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Convergence and Stability Analysis of Runge-Kutta type Methods for 

Volterra Integral Equations of the Second Kind*) 

by 

P.J. van der Houwen 

ABSTRACT 

Runge-Kutta type methods for Volterra integral equations of the second 

kind are studied which contain additional terms in order to extend the sta­

bility region. The order of convergence is derived and for kernel functions 

of the form K(x,y,f) = [A+Bx+Cy]f the stability behaviour of the methods is 

considered by deriving the characteristic equation of the difference equa~ 

tion satisfied by the numerical solution. For a number of Runge-Kutta methods 

stability regions are given and the stabilizing effect of the additional 

terms is illustrated. 

KEY WORDS & PH&~SES: Numerical Analysis, Volterra Integral Equations, 

Runge-Kutta Methods, Convergence, Stability 
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1. INTRODUCTION 

In this note we analyse the order of convergence and the stability of 

a class of numerical solution methods for the second kind Volterra integral 

equation 

X 

( 1.1) f(x) = g(x) + J K(x,y,f(y))dy, 

XO 

The numerical schemes to be considered are Runge-Kutta type methods. 

In order to define these methods we write (1.1) in the form 

X n X 

(1.1') f (x) = [g(x) + J K(x;y,f(y))dy] +, J 
X n 

K(x,y,f(y) )dy = F (x) + ~ (x) 
n n 

and we define the numerical approximation fn+l to f(xn+l> by 

(1.2) t" n+l 

~ where F (x) and~ (x) are numerical approximations to F (x) and~ (x), 
n n n n 

respectively. Here we assume the "history term" F (x) {cf. [3]) in the form 
n 

n-1 m (R.) (R.) 

(1. 3) F (x) = g (x) + h l l w. K(x,xj+vme.h,fj+i>, n ;;;:: 1 
n j=-1 l=O nJ 

and the "Runge-Kutta part" ~n (xn+l) in the form 

(1.4) 
m (~ 

= h l A_ 0 K(xn+9_ 0_h, x +v_ 0h,f 1 ). 
l=O IIK- UK n llK. n+ 

The f~;i are intermediate values defined by 
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(1.5) 

f (j) = 0 
Q I j = Q I 1 t • • • I m-1 I 

= f 0 , fCj) 
n+l 

m Cl)' 
= F (x +µ,h) + h l A, 0 K(x +0. 0h,x +v. 0h,f 1), 

n n J l=O J~ n J~ n J~ n+ 

j = 0,1, ••• ,m; µ = V = 1, m mm = o. 

(m) 
Note that f 1 = f 1• The Runge-Kutta parametersµ,, A,o, e. 0 and v. 0 are 

n+ n+ J J~ J~ J~ 
determined by accuracy conditions (cf. [2,3,4]). The Runge-Kutta scheme 

(1.2)-(1.5) is called an extended formula if w(~) = Aml for all n and j, and 
. Cl) nJ 

a mixed formula if wnj = 0 for l = 0,1, ••• ,m-1 and for all n and j (cf. [1]). 

We now modify the Runge~Kutta scheme by replacing F (x) by the new n 
history term 

( 1. 6) 

where y(x) is a given function of x. For mixed Runge-Kutta schemes where 

the weights w(~) have repetition factor 1, the case y(x) = 1 was analyzed 
nJ 

in the institute reports [4] and was shown to lead to considerably 

larger stability regions. Here, we extend this analysis to general Runge­

Kutta schemes for which the weights w(~) are related to linear multistep 
nJ 

methods for ODE's (cf. section 3). In the derivation of stability regions, 

however, we concentrate on mixed formulas which are in our opinion more 

attractive from a computational point of view. 

