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On a class of explicit three-step Runge-Kutta methods with extended 

real stability intervals*) 

by 

J.G. Verwer 

ABSTRACT 

The paper deals with the numerical integration of semi-discrete parab­

olic equations, written in the explicit, autonomous form y' = f(y). A class 

of explicit, 3-step Runge-Kutta methods is considered of which the real 
2 

boundaries of absolute stability are given by 5.17m for metho~s of order 
2 

1, and by 2.36m for methods of order 2. Herem denotes the number of f(y)-

evaluations per integration step. This number may be arbitrarily large. The 

paper also deals with a linearization of the formulas by which m-1 f(y)­

evaluations can be replaced by m-1 multiplications of a Jacobian matrix with 

intermediate vectors. This means that for many problems the linearized 

schemes will be less expensive. The paper is concluded with a numerical 

example. 

KEY WORDS & PHRASES: Numerical analysis, Parabolic equations, Method of 

lines, Stabilized explicit methods 

*) This report will be submitted for publication elsewhere. 





1. INTRODUCTION 

This paper deals with the numerical solution of the initial value 

problem for large systems of ordinary differential equations written in 

the explicit, autonomous form 

(1. 1) y' = f (y), 

and possessing the property that the eigenvalues of the Jacobian matrix 

1 

J(y) = of(y)/oy are situated in a long narrow strip along the negative axis 

of the complex plane. Such systems frequently arise when discretizing the 

space variables of initial-boundary value problems for parabolic partial 

differential equations [7]. We shall focus our attention to these semi­

discrete parabolic problems. For our discussion it is not necessary to de~ 

fine a particular class of parabolic problems or to specify the method of 

semi-discretization. Our only restriction is the location of the eigenvalues 

of the Jacobian matrix J(y). Further it is always assumed that the problem 

is sufficiently smooth. 

In considering the application of explicit integration methods to semi­

discrete parabolic equations one must weigh up an important advantage 

against an important disadvantage. Their advantage, when compared with 

implicit or partly implicit methods (see e.g. [7,4]), is that they do not 

require the solution of large and complicated systems of nonlinear algebraic 

or transcendental equations (more dimensional problems) and, consequently, 

that they can be easily applied to large problem classes. Their disadvantage, 

as is well known, is the conditional stability. Fortunately it is possible 

to reduce this disadvantage considerably by using so-called stabilized Runge­

Kutta methods (cf. [3], section 2.7). Such a method uses a relatively large 

number of f(y)-evaluations per integration step, say m, the majority of 

which serves to enlarge the real stability boundary. As this boundary 

increases quadratically with m it certainly pays to employ such a stabilized 

method instead of a standard explicit one. (see [7]). In fact, stabilized 

Runge-Kutta methods usually become more efficient as the degree m, that is 

the number of f(y)-evaluations per integration step, increases. 

In this paper we investigate a class of stabilized, 3-step Runge-Kutta 



2 

methods containing the 3-step methods earlier reported in [12]. These last 

methods, howe~ve.r, have two disadvantages. The~first is that the integration 

parameters are not known in closed form. The second, and the most severe 

one, is that they are internally unstable. That is, within one single inte­

gration step they exhibit a severe accumulation of rounding errors, even 

when satisfying the condition of absolute stability. Because of the fact that 

this accumulation can easily influence the local accuracy it is desirable 

to develop internally stable methods. Recently, van der Houwen and 

Sommeijer [5] reported high degree, one-step Runge-Kutta methods which 

are indeed internally stable for all values of m. They obtained internal 

stability after identifying each intermediate stability function with a 

Chebyshev polynomial via a stable, two-step Chebyshev recursion. Following 

this idea we develop a class of internally stable, 3-step Runge-Kutta 

methods. Our absolute stability boundaries are approximately three times 

larger than the boundaries reported by van der Houwen and Sommeijer [5] 

We also discuss a linearization of the new formulas (cf. [10,14]). By 

linearization we can replace m-1 f(y)-evaluations by m-1 multiplications of 

a Jacobian matrix with intermediate vectors. This means that for many 

problems the linearized schemes will be less expensive. The paper is con­

cluded with a numerical example. 

