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* Stability of linear multistep methods on the imaginary axis 

by 

K. Dekker 

ABSTRACT 

The stability of linear multistep methods of order higher than one is 

investigated for hyperbolic equations. By means of the Routh array and the 

Hermite-Biehler theorem, the stability boundary on the imaginary axis is 

expressed in terms of the error constant of the third order term. As a 

corollary we state the result that the stability boundary for methods of 

order higher than two, is at most 13, and this value is attained by the 

Milne-Simpson method. 

KEY WORDS & PHRASES: Numerical analysis, Linear multistep methods, 

Hyperbolic equations, Stability analysis 

* This report will. be submitted for publication elsewhere. 





1 • INTRODUCTION 

For the initial value problem 

(1. 1) y' = f(x,y), y(O) = y 0 , 

the linear k-step method is defined by 

(1. 2) 
k 
I a. y . 

. 0 J n+J J= 

k 
- h I B. f (x . ,y . ) , 

j=O J n+J n+J 
n=O, 1, •.. 

In this paper we will study the behaviour of the difference equation (1.2) 

on hyperbolic problems; thus, the Jacobian of (1.1) 

( 1. 3) 
af 
rly 

has purely imaginary eigenvalues. Application of (1.2) to the model 

equation 

( 1. 4) 

leads to 

(1.5) 

y' = :\ y, y(O) = 1, 

( p(E) - hA cr(E)) y = O, n=O,l, .•• 
n 

where E denotes the shift operator Ey = y 1 , and p and cr are the 
n n+ 

polynomials 

( 1. 6) P(s) = 
k 
" l:"j, 
L, a. "' 

. 0 J J= 
cr (s) = 

It is well kno~m that all solutions of (1.5) are ~punded if and only if 

q = hA lies in the stability regions, defined by 

( 1. 7) S = { q E CC P ( s ) - q cr ( s ) = 0 ~ ( I s I < 1 or 

Isl= 1 ands is a simple root)} . 
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DEFINITION: A linear multistep method is said to be stable on the imaginary 

axis if { iy -~ < y <~}Cs. 

DEFINITION: The imaginary stability 'boundary of a multistep method is the 

largest number w0 , such that { iw I -w0· < w < w0 } cs. In the remainder 

of this paper we will call w0 briefly the stability boundary. 

JELTSCH[S] has proved that the highest order for a consistent linear 

multistep method which is stable on the imaginary axis, is two; in his proof 

the well-known theorem of DAHLQUIST[3] about A-stability and order of a 

multistep method is used. 

This result is entirely different from those obtained for para'bolic 

equations (i.e. the eigenvalues of (1.3) are negative). For instance, CRYER 

[2] showed that there are linear multistep methods of arbitrarily high order, 

which are stable along the negative real axis. Of late we have been trying to 

construct linear multistep methods of order at least three with an optimal 

stability interval along the imaginary axis. To that end we implemented 

Routh's algorithm ( see BARNETT & SILYAK [1]), using a formula manipulation 

program (DEKKER [4]) and tried to optimize the stability boundary. Despite 

many efforts we were not able to exceed 13, the stability boundary of the 

Milne-Simpson method, which has order four. In this paper we proof that the 

stability boundary of any linear multistep method of order higher than two, 

is really at most 13. 
During our investigations, we received a personal communication from 

Jeltsch, stating the same result. His proofs, based on the algebraic 

techniques described in JELTSCH & NEVANLINNA [6], will appear in the near 

future in a joint paper of these authors. 

2. CONSISTENCY CONDITIONS 

In the analysis of multistep methods it is convenient to map the unit 

circle l~I <1 onto the left half plane Re(z)<0, by the transformations 

(see CRYER [2], VARAH [10]), 

(2 .1) z = t;; + 1 
t;; - 1 , E;; = z + 1 

z - 1 



The polynomials p(i;) and cr(i;) are transformed into 

-k (z-l?p (z+l) 
k 

zj r (z) = 2 = L a. 
z-1 J 

I 

(2. 2) j=0 

-k (z-1 ?a (z+l) 
k 

zj. s (z) = 2 = Lb, 
z-1 

j=0 J 

The stability region Smay be defined in terms of the new polynomials: 

(2. 3) s = {qEC I r(z) - q s(z) = 0 ~ (Re(z)<0 or Re(z)=0 and z is 

a simple root)} , 

which is equivalent to (1.7). 

