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Modified Nystrom methods for semi-discrete hyperbolic differential equations*
by

P.J. van der Houwen

"ABSTRACT

First and second order Nystrdm type methods are derived for second order
differential equations without first derivatives possessing the following
properties: (i) the stability interval equals 4m2, m denoting the number of
stages per integration step; (ii) the method is internally stable irrespec-
tive the value of m; (iii) the storage requirements are limited; (iv) the
costs per integration step are one right hand side evaluation, one evalua-
tion of the Jacobian matrix and m-1 matrix-vector multiplications. These
four properties are of interest in the integration of the usually very large
systems of ordinary differential equations resulting from the semi-discreti-
zation of partial differéntial equations which are of hyperbolic type and

of second order in time.
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1. INTRODUCTION

Consider the system of ordinary differential equations

. 2
a > >
(1.1) 5 = f(t,y),
dt

<V

|

where the Jacobian matrix J of the right hand side function has eigenvalues
which are located in a large, narrow strip along the negative axis. Such
equations often arise when a second order hyperbolic differential equation
is semi-discretized with respect to its space variables.

In [4] explicit Nystrém—Runge—Kuﬁta methods (or briefly Nystrdém methods)
were analysed for the integration of (1.1). It was shown that stabilized
formulas can be constructed with a real stability interval [-B,0] where the
stability boundary B = 4m2 , m being the number of g;evaluations per inte-

gration step. Since the stability condition for the integration step T in

Nystrém methods is of the form

(1.2) T <V B ’

where 0(J) denotes the spectral radius of J, we see that the effective inte-
gration step, i.e. the step per E;evaluation,which is maximally allowed,
does not increase with m. However, by realizing that in a stabilized formula
almost all ;;evaluations are introduced for the sake of stability and hardly
affect the accuracy of the formula, one may economize the formula by replac-
ing these g—evaluations by ;f:evaluations which can be obtained with less
computational effort. Evidently, as m is larger the gain factor is also larg-
er. In particular, we choose for ;* the linearization of ;. Instead of m
evaluations of g the linearized formula requires one evaluation of ;, one
Jacobian and m-1 matrix-vector multiplications. In [4] a few experiments were
reported carried out with such modified Nystrém methods. Although the m-
values used were relatively low (only four-stage formulas) the results ob-
tained were rather encouraging.

In this paper modified methods are considered for large m-values. Be-
cause of the danger of internal instability which is frequently exhibited

by Runge-Kutta type schemes with many stages [2, 5], we first derive in



Section 2 Nystrdém formulas which are stable in all stages of the integration
step. These formulas will be called Nystrém-Chebyshev formulas as they are
based on properties of Chebyshev polynomials. In Section 3, modified formulas
are considered and their order in T with respect to the unmodified formulas
is derived. In Section 4, numerical experiments are reported which show that
the modified formulas produce roughly the same accuracy and are more stable

than the original Nystr&m-Chebyshev formulas.

2. INTERNALLY STABLE NYSTROM FORMULAS

2.1. Preliminaries

In [4] we analyzed a class of Nystrdém formulas of the form

>(0) _ >
yn+1 - yn
(2-1) Ypil = Yt ;+2jilk fie et j = 1,2
. R R Tk T AL AV T i=1,2,...,m
° e m-1
> _ - (m) - e . (K) _
Ynet1 = Ynet1r Yppt ~ ¥ T El Bzf(tn+-uzr,yn+1), Mo 1.

In particular we considered the relations obtained by applying (2.1) to the

model equation

d2+ >
(2.2) ——32’ = Jy,
dt
that is
—>(j)A >
yn+1 5 yn
. = Rj(T J) . ’ j=1,2,...,m.
T—>(j) T—>
yn+1 yn

where the matrices Rj(-) are defined by

a, (z) B. (z)
J J
Rj(Z) = 4 j = 1121---rm-1;



//// Am(z) Bm(z)

mil m-}—:l
z B,A,(z) 1+z B,B,(z)
221 £ 221 L8

Rm(z) =

Aj(z) and Bj(z) being polynomials satisfying the recurrence relations

3-1
A (z) =1, Aj(z) =1 + £Z1 szzAﬂ(z)
(2-3) 7 j =1,2,...,m-
j-1
By(z) =0, Bj(z) = 1 + 221 KjKZBK(z)

Usually (cf. [1, 4]) the scheme (2.1) is called stable when the eigenvalues
of Rm(TZJ) with J = a§/3§ are within the unit circle (strong stability) or
on the unit disk (weak stability). The polynomials Aj(z) and Bj(z) will be
called stability polynomials.

