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Mult.iplP Gri.d M~>thods for the so1ution of Fredliu]m Inteqra] Equati,;nf; of 
q 

the S('Cond kind 

by 

P.W. Hemker & H. Schippers 

ABSTRACT 

In this paper multiple grid methods are applied for the fast solution 

of the large non-sparse systems of equations that arise from the discretiza

tion of Fredholm integral equations of the second kind. Various multiple 

grid schemes, both with Nystrom and with direct interpolation are consid

ered. For these iterative methods the rates of convergence are derived 

using the collectively compact operator theory by Anselone and Atkinson. 

Estimates for the asymptotic computational complexity are given, which show 
2 

that the multiple grid schemes result in O(N) arithmetic operations. 

KEY WORDS & PHRASES: Fredholm Integral Equations of the second kind, 

Multiple Grid Methods 

*)This report will be submitted for publication elsewhere. 



1. INTRODUCTION 

Multiple grid methods have been advocated by BRAND'l' [5,6J for so.iving 

sparse systems of equations that arise from discretization of partial dif

ferential equations. Convergence and computational complexity of such multi

ple grid techniques have been studied since by HACKBUSCH [7,8] and WESSELING 

[12,13]. We intend to show that multiple grid methods can also be used ad

vantageously for the non-sparse systems that occur in numerical methods for 

integral equations. 

In a recent paper [10] the second author applied the multiple grid 

technique to the solution of Fredholm integral equations of the second kind 

( 1. 1) 

1 

f(x) - f k(x,y)f(y)dy = g(x), 

0 

XE [0,1], 

where g belongs to a Banach space X. At the same time, HACKBUSCH [7] also 

used a multiple grid technique for these problems. Moreover, he gave a proof 

of convergence. In this proof he assumed the operator K, associated with the 

kernel k(x,y), to map from X into a "smooth" subspace X c X, which has a 

stronger topology. In the present paper, for Hackbusch's method we give an

other proof, which fits into the theoretical framework developed by ANSELONE 

[1] and ATKINSON [2,3] for Fredholm equations. We assume that K is compact 

from x into X. In contrast to Hackbusch's analysis, this approach enables us 

to consider also Nystrom interpolation as a permissible interpolation meth

qd. In addition, we introduce a new multiple grid method for Fredholm in

tegral equations, which can deal with a larger class of problems than the 

method proposed by Hackbusch. 

In 1978 STETTER [11] introduced the Defect Cor~ection Principle for 

the formulation of various iterative methods. We shall apply this principle 

because it also appears to be an expedient tool to formulate multiple grid 

techniques. 

In section 2 we collect some results from papers by ATKINSON [2,3] 

and PRENTER [9]. In section 3 we cast the iterative schemes of BRAKHAGE 

[4] and ATKINSON [2,3] into the context of the Defect Correction Principle 

and multiple grid iteration. Furthermore we give the proof of convergence 
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of the multiple grid schemes with Nystrom interpolation. In section 4 we 

treat other interpolation methods and we extend the iterative schemes of 

section 3 for subspaces X of X of finite dimension N. These schemes are 
p p 

used as a basis for the construction of a general algorithm for the solu-

tion of Fredholm equations of the second kind. This algorithm is more ef

ficient than the algorithms by BRAKHAGE [4] and ATKINSON [2,3] because 

these schemes take O(N3) and O(N2 log N) operations, respectively, where-
p p p 2 

as the multiple grid schemes result in 0(N) operations. In section 5 we 
p 

illustrate the theoretical results of the previous sections by some numeric-

al examples and we comment on the computational complexity. 

2. BASIC ASSUMPTIONS 

Equation (1.1) can be written symbolically as 

(2. 1) Af = g, g EX, 

where Xis a Banach space and A= I-K, with I the identity operator on X 

and K the linear operator associated with the kernel k(x,y). A is assumed 

to have a bounded inverse on X. We shall discuss the convergence of a 

sequence of approximations to the unique solution of (2.1). 

T I p 
p 

T f .p = 

Al. 

A2. 

Let 

= 
f 

X, p = 0,1,2, •.. , be finite-dimensional subspaces of X and let 
p 

0,1,2, •.. , be a bounded projection operator from X onto x , i.e. 
p 

for all f EX. We need the following assumptions for {X} and {T} 
p p p 

lim II f-T fll = O for all f E X. 
p+oo p 

LEMMA 2.1. 

C 1 = sup ll T II < oo 
p:2::0 p 

~- The lemma follows from the principle of uniform boundedness, see 

ATKINSON [3], p.18. 0 
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The sequence {x} is 
p 

thought to be associated with a sequence of decreasing 

mesh-sizes {h} with 
p 

lim h 
p➔oo p 

= 0. Corresponding with this sequence {h} we 
p 

approximate K by a sequence of operators {K }, K: X ➔ X. Analogous to 
p p 

A= 

the 

A3. 

A4. 

AS. 

A6. 

I-K, we also write A I-K . In the context of multiple grid 
p p 

subscript p is called "level". 

