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Linear multistep methods and the construction of quadrature formulae for 

Volterra integral and integro-differential equations 

by 

P.H.M. Wolkenfelt 

ABSTRACT 

The application of linear multistep methods to differential equations 

defining quadrature problems yields relations between the multistep coef­

ficients and the quadrature weights. By means of these relations quadrature 

formulae are constructed and analyzed (in particular, properties of the 

weights are studied, and an asymptotic expression for the quadrature error 

is derived). The quadrature rules obtained in this way are used to define 

a class of step-by-step methods for solving first and second kind Volterra 

integral equations and integro-differential equations. Convergence and sta­

bility results for such methods are unified and extended. In particular, a 

new result is presented concerning the convergence of these methods for 

first kind equations. For Volterra integro-differential equations, stabil~ 

ity regions are given for quadrature methods which are based on the back­

ward differentiation formulae. The connection between the asymptotic repe­

tition factor and relative stability is discussed. 

KEY WORDS & PHRASES: Numerical analysis, Volterra integral and integro­

differential equations, equivalence of linear multi­

step methods and quadrature formula~, convergence, 

stability. 
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1. INTRODUCTION 

( 1. 1) 

Consider the problem of determining the values of 

X 

I(x) = I cj>{t)dt, 

XO 

1 

on the uniform mesh {x.j x. = xO+jh}, where cp is a sufficiently smooth func­
J J 

tion. Approximations to I(x) can be obtained using quadrature formulae with 
n 

appropriate weights. On the other hand, the quadrature problem (1.1) can be 

written as the (rather special) initial value problem 

( 1. 2) I' (x) = cp (x) , 

and approximations to I(x) can be obtained using standard methods for solv­
n 

ing ODEs. In this paper, attention is focussed on linear multistep (LMS) 

methods. 

Identification of the approximations to (1.1) and (1.2) yields rela­

tions between the weights and the LMS coefficients, and therefore provides 

a tool for constructing quadrature weights. Such relations are well-known 

in case of the Adams-Bashforth-Moulton or the Nystr8m-Milne-Simpson methods, 

because these methods are derived from interpolatory quadrature rules (see 

HENRICI [7, p.191]). However, there exist LMS methods which are not explic­

itly derived from quadrature (e.g. the backward differentiation methods) 

and, therefore, their connection with quadrature rules is less transparent. 

The connection between LMS methods and quadrature formulae has been 

treated before, though in different are~s. In the context of Volterra in­

tegro-differential equations, MATTHYS [16], generalizing results of BRUNNER 

& LAMBERT [4], reports on "reducible" quadrature formulae, and exploits 

them to prove results on A-stability. In most publications, however, only 

one special class of LMS methods was considered: for first kind Volterra 

integral equations, TAYLOR [23] "inverts" the backward differentiation for­

mulae, and GLADWIN [6] modifies the Adams-Moulton formulae in order to con­

struct high-order convergent methods. In the field of second kind Volterra 

integral equations the connection between the Gregory quadrature rules and 
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the Adams-Moulton formulae has been promulgated in various papers (e.g. [11, 

3]). Motivated by these known results, it is our main purpose, in this paper, 

to give an unified treatment of convergence and stability results for re­

ducible quadrature methods for the three classes of Volterra equations men­

tioned above. 

The second purpose is to obtain insight into the connection between 

the repetition factor of the quadrature weights and the stability proper­

ties of the associated method for solving second kind Volterra integral 

equations. It was conjectured (see LINZ [13], NOBLE [19]) that methods with 

repetition factor greater than one display unsatisfactory stability proper­

ties. For the class of methods we consider, it appears that stable quadra­

ture methods can be constructed, which do not have a repetition factor. 

Investigation of the weights reveals, however, that for such quadrature 

methods most of the weights converge to unity, and therefore their asymp­

totic values have a repetition factor one. This result suggested the intro­

duction of the notion of asymptotic repetition factor. The final result we 

obtained, at least for the class of methods we have considered, is that 

there exists a close connection between asymptotic repetition factors and 

relative stability, but that no such a connection exists with absolute 

stability. 

In section 2 we treat the construction of the quadrature formulae. In 

section 3 we state some results on linear difference equations, which are 

used to derive important properties of the quadrature weights. In section 

4 an asymptotic expression for the quadrature error is given. As an example, 

we treat, in section 5, the quadrature formulae generated by the backward 

differentiation methods. In section 6 the quadrature formulae are used to 

define step--by-step methods for solving Volterra type equations, and con­

vergence and stability results are treated in a unified way. The connection 

between rep1~ti tion factor and numerical stability is discussed in section 7. 

In section 8 some concluding remarks are given. 

2. RELATIONS BETWEEN QUADRATURE RULES AND LMS METHODS 

In §2.1 quadrature formulae and LMS methods are presented for the solu­

tion of (1.1) and (1.2), respectively and some basic concepts and definitions 
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are recalled. In §2.2 the construction of the quadrature weights is treated 

2.1. Preliminaries 

Numerical approximations I to I(x) defined by (1.2) are obtained by 
n n 

applying LMS methods (cf. HENRICI [7, p.209], LAMBERT [12, p.11]) of the 

form 

k 
( 2. 1) I 

i=O 
a.I . 

i n-i 

k 

= h I 
i=O 

b,<j>(x .), 
J. n-i 

n;?: k, 

where h denotes the stepsize and xj = x0+jh, and where the starting values 

I 0 , ..• ,Ik-l are given. We choose an appropriate normalization (e.g. I:bi = 1 

or a0 =1), and assume that the first and second characteristic polynomials 

p and cr, associated with (2.1) and defined by 

p ( 1:;) := 
k k . 
\ -i 
l a. I:; , 

i=O 1 
a (l;) := 

k k . 
\ -i 
l b, 1:; I 

i=O 1 

have no common factor. Further we assume that p(l) = 0 and p' (1) = cr(l) 

(condition of consistency). 

We also need the following definition: 

DEFINITION 2.1. (see MILLER [18, p.398]) 

(i) A polynomial is said to be a simple van Neumann polynomial if it has· 

no zeros outside the closed unit disk and only simple zeros on the 

unit circle; 

(ii) A polynomial is said to be a Schur polynomial if it has all zeros in­

side the unit circle; 

For the polynomial p with p(l) = 0 we will use: 

DEFINITION 2.2. 

(i) The polynomial pis said to satisfy the root condition if it is a 

simple van Neumann polynomial; 

(ii) The polynomial pis said to satisfy the strong root condition if 

p(l:;)/(i:;-1) is a Schur polynomial. 

Further a LMS method i-s called zero-stable if the polynomial p satisfies 

the root condition. ALMS method is convergent iff it is both consistent 
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and zero-stable. A particular LMS method (2.1) is denoted by {a. ,b.} or 
1. 1. 

{p,a}. 

For the numerical approximations I to I(x) defined by the quadrature n n 
problem (1.1) we employ quadrature formulae (based on equidistant abscissae 

xj = x 0+jh) of the form 

k-1 
(2.2a) I :=h I w . qi (x . ) , 

n 
j=0 n, J J 

for n = 0(l)k-1, 

n 
( 2. 2b) I :=h I w ,<ji(x.), 

n 
j=0 n, J J 

for n = k,k+1, .... 

The rules (2.2a) use abscissae x. outside the integration interval in order 
J 

to obtain sufficiently accurate approximations for small values of n. (In 

the appendix examples of such quadrature rules are given fork= 2(1)6.) As 

the formulae (2.2a) are used to compute the required starting values for 

(2.1) we call these the starting quadrature rules. 

The weights { w . } can be arranged in a matrix W of the form 
n, J 

wo,o WO ,k-1 

0 
wk-1, 0 w 

[*] 
k-1,k-1 

(2.3) w = 

wk,O wk,k-1 w 

0 . k,k 

w 
n,0 

w 
n,k-1 

w 
n,k 

w 
n,n 

where w . = 0 for n < j, j:?: k. For subsequent use, we introduce the notion 
n, J 

of repetition factor. 

DEFINITION 2.3. The weights in the matrix (2.3) are said to have an exact 

(rowwise) repetition factor r if r is the smallest integer such that 

w . = w . for n:?: n 0 and n 1 ~ j ~ n-n2 , where n1.. (i = 0,1,2) are inde-
n,J n+r,J 

pendent of n. 
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This definition differs slightly from the usual one (see e.g. BAKER [1, p. 

823]) in the addition of the adjective "exact". The reason for this is that 

we will also define (in §3.3) an asymptotic repetition factor. Further, by 

repetition factor we mean exact repetition factor. 

From definition 2.3 it is readily seen that the weights in (2.3) have 

repetition factor riff the weights in the submatrix ~ have repetition 

factor r. 

With regard to the accuracy of quadrature rules we give the following 

definition. 

DEFINITION 2.4: A quadrature rule (2.2) is said to be of precision q is it 

is exact for all polynomials of degree~ q. 

A particular set of quadrature formulae of the form (2.3) is denoted by 

{W} or by the triple {Sk,Wk,~}. 

2.2. The construction of quadrature rules by means of LMS methods 

Assuming that the starting values I 0 , ••• ,Ik-l for (2.1) are computed 

from (2.2a), the values In (n ~ k) are uniquely defined by (2.1). Next we 

require these values to be identical with those obtained with (2.2b). Sub­

stitution of I . defined by (2.2a-b) into the left-hand side of (2.1) and 
n-i 

equating the coefficients of ~(x.) for j = 0(l)n yields the following rela­
J 

tions between the weights w . and the coefficients a. and b. 
n,J i i 

k 
(2.4a) I a.w = b . ' 

i=0 
]. n-i,j n-J 

if n-k ~ j ~ n, 

k 
for n ~ k 

( 2. 4b) I a.w = 0, 
i=0 

]. n-i,j 
if 0 ~ j < n-k; 

or 
k 

(2.Sa) I a.w = b • I 

i=0 
]. n-i,j n-J 

for n = max(j,k), ... ,j+k, 

k 
( 2. Sb) I a.w = 0, 

i=0 
]. n-i,j 

for n = j+k+1,j+k+2, •.• '. 