2. A CLASS OF' THREE-STEP RUNGE-KUTTA FORMULAS OF DEGREE m 

Let y denote the numerical approximation at t = t. Let T = t - t 
n n n+1 n 

be the (constant) stepsize. Our class of integration formulas then reads 

( 2. 1) 
j-1 (l) 

= 8 .Y + K ,y l + T (v. f (y ) + l;;.f (y 1 ) + 1 A. of (yn+1)) , j 
J n J n- J n J n- l=O J-l-

(m) 
Yn+1 = ayn+l + (1-a)yn-2· 

Formula (2.1) is easily recognized as a 3-step integration formula using m 

f-evaluations per integration step. Note that f(y 2 ) does not appear and 
n-

that y 2 is not used in the intermediate stages. This restriction is made 
n-

1 (1)m, 
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for the sake of the stability analysis. The method of the above type belongs 

to the wide class of the multistep- Runge-Kutta methods (see e.g. [1,3,11,16]). 

Our purpose is to find, within this class, attractive formulas for semi­

discrete parabolic equations. Therefore we shall concentrate on formulas 

of low order, viz. of order 1 and of order 2, of which the real stability 

intervals are relatively large. Further we demand internal stability and, 

as our systems may become very large, limited storage requirements. It should 

be observed that class (2.1) contains the 3-step formulas from [12]. In the 

sequel we take m;::: 2. 

In the remainder of this section we now shortly discuss some of the 

basic concepts needed in the next sections. First we give the characteristic 

equation of (2.1). When applied to the stability test-model 

( 2. 2) y' Oy, 0 E 0::, 

(2.1) reduces to the simple scheme 

P. (z) y 1 + S. (z) y , 
J n- J n 

j = 0(1)m, 

(2.3) 

where z = To and where P. and S. are polynomials of degree j in z. Hence, 
J J 

the characteristic equation is given by 

(2. 4) aP (z)~ - (1-a) = 0, 
m 

which is of the same form as the characteristic equation of the related 

methods from [12]. In section 4 it will turn out that the polynomials P. 
( j) J 

and Sj belon9ing to the intermediate stages yn+l' play an important role 

in the internal stability analysis. 

Next we give the consistency conditions. We restrict ourselves to 

order p = 1 and order p = 2. Let us denote 
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(2.5) S (z) = 
m 

m 

I 
i=O 

i 
s.z 

l. 
P (z) = 

m 

m 

I 
i=O 

i 
p.z 

l. 

Then it is easily shown that method (2.1) is of order p, if and only if 

(cf.[12]): 

so = 1 - Po 

(2. 6) p = 1 sl = (3-2a.)/a. + Po - P1 

p = 2 s2 = (-1.5 + 2a.)/a. -½p + P1 - P2 0 

Thus, any two polynomials S and P satisfying conditions (2.6) generate an 
m m 

integration formula of order p ~ 2. In order to obtain error constants of 

the same size as in [12], we shall also require a.(s 1+p1) = 1, or equiva­

lently (p ~ 1), 

(2. 7) a = 2 

The effect of this condition is that the error constants, as defined in 

[2,p.223], cannot become arbitrarily large. 

As is the case with linear multistep methods we also have to fulfil 

the condition of zero-stability in order to obtain convergence [16]. 

Consequently, at z = 0 equation (2.4) has to satisfy the root condition. 

It turns out that (2.1) is zero stable, if and only if 

(2. 9) 
2 

p ~ -
0 3 

In the following it will always be assumed that conditions (2.7) - (2.8) 

have been fulfilled. 

3. ABSOLUTE STABILITY PROPERTIES 

Following Lambert [6], method (2.1) is called absolutely stable for 

a given z E CC if, for that z all the roots l;. of (2.4) satisfy It;. I < 1. 
l. l. 

Because we did assume that the eigenvalues of J(y) are situated in a long 

narrow strip along the negative axis we now concentrate on finding poly-
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nomials S and P which lead to such absolute stability regions and which 
m m 

are, in a certain sense, as long as possible. In our analysis z is 

always assumed to be real and negative. 

The starting point is the well-known Routh-Hurwitz criterion which 

delivers necessary and sufficient conditions for absolute stability [6]. 

