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On the economization of stabilized Runge-Kutta methods with applications 
*) to parabolic initial value problems 

by 

B.P. Sommeijer & P.J. van der Houwen 

ABSTRACT 

A modification of Runge-Kutta methods is analysed which leads for im­

portant classes of parabolic differential equations to a considerable re­

duction of the computational effort. The main characteristic of the modified 

methods is the replacement of the right hand side function of the differen­

tial equation by a "cheaper" function with roughly the same Jacobian matrix. 

Numerical experiments are reported and the results are compared with the 

results obtained by the unmodified Runge-Kutta method and by an ADI method. 

KEY WORDS & PHRASES: Numerical analysis, Runge-Kutta methods, internal 

stability. 

*) This report will be submitted for publication elsewhere. 





1 • INTRODUCTION 

Suppose we are given a time-dependent partial differential equation 

defined on a domain n with boundary an in the space of the space variable 

1 

;. By applying the method of lines, that is by replacing nu an by a set of 

grid points rh u arh, h referring to the coarseness of the grid, such a par­

tial differential equation (p.d.e.) is converted into a system of ordinary 

differential equations which frequently is of the form 

( 1. 1) 

➔ 

➔ 
dy ➔ ➔ ➔ - = f (t,y+b) 
dt 

➔ ➔ ➔ 
b = g(t,y) 

Here, y denotes an approximation to the solution of the p.d.e. at the inter-
➔ 

nal grid points rh, being zero at the boundary points arh, and b denotes an 

approximation to the solution at the boundary points arh being zero at rh. 
➔ ➔ 

The functions f and g are given having zero-components at arh and rh, re-
➔ 

spectively. The function g originates from the boundary conditions and ex-

presses the boundary values in terms of the solution at the internal grid 

points rh. 

In this paper we study a modification of stabilized Runge-Kutta methods 

(RK methods) for the solution of the initial value problem for equation 

(1.1). We shall call an RK method stabilized when extra function evaluations 

are added in order to increase the stability boundary. Large stability bound-
➔ 

aries are desirable when the spectral radius of the Jacobian off with re-
➔ 

spect toy is large which is just the situation when (1.1) originates from 

a p.d.e •• In the case of parabolic p.d.e.'s, stabilized RK methods have been 

constructed [3] with a (real) stability boundary 8 ~ c m2 where mis the 
p 

number of function evaluations per step and c is a constant depending on 
p 

the order p of the RK method (c 1 ~ 1.93, c 2 = .80 [3]). The maximal stable 

integration step of these methods is given by 

2 

( 1. 2) 
B cm 

T = ---~ _p~-
max cr(J) cr(J) 

n n 
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where a (J) denotes the spectral radius of the Jacobian matrix 
n 

( 1. 3) 

➔ 

J 
n 

➔ ➔ ➔ ➔ 

3f(t ,y+g(t ,y)) I n n 
= --------- ➔ ay Y = 

➔ 
yn denoting the numerical approximation to y at t = t (note that in (1.3) 

n 
➔ ➔ 
f is only differentiated with respect to those components of y which corres-

pond to the gridpoints of fh). Although stabilized RK methods are available 

(for semi-discrete parabolic equations) in which the number of stages can 

be chosen arbitrarily large without danger for internal instabilities [3], 

these methods generally are more expensive in terms of right hand side eva­

luations than implicit or partial implicit integration methods. It is often 

possible, however, to reduce the work per integration step by exploiting 
➔ 

the fact that a stabilized RK method usually contains a small number off-
+ 

evaluations which ensure the order of accuracy and a large number off-

evaluations which take care of the stability of the scheme. This means that 
➔ - ~ ➔ 

these last f-evaluations may be replaced by a function f (t,y) without affect-

ing the order of accuracy. In order to obtain the same stability regions 
+k 

one should choose f such that its Jacobian matrix is a first order approxi-

mation in T to the original Jacobian matrix. When the effort involved to 
+-k 

compute the set off-vectors within an integration step is much less than 
➔ 

the computational effort involved to evaluate the replaced f-vectors, then 

computing time can be saved by this simple modification of the RK method. 

We call such methods modified Runge-Kutta methods. As an example, consider 

the function 

( 1. 4) 
➔ 

J y, 
n t :::; t:::; t 1' n n+ 

which is a plausible choice in cases of linear problems where Jn is directly 

available. In [2] a few experiments were performed with this modification. 