From (2.4a-b) or (2.Sa-b) the weights w . can be generated provided 
n, J 

that the coefficients a. and b., and the weights of the starting quadrature 
]. ]. 
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rules (2.2a) are given. The set of quadrature formulae constructed in this 

way is called (p,0)-reducible (cf. MATTHYS [16, p.86] who gives necessary 

and sufficient conditions for reducibility). 

For j fixed, the j-th column of (2.3) is generated by the recurrence 

relations (2.Sa-b); observe that the element w . in the j-th column depends 
n, J 

only upon w . for n-k ~ v ~ n-1. As a consequence, only the weights in the 
V,] 

matrix Wk in (2.3) depend upon the choice of the matrix Sk. The remaining 

weights (the elements of the matrix Q) are independent of the weights of 

the starting quadrature rules. Moreover, due to the zero-entries in the 

upper-triangular part of W, one can derive from (2.Sa-b) (taking j 2': k) 

that the matrix Q has the structure 

WO 0 
w1 WO 

( 2. 6) Q w2 w1 WO 

w2 w1 

where the sequence {wn}:=O satisfies 

rowo = bO 

a0w1 + a1w0 b1 
(2. 7a) 

la0w~ + a1wk-1 + ... + akwO = bk 

(2.7b) n 2': k+1, 

(Note that w0 = 0 iff b 0 = 0). From (2.6) we derive that 

( 2. 8) for n 2': j 2': k, l 2': 0. 

Thus, for the construction of the quadrature weights'of W, it is suf­

ficient to generate the sequence {w} by means of (2.7) yielding the matrix 
n 

Q, and to generate the first k columns by (2.5) yielding Wk. We will denote 
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a (p,cr)-reducible set of quadrature formulae by {Sk;p,cr}. In section 5 we 

give an example in which we have chosen for {p,cr} the backward differentia­

tion (BD) methods. 

Recall from (2.Sb) and (2.7b) that the weights in each column satisfy 

a linear homogeneous difference equation with constant coefficients a.; the 
]. 

starting values for these difference equations are associated with the start-

ing quadrature rules and the coefficients b .• Therefore, properties of the 
]. 

weights are related directly to the properties of this difference equation 

and to the structure of the starting values. These properties are studied 

in the next section. 

3. PROPERTIES OF THE WEIGHTS 

In §3.1 we state some general results on linear difference equations, 

which are then used in §3.2 to derive that, under suitable conditions, the 

elements of each column of Win (2.3) form a convergent sequence. In §3.3 

a relationship between the repetition factor of the weights and the location 

of the zeros of the polynomial pis given. 

3.1. Results on linear difference equations 

Let the sequence {y} be the solution of the linear, homogeneous dif­n 
ference equation with constant coefficients 

k 
(3. 1) I 

i=0 
a.y . = 0, 

1 n-1 
n ~ k, 

with given starting values y0 , ••. ,yk_1 ._ 

Assuming that the polynomial P(s) associated with (3.1) has q different 

zeros s 1 , ..• ,sq with multiplicities m1 , ... ,mq (m1 + ... +mq=k) the solution 

can be written in the form (see e.g. STOER & BULIRSCH [22, p.132]) 

q m -1 
\) 

n n-i 
(3.2) V = I I cv,i (i)s\) , n = 0, 1, ..• , ~n 

v=l i=0 

with the convention 

t for n = 0(l)i-1, 
(~) n-i := ]. s,J 

for n = i. 
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Given the values y0 , ••• ,yk-l' the equations (3.2) for n = O(l)k-1 constitute 

a non-singular linear system for the k unknown coefficients c . , and there­v,1. 
fore these coefficients depend linearly on the starting values~ 

It appears that simple explicit expressions for the coefficients 

c. 1 , j = l(l)q can be derived. To this end, define (see [7, p.238]) the 
J ,mj-

polynomial p. (r;) and the coefficients a .. by 
J J,l. 

(3.3) 

and !J.. by 
J 

(3.4) 11. := 
J 

k-1 
I 

i=O 
a .. y,. 

J, l. l. 

k-1 
I 

i=O 

i 
a. . r; , 

J ,1. 

If we multiply then-th equation in (3.2) by a. for n = O(l)k-1, and add 
J ,n 

the resulting equations, we obtain after some manipulation 

(3. 5) 

q 

I 
m -1 

\) 

I 
v=l i=O 

(i)(,... )/'' = C • p. ._, l.. 
V,l. J \/ 

!J. •• 
J 

For vi j, z;;v is a zero of p(z;;) with multiplicity m" and thus a zero of 

pj(z;;) with the same multiplicity, that is 

p (i) Cs ){-
0 for i = O(l)m-1 

\) 

(3.6) \) i j 
J \) 

i 0 for i = m 
\) 

Since z;;j is a zero of p . ( z;;) with multiplicity m.-1, we have 
J J 

(3.7) 
(i) 

0 for i O(l)m.-2. p . ( z;;.) = = 
J J J 

Moreover, since (r;-z;;.)p~i) (z;;) + ip~i-l) (z;;) = p(i) (z;;) for all i, 
J J J 

(3.8) 
(m • -1) 

p . J ( z;; . ) 
J J 

(m ·) = P J ( z; . ) /m .• 
J J 

Substitution of the results (3.6), (3.7) and (3.8) into (3.5) yields the 

expression 
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(3.9) c , 1 = m, ! .ti ./ P (mj) ( s . ) , 
J,m.- J J J 

J 

j = 1(1)q. 

(The remaining coefficients can be determined using polynomials of the form 

p(l;;)/(l;;-l;;,)i, i = 1, ••. ,m. yielding a lower-triangular system of equations 
J J 

for the coefficients c .. , i = 0(1)m.-1. This will not be pursued here.) 
J,l. J 

In the following remarks some observations are given. 

REMARKS. 

3.1. If l;; is a simple zero of p, we derive from (3.2) and (3.9) that 
V 

m -1 
V 
\' n n-i 
l c V . ( . ) Z:V = 

i=O ' 1 1 

3.2. When pis a simple van Neumann polynomial withs zeros r:; 1 , •.. ,r:;s on 

the unit circle, then y, defined by (3.1), can be written 
n 

n + •.. + c l;; + terms approaching zero as n + 00 , 
s,O s 

where lsil = 1, i = 1(1)s. In this case the sequence {yn} is bounded 

uniformly inn. 

3.3. In particular, if r:; 1 = 1 is a simple zero of p and if the remaining 

zeros are inside the unit circle (that is, if p satisfies the strong 

root condition), then lim y = f:1 1/p' (1). 
n➔oo n 

When certain simple zeros of pare known, this information can be used 

to construct the solution of (3.1) in another way, which is, in certain 

cases, more stable. This construction appears in the following lemma. 

00 

LEMMA 3.1. Let the sequence {y} 0 satisfy the difference equation (3.1) 
n n= 

with starting values y0 , •.. ,yk_1• Further, let the polynomial p*, with 

* coefficients a., be defined by 
l. 

* s 
P (l;;) = p(r:;)/ TT (l;;-l;;.) = 

i=1 1 

k-s 
I 

i=O 

* k-s-i 
a. r:; 

l. 

where r:: 1 , ..• ,r:;s are simple zeros of p, which are supposed to be known. Then 

y can be split into 
n 
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Yn = u + V for n ~ o, 
n n 

where 
b. 1 b. 

(3 .10) 
n s 

z;: for n ~ o, u = z; 1 + ... + 
n p' (z;l) p I ( S ) 

s 

with b.. (j = l(l)s) given by (3.4), and where v is the solution of 
J n 

k-s 

I 
i=0 

(3.11) * a.v . = 0 
1 n-1 

for n ~ k-s, 

with starting values v = y -u, n = 0(l)k-s-1. 
n n n 

PROOF. To simplify the presentation of the proof of this lemma we assume 

that all zeros of pare simple (where z; 1 , ••• ,z;s are known, z;s+1 , .•• ,z;k are 

unknown). The proof for the general case is along similar lines. 

From (3.2), the solution y can be written as 
n 

(here, we have omitted the second subscript of c .). 
\/1 

The coefficients c. can be found by solving the non-singular linear 
J 

system 

1 1 1 1 cl Ya 

z; 1 z;s z;s+l z;k 

C ys-1 
(3.12) 

_s_ = 
C 
s+l Ys 

k-1 k-1 k-1 k-1 
z; 1 i'.;s z;s+l 

z; . ck yk-1 k 

Since z; 1 , ••• ,,;; .are known, the coefficients c. (j = l(l)s) are known and 
s J 

are equal to b../p' (z;.) in view of (3.9). This yields the expression (3.10) 
J J 

for u. Substituting the values of c 1 , ••• ,c and transposing them to the 
n s 

right-hand side of (3.12) yields that the coefficients c 8+1 , ..• ,ck satisfy 

the non-singular linear system 



11 

1 C 
s+l Yo r ct ... +cs 

r;s+l r;k 

(3. 13) = 

k-s....:1 k-s-1 k-s-1 k-s-1 
r;s+l r;k clsl + ... ck yk-s-1 + C I:; 

s s 

* We now look at (3.11). Since the polynomial p (1:;) associated with (3.11) 

has the zeros r;s+l'"""'r;k, the solution vn can be written as 

for n ~ 0. 