2. CONVERGENCE 

Before deriving stability criteria for the Runge-Kutta method (1.2)­

(1.5) and its modification according to (1.6), we consider the order of con­

vergence of the modified scheme. For the convergence proof we need the local 
. ~Cl) b b th truncation error of the numerical scheme. Let f +l' ~ = 0, 1, .•• ,m, e e 

n ~* 
solution of (1.5) if we substitute f(x) for f and F (x) for F (x). Then n n n n 
we define the truncation error at xn+vmlh by 



(2 .1) T(l) (h) = f(x +V_ 0 h) - f(l>1• 
n n me., n+ 

Furthermore, we define the quadrature error at x by 
n 

X n 

3 

(2. 2) E (x,h) 
n 

= f K(x,y,f(y))dy -
n-1 m (l) 

h l l w. K(x,x.+vme,h,f(x.+vme,h)). 
j=-1l=0 nJ J J 

XO 

In the convergence theorem, and also in the stability analysis, we 
+ + + 

shall need the vectors fn+1,f(xn+l> and Tn(h) the components of which are 

respectively given by f(l)1, f(x +v_ 0h) and T(l) (h) where l runs through the 
n+ n me., n 

set of integers L defined by 

L = {l I O ~ l ~ m; <l> w .. 
J.J 

= o for Yi,j ~ l i L}. 

For these vectors we define the makimum norm II 11 00 • 

In the following A,µ, y, o and w will denote the maximum values of the 
. <l> 

parameters I ~J. 0 I , Iµ. I, I y (x) I,. I 1-y (x) I and lw. . I, respectively. 
~ J J.J 

LEMMA 2.1. Let en, n = 0,1, ••• satisfy the inequality 

n 
~ c1 1enl + c2 I le1 1 + M1, 

i=0 

where c1 ,c2 and M1 are non-negative constant_s. Then 

with 

C(n) = C -1 
1 

PROOF. By mathematical induction. 

, M(n) 

THEOREM 2.1. Let the function K(x,y,f) satisfy a Lipschitz type condition 

of the form 
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j[K(x,y,f)-aK(x ;y,f)] - [K{x,y,f*)-aK(x ,y,f*)]j ·:,;; 
n n 

and let E (x,h) satisfy the condition 
n 

IE (x,h)-E (x ,h) I :,;; L2 lx-x I IE (x ,h) I, 
n n n n n n 

where L1,L2 are constants and a is a parameter. Then, for y:,;; 1 and 

f 0 = g(x0) = f(x0) we have ash+ 0 and nh fixed 

(2.3) 

where A and Bare constants. 

PROOF From '(2 .1) it follows that 

(2.4) 

and from the definition of f(j) f(j) and the Lipschitz condition on K with 
n+l' n+l 

a= 0 it follows that 

(2. 5) lf(j)_f(.j)I:,;; IF*(x +µ.h)-F (x +µ.h)l+L 111.h ~ lf{i.)1-f(l)1 1. 
n+l n+l n J n n J .e~o n+ n+ 

From (1.6) and (2.2) we derive 

+ y(x)K(x ,x.+v_ 0 h,f(x.+v_ 0 h)) I+ IE (x,h) -y(x)E (x ,h) I. 
n1.IIK.. l.J.LK.. n nn 



By using the Lipschitz condition on K with a= y(x) and the Liptschitz 

condition on E it follows 
n 

(2. 6) 
n-1 m l (l) 

IF* (x)-F (x) I ::; y I e (m) I +L1h[ o+y I x-x I J l l I w (.) 11 e. 1 1 
n n n n i=-1 l=O n1. 1.+ 

+[o+L2 1x-x IJIE (x ,h) I, n n n 

where we have written (l) - f(l) f( + h) Substitution of (2.6) into ei+1 - i+1- xi vml · 
(2.5) and then (2.5) into (2.4) yields 

(2.4') I e (j > I 
n+1 

To get rid of the last term in the right-hand side we again use (2.5) and 

(2.6) to obtain 

n-1 m l l 
+L,Lh[o+yµh] l l lw(_) I le~ '1l+[cS+L2µh]IE (x ,h) I}, 

· i=-1 l=O n1. 1.+ n n 

5 

where his assumed to be sufficiently small. Substitution into (2.4') yields 

(2.4") 

n-1 m 

len(+:i)1 I <_ A1 len(m) l+A2 ' ' I (l) 11 (l) I I ( h) I I (j) ( ) I l L w. e.+l +A3 E x, + T h , 
i=O l=O n1. i n n n 

L1 (o+yµh)h 

A2 = 1- (m+1)L 1Ah' 

cS + L2µh 
A=------. 