We use the following assumptions on 

K is a linear operator X ➔ X. 
p 

K , p = 0,1,2, ... , 
p 

{K} is a collectively compact family of operators. 
p 

lim II K f-Kfll = 0 
p➔oo p 

K =KT 
p pp 

for all f EX. 

LEMMA 2.2. From the assumptions A3-A5 follow: 

i) K should be compact. 

ii) 

iii) 

iv) 

the sequence {K} is uniformly bounded, i.e. 
p 

c 2 = sup IIK II 
p:2:Q p 

< 00 

lim II (K-K )MIi = 0 for any compact operator M: X ➔ X. 
p➔oo p 
Let 

a = sup sup II (K-K ) K II , 
P q:2:p l~o q l 

then lim a = 0. 
p➔oo p 

PROOF. See ATKINSON [3], p.96 and p.138. 0 

iteration, 

LEMMA 2.3. Let the finite dimensional subspace x0 c X be sufficiently large 

(i.e. the meshwidth of the coarsest discretization is sufficiently small). 

From the existence of a bounded inverse of A= I-Kand the assumptions 

A3-A5 follow: 

(i) (I-K )-l exists on X for p ~ 0 and 
p 

< 00 
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ii) 

(2.2) 

lf-f A ~ c3DKf-K f0, where f is the solution of (2.1) and f 
p p p 

(I-K )f = g. 
p p 

PROOF. See ATKINSON [2], p.18. 0 

of 

The following lemma is a summary of results given by PRENTER [9]. 

LEMMA 2.4. From the assumptions A2-A6 follow: 

i) For any compact operator Mon X into X: 

lim II (I-T )Mil = 0. 
p-r<» p 

ii) 
-1 

If x0 is sufficiently large, then (I-T K) exists on X for p ~ 0 and 
pp 

C = sup II ( I-T K ) - l 11 < oo 
4 P~O PP 

Let f be a solution of 
p 

(2. 3) (I-T K )f = T g. 
pp p p 

According to lemma 2.4 (ii), f exists and is unique; it follows from (2.3) 
p 

that f EX. 
p p 

LEMMA 2.5. Let 

b = sup sup II (I-T )K1), 

P q~p l~o q ~ 

then limb 
p-l"'X' p 

PROOF. Let'¥ 

= o. 

= {K fl p ~ 0 and llfll < 1}. By assumption A4, "ljJ has compact 
p 

closure in the Banach space x. Then 

b = sup sup ll(I-T )zll 
p q~p ZE'i' q 

and the proof follows by assumption A2. D 

LEMMA 2.6. Let the subspace x0 c X be sufficiently large, then 
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III -T fll s CC UKf-K fll, 
p p 1 4 p 

where f is the solution of (2.1). 

PROOF. See PRENTER [9], theorem 6.3. 0 

As a consequence of assumption Al, the following lemma is trivial. 

LEMMA 2.7. Let q s p, i.e. dim(X) s dim(X), then 
q p 

T T = T T = T . 
p q q p q 

3. ITERATION SCHEMES WITH NYSTROM INTERPOLATION 

In this section we use the Defect Correction Principle (cf. STETTER 

[11]) to formulate a clas.s of iterative methods for the solution of (2.2). 

This equation is written as 

( 3. 1) A f = g, 
pp 

g EX, 

with A = I-K. The defect correction principle defines the following 
p p 

iterative process: 

r = o, 
p,O 

(3.2) 

fp,i+1 = B g + (I-B A ) f .. 
p pp p, 1 

Here B denotes some approximate inverse of A, which is bijective and con-
P p 

tinuous in X. The solution f of (3.1) is a fixed point of (3.2) and (3.2) 
p 

will converge to f if the rate of convergence 
p 

II I-B A II < 1. 
p p 

Several well-known iterative schemes for solving Fredholm integral 

equations of the second kind can be formulated within this framework. The 

iterative scheme of BRAKHAGE [4] is obtained by taking the following ap

proximate inverse 
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(3.3) 
-1 

I+{I-K 1) K . 
p- p 

-1 
Here we notice that the operator (I-K) , q 2 0, as a mapping on X into X 

q 
describes the process of discretization, solution of the discrete problem 

(i.e. the solution of a square linear system) and subsequent Nystrom inter

polation (see e.g. [10]). Other kinds of interpolation are treated in the 

next section. 

The second iterative scheme of ATKINSON [2], p.19, arises from 

( 3. 4) 

The rates of convergence of the corresponding iterative processes are 

estimated in the following theorem. 

THEOREM 3.1. 

i) llr-B(l)A II ➔ 0 as p+ 00 

' p p 

ii) llr-B( 2 )A II :,; C(X0 ) asp-+ 00 , 
p p 

C (X0 ) < 1 for x0 sufficiently large. 