The coefficients ds+1 , ••• ,dk are determined by solving the linear 

system with the same matrix as in (3.13) and with the right-hand side 

v0 , •.• ,vk 1 • However, since v = y -u (n = O(l)k-s-1) we find that 
-s- n n n 

d. = c. for j = s+l(l)k, and therefore y = u + v for all n ~ 0. D 
J J n n n 

The practical importance of this lemma is indicated in the following 

remarks. 

REMARKS. 

3.4. If p satisfies the strong root condition then yn = ~1/p' (1) + vn 

where v + 0 as n + 00 • If we gener~te the sequence {y} by means of 
n n 

(3.1) using finite-precision arithmetic, the influence of round-off 

error and the presence of the zero r; 1 = 1 (which may differ slightly 

from 1 due to rounding errors in the coefficients a.) may cause that 
l. 

we do not obtain the limit ~1/p' (1). However, if we compute first 

~1/p' (1), and then generate the sequence {vn} by means of (3.11), the 

limit 6 1/p' (1) is reached even in the case of finite-precision arith­

metic. This procedure is followed in section 5. 

3.5. Let p be a simple van Neumann polynomial withs zeros r; 1 , ••• ,r;s on 
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the unit circle. If these zeros also satisfy sr = 1 then u, defined 
n 

by (3.10), has the property that u = u • In this case, it follows 
n n+r 

from lemma 3.1 that we need to compute only the values u0 , •.• ,ur-l' 

and the sequence {v} from (3.11). Moreover, since v ➔ 0, it is 
n n 

00 00 

easily seen that the subsequences {y } 0 , ••• , {y 1} 0 converge 
nr n= nr+r- n= 

to the limits Uor•••rUr-1' respectively. 

In remark 3.5 we have seen that the values u are periodic, if the 
n 

polynomial p fulfils a suitable condition. This condition is formalized 

in the following definition. 

DEFINITION 3.1. A simple van Neumann polynomial pis said to be of class r 

if r is the smallest integer with the property that the set of zeros of 
r 

plying on the unit circle is contained in the set of zeros of s -1. 

To illustrate this concept, we give the following statements. A Schur 

polynomial is of class 0; the polynomial sr-1 is of class r, and the poly­

nomials (s-1) (s2+1) and (s-1) (s2+1) (s-½) are both of class 4. The polynomial 

s2-(2 cos ~)s+1, which has two zeros on the unit circle, is of class 00 if 

~/2n is an irrational number. 

Further, this concept will be used in §3.3, where we shall indicate 

a connection between polynomials of class rand the repetition factor of 

the associated quadrature weights. 

3.2. Limits of the weights 

we now return to the recurrence relations (2.5) and (2.7) defining 

Wk and Q, respectively. We have the fol~owing theorem: 

THEOREM 3.1. Let {p,cr} define a convergent LMS method. Then 

(i) the weights {w .} generated by {p,cr} are uniformly bounded. 
n,J 

If, in addition, p satisfies the strong root condition, then 

(ii) the elements of each column in the matrix W form a convergent sequence; 

the limits of the first k columns depend upon the choice of the start­

ing quadrature rules, 

(iii) the elements of each column of the matrix Q converge to unity; that is 



(3.14) 

PROOF. 

lim w = 1. 
n+oo n 

(i) follows from remark 3.2, since pis simple von Neumann, 

(ii) follows from remark 3.3. In particular, we have in view of (3.4) 

(3.15) lim w . = 
n-+«> n, J 

l k-1 
' ( 1) l al . w. . p i=O '1. 1., J 

for Os; j s; k-1, 

where w. . (i, j = 0 ( 1) k-1) are the entries of Sk. 
1., J 

(iii) In view of (2.6), it suffices to prove that the elements of the 

13 

first column of Q converge to unity; that is, we have to prove that 

limw =1. n-+«> n 

The sequence {w} is defined by the difference equation (2.7b) with 
n 

starting values w1 , •.• ,wk. From (3.2) the solution wn can be written as 

q m -1 
\) 

n n-i 
w = I I C • ( • ) 7,;\) I n = 0, 1, •.. n+l 

\!=1 i=O 
\!,l. l. 

The coefficients c. 1 are defined by (3.9) where 
J ,mj-

(3.16) 
k-1 

!::,_ = I a .. w. i· 
J i=O J,1. 1.+ 

From (3.3) we derive that 

(3. 17) a.• I = J,l. 

k-1-i 
I 

\!=O 

k-1-i-\! 
a ,;; . • 

\) J 

. 

Substituting (3.17) into (3.16) and using (2.7a) yields 

+ ••• + 
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k k . k k . 
\ -i \ -i 
l bi~J. -wO la.~. = 

i=l i=l i J 

= cr(r;:.), 
J 

which is unequal to zero, since p and cr have no common factor and p(~.) = 0. 
J 

From (3.9) we then derive that 

(3. 18) j = 1(1)q. 

Finally, from remark 3.3 it follows that lim w = cr(l)/p' (1), which equals n-+<x> n 
unity by virtue of consistency. 0 

Well-known examples of quadrature rules for which (3.14) holds are 

the Gregory quadrature rules ([1]). Other examples are the quadrature rules 

generated by the backward differentiation formulae (see section 5). 

3.3. Repetition factor of the weights 

In the literature, there has been some emphasis on the connection 

between the stability properties of direct quadrature methods for solving 

second kind Volterra integral equations and the repetition factor of the 

associated quadrature weights. LINZ [13] conjectures that methods with 

repetition factor greater than one have undesirable stability properties, 

and NOBLE [19] states that methods with repetition factor one are stable. 

~e will also investigate the relationship between repetition factor and 

stability. It turns out, that the proper way to do this is to relate the 

existence of a repetition factor as well as the stability behaviour to the 

location of the zeros of the polynomial p. 

With this in mind, the following theorem and its consequences are of 

importance. 

THEOREM 3.2. Let {p,cr} be a convergent linear k-step method. Then the 

weights of a (p,cr)-reducible set of quadrature formulae have an exact 

repetition factor riff {p(~) = 0 => ~=O or l~I = 1} and pis of class r. 

PROOF. It is sufficient to prove (in view of the remark following definition 
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2.3) that the weights in the matrix Qin (2.3) given by the sequence {w} 
n 

have repetition factor riff the polynomial p fulfils the condition of 

theorem 3.2. 

a. Let p be of class rand let PCs) = 0 imply thats= 0 or Isl = 1. Assume 

that s 1 , ••• ,s are the zeros of p ·lying on the unit circle. Then w 1 = 
s n+ 

c 1s~+ •.• +css: (n = n0 ,n0+1, ••• ), where si satisfies sr = 1 (i = 1(1)s) 

and c. = a(s.)/p' Cs.) ~ 0 in view of (3.18). Therefore w 1 = w 1 ; 
i i i n+ n+ +r 

that is the weights do repeat. Next we show that r is the smallest in-

teger with this property. Suppose that w = w (j ~ 1). Subtracting 
n+l n+l+j 

the expressions for w 1 and w 1 . yields that 
n+ n+ +J 

Since this expression must be zero for all n, and c. ~ 0, i = 1(1)s, 
. i 

the s differing roots s 1 , .•• ,ss have to satisfy sJ = 1. Since pis of 

class r this implies that j ~r. Hence the weights have an exact repeti­

tion factor r. 

b. If the weights have an exact repetition factor r, then w 1 = w 1 n+ n+ +r 
(n ~ n0). Assume that P(s) = 0 has j non-zero roots s 1 , •.. ,sq-l with 

multiplicities m1 , ••• , m 1 (m1 + ... + m 1=j) and one root s = 0 with 
q- q- q 

multiplicity m = k-j. (Notice that j ~ 1 since p(1) = 0 by virtue of q . 
consistency.) The general expression for w 1 can be written (cf. (3.2)) 

. n+ 

q-1 
m -1 

V 
n-i n 

w = I I C • SV (.) , n ~ m = k-j, n+1 v=1 i=O 
v,i i q 

since the terms corresponding to s = 0 in (3.2) vanish for n ~ m. 
q q 

From (3.19) we derive that for all n ~ m 
q 

w -w n+l+r n+l 

q-1 mv-1 

= I I 
v=1 i=O 

n-i{(n+r) r_(n)} 
C • S . S . • 
V,i V i V i 

Since this expression must vanish identically for all n ~ m, all terms , q 
must be zero. From (3.18) we recall that c 1 ~ O; hence a necessary v,mv-
condition is that 
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for v = l(l)q-1, n ~ m • 
q 

r 
These equations can only be satisfied if mv = 1 and if I; = 1 (v = 1 (l)q-1). 

" This means that the j non-zero roots are simple roots lying on the unit 

circle and satisfy i;r = 1. Now suppose that p is of class s. Then we 

obtain from the first part of this theorem (which is proved in part(a)) 

that the weights have repetition.factors. Hences= r, and thus pis 

of class r. D 

An immediate consequence is the following. 

k k-r 
COROLLARY: If p(I;) = a 0 (i; -1; ) then the weights have an exact repetition 

factor r. 

If p does not satisfy the condition of theorem 3.2, then the weights 

do not have an exact repetition factor in the sense of definition 2.3. In 

theorem 3.1 we have seen, however, that the weights in each column of the 

matrix W converge, if p satisfies the strong root condition. Therefore, in 

such a case the weights have repetition factor one as n + 00 • Likewise, the 

weights have repetition factor r as n + 00 if pis of class r (see remark 

3.5). In particular, when the weights are computed using finite-precision 

arithmetic we have the identity w . = w . for n sufficiently large. 
n+r,J n,J 

These observations suggest the following definition: 

DEFINITION 3.2. The weights in (2.3) are said to have an asymptotic 

(rowwise) repetition factor r if r is the smallest integer such that for all 

£ > 0 there exist n0 ,n1 and n2 independent of n such that lw .-w . I < £ 
n+r,J n,J 

The following theorem is now self-evident. 

