I 

end(* svdsort *); 

procedure preuh (var r: matl); 

var i, j : inx I ; 

x: real; 

begin 

with aux do 

for j := 

begin 

to ni do 

for i := I to nl do 

begin x := tammat (I, n, i, j+num, ul, pv); 

if abs (x) < tol then 

if nl = then r[i,j] := x else r[i,j J := 0 

else r[i,j] := x 

end; 

for i := nl + I ton do 

r[i,j] := tanunat (I, n, i, j+num, ul, pv) 

end 

end(* preuh *); 

procedure pstv2 (~ p,r: matl); 

~ i, j: inxl; 

begin 

for i := to nl do 

begin 

for j := to ni do p[i,j] := O; 



for J := ni + I to nl ¢lo -- -
p[i,j] := s[j J * u2[i,j] 

end; 

for 1. := nl + 1 to n do 

if ni <> nl then 

begin 

for j := I to n1. do 

p[i,j] := matmat (I, nl, i, J, r, v2) / sigma[i]; 

for j := ni + I to nl do 

p[i,j] := matmat (I, nl, 1., J, r, v2) 

end else 

for j := I to nl do p[i,j] := r[i,j] / sigma[i] 

end (* pstv2 *); 

procedure storepv (var p: matl); 

var 1., j : inxl; 

begin 

if first then 

begin first := false; 

for 1. := ton do 

for J := to ni do 

pv[i,j+num] := vl[i,j] 

end else 

for 1. := 

for J ::= 

ton do 

to ni do 

pv[i,j+num] := matmat (I, n, i, J, vi, p) 

end (* storepv *); 

procedure supervisor (var p, r: matl); 

begin 

storepv (r); 

preuh (r); 

num := num + ni; 

ni := svdsort (r, u2, v2, nl, s); 

if ni > 0 then 

begin 

31 
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pstv2 (p,r); 

supervisor (r,p) 

end 

end ( * supervisor *) ; 

begin _( * gradevec *) 

list:= nil; first:= true; 

with aux do 

begin min:= giant; max:= 0 end; 

for i := ! ton do a[i,i] := a[i,i] - lambda; 

nl := svdsort (a, ul, 

if nl > 0 then 

begin 

num := col - 1 • ni 
' 

supervisor (p,r); 
A pt .next := nil 

end; 

vl, n, sigma); 

:= nl; 

for i := 1 ton do a[i,i] := a[i,i] + lambda 

end(* gradevec *); 

5. NUMERICAL RESULTS 

In this section we shall list some numerical results of the procedures 

discussed in section 4. 

Though the function schur calculates both real and complex eigenval~es 

of a real general matrix, we have merely tested matrices with real eigen

values, especially matrices with real multiple eigenvalues. 

One of the most difficult practical problems is to recognize clusters 

of eigenvalues. For this reason, we shall list the minimum number of correct 

digits of the computed eigenvalues of defective and/or derogatory test ma

trices. These values could be an indication for the cluster tolerance. 

Furthermore, we have compared the number of QR-single and QR-double 

iterations performed to calculate all eigenvalues with th~ number of itera

tions performed if only QR-double iterations are used, to see if it is worth

while to include single QR steps. 
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Finally, some notes on th~ results of the procedure gradevec are given, 

especially on the interaction between the determination of the clusters and 

the number of grade vectors associated with the mean eigenvalue of such a 

cluster. 

5.1. The test matrices 

Unfortunately in the literature, only a few examples are known of ma-· 

trices with multiple eigenvalues. In GREGORY and KARNEY [3], some methods 

are discussed to generate test matrices. We have created a collection of 

test matrices in the following way: 

Let J be an n-th order matrix in J.c.f •• Premultiplying J by a matrix 

X and postmultiplying it by the inverse of X, we obtain a matrix A of order 

n, such that 

Hence, in particular J is the J.c.f. of A. 

For X we have chosen the matrix defined by X 

x .. = x .. = n+l-i, 
1J J1 

if i;?: j. 

The inverse of Xis defined by X-I = [x .. J, where 
1J 

xi I = I , x .. 
11 

= 2, (i = 2, ••• , n) 

xii-I = xi-Ii = I , (i = 2, ••• , n) 

x .. = o, otherwise 
1J 

(see example 3.12 of GREGORY and KARNEY [3]). 

= [x .. ], where 
1J 

In our tests we selected matrices from the following five classes: 

I matrices of order k with only one multiple eigenvalue Al and the non

linear divisor (A-A 1)k 

II matrices of order 10 with only one multiple eigenvalue A1, one non

linear divisor (A-A 1)k and (10-k) linear divisors (A-A 1). 
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III matrices of order 10 with_two multiple eigenvalues AJ and A2 , and, two 

corresponding nonlinear divisors (A-A 1)k and (A-Az)lO-k 

IV other matrices of order 10 with one. or more multiple eigenvalues and 

one or more linear and nonlinear divisors 

V some test matrices of GREGORY and KARNEY [3]. 