PROOF. 

i) Substitution of the explicit expressions for A and B(l) yields: 
p p 

I-B(l)A 
p p 

= I-{I+(I-K )-lK }(I-K) = 
P-1 P P 

= K -(I-K )-lK (I-K) 
P P-1 P P 

-1 . = (I-K ) (K -K )K . 
P-1 P P-1 P 

From lemma 2.2 and 2.3 we get the following bound for the norm 

li(I-K )-l(K-K ) K II :,;c3 (a+a ). 
P-1 P P-1 P P P-1 

ii) Analogously, we get for B(2) with XO sufficiently large, p 



From lemma 2.2 it follows that c(x0 ) < 1 for all sufficiently 

large x0 . 0 

k h t h · · (1) d ( 2 ) 1 We remar ta t e approximate inverses B an B use on y two 

7 

(1) p (2) p 
levels: B uses the levels p-1 and p, whereas B uses the levels O and 

p p 
p. We now introduce approximate inverses B( 3 ) and B( 4 ), which use p+l levels. 

p p 
They are defined recursively as follows: 

r~3) -1 
= (I-KO) , 

( 3. 5) 

B ( 3) = I + Q(3)K ' p = 1,2, ... , 
p p-1 p 

and 

r~4) -1 
= (I-KO) , 

(3.6) 

B(4) = Q( 4 ) (I-K +K ), p = 1,2, ... , 
I,. p p-1 p-1 p 

with Q(j~ j = 3,4, p = 0,1,2, ... , given by 
p 

for some positive integer y. 

From the fact that Q(j) satisfies the equality 
p 

( ' ) 
we see that Q J is an approximate inverse of A and its application is 

p p 
equivalent with the application of y it.eration steps of (3.2) with the use 

of the approximate inverse B(j). In fact, this is the motivation for this 

definition of Q(j) and it ispthe basis for the actual (recursive) implemen-
p 

tation of the method. 

In the following definition we give a short notation for the rates of 

convergence for the various iterative processes. 

DEFINITION. 

l:(j) = 
p 

j = 1,2,3,4. 
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THEOREM 3.3. 

i) s~3l s s ( 1) + sC3)Y(1;;(1) + IIK II), 
p p-1 p p 

ii) 
(4) s s (1) + (4)y(1:;;(1) + 1) • 

1:;;p p sp-1 P 

PROOF. 

i) by definition 

I-B(l)A = I-{I+A- 1
1 (I-A )}A 

p p p- p p 
and 

Hence 

i.e. 

ii) similar to the case i), now we have 

Hence 

i.e. 

□ 

(1) r
0
(3) 

By theorem 3.1 we know thats + 0 asp+ 00 ; conditions for~-
p 

to vanish depend on y, II K II and s ( 1) , whereas the conditions for s ( 4 ) depend 
(1) p p p 

on y ands only. In order to study this dependence further we prove the 
p 

following lemma. 
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LEMMA 3.4. Let k E JR and y E JN be aiven, let {v I v > 0, p = 0,1,2, ... } 
~ V p p 

be a non-increasing sequence with d = inf _J2.._ and let {w} be defined by 
P vp-1 p 

If either 

(i) 

or 

(ii) 

~WO= VO y 

iw = v + w 1 (v +k). 
\ p p p- p 

{

y 2: 1, 0 < k < d < 1 

V <½(1-~) 
0 d 

k - -} 
d 

and 

then a C > 0 exists such that v s w s Cv. 
p p p 

PROOF. 

i) We define c 
d+k = d-k; then c > 1 and the conditions on {vp} are written 

as 

(3.7) 

and 

(3. 8) 

V 
c+1 n k -- < ____._ s 1 
c-1 V 

p-1 

(l+c) V Q < 1. 

We show that the lemma is true for C = l+c. From (3.8) we see 

w0 = v 0 < (l+c)v0 < 1. Now we show by induction that wp < (1+c)vp < 1 

assuming that wp-l < (l+c)vp-1 < 1. 

From (3.7) follows 

c-1 
< -

c+l' 

V 

+ ..J2.:..!. k) < _£_, 
v c+l p 
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ii) 

w = v + wy 1 (v +k) < (l+c)v • 
p p p- p p 

I k 2 c 
We assume v 0 < ✓( 2d) + 2 

(l+c) 
w :,; (l+c)v; then the lemma 

p p 

For any v E [o,v0 J we have 

2 
V 

k 
+ -v

d 
C 

2 < 0. 
(1+c) 

k 
- - for some O < c:,; 1 and we show 

2d 
is proven by taking c = 1. 

k C 
Hence ( 1 +c) v (v + d) < 1 +c. By assumption we know 

Now we show by induction that w < (1+c)v < 1, assuming that 
p p 

THEOREM 3.5. 

( 1) 
l:;,p ~ 

(i) if VO :,; 

2 2 k 
(l+c) V l (1 +--) < C, 

p- Vp 

C 
< --

1+c' 

(1+c) yvy 1 (1 +~) < c, 
p- V 

y=2,3, ••. , 
p 

w ;_ 1 ( 1 + vk ) < c, 
p 

w = v +w'Y 1 (v + k) < ( 1+c) V 
p p p- p p 

Let '( ;:: 2 and let l:;,;1) satisfy 

aPv for some V = 0 < d < 1 ' then p 0 

1 /4 ~ 2' 
{ d +c -c } it follows that 2d 2 2 

q.e.d. 

