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Convergence and Stability Analysis of Runge-Kutta type Methods for
Volterra Integral Equations of the Second Kind *)

by
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ABSTRACT

Runge-Kutta type methods for Volterra integral equations of the second
kind are studied which contain additional terms in order to extend the sta-
bility region. The order of convergence is derived and for kernel functions
of the form K(x,y,f) = [A+Bx+Cylf the stability behaviour of the methods is
considered by deriving the characteristic equation of the difference equa-
tion satisfied by the numerical solution. For a number of Runge-Kutta methods
stability regions are given and the stabilizihg effect of the additional

terms is illustrated.
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1. INTRODUCTION

In this note we analyse the order of convergence and the stability of
a class of numerical solution methods for the second kind Volterra integral

equation

b'4
(1.1) f(x) = g(x) + J K(x,y,f(y))dy, x. <y <x < X.

%0

The numerical schemes to be considered are Runge-Kutta type methods.

In order to define these methods we write (1.1) in the form

xn X

(1.1") f(x) = [g(x) + I K(x,y,£(y))dy] +’[ Kix,y,£(y))dy = Fn(x)+-@n(x)
X X
0 n

and we define the numerical approximation fn+1 to f(xn+1) by

~ ~

(1.2) fn+1 = Fn(xn+1) + ®n(xn+1

)y

where ;n(X) and Sn(x) are numerical approximations to Fn(x) and @n(x),

respectively. Here we assume the "history term" Fn(x) (cE. [3]) in the form

N n-1 m (£) (£)
(1.3) F_(x) = g(x) + hj=zl Kzo Vo K%, 40 o0 E 40, 02 1

and the "Runge-Kutta part" En(xn+1) in the form

m
(1.4) ° (x .4) =h 2 AmZK(xn+em[h' xn+vm£h,féfi

).
n n+l 2=0

The f(j)

n+1 are intermediate values defined by



féj) =0, §=0,1,...,m1,

(1.5) m (£)
(m) _ (3) _ =~
£, = f£o0 £.1; = Fn(xn+ujh) +h ﬂzo Asz(xn+6j£h,xn+vj£h,fn+1),
3=0,1,...,m; um = me =1, va = 0.

(m) _
Note that fn+1 = fn+1'

determined by accuracy conditions (cf. [2,3,4]). The Runge-Kutta scheme

(1.2)-(1.5) is called an extended formula if wég) = Amﬂ for all n and j, and

@) _

a mixed formula if LAY 0O for £ = 0,1,...,m~1 and for all n and j (cf. [1]).

- 6
The Runge-Kutta parameters uj, Ajﬂ’ jE and vjﬂ are

We now modify the Runge-Kutta scheme by replacing En(x) by the new

history term

N* ~ ~
(1.6) F (x) =F (x) + Y(X)[f - Fn(xn)],

where y(x) is a given function of x. For mixed Runge-Kutta schemes where
the weights wéf) have repetition factor 1, the case y(x) = 1 was analyzed
in the institute reports [4] and was shown to lead to considerably

larger stability regions. Here, we extend this analysis to general Runge-
Kutta schemes for which the weights wéf) are related to linear multistep
methods for ODE's (cf. section 3). In the derivation of stability regions,
however, we concentrate on mixed formulas which are in our opinion more

attractive from a computational point of view.
2. CONVERGENCE

Before deriving stability criteria for the Runge-Kutta method (1.2)-
(1.5) and its modification according to (1.6), we consider the order of con-
vergence of the modified scheme. For the convergence proof we need the local
truncation error of the numerical scheme. Let %if;, £=o0,1,...,m, be the
solution of (1.5) if we substitute f(xn) for fn and Fn(x) for ;;(x). Then

we define the truncation error at xn+vm£h by



(£) _ = ()
(2.1) T () = £(x v oh) - £ .

