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A note on C Galerkin methods for two-point boundary problems

by

M. Bakker

ABSTRACT

As is known [4], the CO Galerkin solution of a two-point boundary prob-
lem using piecewise polynomial functions, has O(h2k) convergence at the
knots, where k is the degree of the finite element space. In this note, it
is proved that on any segment there are k-1 interior points where the
Galerkin solution is of O(hk+2), one point better than the global order of

convergence. These points are the Lobatto points.

KEY WORDS & PHRASES: two-point boundary problems, finite element method,

superconvergence, Lobatto points.
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1. INTRODUCTION
We consider the two-point boundary problem

Lu = - (p(x)u")' + gx)u = £(x), x € [0,1] = 1;
(1)
u(0) = u(l) = 0.

We suppose that p, g and f are such that (1) has a unique and sufficiently
smooth solution.
Let, for a constant integer N, A: 0 = x_<x ,<...<x_= 1 be a parti-

0 1 N
tion of I with

h =N ; x, = jh; I. =[x, x. ]
i 3 it

and let for a constant integer k 2 2 and for any interval E < I, Pk(E) be
the class of polynomials of degree at most k restricted to E.

We define for m 2 0 and s =2 1
W'SE = {v|plver®®, 5=0,...,mk

1 ®) = w2 (E);

HO (D) = {v|ven (@; vi0) = v(1) =0

(2)

k 1 .
M (8) {v]ve Hy(D: ve P (I, 3= 1,...,N};

m .
I+l P N
WS (E) 3=0 1.5 (B)

. m . ;2
Il =0] ovolv, 17,
H (E) 3=0 L (E)

J

where D° denotes dj/dxj. If E= I, we write (o,B) instead of (a,B) and

L2(I)

lall i Il .
o m instead of la I (1)

Let U € MO(A) be the unique solution of



(3) B(U,V) (£,V), V € Mg(A),

where B: Hé(I) x Hé(I) -+ IR is defined by

(pu',v') + (qu,v); u,v € Hl(I).

(4) B(u,v) 0

We assume that B is strongly coercive, i.e. there exists a C > 0 such that
2 1
(5) B(v,v) 2 chﬂl, v e Hy (D).

In the sequel, we assume that C, Cl' C2, etc., are generic positive constants

not necessarily the same.

1
LEMMA 1. Let u € HO(I) n Hk+1(I) be the solution of (1) and let U € Mg(A)

ke the solution of (3). Then the error function e(x) = u(x) - U(x) has the

bounds
k+1-£
< I =
"e"Z < ch u"k+1' £ =0,1;
2k
< [l = ..,N-1;
(6) le(xj)l < ch™ll j=1,...,N-1
k+1
Il el . < Ch "u"k+1'
L (I)
PROOF. See [5], [4] and [6]. O

In the next §, we prove that the local order of convergence improves
slightly at specific points interior on Ij, if u satisfies stricter smooth-

ness requirements on the interior of Ij.
2. ORDER OF CONVERGENCE AT LOBATTO POINTS

On the segment [-1,+1], we define the Lobatto points Go,...,ok by

2, d _ _
(7) (1-0p) 35 P (Op) = O £=0,...,k,



where P (0) is the k-th degree Legendre polynomial. Associated to this poly-

nomial is the quadrature formula (see [1, formula 2.5.4.32])

+1 X
(2k)
[ f(o)do = ) wpf(0,) + R £ (s € (-1,+1));
2 £=0
(8)
WK = 2 , 2 =0,...,k.
k+1)[P K)]
From (7) and (8), we define
£, = x, , +2(1l+0,); £ =0 k; 3 =1 N;
j'e 1 2 /@ 7 7o iy ] r e Ny
(9) (0,8) =2 lf (€. ,) B(E. )3 B e w1 § =1 N;
o, 572 2 W pQ Ejz 507 a,B € 507 j=1,...,N;
N
(c,B), = .Z (0, B)
j=1

We return to problems (1) and (3). It is known that
K
(10) B(e,V) =0, V € MO(A).
For any Ij, we define
(11) MY (1) = {v | v e M (A) supp (V) = I.}.
03 o ‘ 3

We temporarlly drop the subscrlpt j from the numbers EE . We define a natu-

ral basis {¢ } for M (I ) by

IA

= 1 < -
(12) ¢i(EK) aiﬂ’ 1 i, £ < k-1,
where 51& is the Kronecker symbol. If we elaborate (10) for V = ¢i,
i=1,...,k-1, we get
1 k .
(13) (e,Lp,) = [px)ex)d, (x)],. 7, i=1,...,k-1.
i i go

Approximation of (e,L¢i) by Lobatto quadrature yields



k-1 £

Z wpld, (Eple(E,) = 2n” p (x) e (x) 6 <x)]€0-woe(ao)1.¢i(go) -
(14) k2K

-W e(E )L¢ (E ) +Ch™ D (eL¢i)(E € Ij),
i=1,...,k-1.
This is a linear system for e(El),...,e(Ek_l). We have to prove the non-

singularity of (w L¢i(££)) and to compute the order of the solution.

