stichting
 mathematisch
 centrum

AFDELING NUMERIEKE WISKUNDE
(DEPARTMENT OF NUMERICAL MATHEMATICS)
M. BAKKER

A NOTE ON C ${ }^{0}$ GALERKIN METHODS FOR TWO-POINT BOUNDARY PROBLEMS

Preprint

2e boerhaavestraat 49 amsterdam

Printed at the Mathematical Centre, 49, $2 e$ Boerhaavestraat, Amsterdam.
The Mathematical Centre, founded the 11-th of February 1946, is a nonprofit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O).

A note on C^{0} Galerkin methods for two-point boundary problems *)
by
M. Bakker

ABSTRACT

As is known [4], the C^{0} Galerkin solution of a two-point boundary problem using piecewise polynomial functions, has $O\left(h^{2 k}\right)$ convergence at the knots, where k is the degree of the finite element space. In this note, it is proved that on any segment there are $k-1$ interior points where the Galerkin solution is of $O\left(h^{k+2}\right)$, one point better than the global order of convergence. These points are the Lobatto points.

KEY WORDS \& PHRASES: two-point boundary problems, finite element method, superconvergence, Lobatto points.

[^0]1. INTRODUCTION

We consider the two-point boundary problem

$$
L u \equiv-\left(p(x) u^{\prime}\right)^{\prime}+q(x) u=f(x), \quad x \in[0,1]=I ;
$$

(1)

$$
u(0)=u(1)=0
$$

We suppose that p, q and f are such that (1) has a unique and sufficiently smooth solution.

Let, for a constant integer $N, \Delta: 0=x_{0}<x_{1}<\ldots<x_{N}=1$ be a partition of I with

$$
h=N^{-1} ; \quad x_{j}=j h ; \quad I_{j}=\left[x_{j-1}, x_{j}\right]
$$

and let for a constant integer $k \geq 2$ and for any interval $E \subset I, P_{k}(E)$ be the class of polynomials of degree at most k restricted to E.

We define for $m \geq 0$ and $s \geq 1$

$$
\begin{aligned}
& W^{m, S}(E)=\left\{v \mid D^{j} v \in L^{s}(E), j=0, \ldots, m\right\} ; \\
& H^{m}(E)=W^{m, 2}(E) ; \\
& H_{0}^{1}(I)=\left\{v \mid v \in H^{1}(I) ; v(0)=v(1)=0\right\} ;
\end{aligned}
$$

(2)

$$
\begin{aligned}
& M_{0}^{k}(\Delta)=\left\{v \mid v \in H_{0}^{1}(I) ; v \in P_{k}\left(I_{j}\right), j=1, \ldots, N\right\} ; \\
& \|v\| W^{m, s}(E)=\left[\sum_{j=0}^{m}\left\|D^{j} v^{\prime}\right\|^{2} L^{s}(E)\right]^{\frac{1}{2}} ; \\
& \|v\|_{H^{m}(E)}^{m}=\left[\sum_{j=0}^{\left(D^{j} v_{v}, D^{j} v\right)} L^{2}(E)\right]^{\frac{1}{2}},
\end{aligned}
$$

where D^{j} denotes $d^{j} / d x^{j}$. If $E=I$, we write (α, β) instead of $(\alpha, \beta) L^{2}$ (I) and $\|\alpha\|_{m}$ instead of $\|\alpha\|_{H^{m}(I)}$.

Let $U \in M_{0}^{k}(\Delta)$ be the unique solution of

$$
\begin{equation*}
B(U, V)=(f, V), V \in M_{0}^{k}(\Delta) \tag{3}
\end{equation*}
$$

where $B: H_{0}^{1}(I) \times H_{0}^{1}(I) \rightarrow \mathbb{R}$ is defined by

$$
\begin{equation*}
B(u, v)=\left(p u^{\prime}, v^{\prime}\right)+(q u, v) ; u, v \in H_{0}^{1}(I) \tag{4}
\end{equation*}
$$

We assume that B is strongly coercive, i.e. there exists a $C>0$ such that

$$
\begin{equation*}
B(v, v) \geq C\|v\|_{1}^{2}, \quad v \in H_{0}^{1}(I) \tag{5}
\end{equation*}
$$

In the sequel, we assume that C, C_{1}, C_{2}, etc., are generic positive constants not necessarily the same.