I'; ( 3) 
p 

~ 

D 

p 
2a v 0 , and 



PROOF. 

(i) Let {wp} be defined as in lemma 3.4 with k = = c2 
follows from the proof of lemma 3.4 that 

supll K II, then it 
p;;:,:Q p 

w ::::; 2v . 
p p 

Therefore we show 1;; ( 3 ) 

1;;( 3 ) we derive P 

~ w by induction: from the definition of p 

p 

and by theorem 3.3 

y 
~ 1;;(1) + 1;;(3)1 (i;;(l)+IIK II) 

p p- p p 

~v +wy 1 (v +c2)=w. 
p p- p p 

(ii) Similarly, with {w} defined as in lemma 3.4 with k = 1, we prove 
p 

1;;( 4 ) < w and hence 
p p 

< w 
p 

q.e.d. D 

11 

REMARK. If B( 3 ) is defined with y = 1, then a similar proof yields that, 
p 

for any decreasing sequence {v} with 
p 

for which 

we have 

sup II K II = 
p;?:Q p 

~ V , 
p 

C < d 
2 

l;;p(3) < ~ V 0 
d-c2 p 

V 

inf _.E_ < 1 
V 

p p-1· 

By f(j) we denote the result of 0 applications of the Defect Correc

tion Proc~~: on level p with approximate inverse B~j), j = 1,3,4, when we 
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take zero as the initial approximant. 

With the aid of the previous theorem and lemma 2.3 now the following 

theorem is immediate. 

THEOREM 3.6. [Approximation theorem] Under the hypotheses of theorem 3.5 

the Multi-Grid process yields approximate solutions for which the follow

ing error estimate holds 

j = 3,4, 

where f and f are the solutions of (2.1) and (2.2) respectively. 
p 

PROOF. The proof follows immediately from 

II f-f II + II f -f ( j) II • D 
p p p,0 

4. ITERATION SCHEMES WITH PROJECTION INTO FINITE DIMENSIONAL SUBSPACES 

In this section we expand the technique used in section 3 to find the 

solution in X of the equation (2.3): 
p 

( 4. 1) A f = gp, 
p p 

g E X , 
p p 

where A = I-T K is a mapping on X into X. We assume that x0 is suf

that (I-T K )-l exists for all p ~ O. 
p pp 

ficiently large such 

Analogous to 

we now introduce: 

p p 
the approximate inverses of A in the previous section, 

p 

~(1) 1 
B = T + T ( I -T K ) - T K , 

p p p-1 p-1 p-1 pp 

-1 = T (I-T K ) o o o· ' 

T +T Q( 3 )T K 
p p-1 p-1 p p' 



with 

for some 

The 

solution 

T - T + T Q ( 4 ) (T -T K +T K ) , 
p p-1 p-1 p-1 p-1 p-1 p-1 pp 

positive integer y. 
~( . ) 

operators BJ , j = 
~ p 
f EX of (4.1) is 

p p 

j = 3,4, 

1,2,3,4, are all mappings on X into X. The 
p 

approximated by a defect correction process 

of the form 

( 4. 2) {
f = 0, 

p,O 

fp,i+l 
~ 

Bpgp + (I-BA )f .. pp p,l. 

13 

~(1) ~(3) 
We notice that B and B yield iterative processes that are equivalent 

p p 
respectively with the "One Step Method" and the "Multi Grid Method" dis-

cussed in HACKBUSCH [7]. B( 2 ) yields an iterative process analogous to 

Atkinson's method, whereaspB( 4 ) yields a new multiple grid method with 
p ~ (3) 

better convergence properties than B . 
p 

Analogously to section 3, but restricting the domain of the operators 
~( . ) 

to X , we see that here Q J : X ➔ X is an approximate inverse of A : X ➔ X 
p p pp pp p 

and the amplification operator on X into X of a defect correction step 
~(j) p p 

with QP is 

T 
p 

~(j )~ 
Q A 

p p 

~ (j) 
Thus, one application of Qp is equivalent with they times application 

~ ( j) 
of B and we may write 

p 

The convergence of the process (4.2) depends on the Lipschitz constant of 

the operator I-BA as a mapping X ➔ X. Therefore its rate of convergence 
pp p p 
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is given by 

DT <r-B A ) n. 
p pp 

This rate of convergence is studied in the remainder of this section. 

THEOREM 4. 1 • 

i) 

ii) 

IIT (I-B(l)A )II ➔ 0 
p p p 

IIT cr-B< 2>i: >II :,; c<x0> 
p p p 

asp ➔ co, 

as p + co, 

~ c(x0 ) < 1 for x0 sufficiently large. 