3 

The error constants of a method are usually defined by formulas, linear 

in the coefficients a. and S. (see LAMBERT [7], page 23). For convenience, 
J J 

we introduce the modified error constants C,, defined by 
J 

(2. 4) C, = a . - 2 
J k-J 

L 

m=0 

bk-j+1+2m 
1+2m 

j=0,1, ••• 

these constants differ a factor from the constants given by Lambert. A method 

is said to be o;f order p, if co,·••1C are equal to zero, and if C 1 =I= 0 p p+ 
(cf. CRYER [2]) . 

REMARK: In equation (2.4) and throughout the remainder of this paper, we 

omit the upper index of the summation; we intend this to be the largest 

value, for which the term is non-zero. Moreover, we assume a =b =0 if j<0 
j j 

or j>k. 

Obviously, for a consistent method~ equals zero; the scaling factor bk is 

chosen equal to 1. 

3. STABILITY 

In order to determine the stability of a multistep method, we have to 

locate the zeros of a polynomial in z of degree k 

(3 .1) f(z,q) = r(z) - q s(z). 
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To facilitate the notations, we introduce the following sets in the complex 

plane: 

H = { Z E (: I Re (z) < 0 }, 

H = { Z E + G:: I Re(z) > 0 }, 

R = { Z E ml z < 0 }, 

R+ = { Z E :m I z > 0 }, 

I = { Z E G:: I Re(z) = 0 }, 

and we denote their closures by H_, H+, etc •• 

DEFINITION: We call a polynomial stable if all its roots lie in H. 

Obviously, whenever q lies ins, defined by (2.3), then the polynomial 

f(z,q) is stable. 

Throughout this paper we will assume that r(z) is stable, i.e. that 

0 Es, that f(z,q) is non-reducible, i.e. rands have no common roots, and 

that q is purely imaginary. 

The Routh array forms a useful tool, to determine whether the zeros 

of a polynomial lie in H_, H, R, R, H, etc •• Theorems about the appli-
+ - + -

cation of the Routh array may be found in MARDEN [8, Chapters 9 and 10] ; 

BARNETT & SILYAK [1] give a useful survey. According to BARNETT & SILYAK 

[1, section 3.5] the number of roots in H of a complex polynomial, given by 

(3.2) 

may be found by forming Routh's array, with initial rows 

-a' 
k-3 

(3. 3) 

For a regular array, the number of roots in H+ equals the number of variations 

in sign in the sequence formed by the first elements of these rows. However, 

the array is not regular for a multistep method of order p~2, as the first 

element of the third row, defined by 



turns out to be zero. Thus we proceed in a slightly different way. The 

rows (3.3) may be regarded as a representation of two real polynomials 

fo(y) 
k 

+ ak-1 
k-1 k-2 k-3 = ak y y - ak-2 y - ak-3 y + ... , 

(3.4) 
k-1 k-2 k-3 k-4 

f 1 (y) = ak-1 y + ak-2 y ak-3 y - ak-4 y + ... . 

The correspondence between the real variable y and the imaginary variable 

z, y=-iz, will be assumed throughout the rest of this paper. 

5 

It is obvious, that the roots of f(z) are purely imaginary, if the 

roots of f 0 (y) are real, and f 1 (y) is identically equal to zero. Now we will 

proof that the stability of f(z) implies that all roots of f 0 (y) are real, 

whether or not f 1 (y) is the zero-function. At first, we modify the 

Hermite-Biehler theorem (see OBRESCHKOFF [9, page 106] or MARDEN [8, 

page 169]). 

THEOREM 3.1: (Hermite-Biehler) All roots of the polynomial f(y)=u(y)+iv(y), 

where u and v are real polynomials, lie on the same side of the real axis, 

if and only if u and v have simple real roots which separate each other. 

As we need a n~sult about the left half-plane H , we have to rotate the 

complex plane. 

COROLLARY 3.1: All roots of the polynomial f(z), such that 

f(iy)=u(y)+iv(y), lie on the same side of the imaginary axis, if and only if 

the real polynomials u(y) and v(y) have simple real roots which separate 

each other. 

PROOF: z=iy is a root off, if and only if y is a root of u+iv. D 

In the following lemma we include roots lying on the imaginary axis. 

