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Stability analysis of reducible quadrature methods for Volterra integral 

* equations of the second kind 

by 

P.H.M. Wolkenfelt 

. ABSTRACT 

Direct quadrature methods, reducible to linear multistep methods for 

solving ODEs, are applied to a test equation of the convolution type. The 

difference equation for the numerical solution and the associated stability 

polynomial are derived. A definition of A0-stability is given and it is 

shown that the direct quadrature methods we consider cannot be A0-stable. 

The boundary locus method is used to determine the regions of absolute 

stability. For the backward differentiation methods diagrams of such re­

gions are presented. 

KEY WORDS & PHRASES: Numerical analysis, Volterra integral equations of 

the second kind, stability 

* This report will be submitted for publication elqewhere 





1. INTRODUCTION 

Consider the Volterra idtegral equation of the second kind 

(1. 1) 

X 

f(x) = g(x) + J K(x,y,f(y))dy, 

0 

0 S X S X, 

1 

where f(x) is the unknown function, and where g(x) and the kernel K(x,y,f) 

are given functions. We assume that the conditions for the existence of a 

unique continuous solution are satisfied (see e.g. [1, p.80]). 

Direct quadrature methods for the numerical solution of (1.1) are ob­

tained by applying quadrature rules of the form 

¾ 

J cp(y)dy 

0 

h 
n 

r 
j=O 

w . 4> (x.) , 
nJ J 

x. = jh, 
J 

to discretize (1.1), and yield equations of the form 

(1. 2) f = g(x) + h 
n n 

n 

r 
j=O 

w .K(x ,x.,f.), 
nJ n J J 

n ~ k ~ 1, 

for values f approximating f(x). Here, the value of k depends on the 
n n 

desired accuracy. If the required starting values f 0 (= g(0)), f 1 , ••• ,fk-l 

are known, the values fk,fk+ 1 , ••• can be computed in a step-by-step fashion. 

BAKER [1, ch.6] discusses a wide variety of numerical methods for (1.1) in­

cluding the methods (1.2) for various choices of the weights w .• 
nJ 

In this paper we consider the class of quadrature methods which are 

reducible to linear multistep methods for solving ODEs. The construction 

and analysis of such quadrature methods is treated in [10]. We shall use 

subsequently an important property of the weights w .: it holds, for 
nJ 

n ~ 2k, that 

k 
(1. 3) I 

i=O 
a.w .. = 

l. n-i,J 

0 if Os j s n-k-1, 

b . if n-k s j s n, 
n-J 
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where we have defined w . = 0 for j > n. The real constants a. and b. 
nJ 1 1 

(i = 0(1)~) are the coefficients of a convergent linear multistep method. 

We assume that a 0 ~ 0. From the theory of linear multistep methods for 

ODEs (see e.g. [8, p.30]) we recall the characteristic polynomials p and 

cr, defined by 

k 

( 1. 4) p (?;;) := I 
i=0 

k-i 
a.?;; 

1 
(J (?;;) := 

the consistency conditions p(1) = 0 and p' (1) = cr(l), and the fact that p 

and cr have no common factors. Furthermore, the polynomial pis assumed to 

satisfy the root condition, that is p(?;;) = 0 implies !?;I :::: 1 and p(?;;) = 

p' (?;;) = 0 implies !?;;! < 1. The quadrature method (1.2) associated with the 

linear multistep method (p,cr) through (1.3) is said to be (p,a)-reducible; 

The stability behaviour (for fixed h ~ 0 and n + 00 ) of various methods 

of the form (1.2) has been analyzed by BAKER & KEECH [2] with respect to 

the test equation 

(1.5) 

X 

f(x) = 1 + A f f(y)dy. 

0 

It can be derived (see [10]) that the stability behaviour with respect to 

(1.5) of (p,cr)-reducible quadrature methods is determined by the roots of 

the characteristic equation 

( 1.6) p (?;;) - hA cr (?;; ) = 0 . 

