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ABSTRACT

For parabolic equations in one space variable with a strongly
coercive self-adjoint 2m-th order spatial operator, a k-th degree
Faedo-Galerkin method is developed which has local convergence of order
2(k+1-m) at the knots for the first m-1 spatial derivatives and, if
k = 2m, convergence of order k+2 at specific interior nodal points. These
nodal points are the zeros of the Jacobi polynomial P:'m(o) (n=k+1-2m)
shifted to the segments of the partition. All these convergence

properties are preserved if suitable quadrature rules are used.
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1. INTRODUCTION

We consider the 2m-th order initial boundary problem

%%(t,x) + Lu(t,x) = 0; x e [-1,+1] = 1;
tel0, ) =7J;
L
m 9 9 u
Iu= ) -1y oL [PE(X)BXK Ji
£=0 X
(1.1)
ya

E_%.= 0, x=21,2=0,...m1; t e J;
9xX
u(0,x) = uo(x)-

We suppose that po,...,pm and u, are such that u(t) is sufficiently smooth

0
for every t € J.

1.1 Notations.

£
For any interval E ¢ I we define the Sobolev spaces W (E) and

HK(E), £ > 0, and their norms by
£ 3 o .
W (E) = {v|]D’velL (E), 3=0,...,4};
HK(E) = {v|plv € L2(E), 3=0,...,4};
(1.2)
Iyl - Iyl ;
Vit (5) o ¢ DVl gy 7
j=0,...,
- T (nd. nd %
“v"Hz(E) = [.f (D”v,D V)E] ’
. j=0
where Dj denotes dj/dx:J or BJ/Bx:J and the complexvalued inner product

(')E is defined by

(1.3) (0,8) = fa(x) B dx; a,B € L(E).
E



For convenience, since we use them frequently, we make the following

replacements
(1.4) "a"z = "“"HK(I)’ (a,8) = (a,B) .

Furthermore, we define H?(I) and the bilinear functional B:H?(I) X

HE(I) + ¢ by
Hﬁ(l) = {v|v € Hm(I); ﬁev(tl) =0,4=0,...,m1};

(1.5)

m
YAV
B(u,v) = (Lu,v) = (u,Lv) = 2 (pzD w,Dv); u,v e Ho(I).
£=0 0
We assume that Pore--rPp are such that B is strongly coercive, i.e. that

there exist positive constants C, and C, depending on po,...l,pm only,such

1 2
that

A

|B(u,v)| < c, “uﬂm Hv“m; u,v € Hg(I);

(1.6)

\

2 m
. > I+l “; .
B(wv,v) C2 v m vV € HO(I)

Note that this implies that pm(x) >0, X e I.

In the sequel, C,C ,C2, etc. will be positive generic constants,

1
not necessarily the same.

1.2 The Faedo-Galerkin method.

Let N 2 2 be a constant integer and define the partition

N
A={x.}, . of I b
j 3=0 Y

h = 2/N;
(1.7) x, = -1 + hj, j=0,...,N;
I. =[x, ,xj], j=1,...,N.

j j-1



Let k > 2m-1 be a constant integer .. Then we define the finite

element space S(A) < Hg(I) by
m .
(1.8) s(8) = {v|v e Hy (D Ve R (1), j=1,...,N},

where for any £ > 0 PZ(E) denotes the class of polynomials of degree at
most £ defined on the interval E.
In the sequel, we will use the following constant integers

associated to k,m and N

r = k+1l-m;
(1.9) n = k+1-2m;
= rN-m.

In (1.9) n is the number of interior nodal points of S(A) on Ij and M is
the dimension of S(A).
In connection with A, we define the partition spaces WK(A) and

HE(A)'together with their norms by

L
W (A) = {vlv € Wz(Ij); j=1,...,N};
I+l Ly = max “v"wﬂ y i
wEA g, (1
(1.10)
HK(A) = {VIV € Hz(Ij); j=1,...,N};

N
=Y tor? K
Ivly y =00 Molpp o, 17
=1 3

After these preliminary definitions, we can define a finite element
solution of (1.1). Let U: J - S(A) be the solution of the initial boundary
problem



(%%—, V) + B(U,V) =0, VeS(), ts20;
(1.11)
where U0 € S(A) is an approximation of u0 satisfying
: k+1-£
. luy -u Il ) < I . =0,...,m.
(1.12) u, UO 2 Cch “uo K1’ £ =0, ,m

' k+1
LEMMA 1. Let u: J = HE(I) NH (I) be the solution of (1.1) .and let
U:J =+ S(A) be the solution of (1.11) with condition (1.12). Then
e(t) = u(t)-U(t), has the L2 error bound

k+1
ﬂe(t)ﬂo < Ch *[ “u(t)"k+1 +

(1.13) £

A, T
+ f e’1 "Lu(T)“k+1dT}],
0

-t
+e 1 {lluollk+1

where Al is the smallest eigenvalue of L.