3 1 - ( m+ 1 ) L l Ah 

➔ ➔ ➔ 
Introducing the vectors f 1 ,f(x 1) and T (h) we derive from (2.4") n+ n+ n 

(2. 7) 
➔ ➔ ➔ n ➔ ➔ 

!If 1-f(x )II ::; A111f -f(x )II + (m+1)wA 'i' llf.-f(x.)11 n+ n+1 oo n n oo 2 l 1. i oo 
. i=O 

➔ 
+A3 IE (x ,h) I +IIT (h) II • n n n oo 
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The estimate (2.3) is now readily derived by applying lemma 2.1 to (2.7) 

with y ~ 1. 0 

( . ) 
From this theorem it follows that only for f J 1 values used in the 

n+ 
history term the local truncation error T(j) is needed. Furthermore, if the 

n 
quadrature error is O(hq) ash+ 0 and the local truncation errors are O(hp), 

then the order of convergence is min{q,p} if y < 1 and min{q,p-1} if y = 1. 

Thus, an order is lost if p ~ q and y + 1. We observe, however, that in 

extended Runge-Kutta formulas p = q+1 so that the order of convergences is 

preserved if y = 1. 

3. STABILITY 

Consider the simple test equation 

of n) 

X 

(3.1) f(x) = 1+ J (A+Bx+Cy)f(y)dy; A,B,C constant. 

XO 

The numerical scheme reduces to (we assume y(x +µ.h) = y. independent of n) 
n J J 

(3. 2) 

f (j} µjz2 ~ ~ . (l) 
= y f +(1-y )F (x )+·--G ·-t l AJ,o[z1+e],0Z2+\)J,0Z3]fn+1' 

n+1 j n j n n h n b=O ,{, ,{, ,{, 

'G 
n 

n-1 m 
= h \ \ (l)f(l) ( )h Bh2 , = l l wnj j+l' z 1 = A+Bx +ex , z 2 = z 3 

j=-1 l=O n n 

+ 

2 
Ch. 

In this section we derive a recurrence relation for f, F (x) and G with _ n n n n 
a fixed number of terms. The corresponding characteristic equation deter­

+ 
mines the numerical behaviour of these quantities. Recall that f is the 

n 
vector of intermediate values f(j) which are used in the history term, 

n 
F (x) approximates F (x) = f(x) and G approximates Jxn f(y)dy. 

n n n n n n ( , ) XQ ~ 
In the first step of our analysis we express fn~l in terms of fn, Fn(xn> 

and G. It is easily verified that we may write 
n 

( 3. 3) 
z2 

= (Q.+y R.)f +(1-y )R.F (x )+ -h S.G, 
J n J n n J n n J n 

j =0,1, ••• m, 

+ 
where Q., R. and S. are functions of z = (z 1 ,z2 ,z3 ) which satisfy the 

J J J 
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recurrence relations 

m 
(3.4) (1-y.)R. = 1-y. + 2 (1-yl)AJ.lzJ,,e_R,e_, 

J J J l=O 
j = 0, 1, •.• , m, 

m 

S. = µ. + 2 AJ.lzJ,,e_S,e_. 
J J l=O 

Note that Q., R. and S. are independent of y. if y. is a constant y • 
. J J J J J 

~ In order to derive a recurrence relation for F (x) and G we exploit 
l n n n 

a property of the weights w (.) which is satisfied by most quadrature rule·s 
nJ l 

used in practice: we will assume that coefficients ai and b~) (i=0,1, ••• ,k; 

l=0,1, ••• ,m; n fixed) exist such that (cf. [5]) 

k k (l) 0 for j = 0,1, ••• ,n-k-1 
(3.6) I a. = o, I a.w '+l . = 

b (l)_ i=O 
]. 

i=O 
]. n-1 , J for j n-k, ••• ,n = 

n-J 

Without loss of generality we may assume that w(~) = 0 for j ~ 1, hence 
nJ 

b~O) = 0 for n ~ k+l. 
]. 