The stability behaviour is well-known from the ODE-theory, since (1.6) is 

identical to the characteristic equation of the linear multistep method 

(p,cr) applied to the ODE test equation f' = Af (to which (1.5) is equiva­

lent). Thus the stability analysis based upon (1.5) is straightforward, 

which is a consequence of the fact that the kernel in (1.5) is independent 

of x. 

The main purpose of this paper is to analyze the stability behaviour 

of (p, cr) -·reducible quadrature methods with respect to the convolution test 

equation 



( 1. 7) 

X 

f(x) = 1 + I {A+µ(x-y)}f(y)dy, 

0 

A,µ E lR, 

which is an extension of (1.5). The choice of this test equation was 

motivated by the requirement that the kernel in (1.7) depends upon x on 

3 

the one hand. On the other hand we chose the convolution, because Volterra 

integral equations of the convolution type occur frequently in applications 

such as demography [7] and renewal theory [5]. The stability analysis based 

on (1.7) yields more information than the analysis based on (1.5), and an 

important result we obtain is that (p,cr)-reducible quadrature methods which 

are A-stable with respect to (1.5) are not even A0-stable with respect to 

( 1. 7) • 

In section 2 we discuss the test equation (1.7) and derive the recur­

rence relation for the numerical solution f and its associated stability 
n 

polynomial. In section 3 we adapt the boundary locus method- ( see [ 8]) for 

the determination of stability regions. In section 4 we prove that (p,cr)­

reducible quadrature methods cannot be A0-stable, and indicate a constrast 

to corresponding methods for Volterra integro-differential equations. 

In section 5 we actually present plots of the stability regions of the 

quadrature methods which are reducible to the backward differentiation 

methods. We conclude in section 6, with some additional remarks. 

2. STABILITY ANALYSIS WITH RESPECT TO THE CONVOLUTION TEST EQUATION 

By differentiating (1.7) twice, it is readily seen that the solution 

of the convolution test equation is identical to the solution of the second 

order differential equation 

f" = Af' + µf, f(O) = 1, f' (0) = 0. 

As a consequence, the solution f(x) of (1.7) tends to zero as x + 00 if and 

only if both A andµ are negative. In order to have a stable method, the 

same asymptotic property is now required for the numerical solution. That 

is, if f is obtained with the method (1.2) applied, with a fixed positive 
n 

h, to the equation (1.7), then f must tend to zero as n + 00 • 
n 



4 

Application of the direct quadrature method (1.2) to the test equa­

tion (1.7) yields the equations 

(2.1) f = 1 + h). n 

n 

I 
j=O 

2 
w .f. + h µ 

nJ J 

n 

I 
j=O 

w . (n-j) f .• 
nJ. J 

Instead of differentiating twice, as we did in the continuous case, we 

now apply twice a differencing technique to the equations (2.1). We take 

a weighted sum of successive equations (2.1) to obtain 

k k 2 n k 

I a.f . = h). I b.f . + h µ I I a.w .. (n-i-j)f. 
i=O 

i n-1. 
i=O i n-1. j=O i=O i n-1.,J J 

k 
+ h2µ 

k 
(2.2) = h). I b.f I ib.f 

i=O 1. n-i i=O l. n-i 

h2µ 
n k 

I I ia. w . .f., 
j=O i=O i n-1.,J J 

where we have used (1.3) and the equality p(1) = rai = 0 (recall that, by 

definition, w . = 0 for j > n). Notice that forµ= O, we obtain the dif­
nJ 

ference equation associated with the test equation (1.5). 

Applying the same differencing technique again to successive equations 

(2.2) we find 

(2.3) 

In order to 

* b. = b. for 
J J 

we obtain: 

k k 
l al l a.f . 0 = h). 

l=O i=O 1 n-1.-~ 

h2µ 

k k 
l ao l b.f . 0 + .e;o ~ i=O 1 n-1.-~ 

k k 

I a.e. I ib. f . l -
l=O i=O i n-1.-

n k k 
h2µ I I I ia.alw . l .f .• 

j=O i=O l=O i n-1.- ,J J 

rewrite the last term of the right-hand side of (2. 3) we define 

j = 0(1)k and * b. = 0 for 
J 

j < 0 or j > k. Thus, using (1.3), 

n k k 

l l ia. l alw . l .f. = 
j=O i=O 1 l=O n-1.- ,J J 

n k 

I I 
j=O i=O 

* ia.b .. f. = 
i n-1.-J J 



= 

= 

k 

I 
i=O 

ia. 
]_ 

n 

I 
j=O 

* b f 
n-i-j j = 

k k k k 
l ia. l b 0 fn-i-o = l i..a 0 l b.f . i.." 