LEMMA 1. Let $u \in H_{0}^{1}(I) \cap H^{k+1}(I)$ be the solution of (1) and let $U \in M_{0}^{k}(\Delta)$ be the solution of (3). Then the error function $e(x)=u(x)-U(x)$ has the bounds

$$
\begin{array}{ll}
\|e\|_{\ell} \leq C h^{k+1-\ell_{\| u} \|_{k+1}}{ }^{\prime} \quad \ell=0,1 ; \\
\left|e\left(x_{j}\right)\right| \leq C h^{2 k_{\| u} \|_{k+1}}{ }^{\prime} \quad j=1, \ldots, N-1 ; \tag{6}\\
\|e\| L_{L}^{\infty}(I) &
\end{array}
$$

PROOF. See [5], [4] and [6].

In the next §, we prove that the local order of convergence improves slightly at specific points interior on I_{j}, if u satisfies stricter smoothness requirements on the interior of I_{j}.
2. ORDER OF CONVERGENCE AT LOBATTO POINTS

On the segment $[-1,+1]$, we define the Lobatto points $\sigma_{0}, \ldots, \sigma_{k}$ by

$$
\begin{equation*}
\left(1-\sigma_{\ell}^{2}\right) \frac{d}{d \sigma} P_{k}\left(\sigma_{\ell}\right)=0, \quad \ell=0, \ldots, k \tag{7}
\end{equation*}
$$

where $P_{k}(\sigma)$ is the k-th degree Legendre polynomial. Associated to this polynomial is the quadrature formula (see [1, formula 2.5.4.32])

$$
\int_{-1}^{+1} f(\sigma) d \sigma=\sum_{\ell=0}^{k}{ }^{\mathrm{w}} \ell^{f}\left(\sigma_{\ell}\right)+R_{k} f^{(2 k)}(s \in(-1,+1)) ;
$$

(8)

$$
\mathrm{w}_{\ell}=\frac{2}{\mathrm{k}(\mathrm{k}+1)\left[\mathrm{P}_{\mathrm{k}}\left(\sigma_{\ell}\right)\right]^{2}}, \quad \ell=0, \ldots, k
$$

From (7) and (8), we define
(9)

$$
\begin{aligned}
& \xi_{j \ell}=x_{j-1}+\frac{h}{2}\left(1+\sigma_{\ell}\right) ; \quad \ell=0, \ldots, k ; \quad j=1, \ldots, N ; \\
& (\alpha, \beta)_{j}^{*}=\frac{h}{2} \sum_{\ell=0}^{k}{ }^{w} \ell^{\alpha}\left(\xi_{j \ell}\right) \beta\left(\xi_{j \ell}\right) ; \quad \alpha, \beta \in W^{2 k, \infty}\left(I_{j}\right) ; j=1, \ldots, N ; \\
& (\alpha, \beta)_{h}=\sum_{j=1}^{N}(\alpha, \beta)_{j}^{*} .
\end{aligned}
$$

We return to problems (1) and (3). It is known that
(10)

$$
B(e, V)=0, \quad V \in M_{0}^{K}(\Delta) .
$$

For any I_{j}, we define

$$
\begin{equation*}
M_{0}^{k}\left(I_{j}\right)=\left\{V \mid V \in M_{0}^{k}(\Delta), \operatorname{supp}(V)=I_{j}\right\} \tag{11}
\end{equation*}
$$

We temporarily drop the subscript j from the numbers $\xi_{\ell_{j}}$. We define a natural basis $\left\{\phi_{i}\right\}_{i=1}^{k-1}$ for $M_{0}^{k}\left(I_{j}\right)$ by

$$
\begin{equation*}
\phi_{i}\left(\xi_{\ell}\right)=\delta_{i \ell}, \quad 1 \leq i, \quad \ell \leq k-1 \tag{12}
\end{equation*}
$$

where $\delta_{i \ell}$ is the Kronecker symbol. If we elaborate (10) for $V=\phi_{i}$, $i=1, \ldots, k-1$, we get

$$
\begin{equation*}
\left(e, L \phi_{i}\right)=\left[p(x) e(x) \phi_{i}^{1}(x)\right]_{\xi_{0}}^{\xi_{k}}, \quad i=1, \ldots, k-1 . \tag{13}
\end{equation*}
$$

Approximation of ($e, L \phi_{i}$) by Lobatto quadrature yields

$$
\begin{gather*}
\sum_{\ell=1}^{k-1} w_{\ell}{ }^{L \phi_{i}}\left(\xi_{\ell}\right) e\left(\xi_{\ell}\right)=2 h^{-1}\left[p(x) e(x) \phi_{i}^{1}(x)\right]_{\xi_{0}}^{\xi_{k}}-w_{0} e\left(\xi_{0}\right) L \phi_{i}\left(\xi_{0}\right)- \\
-w_{k} e\left(\xi_{k}\right) L \phi_{i}\left(\xi_{k}\right)+\mathrm{Ch}^{2 k_{D}}{ }^{2 k}\left(e L \phi_{i}\right)\left(\xi \in I_{j}\right), \tag{14}\\
i=1, \ldots, k-1 .
\end{gather*}
$$