When applied to (2.4) this criterion yields, after a tedious but otherwise 

elementary calculation, the conditions 

-1 (z) 1 ' (z) 
1 1 

( z) ) < A < A = -+ 2 (Sm (z) + p 
m 2 m m 

p -1 
0 

+ s ( z) - p ( z) 
( 3. 1) -1 (z) 1 , (z) 

m m 
< B < B = 

m m 
2 - 2p 

0 

A (z) - B ( z) > 0. 
m m 

It is convenient to substitute the consistency relations (2.6) into the 

first coefficients of A and B. For order p = 1 this leads to 
m m 

(3.2) 

A (z) 
m 

B (z) 
m 

+ 
m i l ½a,z , a, 

l l 
i=2 

s. + p,' 
l l 

1 - k2p - 2p m b 
0 1 · 

-------- z + I l 

2(1-pol i=2 2(1-pol 

For order p = 2 we have the additional relations 

(3.3) 

3.1 Upperbounds for real absolute stability boundaries 

i 
z , b. 

l 

In section 3.2 we shall, for given order p ~ 2 and degree m ~ 2, construct 

polynomials A and B which lead to satisfactory real stability boundaries, 
m m 

say S (m). First, however, it is of interest to derive upperbounds for 
p 

S (m). Consider the inequalities 
p 

(3.1') -1 ~ A (z) ~ 1, 
m 
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(3.1") -1 S:· B (z) S: 1. 
m 

Let -B (m) s; z s; 0 be the maximal interval where (3.1') - (3.1") can be 
p 

satisfied. Then, by definition, B (m) s; B (m). We need the following result 
p p 

(see e.g. [3]): Let Q (z) be a real, m-th degree polynomial with the 
m 

* property Q (0) = Q' (0) = 1. The interval [-B (m) ,OJ on which the inequality 
m m 

-1 s; Q (z) s; 1 holds, is maximized by the shifted Chebyshev polynomial 
m 

(3. 4) Q (z) 
m 

Tm(l + ~ 2 ), Tm(w) = cos [m arccos w], B*(m) = 2m2 . 
m 

THEOREM 3.1. Let the order of consistency p = 1. The length of the negative 

z-interval on which both (3 .1 ') and (3 .1 ") can be satisfied, is then maxim-
2 

ized by 6m 

PROOF. Consider A as defined in (3.2). As a., i z 2, are free parameters, 
m l 

it is obvious to define 

( 3. 5) A (z) 
m 

According to (3.4), this polynomial is 
2 

2m /(½-¼po), 

optimal with respect to (3.1'). The 
2 

which is maximized for Po= 3 . corresponding boundary is 
2 

Substituting p 0 = 3, p 1 = 1 
3 , and bi= 0 for i z 2, yields the desired 

result. 0 

2 
As a result of this theorem we have that always B1 (m) s; 6m. In fact, 

the following, somewhat stronger result can be proved: Let A and B be 
m m 

defined as in the proof of theorem 3.1. Then 

(3. 6) P (z) = 
m 

1_ + T (1 + z/3) S (z) 
3 m 2 ' m 

m 

and (2.4) can be factorized as (s+l) (2s 2-[3P (z) + l]s + 1) = 0. For all 
m 

z E [-6m2 ,oJ the roots of the quadratic equation lie on the unit disk. Hence, 

we expect that it is possible to construct first order schemes with B1 (m)­

values arbitrarily close to 6m2 . We return to this point in section 3.2. 
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THEOREM 3.2. Let the order of consistency p = 2. The length of the negative 

z-interval on which both (3.1') and (3.2") can be satisfied cannot exceed 
2 

2.95m. 

PROOF. As before, the optimal polynomial A is given by (3.5). Asp= 2, 
m 

we have to match quadratic terms. For given p 0 , the coefficient p 1 is thus 
1 -2 1 1 2 1 1 

defined by p 1 = 3 (1-m ) (2 - ~ 0 ) - (2 + ~ 0). Substitution into Bm(z) 

yields 

(3. 7) B (z) = 
m 

+ 

1 1 1 2 
1 - 12 ° - ;,- ) 0 - ¥'o) 