Two cases will be distinguished IYjl < 1 and yj = 1. For IYjl < 1 we 

derive by virtue of (3.6) 

(3.7) 

and 

(3.8) 
k 
I a.G 1 . 

J. n+ -1 
i=O 

n ~ k+l . 

n ~ k+l 

-+ -+ ~ T 
and introducing the vector V = (f ,F (x ),G) we may write the relations n n n n n 
(3.3), (3. 7) and (3.8) in the form 
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(3.9) 

k 

I 

-hB 
0 

0 

0 

+ 

0 

0 

-Q-I'R 

-+ 
V 1 + n+ 

(z3-zl) Bl-z3Bl 

-hB 1 

0 

(f-I)R 
Z2,_:, 

- --:-='-5 
h 

-+ 
al 0 V + 

n 

0 al 

0 

-+ -+ 
+ I (iz3-z 1)Bi-z3Bi 

i=2 
a. 

l. 

-z.2 
Ci-1) aih V l . = O, n ~ k+l, n+ -1. 

-hB. 0 a. 
l. l. 

~ where Q, R,. R, s, B. and B. are matrices defined by 
l. l. 

B. 
l. 

r 

Here, o denotes the Kronecker symbol and j,l are the row and column index, 

respectively. 

Defining the characteristic polynomials 

k 

I 
i=O 

k-1 
a. s 

l. 

k 
a(s) = I 

i=O 

k-i B.z; , cr(r;) = 
l. 

k 

I 
i=O 

~ k-i 
B. s I 

l. 

we may express the characteristic equation of (3.9) in the form (note that 

cr(s) and a(i:) have matrix coefficients) 

k-1 ~ k-1 2 2~ k-1 
s [i:-Q-fR] cr-r)Rs - --Si: 

h 

(3.10) det z 3cr(s)+(z1-kz3)cr(s)+z3sa' (i:) -p ( s) ~(1-k)p{i:)+i:p' (i:)J 

-h cr(s) 0 p ( s) 

= 0 



where a' (t) and p' (t) are polynomials obtained by differentiation of cr(t) 

and p (t). 

In (3.10) it is assumed that ly. I < 1. For y. = 1 the Fn(x) term 
J J ~ n 

9 

vanishes in (3.3), hence we need no recurrence relation for Fn<Xn>· Proceed-

ing in the same manner as above we find for yj = 1 a characteristic equation 

which can be obtained from (3.10) by omitting the second row and column in 

the determinant. 

To the characteristic equation (3.10) we associate the stability region 
➔ ➔ 

consisting of the set of points z = (z 1 ,z2 ,z3) in the z-space where the 
➔ 

roots t of (3.10) are on the unit disk. The vector V ·. is certainly bounded n 
as n ➔ 00 and h fixed if the following conditions are satisfied: 

(i) 
➔ 

Root condition: The roots t(z) of (3.10) are on the unit disk those on 

the unit circle being simple roots. 

(ii) Constant-coefficient condition: The coefficients in (3.9) do not 

depend on n. 

Evidently, a necessary condition for satisfying the root condition is that 
➔ 
z lies in the stability region. 

If the constant-coefficient condition is not satisfied the stability region 

may still be of some value if the coefficients change slowly with n (com­

pare the situation in ODE stability theory). 

3.1 Mixed Runge-Kutta schemes 

Mixed Runge-Kutta schemes arise when the set L only contains the in­

teger m. The quantities Q, R, R, Sand a become scalar functions and the 

characteristic equation (3.10) reduces to (note that a= cr) 

(3.11) 
k-1 -+ -+ -+ 

t {p(t)[p(t) (t-Q (z)-y R (z))-z2cr(t)S (z)] m mm m 

+ z 3 ((k-1)cr(t) - tcr'(~))p(t)J} = 0 

where IY I < 1. For y = 1 we obtain the equation m m 

(3.11') 
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We derive stability regions for a few history terms, characterized 

by the characteristic polynomials {p,cr} listed in table 3.1, and a few 

Runge-Kutta parts defined by the polynomials Q, R and S listed in table 
m m m 

3.2. For a detailed discussion of the evaluation of the history terms by 

backward differentiation quadrature rules (BD rules) we refer to [6]. The 

polynomials o, R and S correspond to Runge-Kutta formulas with 
~ m m 

(yl) = (1,y, ••• ,y). Note that by choosing y0 = 1 an Fn evaluation is saved 

in all formulas listed in table 3.2 (cf. [4], [8]). 