It turned out that stability is preserved but the accuracy is considerably 

reduced. Here, we consider more general, and at the same time more accurate, 
+-k 
f -functions and investigate the effect on the accuracy of the numerical 

solution. Numerical experiments are reported and the results are compared 

with those obtained by the ADI method of Peaceman-Rachford. The modified 

Runge-Kutta method seems to be particularly advantageous for strongly non-
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linear problems and if the costs per integration step are about 25% (accord­

ing to our experiments) of the costs of the classical Runge-Kutta step. 

2. MODIFIED RUNGE-KUTI'A METHODS 

Consider them-stage Runge-Kutta formula 

+(0) ➔ 

Yn+l = yn, 

(2. 1) 
➔ (j) ➔ 

j-1 
+I< +(l> 

Yn+l = Yn + T I A,,e_f (t +8,e_T,y 1'' 
i=0 J n n+ 

j = 1,2, ••• ,m, 

➔ +(m) j-1 

Yn+l = Yn+l; 80 = 0, e. = I \,e_• J i=0 
j = 1 , 2 , • . • , m-1 . 

+I< ➔ 

If the function f (t,y) is identical to the right hand side function 
➔ ➔➔ ➔ 
f(t,y+g(t,y)), this scheme represents a classical Runge-Kutta method for 

equation (1.1). For the parameters Ajl we choose the values which define 

an appropriate classical stabilized RK method (cf. [3]). A few important 

schemes are specified in section 3.2. These are characterized by their limit­

ed storage requirements, an important feature in view of our purpose to 

apply them to the large systems arising from the space-discretization of 

partial differential equations (see also [4]). The formula (2.1) together 
+I< 

with a prescribed function f define a modified Runge-Kutta method (MRK 

method). 

In this section the conditions are derived under which the modified 

formula has the same stability region and order of accuracy as the generat­

ing classical RK formula. 

2.1. Stability 

The stability region of the MRK method (2.1 ). is identical to that of 

the generating RK method because the stability polynomials are identical 

(the stability polynomial R (z) is defined by the relation y 1 = R (TA)y 
m n+ m n 

obtained by applying the method to the equation y' = Ay). In our case this 

polynomial is generated by the recurrence relation 
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(2. 2) 

R. (z) = 1 + 
J 

j = 1,2, ••• ,m. 

* -'rl: ➔ When J = 3f /3y has negative eigenvalues A then the modified scheme 
n 

is called stable if (cf. (1.2)) 

where Sis the real stability boundary of R (z). A p-th order RK method has 
m 

a stability polynomial of the fonn 

(2.3) R (z) 
m 

= 1 2 1 p p+1 m 1 + z+-2 z + ... +-, z + S 1z + .•. + S z 
p. p+ m 

where the coefficients S 1 , •.. ,S are expressions in the RK parameters. For 
p+ m 

instance, 

m-1 m-1 j-1 m-1 
(2. 4) s1 = I A.ml' s2 = I A I Ajl = I A . e .. 

l=O j=1 
mj l=O j=1 

ID] J 

Polynomials of the form (2.3) will be called p-th order consistent. 

In this paper, we will use the first 
w0+1 

(2. 5) Ro> <z> 
Tm (wO +-S- z) 

s = = 
m Tm (wo> 

and the second order consistent polynomial 

(2.6) i <2 > cz> 
m 

where 

order consistent polynomial 

(w0+1 )T~ (w0 ) 
WO> 1 

s = 

£ = 

Tm(wo) 

(w0+1)T; (w0 ) 

T~(w0 ) 

T;(w0 )[Tm(w0 )-1] 

[T~ cw0 ) J2 
In (2.5) and (2.6) T denotes the Chebyshev polynomial of'degree m. 

m 

[3] 
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2. 2. The orde~r of accuracy of modified Runge-Kutta methods 

+* 
Obviously, the function f in (2.1) should have some relation to the 

➔ 
right hand side function fin order to present a consistent approximation to 

the equation (1.1). It will be assumed that in the interval t ~ t ~ t + T n n 
this relation is of the form 

(2. 7) 
➔-,< +(l) + +(l) + +(l) 
f (t +8 0 T,Y 1 ) - f(t +8 0 T,y 1 +g(t +8oT,y 1 )) 

n ~ n+ n ~ n+ n ~ n+ 

➔ ➔ 

where 6,e_, n,e_ are scalars, q, s integers~ 
➔ ➔ ➔ ➔ 

ing on (t ,y ). Evidently, ¢ = ~ = 0 if 
n n +* n n 

1 and ¢n' ¢n vectors only depend-
+* ➔ 

f = f. In Section 2.3 examples 

are given of functions f satisfying (2.7). Here, we first derive the order 

equations. 