In view of the large values of m considered in this paper, we shall now
require that the eigenvalues of all matrices Rj(TzJ) are within or on the
unit circle. In such cases we will call the scheme internally stable (note
that internal stability automatically means stability in the usual sense).

(3)

Let o (z) denote the eigenvalues of Rj(z), then we may define the

stability region
(2.4) tz] 163 @1 <1, 5=1,2,...,m}.

In this paper we will only be concerned with the negative stability interval.
j 2

The quantities G(J)(T §), 8§ being an eigenvalue of J, will be called the

amplification factors.

The consistency conditions for the scheme (2.1) are (see e.g. {3])

m-1
z BZ = 1 for first order consistency
=1
(2.5)
m-1 m-1 m-1
%‘ 2 Bﬂ = X Amﬂ = Z Bﬂuﬂ = %-for second order consistency.
£=1 £=1 L=1



2.2. Consistency and internal stability conditions

In this section we express the consistency and internal stability condi-

tions in terms of the stability polynomials Aj(z).

THEOREM 2.1. Let the parameters uj and BK in (2.1) be such that

m-1

(2.6) Wy =W 3= L2 mels oz Zl BpBp(z) = A (2) - 1.

(i) The scheme is first order consistent if u = Aé(O) and second order
consistent if py = A'(0) = 5
(ii) The amplification factors o

(3)

J (z), 3 =1,2,...,m-1 are given by

(2.7) o, )@ 2@, oV -0, 3=12,00 w1

(iii) Let r(z) be a function with O < r(z) < 1, ‘then the amplification fac -

tors a(m)(z) are bounded by r(z) if

2 2
1-u(l-r (z2)) u(l+r (z))-1
Tanr ) -1 - Bp(®) = -1

(2.8a)

1

1
PR =TT

(m)

(iv) For u = %q o (z) is bounded by 1 if

(2.8b) |Am(z)| < 1. O

PROOF.

(i) From (2.6) it follows that Aé(O) = U Z?;i BK' hence substitution in

(2.5) yields part (i) of the theorem.

(ii) By wvirtue of (2.6) the a(j)(z) satisfy the characteristic equations
a(a-—Aj(z)) =0, 3=1,2,...,m1

(2.9)

2
o - S(z)a + P(z) = 0, J =m



where
m-1
S(z) =R (2) + 1+ 2z ££1 BpBp (2) = 2 (2),
m-1
P(z) = A (z) + 2 Zl Bp[A_(2)B,(2) - A,(2)B _(2)] =

MA (Z)+'];‘——E.
H m u

The amplification factors correspondinag to the first m-1 stages are immedi-

(m)

ate from (2.9). For o (z) we use the Hurwitz type criterion which states

that u(m)(z) is bounded by a function r(z) if [4]

P(z)
Is(z)| < T(z)

rr(z), Plz) < ri(z), 0<r(z) < 1.

Working out these conditions for the case (2.9) we arrive at the inequali-

ties (2.8). 0

By substitution of r(z) = 1 in (2.8a) it follows from this theorem that
the class of Nystrdém formulas satisfying (2.6) are internally stable with
real stability interval [-B,0] if Aj(z) and u satisfy the inequalities

lAj(z)I <1, 3 =1,2,...,m1;
(2.10) L a2 <1;
: 1-4yu m !
1
LY

for -8 £ z £ 0 (note that second order accuracy implies u = %'and therefore
weak stability). The corresponding condition for the integration step T is
given by (1.2). Thus, in order to have stability for large integration steps
we need polynomials Aj(z) which satisfy (2.10) in rathe; large intervals

[-B,0]. Such polynomials will be given in Section 2.4.