PROOF. See [11]. O

1.3 Summary of results in this paper.

In §2 the occurrence of superconvergence at the knots is investigated.

It appears that this depends crucially on a proper choice of U.. A surpris-

0

ingly simple choice of U, is made with the only additional requirement

0
that u(t) e Hg(I) n B 1) nwTA), t € J. In that case Dﬂe(t,xj)

£=0,...,m1; j=1,...,N-1) is of O(hzr) on J. Furthermore, if

n =2 1, there are on each I. n specific interior points, where e(t) is

of O(ﬁk+2), one order bettgr than the optimal order of convergence.
In §3, it is shown that all the results from §2 remain valid if

B(,) is approximated by a proper quadrature rule.



2. SUPERCONVERGENCE PHENOMENA

For m=1 and k 2 2, J. Douglas, jr. et alii [7,8,9,10] have proved
that the order of convergence at the knots is 2k, while the optimal order
is k+1. We generalize their results for m > 1. Also, we establish a
minor superconvergence at interior points. For these purposes, the
Laplace transforms of u(t) and U(t) are used, because they transform
initial boundary problems into boundary problems which are simpler to

handle.

2.1. The Laplace transform.

Let V be a class of functions defined on I. Then for any continuous

mapping v: J -+ V, we define the Laplace transform L: CO(J) X V > V by
(o]
A -
(2.1) Lv(s,x) = 9(s,x) = Je St (t,x) at,
0

where s lies in the convergence half-plane of v(t).

For the general properties of L and for the convergence criteria
for (2.1), we refer to [6]. If we apply L to the problems (1.1) and
(1.11), we get for G the two-point boundary problem (in classical and

weak Galerkin form)

A
(2.2a) LG + su = uo, X e I;

A A m

(2.2b) B(u,v) + s(u,v) = (uo,v), VvV € HO(I)
A

and for U the weak Galerkin form

A ) A
(2.3) B(U,V) + s(U,V) = (UO,V), V e S(4).
Note that (2.3) is not the standard finite element solution of (2.2).
Since the dependence on s appears from the roof-sign, we will usually

omit the argument s.

We first formulate a technical lemma which we will use a couple of



6

times.

LEMMA 2. Let xlﬂand X, be nonnegative numbers; let WU,Y and D be positive

parameters ; let s be a complex number and let the following inequalities
hold

Xy + s x2| = D/;é i
X, 2 Y Xyi
(2.4) s = -o + iB;
| p<a < B+ ou
0 <u<y.

Then x, and X, have the bounds

1 2
( 2
YD2 5 , if o + g2 < v%;
(y-a) +8B
< 3
%
2
—25 [a + /a2+82 1, if a2 + 82 > v ;
L 28
(2.5)
- D2
55 if o < v;
(y-a) +8
< 9
)
D2
— v if a < ¥y.
L B
PROOF. We substitute
(2.6) Xy = y1 + ay,i X, = Y,

Then, for Yy and Y,r we have the inequalities



2 2 2 2
< .
yl + B Y2 =D Y2 I

(2.7) v, 2 (Y-G)Yzi Yy 2 0 ;

p<a< Bl +u ow<y,

so X, and x, are linear functions of Y, and v, with constraints (2.7).

Elaboration for all possible values of B delivers (2.5). [

We turn to the problems (2.2) and (2.3). Let u be a positive number

with u < Ai and define Pl'P2""'P5 in the complex plane (see figure 1)
by

P, =~ i
2.8 = - + iR;
(2.8) P2,5 p * iR

= - + 1 : > o

P3'4 (u+R) = iR, R 0
By Pl"'Pn' we denote the broken straight line starting in P1 going
to P2 etc. and ending in Pn.

A A A A
LEMMA 3. Let e(t) = u(t)-U(t) and e = u—ﬁ, where u(t), U(t), u and U are
the solutions of (1.1), (1.11), (2.2) and (2.3), respectively. Then for

t > 0 and h sufficiently small, we have

P3=—u-R+1R : P2=—u+iR
A 4 L e
—Az TXZ =-Ap-X P1=—u 0
P4=-u-R—1R P5=—u—1R

Figure 1



£ 1 = A ,
D e(t,x) = T 1lim e(s,x) exp(st)ds =
M1l R->e0
PP P,
(2.9)
t o]
_u .
- - A
= = f e % 1nl (1-1) e 1% & (cap-io, 2 Jaa,  £0,...,m-1.