THEOREM 3.3. Let {p,cr} be a convergent linear k-step method. Then the 

weights of a (p,cr)-reducible set of quadrature formulae have an asymptotic 

repetition factor riff the polynomial pis of class r. 

The relationship between the location of the zeros of the polynomial 

p and the stability behaviour of the associated quadrature method for 



second kind Volterra integral equations is treated in section 7. 

4. ASYMPTOTIC EXPRESSION AND ORDER OF THE QUADRATURE ERROR 

In this section we will give an expression for the quadrature error 

Q [~] defined by 
n 

(4. 1) Q [~] := 
n 

I -I(x) 
n n 

n 
= h l w .~ (x.) 

. 0 n, J J 
J= 

X 
n -I ~(t)dt 

under the assUillption that the quadrature weights are reducible to a con­

vergent LMS method of order p. This expression is valid for h + 0, n + 00 

while nh = xn-xO remains fixed and is, in this sense, asymptotic. 
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Recall from §2.2 that the value I obtained with the quadrature for­
n 

mula h ~~ 0w .~(x.) is identical to the value of In resulting from the· 
J= n, J J 

application of the LMS method {p,o} to the ODE (1.2) with starting values 

I 0 , ••• ,Ik-l defined by (2.2a). As a consequence, we can apply the conver­

gence theorems of LMS methods for ODEs. AssUilling that the starting errors 

Q0 , .•. ,Qk-l are O(hs), we apply theorem 5.11 from HENRICI [7, p.248] yield­

ing Q = O(hs)+O(hp) ash+ O, n + 00 • 

n 
An expression for Q including the coefficients of hp and hs can be 

n 
derived along the lines indicated in [7, p.249-255], but due to the special 

form of the differential equation (1.2) (i.e. the right-hand side does not 

depend on I(x)) the derivation is less· complicated in this case. AssUilling 

sufficient smoothness of~, the errors Q satisfy the inhomogeneous dif-
n 

ference equation 

(4.2) 
k 

I 
i=O 

Q =-C hp+l"'(p)(x.)+0(hp+2) 
ai n-i p+l ~ n ' as h + O, 

where Cp+l is the error constant of the LMS method. If we split Qn into 

Q(l) + Q( 2), where Q(l) represents the solution of (4.2) with zero start-
n n (2)n 

ing values, and Q represents the solution of the homogeneous version 
n 

of (4.2) with starting values Q0 , ••• ,Qk-l' then we can derive that 

( 4. 3) 
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For the determination of Q (2 ) we proceed as follows. For each of the start­
n 

ing quadrature rules considered in (2.2a) the quadrature error assumes the 

form 

s. (s.-1) s.+1 
QJ. = d h J¢ J (x) + O(h J ) , 

j 0 
j = O(l)k-1. 

. * s (s-1) s+l * 
Lets= min{s0 , ••. ,sk_ 1} then Qj = dl ¢ (x0 )+0(h ) where dj = dj 

ifs.= sand d~ = 0 ifs. > s (j = O(l)k-1). Since Q( 2 ) satisfies the 
J J J n (2) 

homogeneous version of (4.2) with starting values Q0 , •.• ,Qk-l' Qn can 

be written 

( 4. 4) 

* k * * * where d satisfies I. 0 a.d . = 0 with starting values a0 , ... ,dk_ 1 . 
n 1= 1 n-1 

From (4 .. 4) we see that Q( 2 ) = 0 if¢ is a polynomial of degree :s:; s-2, 
n 

and from (4.3) Q(l) = 0 if¢ is a polynomial of degree :s:; p-1. Therefore 
n 

the total error Q = 0 if¢ is a polynomial of degree :s:; p-1 and ifs= p+l. 
n 

In this case the quadrature formulae {Sk;p,cr} are of precision p-1 (see 

definition 2 .. 4). In order to have this convenient property we will always 
p+l . 

tacitly assume that the starting quadrature rules are of order h . This 

choice has also the advantage that the starting errors do not influence 

the hp-term, in the total error Q , so that we finally arrive at 
n 

( 4. 5) 

ash ➔ 0, n ➔ 00 while nh = xn-xO fixed. 

The foregoing suggests the following definition. 

DEFINITION 4.1. (p,cr)-reducible quadrature formulae are said to be 

(convergent) of order p if the LMS method {p,cr} is convergent of order p 

and if the starting quadrature rules are of order p+l. 

5. AN EXAMPLE: THE BACKWARD DIFFERENTIATION FORMULAE 

We pausE~ for a moment to give an illustration of the results derived 
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in the previous sections. We consider the k-step backward differentiation 

(BD) formulae for k = 2 ( 1) 6. The coefficients ai and b0 (b 1 = ••• = bk = 0) 

can be found in LAMBERT [12, p.242] and are reproduced in table 5.1 (here, 

we have chosen the normalization a 0 = 1). 

k ck boXck a 1xck a xc a3xck a4xck a 5xck a6xck 2 k 

2 3 2 -4 1 

3 11 6 -18 9 -2 

4 25 12 -48 36 -16 3 

5 137 60 -300 300 -200 75 -12 

6 147 60 -360 450 -400 225 -72 10 

Table 5.1. Coefficients of the BD formulae (a0 = 1) 

Since the coefficients b 1 , •.. ,bk vani~h the recurrence relations 

(2.7a-b) defining the sequence {w} can be simplified to 
n 

k 
(5. 1) I 

i=0 

Explicit values of w can be computed from (5.1). Since p satisfies the n 
strong root condition, we know from theorem 3.1 that w ➔ 1 as n ➔ 00 • 

n 
However, if we compute the weights using finite-precision arithmetic, the 

influence of rounding errors may cause that we do not obtain this limit 

exactly. This undesirable behaviour can be avoided using the construction 

given in lemma 3.1 (see also remark 3.4): we have computed the sequence 
k-1 . * 

{v} from the recurrence relation[. 0 a.v . = 0 for n ~ 0 with starting 
n i= i*n-i 

values v k 1 = -1, ••• ,v 1=-1, where the a.-s are the coefficients of the 
- + - i 

* reduced polynomial p (s) = P(s)/(s-1) (see table 5.2), and finally we put 

w = l+v. 
n n 
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* * * * * k C a 1xck a 2xck a 3xck a xc a5xck k 4 k 

2 3 -1 

3 11 -7 2 

4 25 -23 13 -3 

5 137 -163 137 -63 12 

6 147 -213 237 -163 62 -10 

Table 5.2. Coefficients of the reduced polynomial 
(a*= 1) 

0 

In order to get an impression of the rate of convergence, we give in the 

following table the value n0 such that for n ~ n0 lwn-11 ~ 10-15 (which 

is approximately the precision of our computer). 

k 2 

31 

3 

40 

4 

57 

5 

97 

6 

227 

Only in the case that the zeros of pare known explicitly the closed 

form (3.2) can be used. Fork= 2 these zeros are ~l = 1 and ~2 = 1/3 so 

that 

for n ~ O, 

and, in view of (2.8), 

So the weights are completely determined, except for the first k colums. 

As already pointed out in section 2, these columns depend upon the weights 

of the starting quadrature rules. Choosing the formulae given in Appendix I, 

the first k columns can be computed explicitly using the recurrence 

relations (2.5a-b) (or its modification indicated in lemma 3.1). Again in 

the case k = 2 explicit expressions can be obtained using (3.2) and remark 
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3 . 1 • We obtain 

w n, j = p ' ~ 1 ) ( a.1 , 0 w O , j +a.1 , 1 w 1 , j ) + p ' ( ! / 3) ( a. 2 , 0 w O , j +a. 2 , 1 w 1 , j ) (1 / 3} n' 

j = 0,1, 

* where the coefficients a. .. are defined in (3.3) (note that a. 1 . = a 
J,i ,i k-1-i 

for i = O(l)k-1). For these values we find a. 110 =-1/3, a. 111 = 1, p'(l) = 2/3 

and a.210 = -1, a.211 = 1, p' (1/3) = -2/3. Using the starting formulae 

w010 = w011 = 0 and w110 = w111 = 1/2 one then derives that 

for n ~ 0, j = 0,1. 

From this expression it is seen that lim w O = lim w 1 = 3/4. In summary, 
n, n, 

the matrix of quadrature weights fork= 2 is 

0 0 0 1/2 1/2 

2/3 2/3 2/3 

13/18 13/18 8/9 2/3 

l l l 
3/4 3/4 1 •••• 8/9 2/3 

Fork> 2, the limiting values of the elements in each column can be 

obtained without explicit knowledge of the weights. Recall from (3.15) that 

lim w . = 
n+oo n,J 

l'.1 
p I (1) 

l k-.1 
' ( 1) l a~ wk 1 . . , p i=O i - -i,J 

j = O(l)k-1. 

We illustrate this for the case k = 3. From table 5.1 we obtain p' (1) = 

* * * cr(l) = b0 = 6/11 and from table 5.2 (a0 ,a1,a2 ) = (1,-7/11,2/11). Taking the 

first column of weights in the starting quadrature rules (cf. Appendix I) 

(wO,O'w1,o'w2,o> = (0,5/12,4/12), we obtain 

w(k=3 )-+ 1/8, 
n,O 

as n -+ 00 
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Likewise, we obtain for the remaining two columns 

w(k=3) ➔ 5/3, 
n, 1 

w(k=3) ➔ 17/24 
n,2 

as n ➔ 00 • 

Finally we treat the quadrature error of the BD formulae. We recall 

that a k-step BD formula for the solution of ODEs has order k with error 

constant Ck+l/cr(1) = -1/(k+l) (cf. [7, p.224]). Therefore, if we employ 

starting quadrature rules of order k+1 (e.g. the rules given in Appendix I), 

we derive from (4.5) the following asymptotic expression for the quadrature 

error 

ash ➔ 0. 