Table 3.1 History terms defined by the polynomials {p,o} 

Formula k p ( I;) 

Repeated trapezium rule 1 l;-1 

Third order Gregory rule 2 1;(1;-1) 

Second order BD rule [6] 2 
1 [3r;;2-4r;;+1] 3 

Third order BD rule [6] 3 !1 [111;3-181;2+91;-2] 

Table 3.2 Runge Kutta parts defined by {Q ,R ,s} m m m 

Formula Qm R m 

Forward 
Euler z1+z2 1 

Backward -1 
Euler 0 [1-z -z -z] 

1 2 3 

Trapezium -1 -1 
rule [z1+z2][2-z1-z2-z3J 2[2-z -z -z] · 1 2 3 

Fourth 

1 
12 

1 2 1 2 
order -[2z1+z2][6z+3z -z3 (1+2z)] -fa{18+18z+3z -z3 (9+2z)] 
Beltjukov 36 
[2,3,4] 

Fourth order 
Newton-Cotes 
[4,formula 
(2.50)] 

z1+z2+<z1+~z2)Z 6+4Z 

6-z1-z2-z3 6-z1-z2-z3 

2z 1+2z2+z3 
Z = 4 _..;;.__~--

8 - 2 z 1 - z 2 - z 3 

a ( I;) 

½c1;+1> 

[5r;;2+8r;;-1] 

~ 1;2 
3 

_§_ 1;3 
11 

s 
m 

R 
0 

6+2Z 
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3.1.1. The test kernel K = Af 

This kernel implies that z2 = z 3 = 0 in the characteristic equations 

(3.11) and (3.11'), hence the stability region reduces to a stability inter­

val along the z 1-axis. In table 3.3 these intervals are listed for a few 

combinations of the history terms and Runge-Kutta parts specified above and 

for a few values of y (we observe that both the root condition and the 

cqnstant coefficient condition are satisfied in all cases of table 3.3). 

For y = 1 it follows from (3.11') that the stability interval only depends 

on the Runge-Kutta part of the method. The stabilizing effect of the 

additional terms is clearly demonstrated by the figures in table 3.3. 

Table 3.3 Stability intervals for various values of y 

y = 0 y =.1, y = 1 

Rep. Trap. Rule - Euler Forward (-1,0] (-11,,0] (-2,0] 

Gregory - Trap. Rule (-oo IQ J (-oo IO J (-oo,O] 

Gregory - Beltjukov (-1.23,0] (-1.23,0] (-2.51,0] 

Second order BD - Euler Forward (-0.77,0] (-1.31,0] (-2,0] 

Third order BD - Beltjukov (-1.23,0] (-1.23,0l .. .(.,..2.51,0] 

--------·- -·- -

3.1.2. The convolution kernel K = [A+B(x-y)]f 

2 
In this case z3 = -z2 = -Bh and z 1 =Ah.Hence, the constant-coeffi-

cient is satisfied. The root condition is satisfied in all points of the 

stability regions given in figure 3.1. 

3.1.3. The test kernel K = (A+Bx)f 

For this kernel z 1 = (A+Bxn)h changes with n so that the constant­

coefficient condition is not satisfied. Therefore, the stability regions 

have only a local meaning. However,when !Bx I << !Al the stability region n 
determined by (3.10) may be considered as a first approximation to the true 

region of stability. In figure 3.2 a few of these approximate regions are 

given (further examples, e.g. Simpson-Kutta formulas, may be found in [4]). 