PROOF. 

i) ' f h 1 · . ' for ~B (1 ) and A • ld Substitution o t e exp icit expressions yie s p p 

T (I-B(l)A) = (T -T )K + 
p p p p p-1 p 

-1 + T 1 (I-T 1K 1 ) T (K -T 1K 1)K. 
p- p- p- p p p- p- p 

Therefore we have 

II T ( I - B (1 ) A ) II :,; II ( I -T ) K II + II ( I -T ) K II 
p p p p p p-1 p 

+ IIT II II (I-T K )-111IIT 11{11 (K -K)K II + II (K-K 1)K II + 
p-1 p-1 p-1 p p p p- p 

+ II (K 1-T 1K l) K II}. 
p- p- p- p 

Using the lemmas 2.1 to 2.5 we obtain the proof of (i) by the same 

arguments as used for the proof of theorem 3.1. 

ii) Replacing the subscript p-1 by O in the first part of the proof, we 

get 

IIT (I-B<2 >;;: )II :,; II (I-T )K II + II (I-T )K II + 
pp p pp Op 

+ IIT0 11 ll(r-T0K0)-1IIIIT ll{ll(K-K)K II+ ll(K-K )K II+ 
p p p O p 

+ ll ( I-TO) Ko II II KP II } • 



For p~ II (I-T )K II and II (K -K)K II vanish, whereas the other terms 
p p p p 

tend to a constant value depending on x0 • D 

DEFINITION. 

THEOREM 

( . ) 
l7 J 

p 

4.2. 

( 3) 
l7 p 

(4) 
l7 p 

< l7 

< l7 

j = 1,2,3,4. 

(1) (3)\ (1) 
+ 11T IIIIK 117 + l7 1 l7 p p- p p p -

(1) (4) \ (1) 
+ 11T II J. +17 1 l7 p p- p p 

15 

( . ) 
PROOF. We use the notation M J = 

p ~ 
A6 and the definitions of A, A 

T (I-B(j)A ), j = 1,3,4. From assumption 
p ~( ·f p 

and BJ , j = 1,3,4, it is clear that 
p p p 

~ TA = T A = AT 
pp pp pp 

and 
~ ( j) 

= TB (j) = B(j)T j = 1,3,4. B , 
p pp p p 

Fl-ence 
M (j) = T M(j) = M (j) T , j = 1,3,4, 

p p p p p 

and also 

:j.) 

Q(j) = [T -M(j)y]A-l 
p p p p 

~(1) 
From the definition of B we get 

p 

~ ~-1 ~ 
T -TA -T A T KA 

p pp p-1 p-1 pp p 

= T K -T A-l T KA. 
pp p-1 p-1 pp p 

These relations are used to prove that 

M( 3 ) = T [I-{T +T l(T 1-M(3 )y)A- 11T K }A] 
p p p p- p- p p- p p p 

(3) y ~-1 
= Tp-TpAp-Tp-l (Tp-l-Mp-l )Ap-lTpKpAp 
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(3)YT i- 1 T KA = M(i) + M p-1 p-1 p PP 
p p-1 

= M(1) + M( 3 ) y (T K -M(1)). 
p p-1 p p p 

Hence 
~ (1) (3)y( (1) + IIT IIIIK II). 

np + np-l np P P 

~ ~ (4)y ~-1 ~ 
ii) = T -T A +T A - (T -M ) A (T A +T K ) A 

p pp p-1 p p-1 p-1 p-1 p-1 p-1 pp p 

Hence 

= M (1) +M ( 4 ) y A- 1 (A T +T K ) A 
p p-1 p-1 p-1 p-1 pp p 

= M(l)+M( 4 )YT T (A +A- 1 T KA) 
p p-1 p-1 p p p-1 pp p 

y 
= M ( l) +M ( 4 ) (T -M (1) ) • 

p p-1 p p 

q.e.d. □ 

THEOREM 4.3. Let y ~ 2 and let n(l) satisfy 
p 

(l) ~ v = dpv, for some 0 < d < 1, then 
np P o 

PROOF. 

i) Use lemma 3.4 with k = c 1c2 and theorem 4.2. 

ii) Analogously with k = c1 • 0 

By f(j) we denote the result of cr applications of 
p, 0 ~ ( j) 

tion Process on level p with approximate inverse B , 
p 

take zero as the initial approximate. 

the 

j = 

Defect Carree-

1,3,4, when we 

THEOREM 4.4. [Approximation theorem] Under the hypotheses of theorem 4.3 
~(j) 

the Multi Grid process yields f , for which the following error estimates 
p, 0 

holds 



p CT ~ II f-T fll + c c II Kf-K fll + ( 2d v ) II f II, 
p 1 4 p O p 

where f and f are the solutions of (2.1) and (2.3) respectively. 
p 

PROOF. For j = 1,3,4 we have 

llf-T fll 
p 

+ 11T f-f II 
p p 

and the proof follow from lemma 2.6 and theorem 4.3. 0 
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We notice that the usual discretization methods easily satisfy the 

first condition of theorem 4.3 as is illustrated in section 5. The other 

condition of theorem 4.3, which requires an upperbound on v 0 , essentially 

is a requirement on the coarsest discretization used in the multiple grid 

algorithm. This condition is also discussed in the next section. 