Furthermore, we define the quadrature error at X by

X
o n-1 m 2)
(2.2) E_(x,h) = [ K(x,y,£(y))dy - hj£—1zzo LA K(x'xj+vm£h'f(xj+vm£h))'
X
0

In the convergence theorem, and also in the stability analysis, we
shall need the vectors %h+1,¥(xn+1) and %ﬁ(h) the components of which are
(L) £)
ntl’ f(xn+vm£h) and Tn

set of integers L defined by

respectively given by f (h) where £ runs through the

L ={£ I 0 < <m; wif) =0 for Vi,j = £ ¢ L}.
For these vectors we define the maximum norm I I,

In the following A, u, Yy, 6 and w will denote the maximum values of the

parameters Iijﬂl, Iujl, lvy(x) |, l1-y(x)| and Iwég)l, respectively.
LEMMA 2.1. Let € B = 0,1,... satisfy the inequality
n

l<cilell +c, 1 eyl +m,
i=0

l

€
n+1

where C1,C2 and M1 are non-negative constants. Then

. n
|€n+1| < [14C(n) ] [c(n)leol + M(n)]k
with
Ity . 3ty
j+1 1 4
C(n) = C2 max  —oy M(n) = max [C Ieol + —Ertz-'MlJ.
1<j<n 1 1<j<n 1

PROOF. By mathematical induction.

THEOREM 2.1. Let the function K(X,v,f) satisfy a Lipschitz type condition
of the form



l[K(X,Y:f)‘GK(Xn,Y,f)] - [K(X,y,f*)—aK(xn,y,f*)]I'S
< Ll[ll—u|+|a|lx—xnl]lf—f*l,

and let En(x,h) satisfy the condition

IA

lEn(*'h)_En(xn'h)] LZIX_XnIIEn(Xn’h)[’

where L1,L2 are constants and o is a parameter. Then, for y < 1 and

f0 = g(xo) = f(xo) we have as h -+ 0 and nh fixed

B maxlT, (h)l
. 1 o
i<n

2.3) £ -%
(2. ~£(x i-y+o(h) '

n+1

)HMS‘A maxIEi(xi,h)l +

n+1 .
i<n

where A and B are constants.
PROOF From (2.1) it follows that

(3)

(2.4) |fn+1—

(3) _=2(3) (3)
f(xn+vmjh)| < Ifn+1 fn+1| + ITn (h) |,

and from the definition of f(J) f(J) and the Lipschitz condition on K with

n+l’ "n+l

a = 0 it follows that

(3)_2(3), . o* _ T 0 20
(2.5) Ifn+1 fﬁ+1| < |F (xn+ujh) Fn(xn+ujh)l+L1Ah£Zo|fn+1 fn+1l.
From (1.6) and (2.2) we derive

IF* (0)-F_(x) | < y|£ ~£( )l+&1n§1 T 10D |k, v n e
p(XFR (1< yIf ~f(x, iss1 220 Yhi A Y sl PR
(£)

- Y(X)K(Xn’xi+vm£h'fi+1)-K(x’xi+vm£h'f(xi+vm£h))

+ y(x)K(xn,xi+vm£h,f(xi+vm£h))l + lEn(x,h)-Y(x)En(xn,h)l-



By using the Lipschitz condition on K with o = y(x) and the Liptschitz

condition on En it follows

n-1
(2.6) X 0-F_(0) | < yle!™ |41 hlo+y|xx_ 11}

=-1

m
L) (L)
L g Hlegly

+[6+L2 Ix-xnl ] IEn(xn,h) [,

@ _ @
i+1 i+l
(2.5) and then (2.5) into (2.4) yields

where we have written e —f(xi+vm£h). Substitution of (2.6) into

n-1 m

, (3) (m)
(2.4") - e il = (4L An)le 4L hr5+Yuh)l_z_1£_ i+l

m
(J)(h)|+L1Xh E (K) (K)l

+[6+L2uh]|E (x ,h)l + T n+l- n+1
£=0

To get rid of the last term in the right-hand side we again use (2.5) and

(2.6) to obtain

Ifl (L) -(z)l m+ 1 fyle(™

221 n+1 n+1 1= (m+1)L1>\h
nil m (1&) (z)

+L,hls+yuh] § ) lw e [ [+06+LundlE (x .0 |1,
i=-1 £=0

where h is assumed to be sufficiently small. Substitution into (2.4') yields

n-1
le ‘3’1 cade®ia T ] OB s e i+ 1z i,
i=0 £=0
(2.4")
L1(6+yuh)h § + Lzuh

A; =L Ah+ T-(m+1) L AR’ Ay=1T (m+1)L Ah’ Ay=71T @ DL Ah

>
Introducing the wvectors f 1,f(x ) and Tn(h) we derive from (2.4")

n+1

(2.7) 1 -f(x

>
- W, < alf -£)1_+ (m+1)wa, Z Ilf f(x 1

+1
n =0

+a_| h) |+IT_ (hl
A3 En(xn' ) n( ”



The estimate (2.3) is now readily derived by applying lemma 2.1 to (2.7)
with y < 1. [] ’
(3)
n+l1
is needed. Furthermore, if the

From this theorem it follows that only for £ values used in the

(3)
n
quadrature error is O(hq) as h = 0 and the local truncation errors are O(hp),

history term the local truncation error T

then the order of convergence is min{q,p} if y < 1 and min{q,p-1} if“Y =1,
Thus, an order is lost if p < q and Y > 1. We observe, however, that in
extended Runge-Kutta formulas p = g+l so that the order of convergences is

preserved if y = 1.
3. STABILITY

Consider the simple test equation

of n)

X
(3.1) f(x) = 1+ J (A+Bx+Cy) £ (y) dy; A,B,C constant.