0
PROOF. It is known [11] that

A 00
u(s,x) = _Z (yr9,) 0, (x)/(s4X,);
i=1
(2.10)
A M
U(s,x) = 121 (Uor ;) (Ug,0.) 0, (x)

where 11,12,..., are the positive eigenvalues of L in nondecreasing
order, with orthonormal eigenfunctions ¢1,¢2,..., and where Al'A2""'AM

(in nondecreasing order) and ¢ ,@2,...,¢M are the positive eigenvalues

1
and eigenfunctions of the problem

B(®,,V) = A, (0,,V), Ve S(4A), i=1,...,M.
1 1 1
Note that
(2.11) A, = inf E%EQE% >  inf E%%L%% = A,
ves(a) V'V veRE (1) '

A
From (2.10), we see that Dze is meromorphic in s with the set

{_li}:=1 U{—Ai}T_l»as only possible poles. Since these singularities lie

outside the contours P1P2P3 and P1P4P5 we have by Cauchy's theorem

(2.12) f Dzé(s,x) exp(st)ds = f Dzé(s,x) exp(st)ds = 0.

- PyPoPy P1PsPs



Furthermore, since P5P1P2 lies in the convergence half-plane of é, we

can apply the complex inversion formula [6] to obtain

(2.13) Dﬂe(t,x) = lim 5%; f Dzé(s,x) exp (st)ds,
R>

P5P1P2

Hence we see immediately from (2.12) and (2.13) that we only have to prove

that

(2.14) ‘1lim f 0% (s,%) exp(st)ds = lim J 5% (s,x) exp(st)ds = 0.
R R

PPy PyPs

From (2.2), we can derive that

(2.15) |B(@,0) + s@, ]

A A
< lu d .
I(uo,u)l uo 0 "u"o

Application of lemma 2 for s

-p-o * iR yields

IA

|B(G,G)| 5Huoﬂé [a+vVa+r? 1/R?;
(2.16a)

IDKG(X)I

IA

-
< |
C“u“m CR Iuoﬂo,

if R + o, The last inequality was proved by Sobolev's embedding theorems
[11] and by the strong coercivity of B. In a similar way, we can prove

from (2.3) that

(2.16b) |D£G(s,x)l < CR-%“UOHO, £=0,...,m-1,

if R+ » and s = * iR-0-u. From (2.16) one easily proves (2.14) and

therewith the lemma. [J

As in [2], we can exploit (2.9) to transfer local convergence
A
properties of e immediately to e(t). Since these properties are not

standard if |s! -+ o, we have to prove them here explicitly, of course only
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for s = -o-p * ia. In the sequel C(a),cl(a), etc. are positive functions
of o which are polynomially bounded on [0,®), not necessarily the same

ones.

LEMMA 4. Let U0 € S(A) be any approximation of u
A

A A
e = u-U has the bound

0 satisfying (1.12). Then

A k+1-£
(2.17) “e"z < Cc(a)h "uo"k+1’ £=0,...,m.

PROOF. From (2.2b) and (2.3), we find that

(2.18) B(0-0,v) + s@-0,v) = (uy-Ug V), V € S().

A A
Next, we introduce the elliptic projection U, € S(A) of u by

2

(2.19) B(G—GZ,V) -0, Ve s(4).

A A -2, A
It is standard [11] that lu-U_ll S'Chk+1 ﬂﬂuﬂ ,
A 2 L k+1

A A
V=c¢ =-Uz-U and subtract (2.19) from (2.18), we find

£=0,...,m. If we put

A A A A A A A
|B(e,e) + s(e,e)| = |(u-Urs@-U),e)] <

(2.20)

k+1

A A
<
< clel w gl o+ [s[1al ).

Application of lemma 2 to (2.20) yields

2

2 (k+1) e,

B(¢,8) < C(o)h (I + |s|IlGIIk

Yo' k+1 +1

(2.21)

k+1

A A A
"8“46 < ||e||m < C(a)h (||u0“k + ]slllu“k+ ).

+1 1

We now have

A A A A

. 11, < 1881, + 180, <
(2 22) e 2 u U2 2 + le 2 <
s v cnbaugl o+ s, ), =0, .

k+1
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A
We need an estimation of “u"k+1 yet. From (2.2), we can derive that,

since Lﬁ € Hg(l)
A _A A _A A A
|B(Lu,z) + s(u,Lu) | = [ (Luy,ma) | < fzugl Izl .

Application of lemma 2 yields

A
A
A

A A
Il < clwul < I I < la
u 3m CllLu o Cl(a) LuO 0 Cl(a) uO om’

(2.23)

A

A
A

u A A
Il < clrul - < I I < fa I .
u om CliLu 0 C2(a) Lu0 0 Cz(a) uO om

Since

£
Yo

L_A

I < |s[nD£Guo + ol £=0, ....n,

we can prove by induction that

(2.24) < C(a)ﬂu0“k+1.

A
Il
it
From (2.22) and (2.24), we get (2.17), which proves the lemma. []

REMARK. Although C(o) in (2.17) is polynomially bounded, it tends to be of
O((Al—u)_l) near o0=0, as u+Al.