6. APPLICATIONS 

In this section we employ the quadrature formulae derived in §2.2 

for the construction of methods for solving problems involving a Volterra 

integral operator. We restrict our considerations to Volterra integral 

equations of the first and second kind and to integro-differential equa-

tions. In this order, these equations have the form 

X 

(6.1) I K (x,y-) f (y) dy = g (x) , XO 
:;;; X :;;; X, 

XO X 

(6.2) f (x) = g(x) + J K ( X , y , f ( y) ) dy , XO 
:;;; X :;;; X, 

* 
XO r (xi 

= F(x,f(x),z(x)) ,f(x;) = fo, XO 
:;;; X :;;; X, 

(6. 3) 
X 

z (x) = f K*(x,y,f(y))dy. 
xo 

We make the assumption that the functions g,K,K* and Fare continuously 

differentiable to sufficiently high order with respect to each of their 

arguments. Further we assume in the case of (6.1) that g(x0 ) = 0 and that 

K(x,x) i O for all x E [x0 ,x]. These assumptions guarantee the existence 

of a unique solution f(x) which is continuously differentiable to suf-



ficiently high order on [x0 ,xJ. 

The numerical methods are simple to derive: in each equation the in­

tegral is discretized by numerical quadrature using the weights of (p,cr)­

reducible quadrature formulae, that is 

Xn 

I K (x ,y,f(y))dy 
* n 

n 
h l 

j=O 
w . K (x , x., f.) , 
n,J * n J J 

n ~ k. 
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The resulting schemes can be applied in a step-by-step fashion. The required 

starting values f 0 , ••• ,fk-l are assumed to result from some adequate start­

ing procedure (e.g. Runge-Kutta methods or low order one-step methods com­

bined with Richardson extrapolation). If w # 0 (i.e. b 0 # 0) then the 
. n,n 

methods are implicit and the solution of a linear or non-linear equation 

is needed. This can be achieved by predictor-corrector techniques or Newton­

Raphson type iteration. The schemes are also applicable to systems of equa­

tions. 

In the following paragraphs the three different classes of equations 

are treated separately. The numerical approximation to f(x) is denoted by 
n 

f and the global error e 
n n 

to be convergent if e + 0 
n 

is defined bye = f -f(x ). A method is said 
n n n 

ash ➔ o, n ➔ co (n = (x-xo)/h) for any XE [xo,x]. 

The method is convergent of order p if e = O(hp). Conditions for the con-
n 

vergence of the methods are stated and convergence-theorems are proved. In 

addition, the stability behaviour for fixed h # 0 is treated. The defini­

tion of absolute (block) stability to be used is the one given by BAKER 

and KEECH [ 3 ] • 

6.1. First kind Volterra integral equations 

Numerical methods for solving the equation (6.1) have the form 

(6. 4) 
n 

h I 
j=O 

w .K(x ,x.)f. = 
n,J n J J 

n ~ k. 

The starting values f 0 , ••• ,fk-l must be available. With respect to the 

convergence of this scheme we have the following theofem. 
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THEOREM 6.1. In addition to the conditions for existence and uniqueness of 

a smooth solution f(x) of (6.1), assume that 

(i) the weight (w .) in (6.4) are the weights of (p,cr)-reducible 
n, J 

quadrature formulae of order p, 

(ii) cr is a simple von Neumann polynomial, 

(iii) the starting errors e. (j = 0(l)k-1) are of orders. 
J 

Let r = min(p,s), then 

ash ➔ 0, n ➔ 00 , nh = x -x. 
n 0 

PROOF. The proof of this theorem is involved and lengthy, and can be found 

in Appendix II. D 

This theorem generalizes the theorems derived by 

[23]. The former treats methods of Adams type (P(s) = 

latter considers backward differentiation type methods 

also includes the methods treated by LINZ [14]. 

GLADWIN [6] and TAYLOR 
k k-1 s -s ) 
(cr Cs> = 

whilst the 
k 

b 0 s >. u 

The stability behaviour for fixed hf 0 is analyzed by applying (6.4) 

to the test equation 

(6.5) 

X I f(y)dy = g(x), g(0) = 0, 

0 

with solution f(x) = g' (x), to obtain the equations 

(6.6) 
n 

h I 
j=0 

w .f. 
n, J J 

= g(x ). 
n 

As in the proof of theorem 6.1, we_ take linear combinations with the coef­

ficients a. of successive equations in (6.6). This yields 
1 

n k 
(6. 7) h L l a.w .. f. = 

j=0 i=0 i n-1,J J 

k 
l a,g(x .). 

i=0 1 n-1 

Using (2.4a-b) we arrive at 

k 
(6. 8) I b,f . 

i=0 1 n-1 

1 k 
= h l a,g(x .). 

i=0 1 n-1 
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which is a k-term recurrence relation for f. This device of taking linear 
n 

combinations of successive rows in order to get a recurrence relation with 

a fixed number of terms is easily seen to be a generalization of the dif­

ferencing operation as is done in the case of quadrature methods having a 

repetition factor. 

From (6.8) it is verified that the scheme (6.4) is stable iff cr(s) 

simple von Neumann., Since this condition is independent of the stepsize h, 

stability regions cannot be defined. The largest (in modulus) zero of cr is 

of practical importance and gives an indication of the damping properties 

of the scheme. If this value exceeds one then the scheme is unstable and 

divergent. In this connection, GLADWIN & JELTSCH [5] have shown that (in 
k· k-r 

our notation) a q-th order LMS method {p,cr} with P(s) = s -s , b0 f 0 

and q > k ~ 2 generates an unstable (and thus divergent) method for solving 

first kind equations (cf. the Adams-Moulton formulae). 

In some cases the methods applied to (6.5) yield "local differentiation 

formulae" (see KEECH [9] for a definition). A necessary condition for this 

property is thats= 0 is the only zero of cr. For our class of methods this 

is also sufficient and can be shown as follows. Let b, be the only non-zero 
J 

coefficient in cr, 0 ~ j ~ k-1, then, from (6.8) we have 

b.f . = 
J n-J 

1 k l a,g(x . ) = p' (l)g' (x . )+O(h), 
h. 0 i n-i n-J 

i= 

so that f . = p' (1)/cr(l)g' (x .)+O(h) = g' (x .)+O(h). Examples of such 
n-J n-J n-J k 

methods are the mid-point rule (cr(s) = 2s) and the BD formulae (cr(s) =b0 s ) • 

6.2. Second kind Volterra integral equations 

(6. 9) 

For solving (6.2) the schemes have the form 

f - g(x )+h 
n n 

n 

I 
j=O 

w .K (x ,x.,f.), 
n,J * n J J 

n ~ k 

with f 0 = g(x0), f 1 , •.• ,fk-l given. The following convergence theorem 

holds. 

THEOREM 6.2. In addition to the conditions for existence and uniqueness 

of a sufficiently smooth solution f(x) of (6.2) assume that 
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(i) the weights (w .) in (6.9) are the weights of (p,o)-reducible quadra­
n, J 

ture formulae of order p, 

(ii) the starting errors e. (j = 0(l)k-1) are of orders. 
J 

Let r = min(p,s+1), then 

PROOF. We check the conditions given in a general convergence theorem (see 

BAKER [1, p.836]), that is, we have to show that the weights are uniformly 

bounded and that the quadrature error is of order p. This has been shown, 

however, in theorem 3.1 and section 4, respectively. D 

The stability behaviour for fixed h ~ 0 is analyzed by applying the 

scheme (6.9) to the test equation 

X 

(6.10) f(x) = g(x)+ \ f f(y)dy, A E <C, 

0 
yielding 

n 
(6.11) f = gn + h\ I w .f., n ;;;:: k. 

n j=O n,J J 

Application of the same differencing technique as in §6.1 results in the 

relations 

k 
(.6. 12) I 

i=O 
( a . -h\b . ) f . = 

1 1 n-1 

k 

I 
i=0 

a. g (x . ) , 
1 n-1 

n 2:: 2k, 

and therefore the scheme (6.9) is stable iff p(~) - h\cr(~) is a simple von 

Neumann polynomial. Stability regions can be defined in the usual way. We 

emphasize that the stability regions are exactly the same as the stability 

regions of the LMS method {p,cr} for ODEs. This, of course, is not surpris­

ing and a consequence of the construction of the weights. Thus, highly 

stable methods for solving ODEs can be used to generate highly stable meth­

ods for solving second kind Volterra integral equation. In particular, the 

use of BD methods is advocated when the kernel K has a large Lipschitz 
* 

constant. 
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4.3. Volterra integro-differential equations 

Let us apply a linear k-step method {p,;} to the differential part of 

(6.3) and (p,cr)-reducible quadrature formulae to the integral term in (6.3) 

(here, {p,cr} has stepnumber k). Then we obtain a large class of methods 

which take the form 

k 

I 
i=0 

(6.13) 

a.f . 
l. n-1. 

k 

= h l 
i=0 

n 
z = h l n 

j=0 

b. F (x . , f . , z . ) , 
1. n-1. n-1. n-1. 

w .K (x ,x.,f.), 
n, J * n J J 

* n ;?; k , 

where k* = max{k,k}. The required starting values are f 0 = f(x0), 

f 1 , ••• ,fk*-l and z0 = 0, z 1 , ••• ,zk*-l" We will denote such methods by 

{p,cr;Sk;p,cr} where Sk represents the starting quadrature rules. We have 

the following convergence theorem. 