5.2. Sorting the eigenvalues 

The function schur calculates the eigenvalues of ·a real matrix, which 

may be both ~omplex or real. However, these eigenvalues are not sorted. In 

RUHE [8], a method is described to sort the eigenvalues. The following pro

cess is suggested (for complex eigenvalues): 

A1 = A n n' 

(k = 

(5. 2 .1) 

n, ..• ,2). 

Each time, when Ak ::f Ak the eigenvalues are interchanged. After the 

sorting possibly close eigenvalues will appear together, since each time 

it is sure that the next eigenvalue chosen is the one closest to the al

ready sorted eigenvalues. We use another process, however. 

Because of the restriction of procedure gradevec, which can only be 

used in case of a real eigenvalue, we are only interested in clusters of 

real eigenvalues. However, if one calculates the real eigenvalues of a matrix 

by means of the function schur, it may happen, that one obtains a pair of 

complex conjugate eigenvalues with a small imaginary part. So, one has to 

convert such a complex pair into a double real one. 

A method, that can be used, is to take the norm of the eigenvalue. 

Another method is to neglect the small imaginary part. We prefer the latter, 

since from numerical results, it appears, that the computed trace of matrix 

of order n with only one multiple eigenvalue A is exactly equal ton times 

A. For this reason, we shall first convert the complex eigenvalue into a 

real one by neglecting the imaginary parts, and subsequently sort the eigen

values, starting with the smallest one. 

In view of this the function schur does not contain a sorting process. 
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5.3. The perturbation of eigenv~lues 

After the eigenvalues are calculated and sorted, we wish .to recognize 

clusters. The exact eigenvalues of our test matrices are known, so, it is 

not difficult to recognize which ones belong together. However, in practice, 

the eigenvalues are unknown, so, one needs a satisfactory criterion to de

cide, which eigenvalues form a cluster. 

In WILKINSON [ 10, pp. 72-81] a perturbation theory based on Gershgorin 's 

theorem is discussed. Wilkinson distinguishes five main cases. The first 

two cases relate to non-defective matrices. The third case concerns the 

perturbation of a simple eigenvalue of a defective matrix. Wilkinson proves, 

that the presence of a non-linear divisor makes no essential difference to 

the behaviour of a simple eigenvalue. 

In relation with the last two main cases, dealing with the perturbation 

of multiple eigenvalues of defective matrices, Wilkinson derives the follow

ing theorem: 

THEOREM 5.3. Let the elementa,r,y divisors corresponding to Al be 

where 

and I r. = t. 
l. 

s 

If the matrix elements a,r,e perturbed by values in magnitude~ e, then for 

sufficiently small e their lies at least one A in a disc centre Al and radius 
s/t 

K1 e for some value of K1 • On the other hand aU the 

turbed eigenvalues lie in a disc centre Al of radius K2 

corresponding per-
1/ 

E r for some K2 . 

As a consequence of this theorem we may say, that the presence of a 

nonlinear divisor (A 1-A)r effects the behaviour of an eigenvalue correspond

ing with a linear ~ivisor (A 1-A), in contrary with a simple eigenvalue. More

over, we may conclude, that the maximum perturbation of an eigenvalue of a 

matrix of class I of order k, is of the same order, i.e. ~l/k, as the maxi

mum perturbation of an eigenvalue of a matrix of class II with a nonlinear 

divisor of order k. 
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In table 5.3.1 we list the_ computed maximum perturbation of the eigen

values of class I, II and III (calculated by means of the function schur, 

where aux.tol = lE-10). In the first column the order of the nonlinear divi

sor is given. The per.turbation is represented by the minimum number of sig

nificant digits; i.e. max - 101oglA 1-A!I, where the A!'s are the computed 
1 1 

eigenvalues. For Al the value 2 is chosen. In case of a matrix of class III 

Al= 2 and AZ= 3. 

I~ ~ I II III A = 2 
1 

III A = 3 2 

10 t.99 1.99 1.99 --
9 2.29 2.01 2. 12 exact 

8 2.39 2.32 2.34 exact 

7 3.54 3.49 2.83 4.69 

6 4.68 3.60 3.68 3.53 

5 6.38 5.08 4.93 2.65 

4 6.47 6.07 10. 13 2.49 

3 exact 5.69 exact 2.00 

2 exact . 5.77 1.87 

1 exact 2. 13 

Table 5.3.1 

From table 5.3.1, it appears, that in case of a nonlinear divisor of 

order 10, at least a tolerance of order IE-I is required to recognize only 

one cluster with an eigenvalue of multiplicity 10. 