1 - Po 

m b 1. \ i z+ l ---z, 
i=2 2- 2Po 

where p 0 and bi' i ~ 2, are still free (p2 can be used for the quadratic 

terms). The optimal polynomial (3.7), with respect to (3.1"), is easily 

found to be 

(3.7') B (z) = T (1 + 
m m 

2 -1 2 b m T' (1-z /m )z-z 
1 m O 0 

2 
) , 

m 

where b 1 is the second coefficient of (3.7) and where z 0 > 0 satisfies 
2 

Tm(l-z0/m) = p 0/(2p0-2). Hence 

(3. 8) 
2 -1 

z 0 = m (1 - cos[m arccos 

Consequently, the optimal boundary for inequalities (3.1') - (3.1") is 

( 3. 9) i\ (m) = max min 

We computed (3.9) numerically form= 2(1)100. Within this m-range the 
~ 2 
82 (m)/m -values are slightly increasing with m and are converging to a 

number slightly smaller than 2.95. From this convergence behaviour we are 

justified to conclude that for all m ~ 2, S2 (m) is slightly smaller than 
2 

2. 95m • D 

3.2 The construction of nearly optimal polynomials 

As noticed before one is not only interested in large boundaries 

8 (m), but also in absolute stability regions containing a long narrow 
p 
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strip along the negative axis. This can be achieved by requiring damping 

for negative z-values (except close to z=0). In this section we define 

polynomials A and B with appropriate damping properties and which lead 
m m 

to satisfactory B (m)-values. 
. p 

We shall make use of so-called damped Chebyshev polynomials (see e.g. 

[3]). This polynomial is defined by 

(3 .10) 

and is, in modulus, strictly less than 1 on the interval [-B(m) ,0), where 

(3.11) B (m) 
(w0+1)T~(w0 ) 

Tm (wo) 

More specific, on the interval [-B(m),O-w0 )B(m)/(1+w0 )] 

(3.12) as 

3.2.1 The first order formulas. 

Let the order of consistency p = 1. Let w0 > 1 and 0 < a, b < 1 be 

given parameters. Consider the polynomials 

(3.13) 

(3 .14) 

A (z) 
m 

B (z) 
m 

Po 
2p -2 

0 

Note that (3 .. 13) is consistent with the polynomial A defined by (3.2). 
m 

Further, the polynomials Bm can always be made consistent.by a proper 

definition of the free parameter p 1 in (3.2). Later we will see that 

definitions (3.13) - (3.14) are appropriate to establish internal stability 

(see section 4). Finally, substitution of p 0 = 2/3, w0 = 1, a= 1 and b = 0 



yields the polynomials occurring in theorem 3.1. 

Let 

(3.15) S 1 (m) 

(3.16) 

(3.17) -1 < 

provided that 

(3.18) 0 < b < 

a(w + 1) 'I'' (w ) 
0 m 0 

1 + Po/(2po-2) 

-1 
Tm (w0 ) + 1 

I\ 

A (z) 
m 

B (z) :0: 
m 

1 , 

As we have much freedom in the choice of b, condition (3.18) is not too 

restrictive. The last of conditions (3.1) is satisfied if 

(3.19) 
1 Po 

( ) ( - (1 1 ) ) a-b Rm WO' a -i - ~Po z > 2 + a - b - 1. 
2po -

9 

< 1, 

The parameters a,b and w0 should be considered as damping parameters. 

Because it would require a rather long and tedious calculation to derive an 

explicit relation between a,b, w0 and a given parameter p < 1, such that 

I(. J :::: p. We prefer to find out whether the polynomials constructed in 
1. 

[12] satisfy inequalities like (3.16) - (3.17). By choosing a,b, p 0 and w0 

accordingly, we then expect similar damping properties as imposed in [12]. 

As a result of the comparison, we set 

(3.20) l + 1/20 
2 

m 

, a = 0.975, b = 0.2, Po= 
124 
229 
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Inequalities (3.16), (3.17) and (3.19) then read (approximately) 

(3.16') -1 < -0.90 $ A 
m 

(z) $ 0.95 < 1 ' 

(3.17') -1 < -0.98 $ B ( z) $ -0.60 < 1 ' m 

-1 
¼po)z) -1.05. (3.19') R (w0 ,a (½ - > 

m 

Consequently, for z E [-r3i (m), (1-w0 )1:5i (m)/(1+w0 ) J inequalities (3.1) 

have been satisfied. The inspection of the remaining interval 

[(1-w0 )S 1 (m)/(1+w0 ) ,OJ is now trivial. 