THEOREM 6.3. In addition to the conditions for existence and uniqueness of 

a smooth solution f(x) of (6.3), assume that 

(i) 

(ii) 

{p,;} is a convergent linear k-step method of order p, 

the weights (w .) in (6.13) are the weights of (p,a)-reducible 
n, J 

quadrature formulae of order p, 

* (iii) the starting errors e. (j = 0(l)k -1) are of orders. 
J 

Let r = min(p,p,s), then 

PROOF. Apply the theorems of LINZ [15].· 0 

The stability analysis for fixed h ~ 0 is usually analyzed by apply­

ing the scheme (6.13) to the test equation (see e.g. BRUNNER & LAMBERT [4]). 

(6.14) 

This yields 

X 

f' (x) = ~f(x) + n J f(y)dy, 

0 

~,n E JR, 
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k k 
I a.f . = 

i=0 1. n-1. 
h Lb. (E;f . + nz .), 

i=0 l. n-1. n-1. 

(6.15) 
n 

z =hlw .f .. 
n j=0 n,J J 

Differencing the last equation by means of the coefficients a. yields 
l. 

(6.16) 

k 

I a.f . = 
i=0 1. n-1. 

k 
l a.z . = 

i=0 1. n-1. 

k 
h I b. (E;f . + nz .), 

i=0 i n-1. n-1. 

k 
h l b,f .• 

i=0 1. n-1. 

Therefore the method (6.13) is stable iff the stability polynomial defined 

by 

is a simple von Neumann polynomial. Stability regions can be defined (see 
2 [4]) in the (h E;,h n)-plane. 

Strictly speaking, equation (6.14) is a system of ODEs 

(6.17) {

f' = 

z' = f, 

E;f + nz, 

and the method (6.16) can be regarded a? a combination of a LMS method 

{p,;} and a LMS method {p,cr} for solving the first and second equation in 

(6.17), respectively. The stability analysis of such "combined" schemes 

has been treated previously. In [16] conditions for A-stability were der­

ived, and in [4] stability regions are given for some first and second 

order methods. In this paper we give the stability regions of two classes 

of methods with orders ranging from 2 to 6. The methods originate from 

special choices of the LMS methods {p,;} and {p,cr}. For both classes we 

have chosen for 



{p,;}: the k-step backward differentiation formulae fork= 2(1)6. 

Methods of Class I are now obtained by taking for 

29 

{p,a}: the (k-1)-step Adams-Moulton formulae fork= 2(1)6. With suitable 

starting quadrature rules, these formulae generate the well-known 

Gregory quadrature rules. The methods of Class I are denoted {BD;AM}. 

Methods of Class II are obtained if we choose 

{p,a}: equal to {p,;}. This choice generates the unconventional quadrature 

rules discussed in section 5. The methods of Class II are denoted 

{BD;BD}. 

Since k-step BD methods and (k-1)-step AM methods are of order k, both 

classes are of order kin view of theorem 6.3. In appendix IV the stability 

regions are presented and, as can be seen, the regions corresponding to the 

methods of Class II are substantially larger than those of the Class I 

methods. 

7. NUMERICAL STABILITY AND THE ASYMPTOTIC REPETITION FACTOR 

In this section we investigate the connection between asymptotic 

repetition factor and numerical stability of methods for solving second 

kind Volterra integral equations. We start by recalling the definition of. 

(in)stability employed by NOBLE [19]. 

DEFINITION 7.1. A step-by-step method for solving a Volterra integral 

equation is said to be unstable if the error in the computed solution has 

dominant spurious components introduced_by the numerical scheme. 

Since Noble's analysis is asymptotic (ash+ 0) in nature, it is applicable 

to general second kind Volterra integral equations, that is, without any 

restrictions on the kernel Kand the forcing function g. As a consequence 

his analysis establishes results with regard to the suitability of a method 

for general use. 

Further we can adopt from BAKER & KEECH [3] the definitions of absolute 

and relative stability, which are related to the test equation 



30 

X 

f(x) = 1+A J f(y)dy. 

0 

With respect to this test equation, intervals (or regions) of absolute 

and relative stability can be determined. Because of its asymptotic char­

acter, however, Noble's analysis cannot be used to determine the size of 

the stability interval. -Yet, it yields useful information on the nature 

of the stability interval, such as the existence of an interval of rela­

tive stability in the neighbourhood of the origin. 

The definition 7.1 is a little vague, since it depends upon the inter­

pretation of the term "dominant". From Noble's paper, however, we have good 

evidence that there is an equivalence between relative stability and sta­

bility in the sense of definition 7.1. This we formalize in the following 

definition. 

DEFINITION 7.2. A quadrature method for solving second kind Volterra in­

tegral equations is stable in the sense of Noble if the method has an in­

terval of relative stability of the form (-a,S) where a,S > 0. 

Adopting this definition, we then derive from theorem 3.3 and STETTER 

[21, p.271-275] for our class of methods the following theorem. 

THEOREM 7.1. A (p,o)-reducible quadrature method for solving second kind 

Volterra integral equations is stable in the sense of Noble iff the quadra­

ture weights have an asymptotic repetition factor one. 

The validity of this theorem for general quadrature methods is beyond the 

scope of this paper, and is left as a conjecture. 

Stability in the sense of Noble (or relative stability) can be a 

severe requirement, in particular when the behaviour of the kernel or the 

solution is kno~ beforehand. For instance when A or al<../clf is always nega­

tive, relative instability may be harmless. In such cases the spurious 

error components decay to zero; still, they are dominant in the sense that 

they decay at a smaller rate than the principal error component. The concept 

of absolute stability is then more appropriate, depending of course on the 

specific requirements imposed by the problem at hand. 
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Having indicated the connection between asymptotic repetition factor 

and relative instability, we give a few examples to demonstrate that there 

is no connection between asymptotic repetition factor and absolute stabi­

lity. 

The first example is an artificially constructed method from KEECH 

[10] (which is not (p,cr)-reducible). The quadrature weights are 

1/2 1/2 

1 0 1 

0 2 1/2 1/2 

(w . ) = 1 n,J 0 2 0 1 

0 2 0 2 0 2 1/2 1/2 

1 0 2 0 2 0 2 0 1 

The corresponding quadrature method for second kind equations has repeti­

tion factor 2 and an interval of absolute stability (-2,0); it is relatively 

unstable in the left-hand neighbourhood of the origin, and therefore un­

stable in the sense of Noble. 

The second example is a method which is (p,cr)-reducible. We take the 

explicit LMS method (see LAMBERT [12, p.70] 

which has an interval of absolute stability (-4/3,0). Starting with the 

weights wO,j = 0, w110 = 1, w111 = 0, our construction (2.5) yields the 

weights (with repetition factor 2) 
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0 

2 0 

3 1 0 

(w . ) 1 2 3 1 0 = 
n,J 2 

3 1 3 1 0 

. . . . 

2 3 1 3 1 3 1 0 

3 1 3 1 3 1 3 1 0 

Again the method is relatively unstable for small negative hA. 

In MCKEE & BRUNNER [17] other examples can be found. 

8. CONCLUDING REMARKS 

In this paper, we have employed linear multistep methods for solving 

ordinary differential equations to construct quadrature methods for solving 

functional equations of Volterra type. Of course, other methods for solving 

ODEs can be used: it is well-known that the use of Runge-Kutta methods 

yields quadrature methods of extended Runge-Kutta type (see e.g. BAKER [2]). 

The question whether generalizations of our results are possible if we em­

ploy cyclic linear multistep methods, multistep Runge-Kutta methods or other 

methods for solving ODEs is still open, and the answer to it will be the sub­

ject of further research. If such generalizations are possible, it is evident 

~hat we have a powerful tool for constructing and analyzing, in a unified 

way, high-order highly stable methods for solving Volterra type equations. 

Further, we have introduced the co~cept of asymptotic repetition factor, 

and indicated its connection with the location of the zeros of the polynomial 

p. We have also shown the interrelationship of asymptotic repetition factor, 

stability in the sense of Noble and relative stability. Moreover, we have 

demonstrated by means of examples that there is no connection between abso­

lute stability and repetition factor. 

Numerical experiments with methods reducible to the backward differen­

tiation methods have been performed for Volterra integro-differential equa­

tions and are reported in [8]. Experiments with the same methods for the 

solution of first and second kind equations will be reported in the near 

future. 
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APPENDIX I: The starting quadrature rules 

Here, we summarize fork= 2(1)6 interpolatory quadrature rules for 

obtaining the starting values r0 , .•. ,Ik-l for (2.1). These rules are based 

on equidistant abscissae x. = x0+jh. We have determined the weights 
k-1 J 

(w .. ) .. _ 0 such that each quadrature rule is of maximal precision. We have 
i,J i,J- (k) * * 

put w .. = w .. = w .. /Dk, where w .. and Dk are listed below (we have omit-
1,J 1,J 1,J i,J 

ted the weights w0 . since these are all zero). Further, we list the order 
, J (k) 

p and the error constant c. defined by 
1 

x. 
1 

k-1 (k) 
= h I w. . <I> (k . ) 

j=O i,J J 
J <!>(t)dt = c1k)hpcJ> (p-l) (I;), 

XO 

where I; E [ x0 ,~_1 J (this implies that a starting rule of order pis of 

precision p-2). The quadrature rules listed here can also be deduced 

from the block methods given by ROSSER [20, p.446-447]. 

k 

2 

3 

4 

5 

6 

2 

12 

24 

720 

1440 

j 

1 

1 

2 

1 

2 

3 

1 

2 

3 

4 

1 

2 

3 

4 

5 

* W, Q 
J, 

1 

5 

4 

9 

8 

9 

251 

232 

243 

224 

* w. 1 J, 

1 

8 

16 

19 

32 

27 

646 

992 

918 

1024 

* w. 2 J, 

-1 

4 

-5 

8 

27 

-264 

192 

648 

384 

475 1427 -798 

448 2064 

459 1971 

448 2048 

475 1875 

224 

1026 

768 

1250 

* w. 3 J, 

1 

0 

9 

106 

32 

* W, 4 J, 

-19 

-8 

378 -27 

1024 224 

482 -173 

224 -96 

1026 -189 

2048 448 

1250 1875 

* W, 5 J, 

27 

16 

27 

0 

475 

p 

3 

4 

5 

5 

5 

5 

6 

6 

6 

7 

7 

7 

7 

7 

7 

1/12 

-1/24 

1/90 

19/720 

1/90 

3/80 

-3/160 

-1/90 

-3/160 

8/945 

863/60480 

37/3780 

29/2240 

8/945 

275/12096 
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APPENDIX II: The proof of theorem 6.1 

PROOF. We will prove convergence at an arbitrary point x E [x0 ,x]. Let 

Mh = x-x0 and xn - x 0+nh. Recall from (6.4) that fn satisfies the scheme 

n 
( 1) h L w .K(x ,x.)f, = g(x ), 

. 0 n,J n J J n 
J= 

n = k ( 1 )M. 