2.3. Derivation of Nystrém formulas with prescribed stability polynomials

When the stability polynomials Aj(z) are prescribed, the relations
(2.3) and (2.6) completely define scheme (2.1) and therefore enable us to
construct internally stable Nystrdm methods by solving (2.3) and (2.6) for
sz and BZ' In general, however, this will be rather difficult. Things sim-

plify considerably if the polynomials Aj(z) satisfy a recurrence relation.

THEOREM 2.2. Let the polynomials Aj(z) satisfy the recurrence relation

Al(z) = 1; A2(z) = 1+Db,z;

1
(2.11)
Aj+1(z) = (aji-bjz)Aj(z)+-(1-aj)Aj_1(z), j=2,3,...,m
and let Séj) be parameters generated by the recurrence relations
b b,a :
(£+1) _ £ (£+2) _ AT l+1 (F+1) _ (3) i (3-1)

= £+2,...,m-1

where £ = 1,2,...,m-1. Then the corresponding Nystrdém method can be written

as
>(1) _> > >(2) _ (1) 27 (1)
Yo+l = yn-kruyn, Yol = yn+14-blr f(t +ut,y +1)
j+1 ] ' )
+r(13-1 ) - aj§1(13-1+ (1-a, )Y(L )+bJT £t +uT,y(3)), j=2,3,...,m-:
> >(m-1) _ > (m-2) 27 >(m-1)
(2.13) Y1 T 8p-1¥ner T U am_l)yn+1 +b L TE(E tuT,y )+
+ (1-w) 5
(1-up Y
5> 5 . mil . (m);(t N (1’,))
Yn+1 - yn T 221 £ HT,y n+1

and satisfies (2.6). [



PROOF. It is easily verified that (2.13) is a Nystrdém method belonging to
the class (2.1) and that the corresponding stability polynomials Aj(z) as
defined by (2.3) satisfy the recurrence relation (2.11).

In order to prove (2.6) we show that

J .
- (3+1) o
(2.14) Aj+1(z) = 1+ yz 21 Bp 2, (z), 3 =0,1,...,m1.
For j = 0 and j = 1 this equation is satisfied. For j > 1 we substitute

(2.14) into (2.11) to obtain

3G+ It
1+ uz Z1 By B, (z) = bjzAj(z)+aj[1+uz 1121 By Aﬂ(z)]+
j=-2 .
(3-1)
+ (a1 +uz L By ap(2)]

£=1
By virtue of the recurrence relations (2.12) for the Béj) this equation is

easily seen to be satisfied. O

2.4. Nystrdm-Chebyshev methods

In this section we consider Nystrdm methods satisfying (2.6) and which

are generated by the polynomials

w.+1
T, (w -+—£l—— z)

-1"°0 B
(2.15) A, (z) = -2
] Tj—l(wO)

’ W021I j=1,2,...,m,

where vy and are parameters to be determined and Tj denotes the first kind
Chebyshev polynomial of degree j. These methods will be called Nystrdm-
Chebyshev methods. The polynomials (2.15) are chosen firstly because of their
property to lead to optimal real stability intervals (cf. [4]) and secondly,
because they satisfy a three-terms recurrence relation as required by Theorem
2.2. From the recurrence relation for Tj(x) it easily follows that (2.15)
satisfies (2.11) with

0 O)

, b, = , b. =2 ’
B Tj(wo)

T (w,) w0+1 w.+1 Tj—l(w

(2.15") aj = 2w

j=2,3,...,m1.



In order to have at least first order accuracy we require that (cf.

Theorem 2.1(i)).

T
wotl T ()

0
A'(0) = = U.
m B Th_l(wo)
Using the identity
T2 (w,)-1
1 m-1 0
T (w,) = (m-1Y —————
m-1 0
wo~1

we find for B (it is convenient to leave y free)

w+1/ T —
B = E:lv/ 0 1- 1 = m;l// 0 tanh[(m—l)ln(woi- wg—l)]
0

u w.-1 2 w. -1
0 Tm—l(WO)
2 2. 4am-1)21
= E—(m—l) [1- z (wo—l)] as wy > 1.

We recall that we obtain second order accuracy (but also weak stability)
for pu = IR
Before stating the stability theorem for Nystrdm-Chebyshev methods we

introduce the following abbreviations:

w. = coshl

Kn(T+—V%2—1] 0
0 m-1

—_— < -
(2.17) N o0 for r < 2vV3 - 3
2u-1 ~
E r U= .