Summarizing, the polynomials (3.13) - (3.14), of which the parameters 

are listed in (3.20), generate first order integration formulas having 

stability boundaries 

(3.15') 
a ( w + 1 ) T ' ( w0 ) 0 m 2 

~ 5.17m as m ➔ oo S 1 (m) 

(½ - ¼p ) T (w ) 
o m o 

Except close to z = 0, the roots C of (2.4) satisfy I~. I $ p = 0.91 (we 
l l 

checked p form= 2(1)25). This means that the absolute stability regions 

of the integration formulas are of the same form as the regions plotted in 

[12], and thus contain a narrow strip along the negative axis. 

3.2.2. The second order formulas 

As in the preceding subsection we take the polynomials (3.13) and 

(3.14) as the starting point. Here, however, we have to take account of 

relations (3.3). Let us consider the polynomials A given by (3.2) and 
m 

(3.13), respectively. Equating these polynomials reveals that p 1 must 

be used for the quadratic terms. R can be written as 
m 

2T 12 (w) 
m 0 

hence p 1 must satisfy 



Substitution of this expression into B, given by (3.2), yields 
m 

(3.2') B (z) = 
m 

Po 
2p -2 

0 
+ 

m 

I 
i=2 

-1 2 2 
1-a Tm (w0 )Tm" (w0 )T~- (w0 ) (½-¼p0 ) 

b. 
l 

2-2p 
0 

1 - Po 

i 
z • 

z + 

This polynomial has to be identified with (3.14). Equating linear terms 

delivers 

(3.21) 
Tm(w0 )T;(w0 ) 

aT~2 cw0 ) 

11 

2b 
+ - - 4 = 0. 

a 

Note that in (3.2) the coefficient p 2 can be used to equate quadratic terms. 

We now proceed as before. The only extra condition is (3.21). The 

investigation of the polynomials from [12] decides us to select 

(3.20') = l + 1/20 
2 

m 

a= 0.81, b = 0.6. 

Substitution into (3.21) delivers, for large values of m, p0 ~ -0.66. For 

these values the inequalities (3.16) ,(3.17) and (3.19) become (approximately) 

(3.16") -1 < -0.58 ~ A (z) ~ 0.96 < 1, 
m 
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(3.17") 

(3.19") 

-1 < -0.97 ~ B (z) ~ 0.17 < 1, 
m 

For low values of m these inequalities have to be checked separately. 

Fortunately, the parameters p 0 rapidly converge to p 0 (00 ). It thus turns 

out that for all m ;::o: 2 inequalities like (3.16"), :{3.17") and (3.19") are 

satisfied. 

Summarizing, the polynomials (3.13) - (3.14), of which the unknown 

parameters are given by (3.20') and (3.21), generate second order integrat­

ion formulas with a real absolute stability boundary given by 

(3.15") B2 (m) 
a(w0+1) T~(w0 ) 

(½ - \po) Tm <wo) 

2 
~ 2.36m as m ➔ 00 

Except close to z = 0, the roots~- of (2.4) satisfy I~. J ~ p = 0.95 (we 
l l 

checked p form= 2(1)25). Thus the absolute stability regions of the second 

order formulas also contain a narrow strip along the negative axis. 

4. THREE-STEP RUNGE-KUTTA-CHEBYSHEV FORMULAS 

An unpleasant phenomenon in the application of stabilized, explicit 

methods may be the accumulation of rounding errors within one single integration 

step. This phenomenon is referred to as internal instability [3,12]. For 

stabilized methods of a high degree this accumulation may be considerable and 

can easily influence the local accuracy. It thus is desirable to look for 

stabilized methods which are internally stable for arbitrary values of m. 

Recently, van der Houwen and Sommeijer [5] reported a stabilized, one-step 

Runge-Kutta method which is indeed internally stable for all values of m. 

They obtained internal stability by making use of a two-step Chebyshev 

recursion. Following this idea, we now construct internally stable 3-step 

formulas, of order p = 1 and p = 2, which possess the absolute stability 

boundaries derived in the preceding section. Adopting the terminology of 
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[5] we will call them Runge-Kutta-Chebyshev formulas. 