The exact solution of the integral equation satisfies 

n 
(2) h L w .K(x ,x.)f(x.) = 

j=O n,J n J J 
g(x )+T, 

n n 
n = k(1)M, 

where the truncation error T is given by n 

(3) T 
n 

n 
= h L w . K (x , x.) f (x.) 

j=O n,J n J J 

X 
n 

J 
XO 

K(x ,y)f(y)dy. 
n 

Subtracting (2) from (1) yields the equation for the global error 

e . = f . -f (x.) 
J J J 

n 
(4) h L w .K(x ,x.)e. + T = O, 

j=O n,J n J J n 
n = k(1)M, 

where the errors in the starting values e 0 , •.. ,ek-l are, by assumption, of 

order hs. We will prove that leMI = O(hp)+O(hs), ash+ 0 and M + 00 while 

Mh = x-x0 , and proceed as follows: 

For n ~ 2k and i = 0(1)k multiply the (n-i)-th equation in (4) by a. 
l. 

and take the summation over i to obtain 

k n-i k 
(5) I 

i=O 
a. I 

l. 
j=O 

w . . K ( x . , x . ) e . + ( 1 /h) l a . T . = 0 , 
n-1.,J n-1. J J i=O l. n-1. 

we will use the following abbreviations: 

p+q 
K (p,q) (x,y) := a K (x,y); 

a~ayq 

K (p' q) (x , x.) ; 
n J 

K . 
n, J 

:=K(x,x.). 
n J 

n = 2k(1)M. 
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Expanding K .. in a Taylor series about x = x yields 
n-1,J n 

(6) K . . = K . - ihK ( 1 ~ O) + i 2h 2 e . . , 
n-1,J n,J n,J n-1,J 

where, due to the smoothness of K, le .. I ~ e = !.mtaxlK I. Substituting 
n-1,J xx 

(6) into (5) and using the relations (2.4) for the weights, we arrive at 

(7) 

k k 
L b.K .e . = h L 

i=0 1 n,n-1 n-1 i=0 
ia. 

1 

n-i (1,0) L w . . K . e. + 
. 0 n-1,J n,J J 
J= 

2 k 2 n-i 
h }:i·a. }:w .. e .. e.+ 

i=0 1 j=0 n-1,J n-1,J J 

k 
(1 /h) l a . T . , 

i=0 1 n-1 
n = 2k (1 )M. 

Expanding K in a Taylor series about y = x yields 
n,n-i n 

(8) K . = K 
n,n-1 n,n 

ihX . , 
n,n-1 

where I X . I ~ X = max I K I . n,n-1 y 
Substitution of (8) into (7), and division by K gives us 

n,n 

k 
l b.e . = 

i=O 1 n-1 

(9) 

h ~ d(1) .e n-~-1 (2) 
l . + h l d .e. 

i=l n,n-1 n-1 j=0 n,J J 

h 2 n~l (3) * 
l d .e. - Tn' 

j=0 n,J J 
n = 2k (1 )M, 

where we have introduced the abbreviations: 

(10. a) d(1) := ib.X ./K n,n-i 1 n,n-1 n,n 
+ d(2) . , 

n,n-1 

(10.b) d(2~ 
k 

ia,w .. K(l~O) /K , := I n, J 
i=l 

1 n-1,J n,J n,n 

(10. c) d(3~ 
k 

.2 
:= I 1 a,w .. e ./K , 

n, J 
i=l 

1 n-1,J n-i,J n,n 

k 
(10.d) * L a,T ./(hK ). T := 

n i=0 1 n-1 n,n 
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. 8 K(l,0) Since w . , X • , . and . are uniformly bounded and 
n,J n,J n,J n,J 

I K I ~ K = min [ X J I K ( x, x) I =/; n,n XE x 0 , 
0, we readily see that the expressions 

bounded. defined in (10.a-c) are uniformly 

Without loss of generality we assume that b 0 ,J 0. (If ~O = 0 and bj 

is the first non-zero coefficient, then equation (9) actually defines the 

error equation fore .• In such a case the proof of this theorem requires 
n-J 

no essential modifications.) As in HENRICI [7, p.242] we define the coef~ 

ficients y (n ~ 0) as the solution of the difference equation n 

k 
(11) I 

i=0 
b,y . = O, 

1. n-1 

Since, by assumption, 

coefficients IYnl are 

k k-i 
I b,s is a simple von Neumann polynomial, the 

i=0 1 
uniformly bounded. 

Next we take a fixed N (2k ~ N ~ M), multiply (9) by yN for each 
-n 

n = 2k(l)N and sum over n. For the left-hand side of (7) we then obtain 

(12) 

k k 

l YN-n l 
n=2k i=0 

b.e . = 
1 n-1 

N-1 k 2k-1 k * 
e + l ( l b,yN .)e + l ( l b,yN .)e = 
N n=2k i=0 1 -n-i n n=k i=0 1 -n-1. n 

e 
N 

2k-1 k 
+ l ( l b,y; .. )e., 

j=k i=0 1. -J-1. J 

* by virtue of (11), and where yn is defined 

{:" 
if n ~ N-2k, 

* Yn := 

if n > N-2k. 

For the right-hand side of (9) the following 4 terms appear 

( 13) h 
N k 

l YN-n l 
n=2k i=l 

d(l) .e . 
n,n-1 n-1 

2k-1 k ( l) * 
= h \ ( \ d ·+. . YN , , ) eJ, + l l J 1. J -J-1. 

j=k i.=1 ' ' 

N-1 k (l) 
+ h l ( l d·+· .YN .. )e.; 

j=2k i=l J 1., J -J-i J 



(14) h 

(15) 

N 

l YN-n 
n=2k 

n-k-1 
I d( 2 ~e. = h 

n, J J j=O 

k-1 N 
l < l d ( 2 )_ YN ) e . + 

n,J -n J j=O n=2k 

N-k-1 N (2) 
+ h I C I d .YN )e.; 

· k · k 1 n,J -n J J= n=J+ + 

2k-1 N 
= h2 l ( l d(3~Y )e. + 

j=O n=2k n, J N-n J 

N-1 N 
+h2 l ( l d(3~Y )e.; 

j=2k n=j+1 n' J N-n J 

and finally 

(16) 

The 
2k-1 

A1 z:. k J= 
The 

second term in the last expression of (12) is bounded by 

* le. I, since b. and y are uniformly bounded. 
J i n N-1 

term (13) is bounded by hA2 E. k le. I, since 
J= J 

d ( 1 )_ and y 
n,J n 

uniformly bounded. 

are 

N-1 
The term (15) is bounded by hA3 E. 0 le.I, 

J= J 
(3) 

since d . and y are 
n,J n 
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uniformly bounded and Nh ~ X-x0 . (Note that the constants A. are indepen­
i 

dent of N.) 

The task of finding uniform bounds for the terms (14) and (16) appears 

to be more involved and requires caref~l attention to details. We have 

isolated certain subproblems which appear as lemmas in Appendix III. 

Consider the first term of the right-hand side of (14); for each 

j = 0(1)k-1 we have to show that 

N I d(2)_y 
n=2k n, J N-n 

is bounded uniformly in N. Recall from (10.b) that d( 2~ is defined as a 
n,J 

finite sum of terms. Therefore, it is sufficient to prove that for each 

i = 1(1)k 

N 
I y w . . K(1 ~O) !K I 

n=2k N-n n-i,J n,J n,n 
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is bounded uniformly in N. Since, by assumption, K(l,O) (x,x.)/K(x,x) is 
J 

continuously differentiable, it follows from application of Lemma 3.b, that 

it is sufficient to prove that for each j = 0(l)k-1 and each i = 1(1)k 

N 
(17) I I 

n=m 
YN w .. I -n n-1.,J 

is uniformly bounded for all m and N (2k :,;; m :,;; N). If we define o := w 
k n n-1.,J 

for fixed i and j, then o satisfies r1.·--o a.a . = 0. Moreover y satisfies n 1. n-1. n 
(11), and, hence, application of Lemma 2.b establishes the uniform bounded-

ness of (17). 

Next we consider the second term of the right-hand side of (14). 

Similar reasoning as above (using Lemma 3.b), yields that we have to prove 

that for each j = k(l)N-k-1 

N 

I I 
n=m 

y w .. I N-n n-1.,J 

is uniformly bounded in m and N, (j+k+l:,;; m:,;; N). Moreover, we have to 

show that this uniform bound is independent of j, since j runs through a 

set the upperbound of which depends upon N. This we prove as followf:' .. 