Starting with a p-th order classical RK formula our analysis can be 
➔ 

➔ ~ 
confined to the derivation of 

;t 
an expression for the difference y 1 - y 1 , 

n+ n+ 
where y 1 denotes the result 

n+ 
which would be obtained if the classical RK 

➔ 

method is applied at t = ~ (j) 
tn. Let yn+l denote the intermediate vectors obtain-

ed with the classical RK method. From (2.1) and (2.7) it follows that the 

intermediate deviations 

-➔ ( j) 
l:::.v 

•· n+1 

are approximately determined by the scheme 

-➔ (O) ➔ 
l:::.v = O, 

·· n+l 

( ·) j-l +(l) q + s ➔ O q+l s+l 
l:::.~rn+J1 = T I A.o[J 1-,.y 1+T 80¢ +T no¢ + (T +T )], l=O J~ n n+ ~ n ~ n 

➔ (m) 
l:::.y 1 · n+ 

j = 1,2, ... ,m, 
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From these relations it follows that the local deviation error is 

(2. 8) 
q+1 ➔ s+1 ➔ 

= T O (TJ )[cjl +O(T)] + T S (TJ )[i/J +O(T)], 
711 n n m n n 

where~' Sm are polynomials in TJn of degree m-1 defined by the recurrence 

relations 

j-1 
O , Q . ( z) = l A J' l [ zQ l ( z) + cS ,e_ J 

J l=O 
(2. 9) 

j-1 
s0 (z) = 0, S. (z) = I J l=O 

Hence, 

m-1 m-1 
(2.10) ~/z) = I >.ml0l + I 

l=O j=1 

and a similar expression for s (z). 
m 

Aj,e_[zS,e_ (z) + n,e_J 

j-1 

I A ,A,,e_0,e_Z + 
l=O mJ J 

j = 1,2, ••• ,m. 

... 

From (2 .. 8) it is immediate that a p-th order RK method generates an 

MRK method of order p if either 

(2.11) 

or 

(2.11') 

min(q,s) p 

min(q,s) < p, 

➔ 
= 0, k ·= 0, ••• ,p-1-q, 

l = 0 , • • • , p-1- s . 

2.3. Modified right hand side functions 

In this section we consider a few possibilities for choosing the modi-
---H< ➔ 

fied right hand side function f (t,y). The order of the modification will be 

defined by min(q,s) (cf. (2.8)). 



7 

2.3.1. First order modifications 

The first class of modified right hand side functions is of the form 

(2.12) 
+.k ➔ 
f (t,y) = ➔ ➔ ➔ 

F(t + 8T,t,y ,y), 
n n 

➔ 
where 8 is a parameter in the interval [0,1] and Fa function satisfying 

the condition 

➔ ➔➔ ➔ ➔➔ ➔ 
(2.13) 1"(t,t,y,y) = f(t,y+g(t,y)). 

EXAMPLES 

(i) Simple examples of modifications satisfying (2.12) and (2.13) are de­

fined by 

(2.12a) ➔ * +* ➔ ➔ * ➔ ➔ * ➔ 
F(t ,t,y ,y) = f(t ,y+g(t ,y)), 

➔ * +.k ➔ ➔ * ➔ ➔ ➔ (2.12b) F(t ,t,y ,y) = f(t ,y+g(t,y)). 

➔ 
These functions are of use if the time-dependency inf forms the main part 

➔ 
of the computational effort in the evaluation off. For instance, in the 

➔ 
case of a separable right hand side function f, i.e. 

r 
(2.14) 

➔ ➔ ➔ ➔ \' 
f(t,y+g(t,y)) = l 

i=l 

➔ ➔ ➔ ➔ 
T, (t)Y, (y+g(t,y)), 

]. ]. 

➔ 
T, being matrices only depending on t and Y. being vector functions depend-

l. ➔ ]. 

ing on y and t, the functions (2.12a) and (2.12b) are suitable economizations 

if the matrices T, require the greater part of the computational effort to 
]. 

➔ 
evaluate f. It should be remarked however, that generally (2.12b) yields 

considerably more accurate results than (2.12a). This is due to the equal 

levels of consistency of the g and y fields at all places where they simul­

taneously appear ([1], see also the experiments in Section 3.3). 