Take a V € MO(Ij) represented by

k-1
V(x) = Z Vi¢i(x).
i=1
Suppose
kil
woLo, (§,)v, = 0, i=1,...,k-1.
net L7100 R
Then
h k-1 k-1
0= Z Wovp 121 v.Lé, (Ep) =5 Z WV (Ep) LV (E))
= (V,LV) + Ch2k +1 2k(VLV) (¢ € I ),
Hence
Ilvll21 < CB(V,V) < ch2k+1IID2k (vw) I - < Ch2k+1llvll 2k .
H (I.) . L (I, W' .
( 5 ( J) (Ij)
™’ <cadv?
H (Ij) H (Ij)

which is only true if Vv = O, Wthh proves the nonsingularity of (w L¢ (gz)),
if h is small enough. Since h w£L¢ (EZ) ~ -h wﬂp(££)¢"(££) = C X where
ciﬂ is of 0(1), as h >~ 0, all the entries of (WEL¢i(€Z) are of O(h 2), hence

the entries of its inverse are of O(h2).

We turn to the second part of our problem. The first three terms of the



right hand side of (14) are of O(hzk_zﬂu“k+1). For the last term, we prove
that
(16) I eno )l |, <clel , el .
L (I.) wrtry Wt )
J J J
From [3], it can be proved that
k+1-£
Il <
] Ch ull, L < k;
(17) Ip-el . <
L (Ij) "Dzu" . , }e > k.
L (I.)
J
Furthermore,
-k
Il | <
(18) L¢i 2k, Ch 7,
W
hence we summarily have
k-1
k k-2
(19) | 'V w,Lé, (Epe(E,) ] < chllul,  h™ ™% + lul 1,
f=1 L2771 8 L k+1 WZk,co(I )
i=1,...,k-1.
This was the last step in the proof of
1 + N o
THEOREM 1. Let u € HO(I) n Hk 1(I) n jgl W2k' (Ij) be the solution of (1)
_—_— * =
and let U € MO(A) be the solution of (3). Then the error function has the
local error bounds.
k+2 k-2
< al l
(20) le(gjﬁ)l ch™ “Chall, ,h ,+ ullWZk,m 1,

3. LOBATTO QUADRATURE

Usually, B{(,) and (,) are to be evaluated by numerical quadrature. We

will show that Lobatto quadrature leaves the order of convergence at the



Lobatto points invariant.

We define

2k,

o=z
=

(21) B, (a,B) = (pa',B"), + (q,a,B) s a,B e (Ij),

1
where (,)h is defined by (9).

LEMMA 2. Let Y € ME(A) be the solution of

k
(22) Bh(Y,V) = (f,V)h, V e MO(A)

k+1 N ok,

1 I
and let u € HO(I) nH (I) n jgl W (Ij) be the solution of (1). Then

the error function n = u-Y has the bounds

2k
< Il
In(xj)l ch el

k,A’
if h is small enough, with
N

(23) lel, =3 1a®, 7

’ j=1 H (I.)

J
PROOF. See [4]. O
We now consider e(x) = U(x) - Y(x), where U is the solution of (3).

From (3) and (22), we obtain for every'Ij

[B(e,v) | < l(f,v)-(f,v)hl + IBh(Y,v)-B(Y,v)I

IN

Ch2k+1"V" [” f" o1 + vl ], V € M](;(I L) .
H(I,)  HO(I) B (1) i

If we take for V any of the basis functions ¢i of Mg(Ij), as defined by

(12) , we have

k+1

Cihel ok + Iyl 1, i=1,...,k-1.
H

(25) IB(e,¢i)| < Ch
(Ij) H (Ij)

Since
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k-1 _1
z£1 wpe (Ep) L, (Ep) = 2h "B(e,9,)

(26) - woe(EO)L¢i(EO) - Wk€(Ek)L¢i(Ek)
2 Ex 2k._2k
- E{p(x)e(x)¢!(x)] + Ch“ "D " (eLd,) (E € I.)
i EO i J
and
I ero )l schel o ded
L (I.) Wort(rL) twee (1.)
J J J
(27)
-2k ~k+1
< Cch el < Ch Il £l ,
£ (1) 2k, A
3
we have
kil 5
I wye(E,)Ld, (E,)] < c h [l + vl ]
poy BT 1 52 (1) 2 (1.)
(28) J 3
2k-2 k+1
+ C2h “f"2k,A + C3h "f"2k,A'

The nonsingularity of (W£L¢i(gﬂ)) has already been proved, its inverse is

2
of O(h”), hence we have

k+2 k+3
(29) le(g,)] < c h “[hsl + Nyl 17+ c.h "lel .
2 1 22 (1 ) 1) 2k, A
. 3
Since (see [3]).
eyl < Inl + lul < chllul + Il
B (1.) B (1.) B (I.) ket 5 (1)
(30) J J J ]

IN

Il
chu k+1'

we can prove by combination of (20), (29) and (30)



k+ 2k,

1 N
THEOREM 2. Iet u € H,(I) n E e s0y W (1) be the solution of (1)
and let Y n Mg(A) be the solution of (22). Then the error function mn has

the bounds

Chel

k+2
h
1 H2k

k+3
4—"u"k+1]-FC2h "f"2k

In(gp,) 1 < C "

I,
( J)

j=1,...,N; £=1,...,k-1.0
4. CONCLUSIONS

We have found a lighter form of superconvergence at other points than
the knots. The findings of this paper stress the important part that
Lobatto points play in the CO Galerkin method for two-point boundary prob-
lems. This is especially true for k = 2, since in that case the error is
of O(h4) at all Lobatto points.

The results of this paper can be easily applied to the case of two-
point initial boundary problems, (see [2]) and probably to other cases, as

nonlinear boundary problems.
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