This is a linear system for $e\left(\xi_{1}\right), \ldots, e\left(\xi_{k-1}\right)$. We have to prove the nonsingularity of ($\mathrm{w}^{\mathrm{L}} \phi_{\mathrm{i}}\left(\xi_{\ell}\right)$) and to compute the order of the solution.

Take a $V \in M_{0}^{k}\left(I_{j}\right)$ represented by

$$
V(x)=\sum_{i=1}^{k-1} v_{i} \phi_{i}(x) .
$$

Suppose

$$
\sum_{h=1}^{k-1} w_{\ell}^{L \phi_{i}}\left(\xi_{l}\right) v_{l}=0, \quad i=1, \ldots, k-1
$$

Then

$$
\begin{aligned}
0 & =\frac{h}{2} \sum_{\ell=1}^{k-1} w_{\ell} V_{\ell} \sum_{i=1}^{k-1} v_{i} L \phi_{i}\left(\xi_{\ell}\right)=\frac{h}{2} \sum_{\ell=1}^{k-1} w_{\ell} V\left(\xi_{\ell}\right) L V\left(\xi_{\ell}\right) \\
& =(V, L V)+C h{ }^{2 k+1} D^{2 k}(V L V)\left(\xi \in I_{j}\right),
\end{aligned}
$$

Hence

$$
\begin{gathered}
\|V\|_{H^{1}\left(I_{j}\right)}^{2} \leq C B(V, V) \leq C^{2 k+1}\left\|D^{2 k}(V L V)\right\| L^{\infty}\left(I_{j}\right) \leq C h^{2 k+1}\|V\|^{2} W^{k, \infty}\left(I_{j}\right) \\
\leq C h^{2 k+1}\|V\|^{2}{ }^{k}\left(I_{j}\right) \leq C h^{3}\|V\|^{2} 1\left(I_{j}\right)
\end{gathered}
$$

 if h is small enough. Since $h^{2}{ }^{2} \ell^{L} \phi_{i}\left(\xi_{\ell}\right) \sim-h^{2}{ }^{2}{ }_{\ell} p\left(\xi_{\ell}\right) \phi_{i}\left(\xi_{\ell}\right)=c_{i \ell}$, where $c_{i \ell}$ is of $O(1)$, as $h \rightarrow 0$, all the entries of ($w^{L} \phi_{i}\left(\xi_{\ell}\right)$ are of $O\left(h^{-2}\right)$, hence the entries of its inverse are of $O\left(h^{2}\right)$.

We turn to the second part of our problem. The first three terms of the
right hand side of (14) are of $O\left(h^{2 k-2}\left\|_{u \|}\right\|_{k+1}\right)$. For the last term, we prove that

$$
\begin{equation*}
\left\|D^{2 k}\left(e L \phi_{i}\right)\right\|_{L^{\infty}\left(I_{j}\right)} \leq C\|e\| W^{2 k, \infty_{\left(I_{j}\right)}\left\|\phi_{i}\right\|} W^{2 k, \infty}\left(I_{j}\right) \tag{16}
\end{equation*}
$$

From [3], it can be proved that

Furthermore,

$$
\begin{equation*}
\left\|\phi_{i}\right\|_{W}^{2 k, \infty} \leq \mathrm{Ch}^{-\mathrm{k}} \tag{18}
\end{equation*}
$$

hence we summarily have

$$
\begin{array}{r}
\left|\sum_{\ell=1}^{k-1} w_{\ell}^{L \phi_{i}}\left(\xi_{\ell}\right) e\left(\xi_{\ell}\right)\right| \leq h^{k}\left[\|u\|_{k+1} h^{k-2}+\|u\| \|^{2 k, \infty}\left(I_{j}\right)\right. \tag{19}\\
i=1, \ldots, k-1
\end{array}
$$

This was the last step in the proof of
THEOREM 1. Let $u \in H_{0}^{1}(I) \cap H^{k+1}(I) \cap{ }_{j}^{N} n_{1}^{N} W^{2 k, \infty}\left(I_{j}\right)$ be the solution of (1) and let $U \in M_{0}^{k}(\Delta)$ be the solution of (3). Then the error function has the local error bounds.