LEMMA 3.2: Let f be a complex polynomial, such that f(z)=f(iy)=u(y)+iv(y), 

where u and v a.re real polynomials. If all roots off lie in H , then 

all roots of u and v are real. 
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PROOF: Assume that f(z) has m zeros, z 1 , ••• ,zm' on the imaginary axis. 

Obviously, u(y) takes real values and iv(y) purely imaginary values, if yEJR. 

Thus, the real points -iz., j=1, ••• ,m, are zeros of both u and v. 
J ~ ~ ~ 

Now consider the polynomials f, u and v, which are obtained from f, u and v 

by dividing these polynomials by the common factors of u and v. The zeros of 

fare the remaining zeros off, and lie in H_. Moreover, u and v are real 
~ polynomials, and the relation f(z)=f(iy)=u(y)+iv(y) holds. Thus, according 

~ to COROLLARY 3.1, the roots of u and v are real and simple, and separate 

each other. We conclude that all roots of u and v are simple. 0 

REMARK 3.1: The roots of u (or v) need not be simple, even if all roots of 

fare simple; the roots of u (or v) may coincide with those produce by the 

purely imaginary roots off. For example, f(z)=(z+1) (z-i) (1-i) has simple 

roots in H_, but u(y), obtained from f(iy)=-(y2-2y+1) + i(y2-1), has a 

double root. 

COROLLARY 3.2: A necessary condition for the stability of f(z), given by 

(3.2), is that all roots of the polynomials f 0 (y) and f 1 (y), as defined by 

(3.4), are real. 

PROOF: It is easily verified that f(iy) equals ikfO(y) + ik-lf1 (y), and 

that both f O and f 1 are real polynomials. The stability off implies that all 

roots off lie in H_, and thus all roots of f O and f 1 are real. 0 

Now, we apply these results to the polynomial f(z,q), defined by (3.1). 

Using the expressions (2.2) for r(z) and s(z), and multiplying with i to 

make the first coefficient real (note that ¾=O), we get 

(3.4 1 ) 

E + bk-2J' w y) (-1)j yk-1-2j, (¾-1-2j 
j=O 

j k-2-2j 
f1 (y,w) = E (¾-2-2j + bk-1-2j w y) (-1) y , 

j=O 

where we made the substitution w=-iq to shorten the notation. Thus, accor­

ding to COROLLARY 3.2, a necessary condition for the stability of f(z,q) is 

that all roots of f O(y,w) and f 1 (y,w) are real. 
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EXAMPLE 3.1: The two-step Curtiss-Hirschfelder formula yields the polynomial 

2 f(z,q) = 2 z + 4 - q (z + 2 z + 1). 

The initial rows of the Routh array are 

-iq 2 iq 

-2iq 4 

and the polynomials f 0 and f 1 , according to (3.4') 

2 
w y + 2 y - w, 

2w y + 4. 

Both polynomials have real zeros for real values of w, so the condition of 

COROLLARY 3.2 is satisfied. Moreover, the zeros separate each other, which 

implies, according to COROLLARY 3.1, that all zeros of f(z,q) lie in the 

same half plane. As the roots are continuous functions of q, and the root 

of f(z,O) lies in H, we conclude that all roots of f(z,q) lie in H_, for 

all qEI. We note, that we did not state this stronger result about the 

separation of the roots in LEMMA 3.2, because we disregard the polynomial f 1 
in the sequel. 

EXAMPLE 3.2: The three-step Curtiss-Hirschfelder formula yields the 

polynomials 
4 3 2 

P<s> = 3 c11, -1s, +9s-2>, 

2 20 
r(z) = 2z + 6z + - , 

3 
3 2 20 

fo(y,w) = w(y -3y)+2y - 3, 

= s,3 , 

s(z) 3 2 = z + 3z + 3z + 1, 

2 
f 1 (y,w) = w(3y -1)+6y. 

fo(y,w) has thre,e real roots if lwl<!rs or lwl>}/32; fl (y,w) has real roots 

for all values of w. The condition for the roots to separate each other are 
2 

found by the Routh array, deleting the leading zeros. We get 16w -60 > 0, 

so the formula is unstable on { iw I -½ill < w < ½ill } . 
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Observing that the error constants cj, defined by (2.4), contain coefficients 

of f 0 if j is odd, and coefficients of f 1 if j is even, leads to 

THEOREM 3.3: Suppose there exists a k-step formula of order p (p odd) with 

stability boundary w0 . Then there exists also a k-step formula of order at 

least p+], whose associated polynomial f(z,q) is stable if -w0 < iq < w0 . 