i=O i i..=O ~ ~ i..=O ~ i=O i n-i-

Substitution of this expression in (2.3) yields the following recurrence 

relation for the numerical solution f 
n 

(2. 4) 

The solution f of this difference equation tends to zero as n ➔ m if and 
n 

only if the roots of the characteristic equation 

h2µ 
k 

k-i.. k 
b. (i-i..)z;k-i (2.5) p(z;)[p(z;)-hAcr(z;)] - I ai..z; I = 0 

l=O i=O 
]_ 

lie inside the unit circle. We give the following definitions. 

DEFINITION 1. The quadrature method (1.2). applied to (1. 7) is said to be 

absolutely stable for a given hA and h2µ if, for these values of hA and 
2 h µ, the roots z;. of (2.5) satisfy lz;. I < 1, i = 1(1)k. 

]_ ]_ 
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DEFINITION 2. A region R in the (hA,h2µ)-plane is said to be the region of 

absolute stability of the method (1.2) if (1.2) is absolutely stable for 
2 

all (hA,h µ) ER. 

DEFINITION 3. The quadrature method (1.2) applied to (1.7) is said to be 

A0-stab1e if its region of absolute stability includes the third quadrant, 

that is, if {(hA,h2µ) I hA < O, h2µ < O} c R. 

Since A andµ assume only real values, Definition 3 is readily seen 

to be an adaptation of the A0-stability concept in ODE theory (cf. [4]). 

We shall refer to the left-hand side of (2.5) as the stability poly­

nomial of the method, and denote it by S(1;;hA,h2µ). This polynomial can 

be expressed completely in terms of the polynomials p and cr and their first 

derivatives; to be specific 

(2. 6) 
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From (2.6) explicit conditions for absolute stability can be derived, for 

example by ~eans of the Routh~Hurwitz or the Schur criterion [8, §3.7]. 

Since the degree of Sis 2k in general, such a procedure becomes increasingl: 

complicated, and, therefore, it is more convenient to determine the stabili~ 

region by other means. 

3. THE BOUNDARY LOCUS METHOD 

2 In this section we shall determine the region R in the (hA,h µ)-plane 

where the roots~- of the stability polynomial (2.6) are in modulus less 
i 

than unity. To this end we define the set r: 

In view of this definition, (hA,h2µ) Er when at least one of the zeros of 

(2.6) lies on the boundary of the unit disk or, equivalently, when 

(3.1) 

with¢ running through the interval [-TI,TI]. Therefore, the set r (which is 

a curve or a set of curves) is determined by finding hA and h 2µ from (3.1) 

when¢ E [-TI,TI]. Since the zeros of (2.6) are continuous functions of hA 
2 and h µ, the boundary aR of the stability region Risa subset of r. 
The (hA,h2µ)-plane is divided by r into subregions, and in order to 

determine which of the subregions are regions of absolute stability, it is 

necessary to compute the roots of S(~;hA,h2µ) = 0 at a number of appropriate 
2 values of hA and h µ. 

This technique (also used for ODE methods, see [8, §3.7]) is called 

the boundary locus method for finding the region of absolute stability. 

In contrast to the ODE case, however, the stability polynomial (2.6), as­

sociated with quadrature methods for solving integral equations, comprises 
2 two real parameters hA and h µ, and, as can be seen below, degenerate solu-

tions to (3.1) may arise. Therefore we will consider (3.1) (for a fixed 

value of¢) in more detail and write it, according to (2.6), in the more 

transparent form 
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(3. 2) 
i~ i~ 2 i~ * i~ i~ * i~] = h).p(e )cr(e ) - h µ[cr(e )p (e ) - p(e )cr (e ) 0 

* * where P (~) = ~p• Cs) and cr (~) = ~cr• (~). For subsequent use, we write (3.2) 

also in the form 

(3. 3) (A+iB) - hA(C+iD) - h2µ(E+iF) = 0, 

with obvious definitions for A,B, ••• ,F. We distinguish between the follow­

ing cases. 