(ii) ➔ . When in (2.14) the matrices T. also depend on y, i.e. 
]. 

r 
➔ ➔ ➔ ➔ ➔ 

(2.14') 
➔ ➔ ➔ ➔ \' 
f(t,y+g(t,y)) = l T. ( t, y) Y. (y+g ( t, y) ) , 

i=l 
]. ]. 
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we may define 

r 
(2. 12c) ➔ * +* ➔ \ F(t ,t,y ,y) = l 

i=l 

* +* ➔ ➔ ➔ ➔ T. (t ,y )Y. (y+g(t,y)). 
l. l. 

(iii) As a last example we consider a modification based on the Jacobian 
➔ 

matrix off: 

(2.12d) o ~ e ~ 1, t ~ t ~ t 1 • 
n n+ 

➔ * ➔ 
= df(t ,v) I 

Ke ➔ ➔ +* ➔ +* 
av v=y +g(t ,y) 

n 
➔ 

This function is sort of linearization off in the interval [t ,t 1J and 
n n+ 

is of practical value if the Jacobian Ke is easily obtained. Several other 

linearizations are possible but (2.12d) was chosen because of its property 
➔➔ ➔ 

to reduce to (2.12b) for right hand side functions of the form A(t) (y+g(t,y)), 

A(t) being a matrix operator. It should be remarked that similarly to 
➔ 

(2.12b) the t-argument of the boundary function g occurring in (2.12d) is 
➔ 

chosen according to the time-level of the corresponding y-field. As already 

observed above the accuracy is improved by this choice. D 

The function (2.12) satisfies condition (2.7) with 

➔ ➔ ➔ 
dF ( t, t , y , y ) 

n n n I 
(2.15) 

s = 

➔ ➔➔ 
dF(t ,t ,y,y ) 

n .n n I 
➔ ➔➔ 

ay y=y 
n 

+* ➔ 
f (t ,y ) 

n n 

Thus, (2.12) and in particular (2.12a, ••• ,d), represents a class of first 

order modifications. Let p be the order of the generating RK formula, then 

the following theorem is immediate from (2.11), (2.15) and (2.4): 

THEOREM 2 . 1 • 

(a) The method {(2.1); (2.12)} is of first order for all 8 if p = 1. 

(b) The methods { (2.1); (2.12a), (2.12b), (2.12d)} are of second order if 

p = 2 and 



(2.16) e = 

m-1 
El=1 "ml8 l 

m-1 
El=O "ml 

D 

2.3.2. Second order modifications 

Consider the modification 

(2.17) 

➔ ➔ 
f* (t,y) 

➔ - ➔➔ ➔ = ➔➔ 
= a(t)F(t +8,,t,y ,y) + (1-a(t))F(t + 8,,t,y ,y), 

n n n n 

t-t -0, 
n 

a(t) = ---- o s; e < e < 1, 
(8 - 8) T 

➔ ➔ 

9 

where F satisfies (2.13). For F one may choose e.g. the function defined by 

(2.12a), .•• , (2.12d). These modifications will be indicated by (2.17a), •.• , 

(2.17d), respectively. A straightforward calculation yields that (2.7) is 

satisfied with 

(2.18) 

2 ➔ ➔ 
cl F(t,t ,y ,y ) 

n n n I 
at2 t=t 

➔ ➔➔ 
clF ( t , t , y , y ) 

~ ➔ 
n n n I a; y=y 

n 

f (t ,y ) 
n n 

n 

A second order modification is obtained· if the Jacobian matrix L = 
n 

➔ ➔ ➔ ➔ 
clF(t ,t ,y,y )/ay vanishes. we then have the following theorem: 

n n n 

THEOREM 2. 2. 

(a) The method {(2.1); (2.17)} is of second order for all e and e if p = 2 

and if the Jacobian matrix L vanishes. 
n 

(b) The methods {(2.1); (2.17)} is of third order if p = 

vanisres and if 8 and 6 satisfy the equation 

(2.19) ee - ; c e + e > + ½ == o • D 

3, the matrix L 
n 

PROOF. Part (a) is immediate from (2.11) and (2.18). Part (b) is proved by 

applying (2.11'), i.e. 8 and 0 have to satisfy the equation 



10 

Since every third order RK method satisfies the conditions 

m-1 m-1 
1 m-1 

2 1 I "me = 1, I "me e ,e_ = 2' }: "role ,e_ = -

l=O l=1 l=1 3 

we arrive at equation (2.19). D 

REMARKS 

(i) The application of the method {(2.1); (2.17)} with non-vanishing 

Jacobian matrix L is certainly possible and will be more accurate as n 
+ ++ + 
F(t ,t ,y,y) is smoother with respect toy. 

n n n 
(ii) Suitable choices of the parameters 9 and 9 are 

Case (a): 6 = O; 9 = 1 

e O; e 2 
for = = n even 

3 
Case (b): 1 e = 3; e = 1 for n odd 

It is easily seen that these parameter values save computational effort 

when we are dealing with separable right hand side functions. 