PROOF: Let the associated polynomial (3.1) of the k-step formula of order p 

be given by f(z,q). According to COROLLARY 3.2, all roots of the polynomial 

f 0 (y,w) are ~eal, i: lwl<w0 • Now, ch~ose f(z,q) in such a way, that the 

polynomials f 0 and f 1 , generated by f according to (3.4'), are equal to 

f 0 and the zern-function, respectivily. Thus 

f( ) .k-1 f ( . . ) .k-1 ( ) z,q = l Q -1z,-1q = l fQ y,W. 

If lql<w0~ then all roots of f 0 are real, and all roots o: f purely imagina­

ry; thus f(z,q) is stable. Moreover, the error constants C. are equal to 
J 

zero, if j~p or if j is even, so the order of the new formula is at least 

p+1. □ 

EXAMPLE 3.3: For the Backward Euler formula we have 

f(z,q) = 2 - q (z + 1); 

thus, f 0 (y,w) = wy + 2 and f 1 (y,w) = w. f(z,q) is stable for imaginary 

values of q,, and we have first order consistency, as is easily checked by 

using (2.4). Now, we choose f 0 (y,w) = wy + 2 and f 1 (y,w) = 0, which yields 

f (z, q) 2 -· q z. The resulting formula is the trapezoidal rule, which is 

known to be stable on I and which is of second order. 

When we have a multistep method of second order, we may have stability 

on the whole imaginary axis. Now, we will investigate what happens if we 

increase the order. In that case the leading terms of f 0 (y,w) are 

k k-1 k-2 2 k-3 
w y + 2 y - w bk_2 y - (2bk_2 + 3) Y + • · • 

As the stability interval { iw -w0 < w < w0 } is symmetric around the 



origin, we should consider f 0 (y,w) for both positive and negative values of 

w. It is therefore convenient to form the product of f 0 (y,w) and f 0 (y,-w); 

this polynomial is quadratic in y. Depending on the variable, y or y2 , we 

will denote this polynomial by g(y,w) and h(x,w), respectivily. Finally, 

separating terms containing the factor w from the other ones, we obtain the 

following polynomials: 

gl (y) = { " (-1) j 
¾-1-2j 

k-1-2j }2, L, y 
j=O 

(3.5) 2 
ho (x) = hO(y) = go Cy) , 

It is easily verified that g0 and g 1 satisfy the relation 

(3.6) 

2 so that g(y,w) equals g 1 (y) - w g0 (y). 
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LEMMA 3.4: A necessary condition for the stability of r(z) (=f(z,O)) is that 

all roots of h 1 are non-negative. 

PROOF: The stability of f(z,O) implies that all roots of f 0 (y,O) are real; 

however, f 0 (y,O) is an odd (or even) function, so -y0 is a root of f 0 (y,O) 

if y0 is a root of f 0 (y,O). Assume that y 1, ••• ,yk-l are the real roots of 

f 0 (y, 0) ; then -y 1, ••• ,-yk_1· are also· roots of f 0 (y, 0). Hence, using (3. 6) , 

we see that the factors of g1 (y) are (y-y,) (y+y.), j=l, ••• ,k-1, and the 
2 J J 

factors of h 1 (x) are (x-yj ). We may conclude that the roots of h 1 are 

non-negative. D 

LEMMA 3.5: Assume that g0 and g 1 do not have common roots. A necessary 

condition for the stability of f(z,q), for all qEI, lql<E, for some small 

e>O, is that all roots of g 1 are double. 
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PROOF: Let y0 be a zero of g 1 of order at least 4. By asswnption, y0 is not 

a zero of g0 • As g0 is a quadratic function, we have g0 (y0 )>0, so that there 

are only two real zeros of g(y,w) in the neighbourhood of y0 , if w2 is small 

enough. As the roots of g(y,w) are continuous functions of w, we must have 

two complex(non-real) zeros of g; thus at ieast one of the functions f 0 (y,w) 

and f 0 (y,-w) has a non-real zero, which, according to COROLLARY 3.2, would 

imply that f(z,q) is not stable, if q=iw or q=-iw. As a consequence, the 

stability of f(z,q) for all q,lql<E, implies that the zeros of g1 are of 

order less than 4. Moreover, by definition (3.5), the roots of g 1 are of 

even order, so they are of order 2. D 

REMARK 3.2: We can not replace g 1 by h 1 in this lemma, because O can be a 

single root of h 1• The non-zero roots of h 1 , however, are always double, so 

it depends on the degree of the polynomial h 1, whether O is a (single) root 

or not. According to (3.5), the degree of h 1 is k-1. 