Now that we have established convergence of A on the contour

P4P1P3} we can investigate the superconvergence at the knots.

For any x € (-1,+1) and £ e {0,1,...,m-1}, we define the generalized

A
Green's function Gz(x,g) € HE(I) n Hk+1(0,x) n Hk+1(x,1) associated to

L by

Lgéz(x,z> + Eéz(x,a) =0, £ e I\{x};
(2.25)

B(v,ez(x)) + s(v,éz(x)) = Dﬂv(x), v e HE(I),
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where the subscript § of LE denotes partial differentiation with respect

to £. If we denote
A A .
(2.26) sz(g) = Gz(xer), j=1,...,N-1; £=0,...,m-1,
. LA
we find for D e(xj) the bound

|D£é(xj)| - IB(Q,ézj) + s(é,ézj)l' <

IA

A A A A A A
IB(e,Gﬂj-V) + S(e,sz—V)I + |B(e, V) + s(e, V)|

(2.27)

IA

et 18, -vl -
clolel 16, vl + |(uO UV, Ve s,
j=1,...,N-1; £=0,...,m-1.

A ‘
Since sz € Hg(I) n Hk+1(A), we can take V such that

18, —vl chf 18 :
£ "m ZJ k+1,A 7
(2.28)
Iyl < cle
Wk (A) Kj Wk+1 (A)

Then it is easily proved from (2.17) and (2.27) that

£ 2r A
< g, I
|D e(xj)l < C(a)h ﬂuollk+1 sz kri,a ¥

(2.29)

+ l(uo—uo,v)[, £=0,...,m-1; j=1,...,N-1.

i - Il l .
We have yet to estimate I(u0 UO,V)| and sz K+1,A

Concerning the first quantity, a seductive choice of U0 would be the

L2 projection of u, which would annihilate l(uo—Uo,V)l. A drawback of

0
this choice, however, is that the superconvergence of D e(t,xj) would

not be uniform in time: (2.9) is not valld for t=0 and Dze(O x ) is

of o¥* 1Y) po0,....m-1, in stead of o(h2Y).
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In the next sections, we will construct a U, which guarantees

superconvergence of Dte(t,xj) uniform in time ang which imposes2rather
mild extra conditions to ug and u(t): they also have to be in W r(A).
Although we chose A uniform, for reasons of convenience, it can, of
course, also be chosen quasiuniform, if this helps to meet the extra

conditions.

2.2 Choice of nodal points; Jaéobi polynomials.

0 of uo, we first

(x) by [1,13]

In order to construct a proper approximation U

define the v-th degree Jacobi polynomial P%'B

Pt's(x) = [w(x)]—1 Dv[(l—xz)v w(x)J]; v =2 0;

(2.30)

wix) = (1-x)%1+0) % x e (=1,+1); a,8 > -1.

These polynomials have the properties [1,13]

o,B o,B o, o
(wp '", Pv' ) = éuv(va B,Pv’s) ;i U,V = 0;
(2.31)
Pa'B(x ) = 0;-1 < x, < X, <.,..<x <1
v iy ! 1v 2v " Tyv

where 6uv is the Kronecker symbol.
Within the context of this paper, we are only interested in the

case o = B = m.

We recall that r = k+1-m and n = k+1-2m. Let 01,...,0n be the zeros

of Pm'm(o), i.e.
n
m,m
(2.32) pn’ (0p) =0, £=1,...,n.
Of course, (2.32) only makes sense, if n 2 1. In the sequel, it is

tacitly assumed that the formulae which make no sense if n=0 are to be

omitted.
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Given a partition A of I, we define the points Eﬂj by

h _ pe
(2.33) By = %y_q * (1+op) s j=1,...,N; £=1,...,n.

Next, we introduce the linear interpolation II: Hg(I) n Wzm(A) -+ S(A) by

DZHf(xj) = sz(xj), £=0,...,m-1; j=1,...,N-1;

(2.34)

.Hf(gﬂj) = f(glj)' £=1,...,n; j=1,...,N.

LEMMA 5. For any V € S(A) and f € HE(I) n W2r(A)

2r
(2.35) (£-1£,v) | < chFlsl Il
| | W2r(p)  wk(A)

PROOF. For n=0, (2.35) is trivial [11]. For n = 1, we consider an

arbitrary segment Ij' If we substitute x = lz(xj_1

+xj+hc), o€ I, we find

that
+1
(£-II£,V) = Lh f L(£-If)v]1(%s(x. ,+x.+ho))do =
Ij j-1 73
+1 -1
= kh J (1—02)um’m(o)(gV)(%(x, +x .+ho) )do
n j=1 773

-1
where g is bounded on I. From (2.31), we conclude that (f—Hf,V)Ij =0

if gV € Pn-l(Ij) or fV € P2r

_1(Ij). Application of Bramble and Hilbert's
lemma [3] yields

2r+1'“D2

(2.36) | (g-n£,v)_ | < cn Tenl J=1,...,N.