%0

The numerical scheme reduces to (we assume Y(xn+ujh) = Yj independent of n)

(3) ~ M2~ % 2)
£ = yjfn+(1—yj)Fn(\xn)'+ — G+ KZO. Ajz[z1+ej£32+vjﬂz3]fn+1,
(3.2)
n-1 m
~ (2) (L) _ 2 .2
G =h D) Wi Eiypr 7 = (A¥Bx #Cx )h, z, = Bh®, z3 = Ch".

j=-14£=0

: -> ~ ~
In this section we derive a recurrence relation for fn, Fn(xn) and Gn with
a fixed number of terms. The corresponding characteristic equation deter-

>

mines the numerical behaviour of these quantities. Recall that fn is the
(3)
. = . n .

Fn(xn) approximates Fn(xn) f(xn) and Gn approximates fx f(y)dy

(3)

vector of intermediate values f which are used in the history term,

In the first step of our analysis we express f in terms of fn' Fn(xn)

n+1
and Gn. It is easily verified that we may write
. z
(3.3) f(J) = (Q.+y R.)f +(1-y_ )R E (x )+ 2 S E 3=0,1,...m,
n+l j 'n3’""n n" "y nn h "3 ™n’ ’

>
where Qj' R_j and Sj are functions of z = (21’22'23) which satisfy the



recurrence relations

m
@ytvyRy) = vy + éo A
m
(3.4) (l—yj)Rj = 1-yj + ﬂzo (1—y£)kj£zj£R , 3 =0,1,...,m,

2750 %tV pRe) 1 Zyp = 2o+ 0 p2yF VeZay

m
S. = u. + A:pZ.pSp.
i~ Y Zéo At Va4
Note that Qj' Rj and Sj are independent of Yj if Yj is a constant Y.

In order to derive a recurrence relation for En(xn) and Gn we exploit
(£)

a property of the weights wnj which is satisfied by most quadrature rules

used in practice: we will assume that coefficients ai and biﬂ) (i=0,1,...,k;

£=0,1,...,m; n fixed) exist such that (cf. [5])

K K 0 for j = 0,1,...,n-k-1
(3.6) J a, =0, ) aw® = .

1=0 j=0 T n-i+1,]J béf; for j n-k,...,n

Without loss of generality we may assume that wég)

5
1

0 for j 2 1, hence
= 0 for n = k+1.
Two cases will be distinguished Ile < 1 and Yy = 1. For ijl <1 we

derive by virtue of (3.6)

3.7 E F ( ) = E { ? bz, (- ’) 1e )
(3.7 Lo Timmiet neiet] T L0 LR PR “me’ #3- n+1-1
-1 z,a (1-1)8 } n > k+1
h %2% n+1-i’’ = '
and
k k m
(3.8) ! a6 ., ;=h] ) b;z)féfi_i, n > k+1
i=0 i=0 £=0

. > z ~ T . .
and introducing the vector Vn = (fn,Fn(xn),Gn) we may write the relations

(3.3), (3.7) and (3.8) in the form



I o o)
~ zZ
_ - s 2 g
(3.9) 21807238 3y qH | Vp+t t
-hBO 0 ao
~ Zy
-0-Tr (Ir-I1)R ——};-S
+ ¢ )B,-z_B vV o+
Z3721)B 238 3y n
—hB1 0 a1
o o) o}
k 74
+ z (iz_-z, )B,-z.B a (i-a 2 v =03, n > k+l
L 37%17°i7%35% i inh n+i-i ! = '
~-hB, 0 a
1 1

where Q, R, R, §, Bi and Bi are matrices defined by

~

Q = (Q,8

j j,j+£—m)' R = (Rjaj,j+ﬂ—m)' R = (Rj): S = (Sj)'
N AN (£) _ _ . ‘
B, = (bi )+ Bi = (szbi y, TI'= (Yjajﬂ)’ I = (Giﬂ) j and £ € L.