Case 1: p(ei~) = O. 

Since p and cr are assumed to have no common factor, cr(ei~) ~ 0 for 

this value of~- Furthermore p' (ei~) ~ O, since the zeros of p on 

the unit circle are simple. From (3.2) we then derive that the line 

h2µ = 0 is part of r. Note that this case always occurs for~= O, 

since consistency of the linear multistep method requires that 

p (1) = o. I 

In the following cases we assume that p(ei~) ~ O. Equation (3.3) for find­

ing the real values h). and h2µ is equivalent to the linear system 

(3.4) 

where (A,B) ~ (0,0), since p(ei~) ~ 0. At this point, one can readily see 

that it is sufficient to take~ only in the interval [O,~], since for 

~ = -~, ~E[0,~], the values of B,D and F change sign, whereas the values 

of A,C and E remain unchanged. 

Case 2: CF - DE~ 0, p(ei~) ~ 0. 

In this case the system (3.4) has a unique solution (h).,h2µ), which 

is a point on r. I 

The more interesting cases occur, when the system (3.4) is singular. We 

distinguish between three (mutually exclusive) cases. 
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. <P i<P 
Case 3.1: CF - DE= 0, p(ei) # 0, cr(e ) # 0. 

In this case (C,D) # (0,0), and from (3.3) and (3.2) we then 

derive that (3.4) has a degenerate solution (which is a straight 

line in the (hA,h2µ)-plane) if and only if p(ei<j>)/cr(ei<j>) is real 

and non-zero. I 

·rp i<P * ·rp Case 3.2: CF - DE= 0, p(ei) # 0, cr(e ) = 0, cr (ei) # 0. 

Now (C,D) = (0,0) and (E,F) # (0,0), and we find the degenerate 

solution h 2µ = A/E (if E # 0) or, equivalently, h 2µ = B/F (if 

F # 0) if and only if p(ei<j>)/cr*(ei<j>) is real and non-zero. I 

·rp i<j> * i<j> 
Case 3.3: CF - DE= 0, p(ei) # 0, cr(e ) = 0, cr (e ) = 0. 

Since (A,B) # (0,0), no solution of (3.4) exists in this case. I 

If for <P = rp 0 the system (3.4) has no solution, a small perturbation of <P 

2 yields a solvable system and the values of hA or h µ, or both, tend to 

infinity as <j> + rp 0 . 

The occurrence of degenerate solutions, as mentioned in the cases 3.1 

and 3.2, is not exceptional: for <P = TT the imaginary parts B,D and F vanish, 

and we obtain from (3.2) the degenerate solution 

(3.5) p2 (-1) - hAp(-l)cr(-1) + h 2µ[cr(-l)p'(-1) - p(-l)cr'(-1)] = 0. 

As an illustration we derive, in the following examples, the stability 

region of two simple quadrature methods. 

EXAMPLE 1. (the repeated trapezium rule). For the quadrature method (1.2) 

we choose the repeated trapezium rule (w 0 = w = 1/2, w . = 1 for 
n nn nJ 

j = 1(1)n-1), which is reducible to the trapezoidal rule for solving ODEs. 

For this rule, the polynomials p and cr are p(z,;) = z.;-1 and cr(z.;) = (z,;+1)/2. 