3 L®(I4)

Elaboration of (2.36) and summation over all Ij results in (2.35) and

proves the lemma. [

Note that by (2.34) we have defined all the nodal points of S(A){
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2.3 Order of convergence at the knots.

We return to (2.29) recalling that

£A 2r A
|p e(xj)l < c(@h™lagl "sz“k+1,A +

+ l(uO—UO,V)I, j=1,...,N-1; £=0,...,m-1,

A .
where V is an approximation of sz satisfying (2.28). If we take U, = Tlu

II defined by (2.34), then application of (2.28) and lemma 5 gives

£A 2£ A
< ly Il I I a1 vl <
|D e(xj)l C()h™ [hagl, . sz k1,8 T g W2 () v k,A]
(2.37)
2r A .
< I I Il , j=1,...,N-1; £=0,...,m-1.
C(a)h sz et oy 100l o ) j=1 N-1; £=0 m-1

k+1, A is polynomially bounded, hence we can

prove by combination of (2.37) and lemma 3 that

A
It is easily proved that “GZ-“

©o

ya 2r -ut -at
(2.38) |D e(t,xj)l <h"e "“o"wzr(A) J e c(a)da,

t > 0.

There is one last problem: the superconvergence bound (2.38) does not
hold down to t=0. This obstacle is immediately removed because the
definition of U0 implies that

Dze(O,xj) =0, £=0,...,m-1; j=1,...,N-1.

That U0 = Huo satisfies (1.12) is trivial since II leaves all members of

S(A) invariant. This concludes the proof of

THEOREM 1. Let u: J = HE(I) n Hk+1(I) n W2r(A) be the solution of (1.1)
0 defined by (2.34).
Then the error function e(t) = u(t)-U(t) has the global bound (1.13) and
the local bound

and let U:J - S(A) be the solution of (1.11) with U
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ya -ut, 2r
2.39) D e(t,x.)| £ F(t)e " h" llu
( l 5 | 0 W2r(A)'
where y is a number between 0 and Al and where F(t) is bounded on J,

F(0) = 0 and F(t) = O(t-l) as t » o, 0

2.4. Order of convergence at Jacobi points.

In this section, we will prove that the order of convergence at the

. . +2 —ut
points Eﬂj defined by (2.33) is of O(hk e ut). Since these points only

exist if n 2 1, we confine our attention to the case k = 2m.

For any Ij € A, we define
(2.40) S(1,) = {v|v € s(4); supp(V) = Ij}.
It is evident that S(Ij) has dimension n and that

(2.41) Dﬂv(x) =0; x € BIj; V e S(Ij); -£=0,...,m-1.

. . n
We define a basis {q)i}i=1 of S(Ij) by
(2.42) ¢i(g£j) = aiﬂ ’ 1 <i, £ < n.

If we apply (2.18) for ¢1,...,¢n, we find after partial integration

that
e,Lo. +56.) = (u. - U ) +
(e, ¢i S¢i = uO Ol¢i
(2.43) .
m -1 L X5
) [(—1)va(p£D£¢i)D£ 1 Vé]lx ,  i=1,...,n.
£=1 v=0 j-1

In order to approximate the inner product (,) by a quadrature
rule involving the function values at Elj which is accurate enough, we
define for f € W2r(I) the approximation

_ +1 +1
(2.44) I f(o)do = I £ (o)do »

-1 -1



where II: Wzr(I) > Pk(I) is defined by (2.34) shifted from Ij to I. Note

that in the case m=1, we obtain Lobatto's quadrature rule [1].

LEMMA 7. Quadrature rule (2.44) is exact if f ¢ P2r_1(I).

PROOF. Since
£(o) - Nf(0) = (1-0.2)mp’r’:’m(o)g(o)f

where g(o) is bounded, it is evident that (2.44) is exact

if g € Pn-l(I)' i.e. if f € P2r—1(I)' O

Elaboration of (2.44) yields

+1 m-1
2 2
If(o)do = } [6, D E(-1) + 8, D £(+1)]
' =0 ! 2

(2.45)

n
+ Y wpf(o,),
254 L 7L

17

m
where 0,,...,0 are the zeros of P 'm(o) and 6, , © and w, are constant
1 n n £ Lo £

1
weights. By applying (2.44) to fz(o) = (1—02)m Pﬁrm(o)/(o—oz), £=1,...,n,

one can prove that [13, ch. XV]

wp = uz(l—cz)-m, £=1,...,n,

where ul,...,un are the positive Gauss-Christoffel numbers for the n-point

Gauss-Jacobi quadrature formula with weight function (1—02)m. This proves

that w£> 0, »€=1,.-.,n-

2
Next, we define for ao,B € W r(Ij)

n
J £=1 3j j
(2.46)
-1
nh st h#£ 2 ?
+ 3 ZO ) [og DT(0B) (x5 p) + 62213 (a8) (x,) 1.
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This quadrature rule has the error bound [3]

