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A note on c0 Galerkin methods for two-point boundary problems*) 

by 

M. Bakker 

ABSTRACT 

As is known [4], the c0 Galerkin solution of a two-point boundary prob­

lem using piecewise polynomial functions, has O(h2k) convergence at the 

knots, where k is the degree of the finite element space. In this note, it 

is proved that on any segment there are k-1 interior points where the 

Galerkin solution is of O(hk+2), one point better than the global order of 

convergence. These points are the Lobatto points. 

KEY WORDS & PHRASES: two-point boundary problems, finite element method, 

superconvergence, Lobatto points. 

*) This paper will be submitted for publication elsewhere. 



1. INTRODUCTION 

We consider the two-point boundary problem 

Lu - -(p(x)u')' + q(x)u = f(x), XE [0,1] = I; 

(1) 

u(O) = u(l) = 0. 

We suppose that p, q and fare such that (1) has a unique and sufficiently 

smooth solution. 

Let, for a constant integer N, !J.: 0 = x0 < x 1 < ••• < xN = 1 be a parti­

tion of I with 

-1 
h = N X, = jh; 

J 
I. = [x. 1 ,x.] 

J J- J 

and let for a constant integer k ~ 2 and for any interval E c I, Pk(E) be 

the class of polynomials of degree at most k restricted to E. 

(2) 

We define form~ 0 ands~ 1 

H~ (I) = {v Iv E H1 (I); v(O) = v(l) = O}; 

llvll 
r;n,s (E) 

llvll 
~(E) 

m 

= c I 
j=0 

1 

where Dj denotes dj/dxj. If E = I, we write (a,S) instead of (a,S)L2(I) and 

llall instead of llall ID(). 
m k H I 

Let u E M0 (!J.) be the unique solution of 



2 

(3) B (U, V) 

where B: H~(I) X H~(I) ➔ lR is defined by 

(4) B(u,v) = (pu',v') + (qu,v); u,v E H~(I). 

We assume that Bis strongly coercive, i.e. there exists a C > 0 such that 

(5) B(v,v) 2 
~ ell vii 1, 

1 
VE HQ(I). 

In the sequel, we assume that c, c1 , c2 , etc., are generic positive constants 

not necessarily the same. 

1 k+1 k 
LEMMA 1. Let u E Ho(I) n H (I) be the solution of (1) and let U E Mo(~) 

l:e the solution of ( 3) • Then the error function e (x) = u (x) - U (x) has the 

rounds 

II ell l ~ Chk+1-lll II 
u k+1' l = 0,1; 

I e (x.) I 2k 
(6) ~ Ch II ull 1 , j = 1, •.• , N-1; 

J k+ 

llell k+l 
~ Ch II ull l. 

CX) k+ 
L (I) 

PROOF. See [SJ, [4] and [6]. 0 

In the next§, we prove that the local order of convergence improves 

slightly at specific points interior on I., if u satisfies stricter smooth­
. J 

ness requirements on the interior of I .• 
J 

2. ORDER OF CONVERGENCE AT LOBATTO POINTS 

On the segment [-1,+1], we define the Lobatto points cr0 , ..• ,crk by 

(7) l=O, ... ,k, 
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where P (0) is the k-th degree Legendre polynomial. Associated to this poly­
k 

nomial is the quadrature formula (see [1, formula 2.5.4.32]) 

+1 I f(0)d0 
~ (2k) 
l W,e_f(0,e_) +~/ (SE: (-1,+1)); 

i=0 
--1 

(8) 

l = 0, ... ,k. 

From (7) and (8) , we define 

,f_ 0, ... ,k; j = 1, ... ,N; 

k 
* (9) 

h l w,e_a(~,,e_)B(~,,e_); (a,B). = 
J 2 i=0 J J 

2k,oo 
a,B E: w (I.); j = 1, •.• ,N; 

J 

N 

I * (a, B )h = (a,B) .. 
j=1 J 

We return to problems ( 1) and ( 3) • It is known that 

( 10) B (e, V) 0, 

For any I., we define 
J 

(11) {v I v E: M~ (li) , supp (V) I.}. 
J 

We temporarily drop the subscript j from the numbers ~_f_j" We define a natu-
k-1 k 

ral basis {cpi}i=1 for M0 (Ij) by 

(12) 1 :,; i, l :,; k-1, 

where <\,e_ is the Kronecker symbol. If we elaborate (10) for V cpi, 

i = 1, ... ,k-1, we get 

( 13) i = 1, ... ,k-1. 

Approximation of (e,Lcpi) by Lobatto quadrature yields 



k-1 

l~1 wiL~i Csi>e(si> = 
-1 1 sk 

2h [p(x)e(x)~i (x) ]so -w0e(s0 )Lc/>i (s0 ) -

(14) 
2k 2k 

-wke(sk)L~i (sk) + Ch D (eL~i) (s E Ij), 

i = 1, ... ,k-1. 

This is a linear system for e(s 1) , ••• ,e(sk_1). We have to prove the non­

singularity of (w{L~i <si>> and to compute the order of the solution. 