12 

Gregory-Beltjukov 

-11.70 -2.31 
~---·-------

' ' ,, 
' ' ' ' ' ' unstable , 

' ,, 
' ' ' ' ' 

Gregory-Newton Cotes 
-6 

' '-, 

unstable '-
'-

'-, 

' 

Third order BD - Beltjukov 

' ' ' '-, 

"2 

t . ""1 11- .15 

\J.-1.65 
-1.95 

-5.86 

-11;~_0 ____________ -_2-+-_3_1 __ ..,,._~zl 
', , - .16 

' ' ' ' '-, 

' ' ' unstable '-, 

' ' ' ' ' ' 
Third order BD - Newton Cotes 

- .9 

-2._38 

-2.96 

' ' ' -6 

Fig. 3.1 Stability regions for K [Ax+B(x-y)]f; ----y =O; ---y =1 

_-_2_.~5_1 ______ -_1_.~2_3 ______ -+_z1 

' ' ' ' ' unstable '- '-

Gregory-Bel tjuk.ov 

'-
'-, 

' ' ' 

-1.26 

-2.82 

-_1_1_._7~0 _____________ -~2•~•3_1 __ +--'>zl 

' ., 
' '-

' ' ' ' unstable , 

Gregory-1'.'~wto:1 Cotes 

' ' '-
'-

' ' 

-1.8 

-4.8 

-2.51 -1. 23 
--~•~-------4'---------+--+zl 

' ' ' ' ' ' ' unstable '-
'-

' ' 
Third order BD - Beltjukov 

-1.26 

-2.76 

_-_1_1~-~7_0 ____________ -_2_.~3_1 __ -1--+zl 

' ' ' ' '- ' ' -1.8 
' unstable '-, 

' ' ' ' ' ' ' ' ' -4.8 
Third Order BD-N~wton Cotes 

Fig. 3.2 Stability regions for K = [A+Bx]f; ----y =O; ---y =1 
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3.2 Alternative analysis of stability 

In the case of the convolution test equation (C = -B) it is not diffi­
➔ 

cult to derive: a recurrence relation only involving the vectors f • For n 
Y. = 1 this derivation is particularly simple, because by forming the linear 

J 
combinations of the relations (3.3) we obtain 

(3.12) 
k I a f (j > = 

i n+l-i 
i=O 

and substituting (3.8) immediately leads to (n ~ k+2) 

(3.12') 
k 
\ ➔ 
l [a. f . 1 . 0 i n+1.-

1.= I 

~ ➔ J (a. (Q+R) + z 2SB.)f . 
i i n-1. 

with the characteristic equation (cf. (3.11')) 

(3.13') 

➔ 

0 

For y. ~ 1 we form twice a linear combination of the relations (3.3) 
J . 

and derive in a similar way as was done in [7] for direct quadrature methods 

the characteristic equation 

(3.13) 

Note that this equation has a strong resemblance with equation (3.11). 

It should be observed that (3.12'), and therefore the characteristic 

equations (3.13') and (3.13), only applies rigourously to the convolution 

case C = -B(z3 = -z2). In the non-convolution case, the functions Qj, Rj 

and S. depend on n which should be taken into account when forming the 
J 

linear combination of the relations (3.3). It can straightforwardly be 

shown that (3.13) then assumes the form 
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k k 
det{ r r 

i=O j=O 

(3 .14) 

(n) (n) ~(n) ~(n) . 
where M = (o.l~A.lz.l) and Q , R , R , S denote the matrices 

~ n~ J J J 
Q,R, R, sat the point x. A comparison of (3.13) and (3.14) reveals 

n 
that (3.13) can be considered as an approximation to the exact equation 

(3.14) if jz21 < < lz11 and lz3 1 < < lz1!. 
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ERRATA IN MATHEMATICAL CENTRE REPORT NW 83/80 

+ 
page 4 line 5. : y ~ 1 should read yj < 1 or yj 1 

page 5 line l+: Liptschitz should read Lipschitz 

page 6 line 8+: convergences should read convergence 

formula (]·.]): ym should read yj 

-page 9 line 2 : ym should read yj 