Let us consider the integration scheme 

(4 .1) 

In (4.1) the formula for the intermediate results y(ji may be interpreted as 
n+ ( · -1) ( · -2) 

a particular two-step formula using the previous results y Jl and y Jl • 
n+ n+ 

Internal stability is a stability property of this two-step formula. When 

applied to test-model (2.2) y(jl) satisfies the recurrence relation 
n+ 

(4.2) 

If this homogeneous recursion is stable for all z from the absolute stability 

interval [-8 (m),O), we may expect internal stability. 
p 

Firstly, however, we have to take care of absolute stability. Application 

of (4.1) to (2.2) yields a scheme of type (2.3), where 

P0 {z) = 1-µo, s0 (z) = µo, Pl (z) = 1-µ + o1z, s 1 (z) = µ1 +.:;\ z, 1 

-P. (z) = ( µ . +µ . z) P . l ( z) + (1-µ,)P. 2 (z), j = 2 (1) m-1, 
J J J J- J J-

(4.3) S. (z) = ( µ . +µ . z) S . 1 ( z) + (1-µ.)S. 2 (z), j = 2 (1) m-1, 
J J J J- J J-

p (z) = a.2 + a.0[(µ +µ z)P l (z) + (1-µ )P 2 (z)], 
m m m m- m m-

s (z) = a.1 + a.0[(µ +µ z)S l (z) + (1-µ )S 2 (z)']. m m m m- m m-

The polynomials S and P are fixed by our absolute stability requirements. m m 
An easy calculation (see (3.1) and (3.13)-(3.14)) shows that 
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( 4. 4) 

where 

( 4. 5) 

s (z) 
m 

a' 

a" = a' + ---Tm(w0+w1z), Pm(z) 
Tm (wO) 

(½-\p )T (w) 
0 m 0 

a,b,p0 and w0 being the parameters of (3.13)-(3.14). Thus, if (4.3) leads to 

polynomials (4.4) the absolute stability properties of our special scheme 

(4.1) are determined by the polynomials A and B from (3.13)-(3.14). The 
m m 

particular choice of p 0 , a and b determines the order of consistency. 

Next we shall define the polynomials S. and P. for j < m. These poly-
] J 

nomials govern the internal stability. Let, for O ~ j ~ m-1, 

( 4. 6) S. (z) = 
J 

a" 
) ( TJ. (w0+w1z) , PJ. (z) (a"+b" Tj w0 ) 

Substitution into (4.3) yields 

a"/(a"+b"), y 1 

( 4. 7) 

and (4.4) is obtained if 

( 4. 8) a" + b" a , 1 

w1a"/(w0 (a"+b")), 81 

b I. 

Recursion (4.2) is now immediately recognized as a standard 2-step Chebyshev 
-1 

recursion which is stable for all z from the stability interval [-w1 (1+w0 ) ,0). 

Note that all integration parameters of (4.1) have been defined by relations 

(4.7)-(4.8). Also note that with respect to internal stability the definition 
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of s. and P. in (4.6) is not unique. 
J J 

To save space we omit a discussion of the local truncation error of 

(4.1). We confine ourselves with the remark that the accuracy of the method 

is almost independent of m and that the error constants are approximately 

equal to the error constants of the related three-step formulas from [12]. 

A complete discussion can be found in the appendix given in [15]. A nice 
( j) 

property of (4.1) is that each intermediate formula defining yn+l' j == 2(1)m, 

may be interpreted as a first order consistent 2-step formula. This property 
( . -1) 

can be shown by a straightforward Taylor expansion at the pointy Jl . 
n+ 

Consequently, apart from the first and the last stage, each application of 

(4.1) may be interpreted as an integration with m-1 different, and stable 

2-step formulas. The stepsizes for these formulas are much smaller than T. 

It is expected that this property advantages the accuracy of (4.1), in 

particular the accuracy of the first order formulas. 