5. NUMERICAL RESULTS 

In this section we illustrate the theoretical convergence results from 

the previous sections and we make some remarks about the computational com

plexity of the various methods. We shall only show numerical results ob

tained with the methods that appear to be the most efficient. These methods 

are defined by the approximate inverses B( 2 ) (Atkinson's method), B( 3 ) 
~(4) p p 

(Hackbusch's method) and B (a new method with better convergence 
p 

J?roperties). 

( 5. 1) 

As an example, the integral equation 

1 

f(x) - A f cos(TTxy)f(y) = g(x) 

0 

is solved for various values of the parameter A (cf. HACKBUSCH [7] who 

gives results for the same equation); g(x) is chosen such that 

rule: 

X 
f(x) = e cos(7x). 

The operators K are defined by means of the repeated trapezoidal 
p 
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K f(x) = 
p 

w,k(x,x.)f(x.), 
J J J 

where the nodal points {x.} are uniformly distributed (x0 = 0, xN = 1) and 
J p -1 

the weights {w} are given by {½h ,h ,h , ..• ,h ,½h} with hp= (N) . 
j PPP PP P 

The projection operators are defined by piecewise linear interpolation at 

the nodal points {xj}. The different grid-levels are related by Np= 2Np-l. 

For the operators {K} and {T} we know (cf. ATKINSON [3] and PRENTER 
p p 

[9]) 

(5.2) II K f-Kfil = O(h2), 
p p 

( 5. 3) IIT f-fll = 0 (h 2) , 
p p 

( 5. 4) a O(h2 ) and 
p p 

( 5. 5) b = O(h2 ) for p + co 
p p 

using these estimates, we easily derive (see the proof of thm.4.1) 

:,; V 
p 

2 
= Ch l p-

Because the successive meshsizes are related by h p 

(5. 6) :;; V 
p 

= 2 -p 4ch04 • 

h 2-p we have 
0 

Comparing this expression with the assumption on n(l) in theorem 4.3 we 
p 

see that d = 1/4. In the same theorem conditions on n~l) are formulated 

for the multiple grid methods to converge. Comparing these conditions we 

conclude that the condition on n~l) in the process defined by B( 4 ) is 
p~(3) 

independent of c2 = sup II K II , whereas in the process defined by B the 
(1) p~O p p 

condition on n0 becomes stronger as sup IIK II increases. In figure 1 we 
P~O p~(3) ~(4) 

sketch the regions of convergence induced by B and B as derived 
p p 

from theorem 4.3 with d = 1/4 and y = 2. 

Hence, from theorem 4.3 one may expect that both multiple grid methods 

yield similar results as II Kil ~ 1 whereas they differ for II KIi >> 1. For the 

integral equation ( 5. 1) II Kil » 1 holds for ;\. » 1. 



0.5 

0 1 

~ ( 3) 
B 

p 

sup IIK II 
p:2:0 p 

~ (4) 
B 

p 

o/1/;j?ff l/!/I/III//II!! 1/1 I/! 
0 1 sup IIK II 

p:2:0 p 

Figure 1. The multiple grid convergence regions. The 

coarsest grid convergence factor n 0 versus 

c2 = sup IIK II. 
p2:Q p 

In L.ibles 5.1-5.3 we give the observed rates of convergence 

n(N ;N) = [llf . -1 ,II/Iii -? ll]l/i, 
p O p,i+1 p,l p,1 p,O 
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for the iterative methods defined by B( 2 ), B( 3 ) and B( 4 ) respectively with 
p p p 

y = 2. The dependence of n(NP;N0 ) on Np, the number of mesh intervals in 

the fi:1.est grid, and on N0 , the number in the coarsest grid, is shown. The 

value of i is suitably chosen and II .II denotes the maximum norm • 

. rom table 5.1 we see that the rates of convergence of Atkinson's method 

tend to a constant value as Np ➔ 00 • As was expected, it decreases as N0 

increases. 