LEMMA 3.6: A necessary condition for the stability of the polynomials 

f(z,q) and f(z,-q), for a fixed qEI, is that all roots of g(y,w), w=-iq, 

are real. 

PROOF: COROLLARY 3.2 states that the stability of f(z,q) implies that all 

roots of f 0 (y,w) are real. Likewise, all roots of f 0 (y,-w) are real as a 

consequence of the stability of f(z,-q). Thus, according to relation (3.6), 

all roots of g(y,w) are real. D 

In order to get an idea of the behaviour of the zeros of g for various 

values of w, it is convenient to consider the function 

(3.7) Q(y) = 

It is clear that all zeros of g(y,w) are real, if and only if the function 

Q(y) has 2k points in common with the constant function w2 • In figure 3.1 

we have plotted the function {Q(y)}½ for the three-step Curtiss-Hirschfelder 

formula (see EXAMPLE 3.2). 

When we look at the plot of figure 3.1, we get an idea of the intervals 

of stability and instability of the three-step Curtiss-Hirschfelder formula. 



(.") 
C:) 

(.") L., 

(.") 
C) 

Fig. 3.1 

-2,00 -1 OG o.oo OG 

The function (Q(y))~ 

y 

= ((y2 - 10/3) 2 )½. 
y2 (y2 _ 3/ 

I 
2.00 3 OG 

Q(y) has two double zeros, and J_im Q(y)= lim Q(y)=O; this indicates that r-r» Y-+oo 
g(y,0) has two double real zeros, whereas the degree is 4 (=2k-2). Thus, 
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all roots of g(y,0) are real. For small values of w ( lwl<v'S/3), there are 

6 points of intersection between Q(y) and the constant function w2 ; hence, 

all roots of g(y,w) are real for these values of w. We remark that each of 

the intervals (-00 ,-/3o/3), (-✓30/3,+Fo/3) and (/3o/3, 00 ) contains exactly 

two intersection points. For values ofw>is/3, these intersection points 

vanish in two of those intervals. These intersection points can not "jump" 

at once into the other interval (otherwise g(y,/5/3) would have had 4 

double and two single roots), so 15/3 is an upperbound for the stability 

boundary of the formula 

In the remainder of this section we will prove that the stability 

boundary can be bounded by the top of the lowest "hill" of the function 

IQ(y), and we will calculate an upperbound for this top. At first we give 

four lemma's for rather general polynomials satisfying some conditions. 

These lemma's can be applied to the real polynomials h0 (x) and h 1 (x) as 

defined in (3.5), and the reader may keep them in mind. We note that h 1 has 
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(k-1)+2 double roots, if the conditions of LEMMA 3.5 are satisfied. We 
~ denote them by c 2 , ••• ,cm, where m equals (k+1)+2. 

Let c , •.. ,c be real constants, ordered in such a way that 
1 m 

c <c < ••• <c • Then we define the open intervals I., j=l, ••• ,m, by 
1 2 m J 

I. = C. I C j+l) , j=l, ..• ,m-1, 
(3.8) J J 

I = C I 
00 ) . 

m m 

In the following four lemma's we assume these constants and intervals be 

given. 

LEMMA 3.7: Let h(x} be a real polynomial of degree m, 

( 3. 9) h(x) 
m = X + 

such that c., j=l, •.• ,m, is not a zero of h(x). 
J 

Define the polynomial P(x) by 

(3.10) 

m 

P(x) = .II 1 (x 
J= 

2 2 
c.) - {h (x) } • 

J 

Then there exists an interval I., 1::;;j::;;m, such that P(x)<0, VxE I .. 
J J 

PROOF: P(x) is a polynomial of degree less than or equal to 2m-2; thus, P 

has at most 2m-2 roots. As P(c.)<0, for all j, the number of zeros in each 
J 

of the intervals I., j<m, is even. Thus, in at least one interval P has no 
J 

roots and is consequently strictly negative. D 

REMARK 3.3: The assumptions of this lemma can be satisfied only, if m>l. 