2.4. The difference between the classic~l and modified Runge-Kutta solution 

In the preceding section we derived the conditions for p-th order accur­

acy of the modified RK formula. In actual computations, however, the MRK 

methods usually are less accurate than the generating RK methods (of the 

same order). The reason is that the error (2.8) is generally larger than 

the local trucation error of the generating formula although the orders in 

Tare equal. Therefore, it is of interest to see how the polynomials-Q (z) 
m 

because these polynomials determine largely the magnitude and S (z) behave 
m 

of the deviation (2.8). Considering modifications which satisfy (2.15), we 

can express the polynomials Qm(z) and Sm(z) in terms of the stability poly­

nomial R (z). 
m 

THEOREM 2. 3. If (2. 15) is satisfied then 



R (z}-1 R (z)-1-8 z 
Q (z} 8 

m m m 
= m z 2 

z 
(2.20} 

R (z)-1-8 z 
S (z) m m 

□ = -m 2 
z 

PROOF. Substitution of cS,e_ = 8 - 8,e_ into (2.9) yields 

Let us define the polynomials A. (z) and B. (z) by writing 
J J 

Q . ( z) = 8A. ( z) - B . ( z) . 
. J J J 

These polynomials satisfy the recurrence relations 

(2.21) A0 (z) 0, A1 (z) 

(2.22) BO (z) = B1 (z) = 

It is easily verified that 

(2. 23) A. (z) 
J 

R. (z)-1 
J 

z 

)._10' 

0, B. (z) 
J 

and 

A. (z) = 
J 

j-1 

I 
l=O 

B. (z) = 
J 

j-1 

I \ ,e_ (1 + zA ,e_ ( z ) ) , 
l=O 

j = 2,3, ... ,m. 

A j ,e_ ( 8 ,e_ + zB ,e_ ( z) ) , 

R. (z)-1-8 .z 
J J 

2 
z 

satisfy (2.21) and (2.22), respectively, provided that R. (z} is defined by 
J 

11 

(2.2). From (2.23) the expression (2.20) for Q (z) follows. In a similar way 
m 

we find the expression for S (z) as given by (2.20). D 
m 

From thi:s theorem it follows that 

(2.24) 
z 

0 (z) ~m 
2+(1-28)z ::;--'--___;,,.-

2 
z 

_!_ ::; S (z) 
z m 

2+z ::;--2 I 

z 
-B ::; z ::; o, 

where we have put 8 = 1, that is we assume the formula at least first order 
m 

exact. These inequalities show that IQm(z) I and Jsm(z) I are small for large 

lzl-values so that we concentrate on their behaviour (relatively) close to 

the origin. A,gain by theorem 2. 3 we have 
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(2.25) 

I 

for sufficiently small lzl-values. The behaviour of S (z) follows from this 
m 

approximation by putting 0 = 0. In our case where we choose for R (z) either 
m 

R(l) (z) or '.P/ 2> (z) as defined by (2.5) and (2.6), respectively, the coeffi-
m m 

cients s2 , •.• ,s5 can be shown to be almost independent of m and hence the 

polynomials Q (z) and S (z) have for all ma more or less identical behaviour m m 
near the origin. For 0 = s2 the polynomial l~(z) I assumes its maximum value 

.07 at z = -10 and .20 at z = -3.5 in the respective cases R(l) (z) and 
m 

A( 2 ) (z). The polynomial Is (z) I assumes its maximum value s2 at the origin. 
m m 

Thus, it is expected that first order methods will loose less accuracy when 

modified than second order methods. 

2.5. Boundary conditions 

The last aspect of scheme (2.1) to be discussed in this paper concerns 
➔ ➔ ➔ 

the boundary conditions b = g(t,y). It is well-known that in algorithms for 

time-dependent p.d.e.'s with intermediate stages such as RK methods or split­

ting methods [1], the boundary values and the internal solution values should 

form a sufficiently smooth grid function on rh u arh as soon as they simul-
➔ 

taneously appear as argument of the function f. This requirement restricts 
➔ 

the choice of the functions f and is the reason for choosing the t-arguments 
➔ ➔ 

of g(t,y) as done in (2.12b,c,d). We will illustrate this by the following 

heuristic analysis of what happens when we choose (2.12a) and 0 = 0. 
➔ 

For the sake of simplicity g will be assumed only to depend on t (i.e. 