For <P = 0 and <P = TT, we find the degenerate solutions h 2µ = 0 and h 2µ = -4, 

respectively. For 0 < <P < TT, the determinant CF - DE= -sin <P does not 

vanish, and we find the unique solution (hA,h2µ) = (0, ·2cos <P - 2). The set 

r is now completely determined, and from it one easily derives that the 

stability region (with respect to the convolution test equation (1.7)) of 

the repeated trapezium rule is 



We emphasize that the trapezoidal rule, in view of definition 3, is not 

A0-stable. • 
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EXAMPLE 2. (the repeated rectangle rule). We now choose the repeated rect­

angle rule (wnO = 0, wnj = 1 for j = l(l)n) which is reducible to the first 

order backward differentiation (BD) method or backward Euler rule for solv­

ing ODEs (p(~) = ~-1 and cr(~) =~).For~= 0 and~= TI, we find the degen­

erate solutions h2µ = 0 and 4-2hA+h2µ = 0, respectively, and for 0 <~<TI 

we find the unique solution (hA,h2µ) = (0, 2cos ~ - 2) from which we derive 

that the stability region is 

Again we observe that this quadrature method is not A0-stable. • 

The above examples illustrate a general result which is given in the 

following section. 

4. A RESULT CONCERNING THE EXISTENCE OF A0-STABLE QUADRATURE METHODS 

The two examples given in the previous section raise the question: 

Do there exist A0-stable (p,cr)-reducible quadrature methods at all? The 

following theorem provides the answer. 

THEOREM 1. (p,a)-reducible quadrature methods cannot be A0-stable. 

PROOF. Choose, in (2.6), h = 1 and a fixed negative A and define 

(4. 1) 
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With this definition of p 1 and a 1 , the stability polynomial (2.6) is 

identical to the stability polynomial of the linear multistep method 

( p 1 , a 1 ) applied with stepsize h == 1 to the ODE f' == µf. 

The coefficient of s 2k in pl (s) is a 0 (a0-Ab0 ) and does not vanish for 
2k . 

a suitable negative A (recall that a 0 ~ 0). The coefficient of s in cr 1 (s) 

is b 0ka0 -- a 0kb0 == 0, and therefore the linear multistep method (p 1 ,a1 ) is 

explicit. If p 1 and a 1 have common factors, they are divided out to yield 

polynomials p 2 and a2 with no common factors. The method (p 2 ,a2), however, 

remains explicit. CRYER [4, theorem 3.1] has shown that explicit linear 

multistep methods for ODEs cannot be A0-stable. This result implies the 

existence of a negativeµ such that p 2 (s) - µa 2 (s) has zeros outside the 

open unit disk. For thisµ and the suitable choice of A, the stability 

polynomial (2.6) has, therefore, zeros outside the open unit disk. Hence 
2 

we have shown the existence of a point in the third quadrant of the (hA,h µ)-

plane, which is outside the stability region. I 

We end this section with two remarks. 

REMARKS. 

4.1. The result of the above Theorem can also be derived in a more heuristic 
2 

way. Consider the equation (2.1) for hA ➔ 0 and h µ fixed. In this case, all 

(p,a)-reducible quadrature methods for finding f become explicit, and, 
n 

clearly the region of absolute stability cannot have the entire negative 

h 2µ-axis as part of its boundary. 

4.2. We also want to consider the result of Theorem 1 in connection with 

similar methods for solving Volterra integro-differential equations (VIDE). 

Consider the class of numerical methods (p,cr: Q) (see [3,9,10]) where (p,a) 

is a linear multistep method. for ODEs and where Q represents the set of 

quadrature formulae. Choosing for Q (p,a)-reducible quadrature formulae, 

we obtain the class of methods (p,a;p,a). 

The stability analysis of such methods is based on the test equation 

(cf. [3]) 

( 4. 2) 

X 

f' (x) == Af(x) + µ J f(y)dy. 

0 
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Although this test equation is equivalent to the convolution test equation 

(1. 7), the stability behaviour with respect to (4. 2) and (L 7) of the same 

basic method (p,cr) is different. To be specific, it is known ([3,9]) that 

A -stable methods of the form (p,cr;p,cr) exist for VIDEs. For example, 
0 

choosing for (p,cr) the trapezoidal rule or the first or second order BD 

methods (which are A-stable for ODEs) yields an A0-stable method (p,cr;p,cr) 

for VIDEs. However, for the same underlying method (p,cr) used to solve 

Volterra integral equation of the second kind, the property of A0 -stability 

is lost. 