Here, § denotes the Kronecker symbol and j,ﬂ are the row and column index,

respectively.
Defining the characteristic polynomials
k-1 k-i

a.co , o) = B,z ©, (L)
o * i=0 * i=0

p(g) =

Il 1w
1
| >~ R
W
Y
-
1
|_l

I > A

i

we may express the characteristic equation of (3.9) in the form (note that

o(z) and o(r) have matrix coefficients)

r

- ~ e Zy Te—
ck 1[C-—Q—I‘R] (I‘—I)RCk ! -—hgsck 1
~ pA
(3.10)  det | 2,0 (2)+(z,-kz,) 0 (2)+2580" (2) =0 (L) f{(l—k)o(cmp'(cﬂ =

-h o(z) 0 p(Z)




where o' (Z) and p'(g) are polynomials obtained by differentiation of o (Z)
and o (Z) . '

In (3.10) it is assumed that IYjI < 1. For vy = 1 the Eﬂ(xn) term
vanishes in (3.3), hence we need no recurrence relation for F,(x,). Proceed-
ing in the same manner as above we find for Yj = 1 a characteristic equation
which can be obtained from (3.10) by omitting the second row and column in
the determinant.

To the characterisﬁic equation (3.10) we associate the stability region
consisting of the set of points ; = (zl,zz,z3) in the ;Fspace where the

-
roots 7 of (3.10) are on the unit disk. The vector Vﬁ-is certainly boundedr

as n > ©» and h fixed if the following conditions are satisfied:

>

(i) Root condition: The roots Z(z) of (3.10) are on the unit disk those on
the unit circle being simple roots.

(ii) Constant-coefficient condition: The coefficients in (3.9) do not

depend on n.

Evidently, a necessary condition for satisfying the root condition is that
Z lies in the stability region. -

If the constant-coefficient condition is not satisfied the stability region
may still be of some value if the coefficients change slowly with n (com-

pare the situation in ODE stability theory).

3.1 Mixed Runge-Kutta schemes

Mixed Runge-Kutta schemes arise when the set L only contains the in-
teger m. The quantities Q, R, R, S and ¢ become scalar functions and the

characteristic equation (3.10) reduces to (note that ; = 0)

(3.11) £ Ho @ Lo (2) (2-0_(B) -y R _(2)-2,0(D)S_(2)]
+ (1—vm)Rm<Z>[—zlo(c)o(c> + 2, ((k=1)p(2)-Tp" (£))0(Z)
+ 2 ((k=1)0(8) - 20" (2))p(2) ]} = 0

where Ile < 1. For Yp = 1 we obtain the equation

(3.11") 2o (0) (29 (2)-R_(2))-2,0(2)s_(2)] = o.
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We derive stability regions for a few history terms, characterized
by the characteristic polynomials'{p,o} listed in table 3.1, and a few
Runge-Kutta parts defined by the polynomials Qm, Rm and Sm listed in table
3.2. For a detailed discussion of the evaluation of the history terms by
backward differentiation quadrature rules (BD rules) we refer to [6]. The
polynomials Qm' Rm and Sm correspond to Runge-Kutta formulas with
(YZ) = (1,Y,...,Y). Note that by choosing YO =1 an Fn evaluation is saved
in all formulas listed in table 3.2 (cf. [4], [8]).

Table 3.1 History terms defined by the polynomials {p,c}

Formula k p(T) o(z)
1
Repeated trapezium rule 1 z-1 5(;+1)
: 1 2
Third order Gregory rule 2 z(z-1) TE‘[SC +8z-11]
1 2 2 .2
Second order BD rule [6] 2 3 [3z7-4z+1] 3 C
1 3 2 6 _3
Third order BD rule [6] 3 II-[llc -18¢°+9¢-2] 11 °©
Table 3.2 Runge Kutta parts defined by {Qm,Rm,Sm}
Formula Qm Rm Sm
Forward
Euler z1+z2 : 1 R1
Backward " -1
Euler 0 [1—21-22—23] RO
Trapezium -1 . -1
rule [zl+zz][2—zl—z2—z3] 2L2—z1—zz—z3] Ry
Fourth 1 2 1 2 3z-223
order —[2z,+z,1[6z+3z"-z_(1+2z) ] -—={18+18z+3z"-z_ (9+2z) ] R ————
. 36 172 3 18 3 3 6
Beltjukov
[2,3,4] z = z,+z,+2,
Fourth grier z1+z2+(zl+%zz)z 6+47 6427
Newton-Cotes " N E— 6-2 -2 -2
[4,formula 6-21=2y=25 6-2,-2)=23 1722773
(2.50) ] 2z, ,+2z +z
1 2 73
Z =4