For j = k, one proves, as we did for (17), that there exists a 

constant Dk independent of m and N such that 

N 
(18) I \ y w I :,;; Dk, 

l N-n n-i,k 
n=m 

( 2k+ 1 :,;; m :,;; N) • 

For j > k, one has to find a uniform upperbound for 

YN w .. I, -n n-1.,J 

* * independent of m and N (j+k+l:,;; m :,;; N), and independent of j. Recall 

from (2.8) that w .. = w .. k k" Therefore, n-1.,J n-1.-J+, 

N 
(19) I l * YN-mwn-i J.I n=m , 

* N 

= I I 
n=m 

YN* w . kl I -n n-1., 

* * where N = N-j+k and 2k+1:,;; m:,;; N. The last expression in (19), however, 

is bounded by Dk by virtue of the result (18). 
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N-k-1 
Hence, we have shown that (14) is bounded by hA I. le. I. 

4 J=O J 
Finally, we investigate the term (16). If we define 1/J(x,y) :=K(x,y)f(y), 

then the truncation error T . defined in (3) is given by the quadrature 
n-1. 

error in the approximation of the integral of the function 1/J(x .,•) on 
n-1. 

the interval [x0 ,x .J (see (4.1)); that is 
n-1. 

T . = Q .[1/J(x .,•]. 
n-1. n-1. n-1. 

Expanding the function 1/J (x . , y) in a Taylor series about x = x the 
n-1. n 

truncation error can be split into 

T . = Q . [ 1/J ( X , • ) ] - ihQ . [ 1/J (1 'O) ( x , • ) ] 
n-1. n-1. n n-1. n 

1.22 [(2,0) J 
+ "'21. h Q . 1/J ( t; . ' • ) ' n-1. n-1. 

t; . E [x . ,X ]. 
n-1. n-1. n 

k 
Next we form I1.·--o a.T . and obtain the following terms: 

1. n-1. 

k 

I 
i=0 

a.Q .[1/J(x ,•)] 
1. n-1. n 

by virtue of (4.2); 

k 
h l ia.Q .[1/J(1,0)(x ,•)] 

i=0 i n-1. n 

k - I ia.C 1/a(1)hp+l{i/J(1,p-l)(x ,x .)-1/J(l,p-l)(x ,x0 )}+0(hp+2 )= 
i=0 1. p+ n n-1. n 

by virtue of (4.5), and 

* Hence T defined by (10.d) has the form 
n 

T* = -(1/K )hpC {1/J(O,p) (x ,x )-1/!(1,p-l) (x ,x) + 
n n , n p+ 1 n n n n 

(20) 
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Note that we have to prove that (16) is uniformly bounded. It is easily 

seen that the terms of O(hp+l) in (20) yield, due to the boundedness of 

0 (hp) ( 16) · · h f th. e O (hp+l) -terms 1· n y, a term of in • Omitting, t ere ore, 
n 

(20) and observing that the functions ljJ(O,p) (x,x)/K(x,x), 
( 1 , p-1 ) /K (1 , p-1 ) K . ljJ (x,x) (x,x) and ljJ (x,x0 )/ (x,x) are continuously differenti-

able on [x0 ,x], applica~ion of Lemma 3.a yields that the expression (16) is 

uniformly bounded if ln~m ythnl is uniformly bounded for all m and N, 

(2k ~ m ~ N). This, however, follows directly from Lemma 2.a. Hence, we 

have shown that 

Piecing the bits together, we have shown that 

N = 2k (1 )M, 

where A5 ,A6 and A7 are independent of hand N (and thus independent of M). 

The solution of this recursive inequality is well-known to be (see e.g. 

HENRICI [7, p.244], BAKER [l, p.925]) 

(21) 
2k-l 

leMI ~ {A5hp + A6 _l lejl} exp(A7 (x-x0)), x-x0 = Mh, 
J=0 

The errors e 0 , ••• ,ek-l are 0(hs). The error ek is defined in (4) and is 
s -1 

i;-eadily seen to be 0(h) +0(h Tk). From (4.5) we derive that 

Tk = -C /cr(l)hp{I/J(l,p-l) (~,~) - I/J(l,p-1) (~,xo>} + O(hp+l) 
p+l 

= -C /cr(l)khp+lljJ(l,p) (~,~ ) 
p+l k 

+ O(hp+l) 

= O(hp+l), 

and, therefore e = 0(hs)+0(hP). Similarly one shows that' the errors 
k 

e , ••• ,e 1 are 0(hs)+0(hP), and together with (21) this establishes 
k+l 2k-

that le I= O(hs)+0(hP). This completes the proof. D 
M 
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APPENDIX III: Lemmas 

In the following lemmas~ denotes the set of complex numbers, and 2Z+ 

the set of non-negative integers; P(s) and cr(s) are the polynomials (with 

1 ff . . ) ~ k-i d ~b k-i . l rea coe 1c1ents ~a.s an ~ .s , respective y. 
1 1 

In the proof of theorem 6.1 the lemmas 2.a,2.b,3.a and 3.b are used; 

the proof of these lemmas uses the lemmas 1.a and l.b. 

LEMMA 1.a: Let 

a. = 0 whenever 

N (m :5: N). 

a. n 
c = n s , wheres 

n N 
Isl = 1, then ln~m 

E ~ and a. E 2Z + . If I s I :5: 1 , s =/: 1 and 

cN I is uniformly bounded for all m and 
-n 

PROOF. It is elementary to prove that, under the conditions stated above, 

IE:=O na.sNI is uniformly bounded for all N. The statement of the lemma 

that ~N N-m D follows from the observation ~ c - I: c n=m N-n - n=O n· 

k 
LEMMA 2.a: Let y satisfy the difference equation E b.Y . = 0. If a(s) is 

n i=O 1 n-1 
a simple von Neumann polynomial with a(l) =/: 0, then IE~=m yN-nl is uniform-

ly bounded for all m and N (m :5: N). 

a. n 
PROOF. y can be written as a finite sum of terms of the form n s, where 

n 
sis a zero of a and a. is related to the multiplicity of that zero. Apply-

ing Lemma 1.a to each term completes the proof. D 

Next we give a ''two-dimensional" analogue of the lemmas 1.a and 2.a. 

1.b: 
a. n e n where s,i; E and a.,$ E 

+ . If LEMMA Let C = n s and d = n i; , ~ 2Z 
n n 

Is I :5: 1, Ii; I :5: 1, s =/: i; I a. = 0 whenever Is I = 1 and e = 0 whenever I 1; I 

then I f C d I is uniformly bounded for all m and N (m :5: N). 
n=m N-n n 

PROOF. We consider only the case that Isl :5: Ii;!. (The case Isl> Ii;! is 

treated along similar lines.) Defining w = s/i; we may write 

N 

I c d = i;N 
N-n n 

N 

I 
n=m n=m 

a. f3 N-n 
(N-n) n w • 

= 

Note that lwl :5: 1 and w =/: 1 since s =/: i;. Next we distinguish between the 

cases Ii;!= 1 and li;I < 1. 

1, 
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(i) I l; I = 1. In this case 8 = 0 and thus 

N N 

I I C d I = I l N-n n 
n=m. n=m 

which is uniformly bounded in view of Lemma 1.a. 

(ii) It; I < 1. In this case we write 

N 

I I C d I N-n n 
n=m 

which is readily seen to be uniformly bounded. D 

LEMMA 2.b: Let y 
k n 

k 
and o satisfy the difference equation E1. __ 0 b,y . = 0 

n 1 n-1 
and E1. __ 0 a.a . = 

1 n-1 
common factor and 

O, respectively. If the polynomials panda have no 
N 

are simple von Neumann, then I E yN o I is uniformly 
n=m -n n 

bounded for all m and N (m ~ N) • 

PROOF. y can be written as a linear combination of terms of the form 
n 

c = na~n. Likewise, o has components of the form d = n 6l;n. Hence, the 
n n n 

product y o has terms of the form cN d. Applying Lemma 2.a to each 
N-n n -n n 

of the terms !EN cN d I completes the proof. D 
n=m -n n 

we also need the following lemmas. 

LEMMA 3.a: Let the function¢ be continuously differentiable on [x ,X]; 
00 0 

let x = x0+nh and Nh ~ X-x0 and let {y} _ 0 be a sequence of complex num-
n N n n- N 

bers. Then I E y ¢(x) I is uniformly bounded for all N if I E y I 
n=no N-n n n=m N-n 

is uniformly bounded for all m and N (n0 ~ m ~ N). 

PROOF. Let rN-n := L~=n 'YN-j' ro := Yo, r_l := o. Then 

N 

l YN-n¢(xn) = 
n=no 
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I; E [x 1 ,x ]. 
n n- n 

Therefore 

N 

I I YN-n~(xn) I $ r*cmaxl~I + (X-xo)maxl~·I), 
n=no 

where r* is the uniform bound of lr:=m YN-nl • D 

The "two-dimensional" analogue of lemma 3.a reads: 

00 

LEMMA 3.b: In addition to Lemma 3.a, let {o} 0 be a sequence 
N n n= 

numbers. Then I E yN o ~(x) I is uniformly bounded for all N 
n=n -n n n 

is uniformly boundgd for all m and N (n0 $ m $ N). 

PROOF. Similar to the proof of lemma 3.a. D 

of complex 
N 

if I n~m y N-n on I 
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APPENDIX IV: Stability regions 

2 
We present here the stability regions in the (h~,h n)-plane of the 

{BD;AM} and the {BD;BD} methods. The shaded areas indicate stability. Since 

the integral equation itself is stable only in the third quadrant, we have 

confined ourselves to this quadrant (and a small strip in the fourth quad­

rant). The regions are displayed fork= 3,4,5 and 6 (fork= 2 the stabil­

ity region contains the whole third quadrant). These regions can also be 

found in [8]. 
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