Some of the results have been compared with the results from procedure 

peigrf, i.e. a PASCAL-FORTRAN interface procedure from NUMPAS [6], which 

calls the subroutine .eigrfof the IMSL-library [4]. The perturbations of 

the eigenvalues calculated by means of the function schur appear to be 

smaller, but not in the order of a whole significant digit. 

GOLUB and WILKINSON [2] suggested, that the computed eigenvalues are 

probably not the best values to use. If, for example, a matrix A has a well-
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defined J.c.f. and there is just one block Jr(A 1) associated with Al' one 

will expect the computed A! to include a set of r values which, though not 
i 

particularly close to Al will be such that their sum is very close to rA 1• 

It appears that ·(though the results seem to be rather bad) in all test

ed cases, the mean value of a well-chosen cluster, is exactly equal to the 

exact eigenvalue. 

5.4. The number of QR-iterations performed 

During the test phase of the function schur, it was possible to cal

culate the eigenvalues using only QR-double iterations or using a combina

tion of QR-single and QR-double iterations (as described in section 4.3). 

Though a QR-double iteration is mathematically equal to two QR-single iter

ations, the number of operations is not twice as much; one QR-single iter

ation takes 4n2 operations and a QR-double iteration 5n2 • For this reason, 

the number of operations has been taken into account at the decision, which 

method is preferable. 

The results were rather surprising. In some cases the total number of 

iterations of the combination method is considerably smaller than the num

ber of iterations, when only QR-double iterations are used. However, the 

reverse also happens in a few cases. 

In spite of this surprising behaviour, the combination method seems to 

be preferable. The average number of iterations was about four per eigen

value. It is worth mentioning, that both methods give rise to about the 

same accuracy of the eigenvalues. 

5.5. Notes on the procedure gradevec 

As is mentioned previously, the procedure gradevec calculates the 

grade vectors corresponding with one particular eigenvalue. Moreover, by 

means of this procedure, one can determine the J.c.f. of a matrix. 

Since we know the J.c.f. of all matrices used (see section 5.1) we 

could easily verify the results. 

The process to calculate the grade vectors terminates when no more 

singular values are found smaller than an absolute tolerance. The problem 

is to choose a suitable value for this tolerance. 
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First of all, we have exam~ned all singular values that have been 

calculated during the process. In case of an exact eigenvalue, it is not 

difficult to decide, which singular values may be regarded as .zero. By means 

of the values of aux.max and aux.min, we observed, that no singular values 

were found in the interval [1E-12,1E-4]. 

If the eigenvalue is not very close to the exact eigenvalue, the dis

tinction between singular values that may be regarded as zero, and those, 

that may not, is not obvious at all. 

The number of vectors found strongly depends on the chosen tolerance. 

One way to decide how many vectors belong to one particular eigenvalue is 

to compare the order of the cluster associated with that eigenvalue. How

ever, it may well be possible that the cluster size is wrong. For this 

reason, the process does not terminate when enough vectors, corresponding 

with the cluster format, are found. If the quotient aux.min/aux.max is 

sufficiently large, there is a good reason to assume that the number of 

vectors found corresponds with the J.c.f; moreover, that particular eigen

value is then very close to an exact eigenvalue. 

5.6. Numerical results 

In this section we list results of two numerical examples. The first 

one has been used earlier in the literature, the second one is a matrix of 

class IV formed accordingly to the description of section 5.1. 

Example I. 

This matrix is discussed in GREGORY and KARNEY [3]. It has a well-defined 

Jordan form with a 5-fold eigenvalue 2.0 with n 1 = 2, n2 = 2 and n3 = 1 

(for the meaning of n. see section 3.1) and a 4-fold eigenvalue 3.0 with 
l. 

n 1 = 2 and n2 = 2 and finally a single eigenvalue 1.0. The eigenvalues are 

calculated by means of the function schur with aux.tel= aux.correction= 

1E-10. After 7 QR-double and 16 QR-single iteration steps, we obtained all 

eigenvalues. The values listed here are already sorted and the small imagin

ary parts (maximum= 3.85E-7) were neglected. The second column contains 

the eigenvlaues as listed in RUHE [8]. 
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schur Ruhe 

3.000 000 817 784 9 E+O 1 .000 000 0 + 0.000 000 Oi 

3.000 000 000 000 0 E+O 2.999 844 9 + 0.000 000 Oi 

3.000 000 000 000 0 E+O 3.000 155 + 0.000 000 Oi 

2.999 999 182 214 6 E+O 3.000 155 + 0.000 000 Oi 

2.000 000 208 962 2 E+O 2.999 844 9 + 0.000 000 Oi 

2.000 000 000 000 0 E+O 1.999 009 1 - 0.000 082 6i 

2.000 000 000 000 0 E+O 2.000 330 0 + 0.000 764 4i 

1.999 999 999 999 9 E+O 2.000 660 9 - 0.000 681 9i 

1.999 999 791 037 9 E+O 2.000 000 0 + 0.000 043 9i 

1.000 000 000 000 2 E+O 2.000 000 0 - 0.000 043 9i 

The eigenvalues of the second column are calculated by means of a QR

algorithm with complex arithmetic and sorted according to (5.2.1). 