~ 2
+ - /
u+r)-1 r+3 + (r+1)2—r3

L 2(r3+r+2)

T =

for r = 2V/3 - 3

THEOREM 2.3. Let v > ;O’ r be a constant ¢ [V2 - 1,1) and

-1 o) 1

(2.18) u =

2
(1+r)T_ ) (W) -2



Then the amplification factors a(J)(z) satisfy the inequalities
(3) -1 .
lo (z)] < Tj-l(wo) for - £z < -6, 3=1,2,...,m1
' (m)
(2.19) | o (z)] < ¢ for -B < z < -9,
(3) . _
| o (z)| <1 for -6 <z <0, j=1,2,...,mn. O

PROOF. Since Tj(wo + (wy + 1)2/8) is bounded by 1 for -B < z < -0 the first
inquality of (2.19) follows immediately from (2.15) and Theorem 2.1.

In order to prove the second inequality of (2.19) we first determine

O‘(m)

the set of (u,wo) points where | (z)] < ¥ for -B < z £ -f. It is con-

venient to express this region in the variables p and Tm (w.) . From Theorem

-1"70
2.1 we find that in the interval -B < z < -6, where Am(z) is bounded by
T;il(wo)’ the amplification factor a(m)(z) is bounded by r if (see figure

2.1)

2 2
1 -1 < b(l+r )-1 -1 < 1-u(l-r)

(o) ' Tme1 o) v Tt W) S SraEn -t

<
(2.20) < o) = T o1 m-1"0

Evidently, r should be greater than or equal to Y2 - 1 in order to have a

(m)

nonempty region where |a (z)] £ r. It is also clear from figure 2.1 and

-1
(2.16) that B is maximal in the points (u,Tm_l(wO)) on the line PQ. This

leads to the expression (2.18) for u with Tm—l(WO) > Tm—l(GO) or equivalent-
>~ ~ ) s
ly Vo 2 Yo where wy 1s defined by
~ 2p-1
T (W) ='_—-—_"_,
-1 ~
m-1 700 Ty o

U being the p-coordinate of the point Q. A straightforward calculation yields

for LA the expression given in (2.17).

The third inequality in (2.19) is proved by verifying condition (2.10)
for the polynomials (2.15). For j = 1,2,...,m-1 this condition is satisfied,
for 7 = m we have to show that (1—411)_1 < —Tél(wo) when y is given by (2.18).

A straightforward calculation reveals this to be true. g



10

r2+2r—1 4
2r

_ 1-u(1—r2)
T 2u(l+r) -1

(1-1) 2
4r A

r2+2r—1 T

2r

2(1-r)

Fig. 2.la The region (2.20) for
r>2/3 - 3= .46...

_ 1-u(i-r?)
T 2u(l+r) -1

Fig. 2.1b The region (2.20) for
L41... =v/2-1<r <2/3-3
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From the proof of this theorem it may be concluded that the stability
boundary B defined by (2.16) and (2.18), i.e.

2
) w. +1 (I+4xr )T (w,)-2 //“_—“““
(2.21) 8 = Blrmwy) = (m-1)/ = m-1 0 T2 (wg) - 1,

wol T W) (T (wo)-1)

is optimal for a priori given values of r € [V2-1,1), m and v, > LR For

fixed values of m and r one may try to find the value of LA = wO which maxi-

mizes B. A few numerical calculations showed that the optimal value of v, is

very close to Wy SO that in our numerical experiments we took Wy T Wge For

m we chose the smallest integer which satisfies the stability condition

(1.2), i.e.