5. THE STABILITY REGIONS OF THE BACKWARD DIFFERENTIATION METHODS 

In this section we determine the stability regions of the quadrature 

methods which are reducible to the well-known backward differentiation (BD) 

methods fork= 1(1)6. The coefficients ai and b 0 (bi= 0 for i = 1(1)k) 

are listed in [8, p.242]. For a discussion of the corresponding quadrature 

method we refer to [10]. 

For the BD methods p(eicjl) = 0 only for cp = O, and cr(eicjl) f:. 0 for all 

cp. Therefore only the Cases 1,2 and 3.1 of §3 can occur. For cp = 0 (Case 1 

in §3), we obtain the straight line h 2µ = 0. Furthermore, since for the 

BD methods p(eicjl)/cr(eicp) is real and non-zero if and only if cjl = TI, we 
2 

derive from (3.5), for cp = TI, the straight line c 1 + c 2hA + c 3h µ = 0 

which is part of the set r. The values of c 1 ,c2 and c 3 , computed for dif­

ferent values of k, are listed below. 

k cl C c3 2 

1 4 -2 1 

2 16 -4 3 

3 400 -60 63 

4 1024 -96 135 

5 6975 -3840 65536 

6 14175 -6240 173056 
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2 These lines bisect the third quadrant of the (hlt,h µ)-plane, and therefore, 

in view of Definition '.3, the quadrature methods reducible to the BD methods 

are not A0-stable. 

For O <$<~and k ~ 5 the system (3.4) has a unique solution, which 

we have computed for$= j~/100, j = 1(1)99. Fork= 6 we have found that 
0 0 I 

the system (3.4) has no solution for$= 60 and$~ 77 35 • Consequently, 

for$ in the neighbourhood of these values, hll or h2µ tend to infinite 

values. For this reason the set of curves r fork= 6 was totally different 

from those of the other k values. Furthermore the resulting diagram did not 

permit any surveyable representation which led us to omit the case k = 6. 

Fork= 1, the stability region has been given already in Example 2. 

For k = 2(1)5 we give in Figure 1 diagrams of the stability region in the 

(x,y)-plane, where x = hlt and y = G(h2µ) with G defined by G (z) = (if z :::::: 

then rz else -F-i). In Figure 2 a close-up of Figure 1 near the origin is 

given. 

The reason for choosing this (x,y)-scale is the following. Suppose 

that A andµ are fixed, and suppose that one is interested in the value of 

h0 such that the points (hlt,h2µ) lie within the stability region for 

0 < h < h0 (h0 may be interpreted as the maximal stable stepsize for that 

A andµ). If the stability region is given in the (hlt,h2µ)-plane, then, 

for fixed ll andµ, the point (hlt,h2µ) moves, ash increases from O, along 

the parabola h2µ = (hli.) 2µ/li. 2 away from the origin. The first intersection 

point of this parabola with the boundary curve then determines the value 

0 

of h0 • If the stability region is given in the (x,y)-plane, then the point 

(x,y) moves, ash increases, along the straight line y = x G(µ)/ll away from 

the origin which is the line through the points (lt,G(µ)) and (0,0) in the 

(x,y)-plane. The first intersection point with the boundary curve then 

determines h0 • In the case of a straight line, however, such an intersection 

can be read directly from the diagram of the stability region. 

Due to this transformation the straight lines c 1+c2hll+c3h2µ = 0 appear 

as parabolas in the (x,y)-plane. Note also that the scales on the x-axis 

and y-axis are different. 
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6. CONCLUDING REMARKS 

In this paper we have investigated the stability behaviour of a class 

of direct quadrature methods, viz. the (p,cr)-reducible quadrature methods, 

for the solution of Volterra integral equations of the second kind. An im­

portant result is that within this class no A0-stable methods exist. The 

question whether there exist more general direct quadrature methods which 

are A0-stable, remains open. On the basis of the heuristic argument men­

tioned in remark 4.1, however, we conjecture that a direct quadrature method 

cannot be A0-stable. 

Numerical methods for solving (1.1) which are A0-stable do exist. An 

example is the second order method discussed in [6]. Their method (which is 

essentially a VIDE method adapted to solve second kind integral. equations) 

is outside the class of direct quadrature methods, and hence does not con­

tradict our conjecture. 
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