(2.47) l(a,S)I. - (a,B);_I < Ch2r+1ﬂD2r(aB)“Lw

If we apply (2.46) to (2.43) and multiply by 2h2m_1, we obtain

n
2m - A
| ﬂzlh w£[L¢i<g£j)»+ s 8,1 e(;zj)| <
m-1
2m h £ L A~ -
ZZO ) IeﬂlD (e(s4,+Lo,)) (x_

A

h )

1

LA -
+ 9£2D (e (59, + L¢i))(xj)| +
c h2k+2 2r A

D s I +
(2.48)
2k+2 2r
- 1
+ c2h Ip (¢i(u0 UO)) L®(1 ) +
m £-1
¥4 —1-vA-%
+ n2® ) l[Dv(ptD ¢i)D£ 1 vé].fll <
=1 v=0 _ J
< ¢ (@h2 hu + c. (n*2 12 +
+ c.n®2 1y —u + ¢ (@2 Il <
J
k+2 A
< C(a)h (Ta + lu -u l + lel ), i=1,...,n.
0 W2r(A) 0 0 W2r(Ij) w2r(Ij) ! !
A
We have to estimate lu_-U_l and lel
0 0 WZI(I,) W2r(I-)
J J
From [4,11] we know that in virtue of the definition of UO' we have
L ' k+1-£, k+1
I -u )l < I =0,...
D (uy=Uy) L“(Ij) ch I Yo' (Ij)’ £=0, ik
hence we easily get
(2.49) lu -u I <c lul
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Let HG be the interpolation of G defined by (2.34). Then we can
prove from f4,11] and [2] that

A A
+ Mu-mul <

A A A
14l < 18-nl 4
W (I4) w2t (15)

W2r(Ii)

IA

kg A _A A
Il g-Tul + c lul <
C1h U-Tu Lm(Ij) C2 u Wzr(Ij)

A

=k, A A _A A
. < lel « + lu-mul + lul <
(2'50) Clh [le £°(1.) u-Tu L“(Ij)] C,lu w2r(1j)

J :
A k+1A
I lu | I
Cl(a)[ﬂu . + u, k+1] + C2h D “ul

<) +
+1

L (Ij)

A

c_ Il

+
IA

IA

I3 I A
Cl(a)[ u Kk + uO“k+1] + C2“u"

+1 W2r(1j)

A
"u"k+1 was already estimated (formula (2.24)), for the estimation of

“G" 2r( ), we simply use the differential equation (2.2a) to obtain
W I-
J

2r 2r -

W (Is)

J

Summarily, we have obtained from (2.48)-(2.51) that

n
2m - A
I£Z1h wl[L¢i(E£j) + saiKJe(gﬂj)l <
(2.52)

K+2p 00

< Cla)h 0 w2r (a) "

i=1,...,n.
We have to prove the solvability of the linear system (2.52). It is easily
proved that

(2.53) | (wghe; (6p)) - & B(s .0, n”"] < cn,

if h is small enough. Consequently, the matrix (hzmm£L¢i(££j)) approximates

. - - . . 0 .
a symmetric positive definite matrix whose eigenvalues are of O(h ). This

- means that its eigenvalues are nearly positive, i.e. the real parts are

positive of O(ho) and the imaginary parts are of O(hz). Since s € P,P P -

413
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we can show from (2.52) by elementary matrix calculus that

k+2"u I
0 W2r(A)
£=1,...,n;3=1,...,N.

(2.54) lé(gzj)l < c(a)h

Application of lemma 3 to (2.54) plus the fact that e(O,&Zj) = 0 lead to

THEOREM 2. Let the conditions of Theorem 1 hold with the restriction
that k =2 2m. Then e(t) has the bounds (1.12) and (2.39) plus the addition-
al bound

THE A2 N
0 w2r(p)
j=1,...,N; £=1,...,n.

(2.55) |e(t,££j)| < F(t)e

where the points £,. are defined by (2.33) and F(t) is bounded on J,
23

vanishes if t=0 and is of O(t-l) as t > o, 0
3. QUADRATURE RULES

When solving (1.11), one is usually forced to approximate B(U,V)
by some quadrature [12]. The choice of this rule is, as usual, dictated
not only by the accuracy of it but by its impact on the convergence
properties. It may sometimes be useful to approximate (Ut,V) by a
quadrature rule as well, e.g. in the case m=1 where the choice of
(k+1) -point Lobatto quadrature delivers a purely explicit system of
ordinary differential equations [2]. However, in this paper, we confine

to the numerical quadrature of B(U,V) solely.