B(r,m,; )
LSy

o (J)

For r = 1 it can be derived that m is approximately given by

/’Jo (3)T 1n (T+/T°-1)

2vT2-1

(2.22) m= 1+r7

r

~

where T and a are given in (2.17). (Note that WJ= ;O implies u = u.)
Finally, the damping parameter r was chosen such that the damping in
a unit interval equals some prescribed value n, thus r = nT.
Summarizing, the Nystrém-Chebyshev method defined by (2.12), (2.13),

~

(2.15%), (2.21), (2.22) with WO = wO and U = ; as given in (2.17) presents
an internally stable method which is "almost" of second order as r = 1. The
limited storage requirements and the relatively large stability interval
make this method a potential candidate for the time-integration of semi-
discrete second order hyperbolic equations when implicit time-integrators
offer difficulties. However, to exploit the property of the Nystrdém-
Chebyshev method that m can be chosen arbitrarily large, we will consider

modified methods in the next section.
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3. MODIFIED NYSTROM-CHEBYSHEV METHODS

According (2.22) the number of stages needed in a Nystrdm-Chebyshev
method to remain stable for a given integration step T, may be very large
if the spectral radius U(Jn) is large. Since a semi-discrete hyperbolic
equation usually does have a large O(Jn)—value, the Nystrdém-Chebyshev method
is only an efficient method if the computational work involved to evaluate
the m-1 functions g(tni-uT,géii), j=1,2,...,m1, slowly increases with m.
For instance, if the time-dependent part in the function %(t,;) forms the
major part of the computational effort to calculate g(t,§), then (because
of the fixed t-argument tn + ut) the Nystrdm-Chebyshev method derived in
the preceding section, will require considerably less effort per integration

—
step than m-1 arbitrary f-evaluations would require. In other cases, one

> -
may economize the method bv replacing f(t,y) by a local linearization

> - - -> -> * > > -
£f (t,y) = f(tn-fur,yn+-uryn) + Jn(y-yn—-uTyn)
(3.1) R ) .
J*=—a—f-(t +ur,§ +ur§), t £t<t
8§ n n n n n+1

One integration step of the Nystrdm-Chebyshev method modified in this way
now requires one %—evaluation, one Jacobian evaluation and (m-2) matrix-
vector multiplications. (The modification (3.1) is more accurate than the
one proposed in [4] without increase of the computational effort.)
Evidently, the stability region of the modified Nystrdém-Chebyshev
method is identical to that of the original method. Hence, we may expect
the same stability behaviour or even better because the modified method is
linear in all stages of an integration step so that the (linear) stability
theory can be rigorously applied. In order to see the effect of the lineari-
zation (3.1) on the accuracy we consider the scheme for the guantities

>(3) _ > (3) > (3)
Yn¥1 T Ypey WRETe Y3

where we assume that ;; = ?ﬁ and ?; =

denotes the solution of the modified scheme and

§n' A straightforward expansion re-

veals that
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L) ) 0 for § = 0,1,2
+ I
ntl okl 518 for § = 3,4,...,m
(3.2)
—; —.>* 5
Y1 T Ypep T 0T

Thus, we may hope that the modification (3.1) will hardly decrease the

accuracy of the Nystrdm - Chebyshev method (cf. Tables 4.1 and 4.2).
4. NUMERICAL EXPERIMENTS

In our numerical experiments we wanted to test two aspects of the
Nystrém-Chebyshev methods and the modification according to (3.1):
(i) The effect of the linearization on the accuracy;
(ii) The stability for large values of m

The initial-boundary value problems tested are given by

2 -t,. 2 2
U = 100 cos [(xli-xz)u]Au + e {x1-+x2

2 -t, 2 2
-400 cos [(xli-xz)(li-e (x14-x2))]},

(4.1) 4 R ,
X = (Xl’x2) e 2, t e [0,1]
u=1+ e_t(xfi-xg) for (t,z) € (0,9) and (t,;) € (t,39)
\
and
[ >
U = 100 Au for x € @, t € [0,1]
(4.2)
> » -8 ->
u=1 for (t,x) € (£,90), u=1+e(x) for (t,x) e (0,Q)

10

>
where e(x) assumes randomly values € [-1,+1] and where Q represents the unit

square 0 < x, <1, 0 < x, < 1 with boundary 9Q. It is easily verified that

1 2
the function u used to define the initial and boundary conditions in (4.1)
is also the exact solution of (4.1).