$$
\begin{align*}
\left|e\left(\xi_{j \ell}\right)\right| \leq C h^{k+2}\left[\|u\|_{k+1} h^{k-2}+\|u\|\right. & W^{2 k, \infty}\left(I_{j}\right) \tag{20}\\
& j=1, \ldots, N ; \quad \ell=1, \ldots, k-1 .
\end{align*}
$$

3. LOBATTO QUADRATURE

Usually, $B($,$) and (,) are to be evaluated by numerical quadrature. We$ will show that Lobatto quadrature leaves the order of convergence at the

Lobatto points invariant.
We define

$$
\begin{equation*}
B_{h}(\alpha, \beta)=\left(p \alpha^{\prime}, \beta^{\prime}\right)_{h}+(q, \alpha, \beta)_{h} ; \quad \alpha, \beta \in \bigcap_{j=1}^{N} W^{2 k, \infty}\left(I_{j}\right), \tag{21}
\end{equation*}
$$

where (, $)_{h}$ is defined by (9).
LEMMA 2. Let $Y \in M_{0}^{k}(\Delta)$ be the solution of

$$
\begin{equation*}
B_{h}(Y, V)=(f, V)_{h}, \quad V \in M_{0}^{k}(\Delta) \tag{22}
\end{equation*}
$$

and let $u \in H_{0}^{1}(I) \cap H^{k+1}(I) \cap \bigcap_{j=1}^{N} W^{2 k, \infty}\left(I_{j}\right)$ be the solution of (1). Then the error function $\eta=u-Y$ has the bounds

$$
\left|\eta\left(x_{j}\right)\right| \leq C h^{2 k_{\| f} \|} 2 k, \Delta^{\prime} \quad j=1, \ldots, N-1
$$

if h is small enough, with

$$
\begin{equation*}
\|f\|_{\ell, \Delta}=\left[\sum_{j=1}^{N}\|f\|_{H^{2}\left(I_{j}\right)}\right]^{\frac{1}{2}} \tag{23}
\end{equation*}
$$

PROOF. See [4].

We now consider $\varepsilon(x)=U(x)-Y(x)$, where U is the solution of (3). From (3) and (22), we obtain for every I_{j}

$$
\begin{aligned}
|B(\varepsilon, V)| & \leq\left|(f, V)-(f, V)_{h}\right|+\left|B_{h}(Y, V)-B(Y, V)\right| \\
& \leq C^{2 k+1}\|V\| H^{k}{\left(I_{j}\right)}_{[\|\dot{f}\|}^{H^{2 k}\left(I_{j}\right)}+\|Y\|_{H}^{k}\left(I_{j}\right)
\end{aligned}
$$

If we take for V any of the basis functions ϕ_{i} of $M_{0}^{k}\left(I_{j}\right)$, as defined by (12), we have

$$
\begin{equation*}
\left|B\left(\varepsilon, \phi_{i}\right)\right| \leq C h^{k+1}\left[\|f\|_{H^{2 k}\left(I_{j}\right)}+\|Y\|_{H_{\left(I_{j}\right)}}\right], \quad i=1, \ldots, k-1 . \tag{25}
\end{equation*}
$$

Since

$$
\begin{align*}
& \sum_{\ell=1}^{k-1} w_{l} \ell^{\varepsilon}\left(\xi_{\ell}\right) L \phi_{i}\left(\xi_{\ell}\right)=2 h^{-1} B\left(\varepsilon, \phi_{i}\right) \\
& -w_{0} \varepsilon\left(\xi_{0}\right) L \phi_{i}\left(\xi_{0}\right)-w_{k} \varepsilon\left(\xi_{k}\right) L \phi_{i}\left(\xi_{k}\right) \tag{26}\\
& -\frac{2}{h}\left[p(x) \varepsilon(x) \phi_{i}^{\prime}(x)\right]_{\xi_{0}}^{\xi_{k}}+C h^{2 k_{D}} 2 k\left(\varepsilon L \phi_{i}\right)\left(\xi \in I_{j}\right)
\end{align*}
$$

and
(27)

$$
\left\|D^{2 k}\left(\varepsilon L \phi_{i}\right)\right\|_{L^{\infty}\left(I_{j}\right)} \leq C\|\varepsilon\|_{W^{k, \infty}\left(I_{j}\right)}^{\left\|\phi_{i}\right\|} W^{k, \infty}\left(I_{j}\right)
$$