5. LINEARIZED RUNGE-KUTTA-CHEBYSHEV FORMULAS 

Suppose we are given a semi-discrete parabolic equation (1.1) for which 

it is not too cumbersome to write down the Jacobian J(y), and for which an 

f(y)-evaluation requires significantly more computational work than a 

multiplication of J(y) with some vector. For such problems the costs of one 

integration step with (4.1), performed with a large value of m, can be 

reduced considerably by replacing f(y~!~l)) by the linearization (see also 

[10,14]) 

( 5. 1) 
( j-1) 

f (y ) + J (y ) (y +1 - y ) . 
n n+n n n 

Substitution of this expression into (4.1), yields an integration formula 

using one f(y)-evaluation and m-1 matrix-vector multiplications per integ-

ration step. In (5.1) the vector y is assumed to be a first order approx-
n+n 

imation at some point t == t + nT. Because our formulas (4.1) are of order 
n 

p :-S: 2, substitution of ( 5 .1) does not influence the order., 

The para.meter n has been introduced in order to indicate that we have 

some freedom in the choice of the evaluation point of J (see also [8,9]). In 

particular, it shows that when the Jacobian matrix is kept fixed during 
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some finite number of integration steps the order of consistency remains 

unchanged. The practical relevance of this aspect has still to be investi­

gated. In the next section the linearized method is applied to a non-linear 

problem where yn+n = Yn· The results of this experiment are encouraging. 

For a derivation of the local truncation error of the linearized method 

the reader is referred to the appendix given in [15]. It appears that if 

n = 0 the linearization hardly changes the error constants of (4.1). 

6. A NUMERICAL EXAMPLE 

The application of the Runge-Kutta-Chebyshev method (4.1) and its 

linearization will be illustrated by integrating the rather non-linear 

partial differential equation (Richtmyer & Morton [7], p. 201) 

(6 .1) 

4 1/4 where u(t,x1 ,x2) = [5 v(2vt+x1+x2)] and v = 1. We assume Dirichlet bound-

ary conditions on the unit square and O ~ t ~ 1. 

By imposing a uniform grid on {(x1 ,x2 ) lo~ x 1 ,x2 ~ 1}, having (N-1) 2 

interior gridpoints, and by replacing the Laplacian by the standard 5-point 

difference operator, the initial-boundary value problem is converted into a 
2 

nonlinear semi-discrete system (1.1) having (N-1) +1 components (autonomous 

form). We take N fixed and equal to 20. 

For a given stepsize • the condition of absolute stability is, at each 

step, ,o(J(y)) ~ S (m) where a denotes the spectral radius. In our case 
p 2 

o(J(y(t ))) ~ 64(1+t )/N = 25600(1+t). We always integrated with the minimal 
n n n 

value of m still satisfying the absolute stability condition, i.e. 

(6. 2) m = n 

1 + entier [(25600 ,(l+t )/5.17) 112 ], p = 1, 
n 

1 + entier [(25600 ,(l+t )/2.36) 112 ], p = 2. 
n 

, 2 
Hence m varies with n. For convenience we used S2 (m) = 2.36m. For low values 

of m the actual S2 (m)-values are slightly smaller. In practical situations it 

is of course desirable to have an automatic check on stability (see e.g. [13]). 
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Altogether 20 integrations have been carried out. For T = 1/5, 1/10, 

1/20, 1/40/, 1/80 and p = 1,2 we applied method (4.1) and its linearization 

where n = O. The additional starting vectors y 0 , y 1 and y 2 were determined 

using the exact solution of (6.1). For method (4.1) we tabulated 
10 1.:,d = - log (max. abs. errors at t=1) , m = the maximal value of m being max 

used, and 6e.v = the total number of f(y)-evaluations. For the linearized 

method we tabulated 1.:,d,m , e.v = the total number of f(y)-evaluations + max 
J{y)-evaluat:Lons, and mv = the total number of matrix-vector multiplications. 