In the case of convergence, the table 5.2 and 5.3 asymptotically show 

similar results. However for larger values of A the new multiple grid 

method needs fewer subintervals in the coarsest grid. The quotients 

n(NP_ 1 ;N0 )/n(Np;N0 ) approximate the valued= 1/4, which is in agreement 

with the theory. 
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:\ 

1 

I 

10 

100 

~ 2 4 8 16 32 64 

4 . 23 10 
-1 

8 .2810-l . 58 10 
-2 

.3010-l 
-2 .1510- 2 

16 . 72 10 

.3010-l 
-2 .1810-2 .3810- 3 

32 . 76 10 

.3010-l 
-2 .19 10-2 .47 10-3 .83 10-4 

64 . 78 10 

.30 10- 1 -2 .19 10-2 . 52 10-3 .10 10-3 .2410-4 
128 . 78 10 

4 .1110+1 

8 .16 10+1 . 18 10° 

16 .1710+1 . 22 10° .36 10- 1 

32 .1710+1 . 23 10° .45 10- 1 .8610-2 

64 .1710+1 . 24 10° .48 10- 1 .1110- 1 .2110-2 

128 .17 10+1 . 24 10 O .48 10- 1 .1110- 1 .27 10-2 .3810-3 

4 .64 10+1 

8 .1110+2 .14 10+1 

16 .14 10+2 .16 10+ 1 . 40 10° 

32 .15 10+2 .1610+1 .42 10° . 99 10- 1 

64 .15 10+2 .16 10+1 . 45 10 O .15 10° .3310-l 

128 .1510+2 .1610+1 .49 10° .16 10° .41 10-1 .68 10-2 

Table 5.1 Rates of convergence for the two-grid method defined 

by B~2 ) (Atkinson's method). 

I 
I 

I 

I 



A 

1 

I 

10 

100 

~ 2 4 8 16 32 

4 .31 10-1 

8 .98 10-2 .94 10-2 

16 .2410-2 .24 10-2 .23 10-2 

32 .62 10-3 .62 10-3 .62 10-3 .62 10-3 

64 .14 10-3 .14 10-3 .14 10-3 .14 10-3 .14 10-3 

128 .35 10-4 .35 10-4 .35 10-4 . 35 10-4 .3410-4 

4 .32 10° 

8 .1210+1 .10 10° 

16 .42 10+1 .12 10° .25 10-1 

32 .20 10+3 .1810-l .13 10- 1 .62 10-2 

64 .23 10+6 .91 10-2 .24 10-2 • 23 10-2 .19 10-2 

128 .40 10+12 .4610-3 . 57 10-3 .52 10-3 .53 10-3 

4 .43 10+1 

8 . 11 10 +4 .11 10 +l 

16 .66 10+7 . 77 10+2 . 29 10° 

32 .17 10+17 . 79 10+4 .51 10+1 .10 10° 

64 .82 10+34 .46 10+11 .15 10+3 • 33 10° .2910-l 

128 .80 10+70 .86 10+23 .96 10+7 • 43 10° .2410-l 

Table 5.2 Rates of convergence for the multiple grid method 
~ (3) 

defined by B (Hackbusch's method). 
p 

21 

64 

.35 10-4 

• 51 10 
-3 

.85 10-2 
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"-

1 

10 

100 

fR 2 4 8 16 32 

4 .31 10-1 

8 .95 10-2 . 94 10-2 

.23 10-2 -2 .23 10-2 
16 • 23 10 

32 .62 10-3 .62 10-3 .62 10-3 .62 10-3 

64 .14 10-3 .14 10-3 .1410-3 .14 10-3 .1410-3 

.3510-4 -4 -4 .3510-4 .35 10-4 
128 . 34 10 . 34 10 

4 . 32 10° 

8 .18 10° . 10 10° 

16 .4010-1 .12 10-1 .25 10-1 

.70 10-2 .69 10-2 -2 
.62 10-2 32 .60 10 

64 .19 10-2 .19 10-2 .1910-2 .1910-2 .19 10-2 

128 .5010-3 .5010-3 .50 10-3 .50 10-3 .50 10-3 

4 .43 10+1 

8 . 72 10+1 .1110+1 

16 .30 10+2 .1110+1 . 29 10° 

32 .13 10+4 .13 10+1 . 20 10° .10 10° 

64 .1710+7 .16 lO+l .41 10-1 .3610-l .29 10-1 

128 .29 10+13 .26 10+1 . 75 10-2 .94 10-2 .1010-1 

Table 5.3 Rates of convergence for the multiple grid method 

defined by B(4). 
p 

64 

.3510-4 

.51 10-3 

.85 10-2 



23 

Using (5.2), (5.3) and (5.6) for the approximation errors we conclude 

from theorem 4.4 that for the multiple grid methods CT= 2 iteration steps 

are sufficient to get an iteration error which is of the same order of 

magnitude as the approximation errors llf-T £11 and IIKf-K fll. Of course, this 
p p 

is not the case with Atkinson's method for which one has to perform 

O(log N) iteration steps. That these asymptotic arguments hold already 
p 

for relatively small N is shown in the tables 5.4-5.5, where we compare 
p 

the approximation errors with the iteration error after CT= 2 iteration 

steps. 