8—2z1—z2—z3
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3.1.1. The test kernel K = Af

This kernel implies that z, = zy = 0 in the characteristic equations
(3.11) and (3.11'), hence the stability region reduces to a stability inter-

val along the z,-axis. In table 3.3 these intervals are listed for a few

combinations oflthe history terms and Runge-Kutta parts specified above and
for a few values of Y (we observe that both the root condition and the
constant coefficient condition are satisfied in all cases of table 3.3).
For y = 1 it follows from (3.11') that the stability interval only depends
on the Runge-Kutta part of the method. The stabilizing effect of the

additional terms is clearly demonstrated by the figures in table 3.3.

Table 3.3 Stability intervals for various values of ¥y

Yy=20 y=%5 vy =1
Rep. Trap. Rule - Euler Forward (-1,01 (-1%,01 (-2,01]
Gregory - Trap. Rule (-»,0] (-»,01] (-=,01]
Gregory - Beltjukov (-1.23,0] (-1.23,0] (-2.51,0]
Second order BD - Euler Forward (-0.77,0] (-1.31,0] (-2,0]
Third order BD - Beltjukov (-1.23,0] (-1.23,0]. .. (-2.51,0]

3.1.2. The convolution kernel K = [A+B(x-y) If

2
In this case z3 = —22 = -Bh and z1 = Ah. Hence, the constant-coeffi-
cient is satisfied. The root condition is satisfied in all points of the

stability regions given in figure 3.1.

3.1.3. The test kernel K = (A+Bx)f

For this kernel z, = (A+an)h changes with n so that the constant-
coefficient condition is not satisfied. Therefore, the stability regions
have only a local meaning. However,when |anl « |A| the stability region
determined by (3.10) may be considered as a first approximation to the true
region of stability. In figure 3.2 a few of these approximate regions are

given (further examples, e.g. Simpson-Kutta formulas, may be found in [4]).
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Fig. 3.2 Stability regions for K = [A+Bx1f; —y =0; ---y =1
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3.2 Alternative analysis of stability

In the case of the convolution test equation (C = -B) it is not diffi-
cult to derive a recurrence relation only involving the vectors %n' For
Y. = 1 this derivation is particularly simple, because by forming the linear
combinations of the relations (3.3) we obtain

k

3 _
(3-12) LAy
i=0 i

It~

+-——
. a;{loy+ RJE o 556

and substituting (3.8) immediately leads to (n = k+2)
k

) [a £ -
. i n+i-1
i=0

~ > >
(3.12") sBj)f _,1=0

mi@+R)+z i

2

with the characteristic equation (cf. (3.11'"))
(3.13")  det{p(z)[z-0-R] - zzgc(c)} = 0.

For Yj # 1 we form twice a linear combination of the relations (3.3)
and derive in a similar way as was done in [7] for direct quadrature methods

the characteristic equation
(3.13) det{p (z)[p () (z-Q-TR) - z2§o(c)]
+ (1-I)R[-2,p(2)0 (L) + 2z, ((k-1)p(2) - Lp' ()0 (L)
+ 2, (ko(2) - 0(8) - zo'(2)p ()1} = 0.

Note that this equation has a strong resemblance with equation (3.11).

It should be observed that (3.12'), and therefore the characteristic
equations (3.13') and (3.13), only applies rigourously to the convolution
case C = —B(z3 = —22). In the non-convolution case, the functions Qj’ Rj
and Sj depend on n which should be taken into account when forming the
linear combination of the relations (3.3). It can straightforwardly be

shown that (3.13) then assumes the form
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k k&
-1 (n-i-j) __ (n-i-j). 2k-i-j _ ~(n)
det - - J J 1
~(n).
(3.14) + (1-T)R Ezlpc+zz(2kp-ZCp')c
+ z3(2kpo - z(po)' + 0(0-0))1} = 0,
where Mn = (6j£?xjﬂzj£) and Q(n), R(n), E(n), g(n) denote the matrices

~

Q,R, E, S at the point X . A comparison of (3.13) and (3.14) reveals
that (3.13) can be considered as an approximation to the exact equation

(3.14) if [z,| < < |z | and [z,] < < |z, .
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