Dirichlet boundary conditions). The formula (2.1) will contain terms 

(2.26) 
➔ ➔ (l> ➔ 
f(t ,y 1+g(t )) = 

n n+ n 
➔ ➔ 
f(t ,y +T 

n n 

.t-1 
I ➔ ➔ (i) ➔ ➔ 

A0 .f(t ,y 1+g(t ))+g(t )). 
~i n n+ n n i=O 

➔ ➔ 
Let us start the integration step at t = t with a grid function y + g (t ) 

n n n 
which converges to a smooth function as the grid is refined, i.e. ash ➔ 0, 

and Tis kept fixed. We expect that the expression (2.26) remains only bound-
• ➔ (l> ➔ , 

ed ash ➔ 0 if its argument yn+l + g(tn) is a sufficiently smooth function 

on the grid rh u arh, that is if the grid functions 
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-+ 
converge to a smooth function on nu an. However, since f has zero-components 

in all boundary points arh, this grid function converges to a discontinuous 

function, and therefore we cannot expect that (2.26) is bounded ash-+ 0. 

The modification (2.12b) does not give this singular behaviour, because (2.26) 
-+ -+ 

now reads (for general boundary functions g(t,y)) 

+ + <l> + + <l> 
f(t + 8T,y l +g(t + 8oT,y l)) n n+ n ~ n+ 

(2.26') 
.t-1 -+ -+ -+ -+ \ -+ -+(i) = f(t + 0T,y +g(t ,y ) + T L A. 0 .f(t + 0T,v ) 

n n n n i=O ~i n 

.t-1 -+ -+ \ -+ -+{i) -+ -+ 
+ g(t + 8 0 T,y + T l A0 .f(t + 8T,V · )) - g(t ,y )) 

n ~ n i=O ~i n n n 

where 

By the same reasoning as above we should now require that the grid functions 

-+ -+ 
are sufficiently smooth for small h-values. If the functions f and g slowly 

vary with their arguments, this grid function approximates the grid function 
-+ -+ 

dy/dt + db/dt at t = t and therefore may be assumed to be sufficiently 
n 

smooth. 

By a similar argument we are led to the function (2.12d) instead of the 
-+ -+ 

usual linearization of f(t,y). 

3. NUMERICAL EXPERIMENTS 

The aim of our numerical experiments was to get information to what 

extent the results of the MRI< methods differ from the results of the generat­

ing classical methods. In order to demonstrate the relevance of the modified 
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schemes in practical problems we also present results obtained by the ADI 

method which is accepted in the literature as one of the more efficient inte­

gration techniques. To compare the efficiency of the MRK and ADI methods we 

define the efficiency rate of the MRK methods with respect to the ADI method: 

Let T be the stepsize for which them-stage MRK method produces an accuracy 
➔ 

A and let N(A) be the total number off-evaluations which is needed by the 

ADI method to produce the same accuracy A. Then ,N(A)/m will be called the 

efficiency rate of the MRK method corresponding to the integration step,. 

This value indicates the fraction to which the computational effort of the 

generating RK method should be reduced in order to make its modification as 

efficient as the ADI method. The rate of efficiency of an MRK method provides 

insight in its practical relevance. Of course, one should only apply the 

modification when a substantial reduction of computing time can be achieved. 

For the sake of illustration however this is not important and therefore we 

have chosen relatively simple test problems. 

3.1. The initial-boundary value problems 

The following two equations were chosen: 

(3. 1) 

and 

(3. 2) 

sin3 (21rt), 0 :,; t :,; 1. 

The functions 

(3.3) 

and 
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( 3. 4) 

satisfy (3.1) and (3.2), respectively. Both equations were considered on the 

unit square 0 :5: x 1 ,x2 :5: 1 with Dirichlet-boundary conditions along its bound­

ary 3Q. These boundary conditions and the initial condition at t = 0 are de­

fined by the exact solutions (3.3) and (3.4). 

The initial-boundary value problems were semi-discretized on a uniform 

grid in the (:x 1 ,x2 )-plane using the standard symmetric differences. As grid­

size we chose h = 1/20 for equation (3.1) and h = 1/20, h = 1/40 for equa­

tion (3.2). This results in systems of respectively 361 and 1521 ordinary 

differential ,equations of the form ( 1. 1) . The solutions of these systems 

can de derived from u(t,x1 ,x2 ) by restricting (x 1 ,x2 ) to the grid points 

(this is a consequence of x 1 and x 2 occurring quadratically in (3.3) and 

linearly in (3.4)). 