By discretizing the unit square with meshes of width h = 1/5 and

h = 1/20, and by replacing differentiations with the usual standard difference
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approximations we obtain initial value problems of the type (1.1) for a
system of 16 and 361 ordinary differential equations, respectively. The
solution of problem (4.1) is determined by the function u also given

in (4.1) and is obtained by restricting u to the grid points in . The
eigenvalues of the Jacobian matrices are negative and bounded by the spec—

tral radius

~ 800
= 2
h

(4.3) o {J)

In the tables of results below the accuracies A, defined by

(4.4) A= —lolog | maximum absolute error at t = 1],

are listed produced by the Nystrdém-Chebyshev method (NC method) and its
modified form (MNC method). We recall that the NC method is defined by
(2.12), (2.13), (2.15"), (2.21), (2.22) and the MNC method is obtained

Table 4.1. Results obtained for problem (4.1) by the NC and MNC methods
for h = 1/5 and various values of T and n

T=1/8 =1/16 T1=1/32 T=1/64
method n m A m A m A m A
NC ! 2.07 | 2.75 | 3.75 | 4.23
.99 | 11 | 6 | 4 | 3
MNC | 1.69 | 3.17 | 3.75 | 4.23
I l I I
NC | 2.24 | 2.52 | 3.61 | 4.06
.90 11 6 4 3
MNC | 2.23 | 2.47 | 3.61 | 4.06
! l l |
NC | 2.36 | 3.13 | 3.44 | 3.90
.80 | 12 | 6 | 4 | 3
MNC 2.04 2.82 3.90

- ->
from the NC method by replacing f by f* as defined in (3.1).

The results in Table 4.1 show that in the low accuracy range the MNC
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method is only slightly less accurate than the NC method and delivers the
same accuracies for small T. It also shows that an increase of the damping
improves the accuracy for larger value of T but decreases the accuracy for
small values of T. This may be explained by the fact that y differs more
from 1/2 as n becomes larger, so that the scheme becomes "more" first order

than second order.

Table 4.2. Results obtained for problem (4.1) by the NC and MNC methods
for h = 1/20 and various values of T and n

T=1/8 T=1/16 T=1/32 =1/64
method n m A m A m A m A
NC ! - | - | 2.23 | 3.23
.99 | 38 | 20 | 10 | 6
MNC | .02 | .42 | 2.17 | 3.23
I | I |
NC I - I - I 2.62 I 3.48
.90 41 20 11 6
MNC [ 1.10 | 1.55 | 2.67 | 3.48
I I I |
NC | .58 | - 3.00 | 3.69
.80 | 42 | 21 | 11 | 6
MNC .96 1.62 3.13 3.69
| | I I
NC ! 1.30 | 2.05 | 3.17 | 3.73
.70 | 44 | 22 | 11 | 6

MNC ‘ .69 | 1.90 ’ 3.13 [ 3.73

In Table 4.2 the results are listed for the highly stiff case which
arises when we put h = 1/20 (the spectral radius may become as large as
320000). For T = 1/8 and T = 1/16 the NC method behaves unstable unless the
damping is sufficiently high (n < .70). The MNC method, however, remains
stable (although inaccurate) for rather low damping (n = .99 means "almost"
weak stability). As already observed in Section 3 this can be explained by
the fact that the linear stability theory does not rigorously apply to the
NC method whereas the MNC method satisfies the condition that the Jacobian

matrix is constant in all stages. Furthermore, as in the experiment with
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h = 1/5, we see that the NC and MNC method produce roughly the same accura-
cies. '

Our last experiment demonstrates the highly stable behaviour of the
(M)NC method for linear problems when m is large. Problem (4.2) would have
both its exact solution and its numerical solution identical to 1 if e(Q)EO,
but by perturbing the initial condition u(O,;) = 1 randomly by a term of
magnitude 10—8 (which is large compared with the accuracy of 14 digits of
the CDC Cyber 73-28 on which the calculations are performed), the numerical
solution will also be perturbed and one may ask how large this perturbation
after one step becomes for large values of m. Denoting the perturbation at

=
t=1=1 by Ay1 we have listed in Table 4.3 the amplification factor

> -
a = layll/10 8, where I+l is the maximum norm. These results show that the

stability theory is in complete agreement with the actual performances of

Table 4.3. Results obtained for problem (4.2) by the NC method for h = 1/20
and various values of n

n .99 90 80 .70
0 310 381 439 494
o 1.12 .86 ' .65 .39

the NC algorithm on a computer.
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