p = 1 p ,;-2---, 

T J.:,d m ne.v J.:,d m 6e.v max max 
-

1/5 1.40 43 121 1. 72 63 178 

1/10 1.48 31 226 I 46 331 12.11 

1/20 2.72 22 356 3.52 33 525 

1/40 3.78 16 537 3.98 24 785 

1/80 4.41 12 789 4.66 17 1150 

Table 6.1 Results of method (4.1) 

j p = 1 p = 2 --J.:,d J.:,d m e.v mv m e.v r.iv ma.x max 

1/5 1.36 43 6 118 1.85 63 6 175 

11/10 1.80 31 16 218 2.65 46 16 323 

1/20 2.85 22 36 338 3.79 33 36 507 

1/40 3.85 16 76 499 4.04 24 76 747 

1/80 4.48 12 156 711 4.80 17 156 1072 

Table 6.2 Results of the linearized method 

From tables 6.1 and 6.2 we can conclude that all integrations have been 

performed successfully, that is, without numerical instabilities. Further we 

see that the results of the linearized method are even slightly more accurate 

than those of mll:lthod (4.1). It should also be noted that if the results are 

plotted in an accuracy-efficiency diagram we can conclude that the first 

order results are somewhat better than the second order ones. This may be 

due to the property mentioned at the end of section 4. To be able to give a 
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more general, and more reliable indication on the accuracy-efficiency perfor­

mance of the various schemes it is necessary to perform an extensive numerical 

comparison. In the near future we intend to carry out such a comparison for 

our schemes and for the related one-step schemes reported in [5]. 
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APPENDIX 

THE LOCAL TRUNCATION-ERROR OF METHOD (4.1) AND OF THE LINEARIZED METHOD 

Associate (4.1) and its linearized version with the operator equations 

Yn+l = En[T,yn,yn-l'yn-2] and Yn+l = Ln[T,yn,yn-l'yn-2], respectively. Let 

E (j) and L lj)denote the operators for the intermediate stages. Let y denote 
n n 

an exact solution vector of (1.1). Using tensor notation, we then find the 

expansions, for j = O(l)m, 

(al) 

(a2) 

where 

µ0-1, ½ (1-µo> , 
1 

c10 = c20 = c30 = c40 = 6(µ0-l), 

(a3) 

½(1-µ1)-Sl, c31=c41=c41=½01 
1 

ell = y1+o1+µ1-1, c21 = +6(µ1-l), 

and where clj' c 2j, c 3j, c 4 j and c 4 j for j ~ 2 are given by the (weakly 

stable) recurrence relations 

c1j = µ,cl' 1 + (1-µ,)cl. 2 + µ., 
J J- J J- _J 

c2j = µ,c2. 1 + (1-µ,)c2. 2 + µ,cl. 1' J J- J J- _J J-
(a4) c3j = µ .c3 · 1 + (1-µ.)c3. 2 + µ .c2 · 1' J J- J J- J J-

~4j 
= µ,c4. 1 + (1-µ ') C 4' 2 ½- 2 + µ,cl. 1' J J- J J- .J J-

c4j = µ.c4. 1 + (1-µ ·) c 4 · 2 + nP .c1 . l. 
J J- J J- J J-

It should be observed that the constants clj' c 2j and c 3j can be obtained 

in closed form by expanding the particular formulas (2.3). Because the 
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resulting expressions will be rather lengthy we prefer to use (a3)-(a4). The 

local truncation errors of E and L are given by 
n n 

where 

3 
a.(a.Oc2m 

1 
2) , c2 = + ~2 -2 

3 
a.(a.Oc3m 

1 8 
c3 = - ~2 + i, 

(a7) 
2 
3 1 8 

c4 = a.(a.Oc4m - ~2 + -) 
2 6 , 

<\ 3 
a. (a.o'\m 

1 8 
= - -a. + 6). 2 6 2 

-Note that c 4 depends on n. It appears that the error constants occurring 

in (a5)-(a6) are almost independent of m. Consequently, we may expect that 

the accuracy behaviour of the methods is also almost independent of m. This 

has been corroborated by numerical experiments. Approximations to the error 

constants are given below for n = 0. 

p=l 1.26 -0.41 -0.29 -0.21 

p=2 0 0.45 0.37 0.41 

Observe that these constants are approximately equal to the corresponding 

ones of the related three-step formulas from [12]. It should also be 

observed that for n = 0 the constant c4 is close to c4 • The parameter n 

can be chosen in such a way that even c 4 = c 4 , i.e., that the difference of 

the errors (a5) and (a6) is 0(.4). If n decreases with increasing n, i.e. if 
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yn+n is kept fixed during some finite number of integration steps, then 

l<\I will grow with n. Thus in this situation, unless J(y) is nearly constant, 

we have to r,eckon with a decreasing accuracy. 