:\ N B (2) ~(3) 
B 

~(4) 
B 

p p p p 

1 4 .0046 .0018 .0018 

8 .0267 .0003 .0003 

16 .1162 .0001 .0001 

32 .4743 .0000 .0000 

64 .0930 .0000 .0000 

128 5.6378 .0000 .0000 

10 4 - 3.3089 3.3089 

8 - - .0568 

16 - - .3899 

32 - - .0694 

64 - - .0194 

128 - - .0050 

Table 5.4 The ratio: iteration error after 2 sweeps/approxima

tion errors, 

i.e. 
II f 2-f p, p,oo 

llf-f II 
P,"" 

Number of subintervals: N0 = 2, (a divergent iteration 

process is denoted by-). 
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( 2) ~ (3) ~ (4) 
\ N B B B 

p p p p 

1 16 .0003 .0001 .0001 

32 .0017 .0000 .0000 

64 .0075 .0000 .0000 

128 .0306 .0000 .0000 

10 16 .0936 .3202 .3202 

32 .6088 .2000 .0692 
I 

64 2. 7111 .0341 .0194 

128 I 11.1310 .0056 .0050 

100 16 91.0760 34.0160 34.0160 

32 563.4392 - 34. 7089 

64 2480.5082 - 24.3138 

128 > 104 - 0. 1220 

Table 5.5 The ratio: iteration error after 2 

sweeps/approximation errors. 

As table 5.4, but N0 = 8. 

We conclude this section with some remarks about the asymptotic computation

al complexity. We only count multiplications, ignoring the multiplications 

with the weights w. and the computations involved in the evaluation of 
' J 
k(s,t). Then, asymptotically for N + 00 , the operation counts per iteration 

p 
sweep for the various approximate inverses are: 

B (1) : 2 ~ (1) 2 3.25 N, B : 2.5 N , p p p p 
B ( 2) : 2 N2 ~ (2) 

2 
2 B : N , p p' p p 

B ( 3) : 2 N2 2 ~(3) N2, log N , B : 3 p p p p p 
B (4) : 2.5 N2 2 ~ (4) 

3.5 N2. log N , B : p p p p p 

Here we ignored the direct solution on the coarsest grid and we applied the 

multiple grid methods with a= y = 2 on all levels. 
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NOTE. The number of kernel-function evaluations is N2 in the linear case 
p 

when they are computed once and stored. In the nonlinear case or in the 

case when kernel-functions are re-evaluated whenever they are used, the 

number of kernel~function evaluations is of the same order as the number 

of arithmetic operations. 

Asymptotically all methods need only 2 iterations to obtain a result 

of the order of the truncation error, except the methods with B( 2 ) and 
~(2) (1) p~(1) 
B which need O(log N) sweeps. For the methods with B and B the 

p p p p 
coarsest grid still has N /2 meshintervals; on this grid the problem is 

p 
solved by a direct method (e.g. Gauss-elimination) and therefore we have 

to add - 1- N3 to the total computational complexity. Thus, for the total 
12 p 

amount of asymptotic computational work we get the following table: 

B (1) : 1 3 2 ~ ( 1) _1_N3 + 5 N2 , l.2Np + 6.SNP, B : 
p p 12 p p 

(2) 2 3 2 ~(2) 2 3 2 
B : 3 N0 + 0(Np log Np), B : 3 N0 + 0 (Np log Np), p p 

B (3) : 2 3 2 2 ~ (3) 2 3 2 
3 N0 + 4Np log N , B : 3 N0 + 6 Np, p p p 

B (4) : 2 3 2 2 ~(4) 2 3 2 
3 N0 + 5Np log N , B : 3 N0 +7Np. p p p 

From these tables we see that the multiple grid methods become cheaper than 

Atkinson's method whenever the latter needs more than 3 iterations. 

In order to get an impression of the qualities of the various methods 

we suggest to measure by experiments the following ratio (which shows the 

amount of computational work per digit accuracy obtained): 

K = 
a 

Number of multiplications to obtain f p,a 

N2 * lOlogllf-f II 
P p,o 

Because of their rates of convergence for the multiple grid methods we 

choose a = 2, whereas for Atkinson's method we determine o such that K a 
minimal. Better methods are now characterized by a smaller K • a 

is 
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NO 8 16 32 64 

-~ 
B 

(2) 7.55 (11) 3.46 (5) 2.73 (3) 6.20 (2) 
p 

~ (3) - -8.42 (2) 2.97 (2) 5.95 (2) B p 
~ (4) 
B 2.00 (2) 1.86 (2) 2.20 (2) 6 .10 (2) 

p 

Table 5.6 For problem (5.1) with A= 100 and Np= 128 

the experimental ratios K , where a is given 
CJ 

between parentheses; for this problem 
10 ~ logBf-f tt = -3.5. 

p,oo 

Table 5.6 shows for the multiple grid methods that small values of N0 

are more efficient as long as the process converges. However, within a 

reasonable range of small N0 , it seems not worthwhile to determine an opti

mal N0 • 

The asymptotic work estimates and the convergence property discussed 

in section 4 lead us to prefer B( 3 ) for IIK.11 R1 1 and B( 4 ) for II Kil » 1. 
p p 

Finally, we remark that the same multiple grid techniques can be applied to 

nonlinear problems and the structure of multiple grid algorithms yields 

estimates for the approximation and truncation errors in a natural way. All 

these features together can be used to construct an automatic program for 

~olving Fredholm integral equations of the second kind. In fact such a 

program has been constructed and some of the results have been reported in 

[10]. 
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