With a cluster tolerance of lE-5, we recognize 3 clusters. In table 

5.6.1 the results from gradevec (aux.tol = lE-10) are listed. In the first 

column the mean value of the clusters (schur) is given. 

eigenvalue aux.min aux.min 
nl n2 n3 aux.max 

~ux.max 

1.000 000 000 000 2 1 0 0 3.604E-2 2.525E-14 l .427E+l2 

2.000 000 000 000 0 2 2 1 9.637E-2 4.429E-14 2.175E+l2 

2.999 999 999 999 9 2 2 0 1 .592E-2 1. 206E-14 1. 320E+l 2 

Table 5.6.1 

Example II. 

We have formed this matrix of class V accordingly to the description of sec

tion 5.1. It has a IO-fold eigenvalue 2.0 and elementary divisors (2-A) 7, 

(2-A) 2 and (2-A); ~his implies n 1 = 3, n2 = 2, n3 = n4 = n5 = n6 = n7 = ]. 

Again the eigenvalues were calculated by means of the function schur 

(aux.tol =aux.correction= IE-10): 
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I. 2.001 452 022 470 0 E+O 6. 1.999 999 999 999 8 E+O 

2. 2.001 452 022 470 0 E+O 7. 1.999 999 157 063 0 E+O 

3. 2.000 000 842 937 E+O 8. 1.999 445 010 646 6 E+O 

4. 2.000 000 000 000 3 E+O 9. 1.999 445 010 646 6 E+O 

5. 1.999 999 999 999 8 E+O 10. 1.998 205 933 766 3 E+O 

The maximum neglected imaginary part is 1.71E-3. According to table 

5.3.1 we need at least a cluster tolerance of IE-2 to recognize only one 

cluster with an eigenvalue of multiplicity 10. However, in this case we 

choose the cluster tolerance to be IE-5. So, we obtain 4 clusters. It is 

clear, that the mean value of each cluster is now not exactly equal to the 

eigenvalue 2.0. In table 5.6.2 the results of procedure gradevec with aux. 

tol = IE-10 are listed. 

n 0 
aux.min ..... 11 

;>._1 aux.min c:: c;l. nl n2 n3 n4 n5 n6 n7 aux.max 
C/l Cl) aux.max 
rt 11 
Cl) 
11 

I 1 1.9982059337663 1 1 1 1 0 0 0 4.213E-9 7.544E-12 5.585E+2 

II 2 1.9994450106466 1 1 1 0 0 0 0 2 .410E-10 9.367E-14 2.573E+3 

III 5 2.0000000000000 3 2 1 1 1 1 1 2 ~072E-2 3.810E-14 5.438E+l l 

IV 2 2.0014520224700 1 1 1 1 0 0 0 2 .180E-9 3.291E-12 6.624E+2 

Table 5.6.2 

It can be easily verified, that with another value of aux.tol we obtain 

more or less vectors. For example, if we take aux.tol equal to IE-8, we ob

tain at least one extra grade vector in case of the clusters I, II, and IV, 

while cluster III seems to be less sensitive for changes of aux.tol. 

Suppose, the number of vectors is restricted by order of the cluster, 

then we obtain 6 vectors of grade 1 and 4 of grade 2. Moreover, these vec

tors are approximately linearly dependent. 

From both examples, it appears, that if the quotient aux.min/aux.max 

is sufficiently large (in order of magnitude of about JE+JO), the procedure 
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gradevec yields exactly the cor~ect number of grade vectors accordingly to 

the J.c.f •• Moreover, if this quotient is not large enough, as in example 

II in case of clusters I, II and IV, the number of vectors found does not 

fit the cluster size. ·However, since the quotient aux.min/aux.max of clus

ter III is sufficiently large, we may conclude, that the mean value of this 

cluster is very close to an exact eigenvalue and by means of procedure grade

vec, one obtains the correct number of grade vectors. 

Instead of changing the parameter aux.tol of procedure gradevec, it 

appears to be better, to change the cluster size. In case of a cluster of 

order 10, the mean value of this cluster is exactly equal to the mean value 

of cluster III. The grade vectors obtained corresponding with this value are 

the desired vectors. 
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