$$
\leq \mathrm{Ch}^{-2 \mathrm{k}_{\|\varepsilon\|}} \underset{L^{\infty}\left(I_{j}\right)}{ } \leq \mathrm{Ch}^{-\mathrm{k}+1} \|_{f \|_{2 k, \Delta^{\prime}}}
$$

we have

$$
\begin{align*}
& \left|\sum_{\ell=1}^{k-1} w_{\ell}^{\varepsilon}\left(\xi_{\ell}\right) L \phi_{i}\left(\xi_{\ell}\right)\right| \leq c_{1} h^{k}\left[\left\|f H_{H}^{2 k}\left(I_{j}\right)+\right\| Y H_{H}^{k}\left(I_{j}\right)\right. \tag{28}\\
& +c_{2} h^{2 k-2}\left\|_{f}\right\|_{2 k, \Delta}+c_{3} h^{k+1}\left\|_{f}\right\|_{2 k, \Delta} .
\end{align*}
$$

The nonsingularity of ($w_{\ell}{ }^{L} \phi_{i}\left(\xi_{l}\right)$) has already been proved, its inverse is of $O\left(h^{2}\right)$, hence we have

$$
\begin{equation*}
\left|\varepsilon\left(\xi_{\ell}\right)\right| \leq C_{1} h^{k+2}\left[\|f\|_{H^{2 k}}^{\left(I_{j}\right)} \quad+H_{H^{k}\left(I_{j}\right)}\right]+C_{2} h^{k+3} \|_{f \|}{ }_{2 k, \Delta} . \tag{29}
\end{equation*}
$$

Since (see [3]).

$$
\begin{equation*}
\|y\|_{H^{k}\left(I_{j}\right)} \leq\|n\|_{H^{k}\left(I_{j}\right)}+\|u\|_{H^{k}\left(I_{j}\right)} \leq C h\|u\|_{k+1}+\|u\|_{H^{k}\left(I_{j}\right)} \tag{30}
\end{equation*}
$$

$$
\leq \mathrm{c}\|\mathrm{u}\|_{\mathrm{k}+1},
$$

we can prove by combination of (20), (29) and (30)

THEOREM 2. Let $u \in H_{0}^{1}(I) \cap H^{k+1}(I) \cap{ }_{j} \hat{n}_{1}^{N} W^{2 k, \infty}\left(I_{j}\right)$ be the solution of (1) and let $Y \cap M_{0}^{k}(\Delta)$ be the solution of (22). Then the error function η has the bounds

$$
\begin{aligned}
& \left|n\left(\xi_{\ell_{j}}\right)\right| \leq C_{1} h^{k+2}\left[\|f\|_{H^{2 k}} I_{j}\right) \\
& \left.+\|u\|_{k+1}\right]+C_{2} h^{k+3}\left\|_{f}\right\|_{2 k}, \Delta^{\prime} \\
& j=1, \ldots, N ; \quad \ell=1, \ldots, k-1
\end{aligned}
$$

4. CONCLUSIONS

We have found a lighter form of superconvergence at other points than the knots. The findings of this paper stress the important part that Lobatto points play in the C^{0} Galerkin method for two-point boundary problems. This is especially true for $k=2$, since in that case the error is of $O\left(h^{4}\right)$ at all Lobatto points.

The results of this paper can be easily applied to the case of twopoint initial boundary problems, (see [2]) and probably to other cases, as nonlinear boundary problems.

REFERENCES

[1] ABRAMOWITZ, A. \& I. STEGUN, Handbook of mathematical functions, Dover Publications, 1968.
[2] BAKKER, M., On the numerical solution of parabolic equations in a single space variable by the continuous time Galerkin method, SIAM J. Num. Anal. 17, no. 1 (1980).
[3] CIARLET, P.G. \& P.A. RAVIART, General Lagrange and Hermite interpolation in R^{N} with applications to finite element methods, Arch. Rat. Mech. An. 46 (1972), pp. 177-199.
[4] DOUGLAS', J. Jr. \& T. DUPONT, Galerkin approximations for the two-point boundary problem using continuous, piecewise polynomial spaces, Num. Mat. $\underline{22}$ (1974), pp. 99-109.
[5] STRANG, G. \& G.J. FIX, An analysis of the finite element method, Prentice-Hall, Englewood Cliffs, New Jersey, 1973.
[6] WHEELER, M.F., An optional L_{∞} error estimate for Galerkin approximations to solutions of two-point boundary problems, SIAM J. Num. Anal. 10, pp. 914-917 (1973).

[^0]: *) This paper will be submitted for publication elsewhere.