3.1 Q-th order Gaussian rules-.

Let g =2 2r be a constant integer and let -1 <z, < z_< ... <z_ <1

1 2 P
be p distinct points on I and let, for f e Wq(I)
1
. B
(3.1) f f(z)dz = .Z w, £(z,)
1 i=1

be an approximation which is exact if f € P (I). Given a partition A of

g-1
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I, we define for a,B € W2(A)

p
*_h : h .
CHIMES iZ1wi(aB)(xj'1 + 54z )
. N *
(3.2) (a,B), = Y (a,B).;
. J
=1
m £ K
B, (a,B) = z (py)D @,D B). .
h £2=0 L h

As examples, we can take r-point Gauss-Legendre or (r+l1)-point Lobatto

_ quadrature.

LEMMA 8. For any U,V € S(A), we have for sufficiently small h

Q2K vl
i,A

(3.3) |B(U,v) - B, (U,v)| < ch e

’

0<i, j < k.

PROOF. Application of Bramble and Hilbert's lemma [3] gives

g+l Tv q L £
|B, (U,v) - B(U,W]| < ch y Y lp (PpDUD W g p ) <
j=1 £=0 Ly
q m
(3.4) < ch-lul v Z ol <
k,A p =
kb p20 TE wa
< cn™ 2K v . O
i,A j,A

By applying lemma 8 for i = j = m, it is easily proved that

COROLLARY 1. If h is sufficiently small then the bilinear mapping

Bh:S(A) X S(A)- > € is strongly coercive. [l

As a last preliminary of this §, we prove

LEMMA 9. For Vv € Hk+1(I) n H?(I) n Wq(A), let V € S(A) be an approximation

of v with the error bound
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k”“uvnk £=0,...,m.

- <
(3.5) lv-vl, < ch o

Then we have

A

(3.6) clvl

vl <
Vi, A +1

\
k+1 m g . L
PROOF. Let II: H (A) N HO(I) N wW*(A) > s(A) be defined by (2.34). Then
[4] ‘

vl < ly-1vl + lv-1vl v, <
v X, A vV-IIv " v-Ilv Xk + v X

A A

-k k+1
c,h ﬂv-nvﬂo + C2h"D

IA

(3.7)

IA

I Il
v0+ Vk

IA

-k
v | v-vl I v-Tvl < clvl
clv X + C1h L vVV 0 + lv-TIv 0] clv X

+1 +1°

3.2 Preservation of the orders of convergence.

In this section, we shall prove that the replacement of B(,) by
B(,)h does not affect the validity of theorems 2 and 3 except that the
constant y will be slightly smaller. This is due to the fact that

(3.8) w<A¥ = ing BV

ves(A) g v

and A: need no longer be greater than Kl.

Let Y:J -+ S(A) be the solution of the initial boundary problem

oY :
(3; V) +,Bh(Y'V) =0, Ve S(A), te J;
(3.9)

Y(0) = U, = Ilu

where Hris defined by (2.34) and B, by (3.2). We define

h
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(3.10) n(t) = U(t) - ¥(t),

where U is the solution of (1.11). We again define the points Pl’PZ""’PS
by (2.8) where we take care that (3.8) holds, in other words that (see fig. 1)

A . S
n = Ln(s) has no poles inside P1P2P3P4P5. Then we can prove, analogue to

lemma 2,that
wv

-iat £
DA

- [ _
Ht J e thm [(1+i)e (-a-p-io,x) Jdo;

(3.11) Dzn(t,x) =e
m 0
£=0,...,m-1.

As before, we are only interested in the case s € P4P1P3. By applying

L to (3.9) and subtracting the result from (2.3) we get
A A A A
(3.12) Bh(n,V) + s(n,V) = Bh(UIV) - B(U,V), V e S(4).

A
If we substitute V = n and apply the lemmas 8 and 9 plus formula (2.24),

we get

A A A - A A
B, () + sm | < cnmAL_ bl <
(3.13) '
g-k+m
< LEVIN
C(a)h uo K

u%nm.
+1 :

< chT K oAy i +1

A A * A A
Since Bh(n,n) > Al(n,n) and Bh is strongly coercive, we can prove from

(3.13) that

i N < a-ktm oo
(3.14) n m C(a)h uO K1

A
For n we now can prove the local bounds

LA A A A A
ID ﬂ(XJ)I = IB(n,sz) + s(anzj)[ <
A A A A A )
(3.15) < [B(M,Gy V) + s(n,sz—V)l + |B (Y, V-BEY, V| =
A A qy A
< C(a)"nﬂm Hsz VIIm + Ch “Y"k,A "V"k,A'

A
We take V such that (2.28) holds. For Y, we see that
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k+1-£, A
[ul
Wy

A A A A
-yl , < el , + Il <
u-yY 2 e 2 n C(a)h

2 +1'

hence after application of lemma 9

: A
<
(3.16) “Y“k,A < c(a)Hqu+1 < c(a)HuOHk+1.