The spectral radius o(J) needed in the stability condition was approxi­

mated by respectively 

(3. 5) 

2 
8 24u ~ 24 

a - 2' a = max 2 = h2 h rh h 

3.2. Methods used 

Two RK formulas combined with several modified right hand side functions 
+k 
f were applied to the problems (3.1) and (3.2). In addition, we used the 

standard ADI method of Peaceman and Rachford. 

(3 .6) 

The RK formulas used were proposed in [3] and of the form 

➔ (O) 

Yn+1 = 

➔ (j) 

Yn+1 = 

➔ ➔ (1) 

y ' n Yn+1 

➔ (j-1) 
µjyn+1 + 

➔ (m) 

Yn+1. 

➔ (j-2) ~ --H< ➔ --H< ➔ (j-1) 
(1-µ,)y l +y,Tf (t ,y) +]J.Tf(t +6. 1T,y l ), 

J n+ J n n J n J- n+ 

0. = µ.0. 1+(1-µ.)6. 2+y.+µ., 
J J J- J J- J J 

j = 1,2, ..• ,m, 
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The first formula is of first order, has R{l) (z) as its stability polynomial 
m 

(cf. (2.5)) and is defined by 

w0+1 

2wo 
Tj-1 (wO) w0+1 

o, µ1 , µj == µj µ., y. == 
Sw0 Tj(w0 ) Sw0 J J 

(3. 7) 

1 
1 s 1.93m 

2 
(z) Ro)<z). WO + ~ R 

20m2 
, , 

m m 

The second formula is second order accurate, has A( 2) (z) as its stability 
m 

polynomial (cf. (2.6)) and is defined by 

(3. 8) 

b(w0+1)Tm(w0 ) 

µ1 == Sw0 

== 1 + 2 
13m2 ' 

2 
S _ 0 .65m , R (z) 

m 

µ_ 
J 

Y. 
J 

-aµ., 
J 

Both formulas are internally stable for unlimited large m-values [3]. 
-'rl: 

The modified right hand side functions f used in the experiments are 

taken from Section 2.3 and specified in the tables of results given in Sec­

tion 3.3. 

The number of stages in the RK methods was chosen according to the 

stability condition (1. 2), i.e. 

(3.9) 

where [x] denotes the greatest integer less than or equal to x. 

3.3. Numerical results 

In the tables of results given below the values of the pair m\A are 

listed where A denotes the number of correct digits in the numerical solu­

tion, i.e. 
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(3.10) 
10 

A = min (- log I exact solution - numerical solution I ) . 
fh 

➔ 
In the case of the ADI method m will denote the number off-evaluations per 

step needed in the Newton iteration processes. The various methods in the 
+* tables will be denoted by {in~egration formula; modification f 1. To compare 

the efficiency of ~he MRK and ADI methods we list for the most efficient MRK 

method the effiriency rate with respect to the ADI method. Actual.'.y the list­

ed efficiency rates can be increased because in the ADI method we did not 

tak3 into account the effort involved in evaluating the Jacobian matrix and 

the solution of the implicit equations. 

In table 3.1 results are listed for the linear problem (3.1). It shows 

that the constant-time modification (2.12a) causes an unacceptably large 

drop in accuracy in spite of the fact that the generating formula (3.7) is 

of first order and the deviation from the classical RK formula of second 

order in T (note that we choose 0 = 82 , cf. (2.16)). The modification (2.12b) 
➔ ➔ ➔ 

in which the boundary field g(t,y) and the internal field y are tuned to 

the same time level, performs better but evidently the local deviation error 

(2.8) is still much larger than the local error of the RK formula. The second 

order version (2.17b) of (2.12b) turns out to produce a deviation error which 

is small with respect to the errors of the classical formulas (3.7) and 

(3.8) (we note that the A-values of the RK solution and the MRK solution 

differ b~1 at most . 30 if the global deviation error is roughly equal to the 

global error of the generating formulas). Since in this example the modifi­

cation (2.17b) with 0 = 0, 0 = 1 is hardly more expensive than (2.12b) we 

may conclude that the second order modification (2.17b) combined with the 

second order RK formula is the most efficient MRK method. The efficiency 

rate listed in table 3.1 shows that this MRK method is competative with the 
+* ADI method if in the low accuracy range the evaluation off costs 20% of 