Take a VE M0 (Ij) represented by 

Suppose 

Then 

Hence 

k-1 
V (x) = l v. ~. (x) • 

i=1 1 1 

k-1 

h~1 wlL~i Csl)vl = o, 

nvn\ 
H (I.) 

J 

:,; CB (V, V) 

i = 1, ••• ,k-1. 

(X) 

L (I.) 
J 

4 

which is only true if V = 0, which proves the nonsingularity of (wlL~i <si>>, 
2 2 

if his small enough. Since h wlL~i (sl) ~ -h wlp(sl)~1(sl} = cil' ~~ere 

cil is of 0(1), ash ➔ O, all the entries of (wlL~i <si> are of O(h ) , hence 

the entries of its inverse are of O(h2). 

We turn to the second part of our problem. The first three terms of the 



right hand side of (14) are of O(h2k-2llullk+l). For the last term, we prove 

that 

( 16) llo2k(eLcp.) II 
1 Lo:,(I.) 

J 

~ cllell 2 00 IILcp.11 2k 0:, 

wk, CI.) 1 w '(I.) 

From [3], it can be proved that 

( 17) 

Furthermore, 

(18) 

0:, 

L (I.) 
J 

hence we summarily have 

k-1 

Chk+l-lu II 
u k+l' 

0:, 

L (I,) 
J 

(19) ll~l W,e_Lcf>i Cs,e_)e(s,e_> I ~ 

J J 

,e_ ~ k; 

,e_ > k. 

This was the last step in the proof of 

i = 1, ... ,k-1. 

1 
THEOREM 1. Let u E H0 (I) 
. k 

n Hk+l(I) N 2k o:, n .n1 W ' (I.) be the solution of (1) 
]= J 

and let u E M:0 (L'I) be the solution of (3). Then the error function has the 

local error bounds. 

(20) le(s],,e_>I ~ Chk+2[11ullk+1hk-2 + Hull 2 ], 
Wk' 00 (I.) 

J 

j = 1, ••• ,N; l = 1, ••• ,k-1. 0 

3. LOBATTO QUADRATURE 

Usually, B(,) and (,) are to be evaluated by numerical quadrature. We 

will show that Lobatto quadrature leaves the order of convergence at the 

5 



Lobatto points invariant. 

We define 

(21) a., B E • ~1 w2k, oo c r . > , 
J= J 

where (, )h is defined by (9). 

LEMMA 2. Let YE M~(8) be the solution of 

(22) 

1 k+l N 2k 00 
and let u E H0 (I) n H (I) n .n1 w ' (I.) be the solution of (1). Then 

J= J 
the error function n = u - Y has the bounds 

I ( ) I < Ch2kll fll • n xj - 2k,8' 

if his small enough, with 

(23) 

N 

= c I 
j=l 

PROOF. See [4]. □ 

j = 1, ••. ,N-1, 

We now consider E(x) = U(x) - Y(x), where U is the solution of (3). 

From (3) and (22), we obtain for every·r. 
J 

~ Ch2k+lllvll k [11£11 2k + llyll k ], 
H (I.) H (I.) H (I.) 

J J J 
k 

If we take for V any of the basis functions ~i of M0 (rj), as defined by 

(12), we have 

(25) IB(E,~.) I 
1 

~ Chk+l[fffll 2k +llyll k ], 
H (I.) H (I.) 

J J 

, i = 1, •.. ,k-1. 

Since 

BIBUOTHEEK M;\THEMAT!SCH CENTflUM 
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and 

(27) 

we have 

(28) 

k-1 

l~l W,e_E: (~,e_)L<l>i (~,e_) = 
-1 

2h B(e:,<!>.) 
1 

~ Ch-2kll e:11 < Ch-k+lll fl! 
oo - 2k,6' 

L (I.) 
J 

k-1 

ll~l W,e_E:(~,e_)L<l>i (~,e_) I ~ 

The nonsingularity of (w,e_L<l>i (~,e_)) has already been proved, its inverse is 
2 

of O (h ) , hence we have 

(29) 

Since (see [3]). 

(30) 

llyll k 
H (I.) 

J 

~ II n II k + II ull k ~ chll ull 1 + II ull k 
H (I.) H (I . ) k+ H (I.) 

J J J 

~ cllullk+l' 

we can prove by combination of (20), (29) and (30) 

7 
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1 k+l N 2k,ro 
THEOREM 2. Let u E Ho(I) n H (I) n .nl W (I.) be the solution of (1) 

J= J 
and let Y n M~(~) be the solution of (22). Then the error function n has 

the rounds 

j = 1, .•• ,N; l = 1, ... ,k-1. □ 

4. CONCLUSIONS 

We have found a lighter form of superconvergence at other points than 

the knots. The findings of this paper stress the important part that 

Lobatto points play in the c0 Galerkin method for two-point boundary prob­

lems. This is especially true fork= 2, since in that case the error is 

of O(h4) at all Lobatto points. 

The results of this paper can be easily applied to the case of two­

point initial boundary problems, (see [2J) and probably to other cases, as 

nonlinear boundary problems. 
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