From (3.14) - (3.16), it now easily follows that

4C=O,..-'m"1;
j=1,...,N-1;

£ q
(3.17) |D n(xj)l < c(a)h "uO"k+1’

and as an immediate result of (3.11) and (3.17)

o £ -ut. g
(3.18) |D n(t,xj)[ < F(e)e " hilugl, o,

where F(0) = 0, F(t) is bounded on J and where F(t) = O(t—l) as t »> =,

For the local bounds of n(t) at the Jacobi points, we confine our
attention to the case k 2 2m. Let S(Ij) and Eij be defined by (2.40)
and (2.33). Then for arbitrary j, we can prove from (3.12) that

A - A A
(n,LV+sV) = Bh(Y,V) - B(Y,V) +

m £-1 | X,
(3.19) + Y ) [(-1)va(pzDZV)Dz_l-vajlxj

r Ve S(I)).
£2=1 v:Q j-1 J

If we apply the quadrature rule (2.44) to (3.19) put Vv = ¢i, where ¢i
is defined by (2.42) and multiply by 2h2m—1, we obtain

n

2m - A
Izz1w£h (Lo, (Ep,) + 58,)N(Ey) |
2m-1 A A
< 20" (®,0) - B®,¢)) |
2m+2r, 2r A=A
+ Ch Ip (¢i(Ln+sn))ﬂLm(Ij) +
. . 2m+q
(3.20) + C(a)h "u0"k+1 o 0 <

k
1w (Ij)
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< clale. p2m2r
twk(zy)
A A
* [yl + Iql + lu ll 1<
Wk(Ij) Wk(Ij) 0 k+1
k+2 .
< C(a)h “uO“k+1’ i=1,...,n.

For the last inequality we used lemma 9 and the inequality

m=k=1y 2y

-k- A
1Al < ch™ ¥ 1A < ch

K (1. -1(1. -
W (IJ) win (IJ)

< C(a) 0'k+1 ’

which can be proved by Sobolev's embedding theorems [11] and (3.7).
From (3.20) and the results of §2.4, we easily prove that

A k+2,.
(3.21) ln(Eij)l < cl@n® ugh,

and application of (3.11) gives

—uthk+2" I

(3.22) Tn(t,sij)l < F(t)e ughy oy

where F(t) is bounded on J, F(0) = 0 and F(t) = O(t-l), as t > «,
We have to estimate "n(t)"O yet. Since n € S(A), this job is very

A A
easy, because all the nodal values of n(t): Dzn(t,xj) and n(t,Eij) have

+ -
been shown to be of 0(hk 2F(t)e ut). This implies automatically that

< F(t)e 0 k+1;'

“n(t)"L”(I)

(3.23)

‘ -ut, k+2
<
lln(t)ll0 < F(t)e " h “uO“k+1'

For n=0, we have to replace k+2 by k+1 in (3.23). By this, we proved

THEOREM 3. Let Y:J - S(A) be the solution of (3.9) and let

k+1

u: J > Hg(x) N H " (I) N wWi(A) be the solution of (1.1) with q > 2r. Then,
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if h is small enough, the error function c(t) = u(t)-Y(t) has the bounds

| —ut, v ]
Ilc(t)llo < lle(t)llo +F(e T h Mgl g

v = min(k+2,2r);

-ut, 2r
< |y | :
|c(t,xj)| Fy(t)e " h7lug W2 ()
j= 1,-.-,N"1;»
-ut, k+2
o(t,E..)| < F_ (t)e "h “lu.l ;
] ( Elj l 3( ) . 0] W2r(A)
i'= 1,.-.,n; j = 1'...,Nn

where ||e(t)||0 has the bound (1.12), u has the bound (3.8) and where
. Fl'F2 and F3 vanish if t=0, are bounded on J and of O(t-l), as t > o, d

4. CONCLUSIONS

In the preceding sections we saw that earlier superconvergence
results [2,7,8,9,10] can be generalized to 2m-th order problems if the
spatial operator is independent of time and linear. In that case the
Laplace transformation enabled us to transfer the local convergence
results of é(x) to its object function e(t,x). It also was made clear
how the superconvergence of e(t) at the knots and interior nodal points
crucially depends on the convergence properties of e(0). Furthermore,
it was shown that Gaussian points play an important role in this matterj
they are to be chosen as interior nodal points for the Hermite inter-
polation of u(0) and the local order of convergence is better at these
points than at other interior points. En passant, we also gave a proof
for superconvergence phenomena in the case of a 2m-th order elliptic
problem. That the use of g-~th order quadrature rules, necessary to
evaluate the stiffness matrix, left all the convergence results of
§2 unaltered was to be expected, although the supremum error of

n(t) is lower than usual.
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