➔ 
the evaluation off and about 45% in the high accuracy range. 
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Ta,1:Jle 3.1. Results for equation (3.1) when discretized on a grid with h=l/20. 

method 1 
1 1 1 

T = T = 
12 

T = 
35 

T = 
70 

{(3.7); 
➔ * 
f = f} 41\1.39 12\2.74 7\3.52 

{(3.7); ( 2. 12a) , e O} 41\-.06 12\.63 7\1.21 

{(3.7); (2.12a), e = s2} 41\.07 12\.63 7\1. 22 

{(3.7); (2.12b), e = S2} 41\.55 12\2.19 7\3.26 

{(3.7); ( 2. 17b) , e = 0, e = 1} 41\1.15 12\2.71 7\3.51 
+* + 

{ ( 3 .8 ) ; f = f} 71\2.02 21\3.70 12\4.49 9\5.08 

{(3.8); (2.12b), e = ..!.} 
2 

71\0.82 21\2.01 12\2.61 9\3.27 

{ (3.8); (2.17b), e = 0' 8 = 1} 71\2.29 21\3.53 12\4.43 9\5.02 

{ADI; f} 2\.79 2\2.81 2\3.74 2\4.34 

Efficiency rate 0.19 0.22 0.37 0.49 

Table 3.2. Re!sults for equation (3.2) with h = 1/20. 

method 

{ +* ➔} (3.7); f = f 

T = 1 
1 

T = 1Q 
1 

T = 20 
1 

T = 40 
1 

T = -8-0 T = 

71\-.23 23\.87 16\1.25 12\1.56 8\1.86 

1 
160 

{(3.7); (2.12b), e = S2 } 71\-.16 23\.83 16\1.24 12\1.56 8\1.86 
+* + 

{'(3.8); f = f} 122\-.26 38\1.41 28\2.05 20\2.89 14\3.66 10\4.26 

{ (3.8); (2.12b), 8 = ½} 122\-.13 38\.78 

➔ 
{ADI; f} 

Efficiency rate 

28\1.51 20\2.39 

0.25 

14\3.45 

2\2.11 
4\3.18 

0.38 

10\4.23 

2\2.73 
4\4.25 

0.38 

Table 3.2 shows that the deviation error of the first order modifica­

tions is relatively small in comparison with the error of the generating 

formulas. It is also clearly seen that the second order RK formula (3.8) 

is considerably more sensitive to modification than the first order RK for­

mula (3.7). 1:'he ADI method developed instabilities for T ~ 1/40 (indicated 
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by* in the tables of results). In the higher accuracy region the MRK method 

{(3.8); (2.12b)} is competitive with the ADI method if the computation time 
-+* -+ 

to evaluate f is reduced to 38% of that off. In the lower accuracy region 

(A E [1,3] say) the MRK method is at least competitive if this percentage 

is 25%. 

Table 3.3. Results for equation (3.2) with h = 1/40. 

1 
method T = 1 

1 
T = 10 

1 
T = 20 

1 
T = 40 T = 80 T = 

1 
160 

{(3.7); 
~ -+ 
f = f} 142\-.21 45\.85 32\1.24 23\1.56 16\1.86 12\2.16 

{(3.7); ( 2. 12b) , e = B2} 142\-.15 45\.81 32\ 1. 23 23\1. 56 16\1. 86 12\2.16 

{(3.8); 
➔* -+ 
f = f} 244\-.31 77\ 1. 36 55\2.00 39\2.83 28\3.67 20\4.28 

{ ( 3. 8) ; 
1 

( 2. 12b) , 8 = -} 244\-.14 77\. 71 55\1.50 39\2.36 28\3.27 20\4.24 
2 

{ADI; f} 10\* 10\* 10\* 10\* 4\2.67 4\3.71 

Efficiency rate 0.23 0.37 

In table 3.3 the experiments listed in table 3.2 are repeated for 

h = 1/40. We see that for larger values of TG the accuracy of the RK and 

MRK methods :is nearly preserved whereas the ADI method shows a substantial 

decrease in accuracy. 

The final conclusion (based on our experiments) is that 

(i) the second order MRK method is the most efficient one; 

(ii) the MRK method is advantageous in problems where the modification 

results in a substantial reduction of computing time when compared 

with the generating RK method. We found reduction to 25% adequate 

in order to be competative with the ADI method; 

(iii) the stability behaviour of the MRK method is insensitive to large 

TG-values; hence low accuracy results can be obtained for strongly 

non-linear problems, while the ADI method behaves unstable in this 

situation. 
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