If m=l, we have h(x) = x - c 1 , which contradicts the assumption that c 1 is 

not a root of h(x). 

REMARK 3.4: In the interval I. indicated in this lemma, the function 

{h(x)} 2 is obviously positive;Jhence, the function 1 + P(x)/{h(x)} 2 has at 

least one hill with a top less than 1. If we choose c,.,, ••. ,c equal to the ,,_ m 

double roots of h 1 (x), h(x) equal to ✓h0 (x) if k=2m, else equal to Ix h0 (x), 
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m 

and c 1 such that the second coefficient 

and 1 + P(y2 )/{h(y2 )} 2 differ a factor 

of h(x) equals .f1 (-c.), then Q(y) 
2 2 2 J- J 

(y -c1) /(4y), as the reader may 

verify easily. This factor is bounded by I c 1 I for y E JR , if c 1 is negative. 
-1 . 2 2 2 

In that case, Q(y) can be bounded by !c1 1 tl + P(y )/{h(y )} ). 

LEMMA 3.8: Let h(x) be a real polynomial of degree m, with leading terms 

given by (3.9). Let c 1 be negative, and c 2 , ••• ,cm be positive. Define 

R(x,w) by 

(3.11) 
m 

R(x,w) = 4 x TI (x - c.) 2 - w2 {h(x)}2 • 
j=2 J 

-½ Define w0 = ic 1 I . Then there exists an interval Ij, l$j$m, such that 

R(x,w) does not have roots in I., if lwl>;0 • Moreover, if h(c.,)+o, for 
J~ J 

some j' , 2$j'$m, then also R(x,w0 ) does not have roots in the interval I .. 

~ 2 2 
PROOF: For all x the relation 4x $ w0 (x-c 1) holds; equality occurs 

x=-c 1 • Using this relation, we get the inequalities, assuming lwl ~;0 , 

R(x,w) 
~ 2 
WO 

m 2 
$ .TI 1 (x-c.) 

J= J 

w2 2 m 2 2 
- ~ 2 {h(x)} ~ .TI 1 (x-c.) - {h(x)} . 

J= J 
WO 

If h(c.)4,0, for all j, then we apply the previous theorem, and conclude 
J 

that R(x,w) does not have zeros in I., for some j, if I w I ~ ; 0 • 

J 

for 

If h(c.)=O, 
J 

J 2 
for some j, we may cancel the factors (x-c.) and 

J 
arrive at the 

same result, as is easily verified. 
m 2 
. n2 (x-c.) the 
J= ~ J 

If h(c.)=O, for all j, we obtain after division of R by 

functi~n 4x - w2 (x-c1) 2 ; obviously, there is no zero if lwl>w0 , and -c 1 is 

a zero if lwl=;0 • Thus, there are no roots of R(x,w) in I 1 , if I w I > ; 0 • 

EXAMPLE 3.4: The Milne-Simpson method yields the polynomials 

r(z) 2z, 
2 

f (v,w) = w y + 2y + w/3, 0 "· 

g(y,w) = 4y2 2 2 2 
- w (y +1/3) , 

h 0 (x) = (x + 1/3) 2 , 

a ( ~) 

s (z) 

2 2 
= 3 ( ~ +4 ~ + 1 ) ' 

2 = z - 1/3, 

f 1 (y,w) = 0, 

D 
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Choose c 1=-1/3 and h(x)=(x+l/3). Then the conditions of LEMMA 3.8 are 

satisfied;: thus 4x - w2 (x +1/3) 2 does not have a real zero, if lw I >;0= ✓3, 
and likewise g(y,w) does not have real zeros for these values of w. 

If lw1<;0 , then all roots of g(y,w), and also of f 0 (y,w) are real, and they 

are simple if lwl4~0 . Thus, the Milne-Simpson method is stable for qEI, 

u lql</3. 

EXAMPLE 3.5: For the trapezoidal rule we have (see also EXAMPLE 3.3) 

fo(y,w) = wy + 2, 

g(y,w) = 4 - w2 y 2 , 

and we may set 

R(x,w) = x g( ✓i,w)cc= 4x - w2 x2 . 

we have to choose c 1=0, in order to satisfy (3.9); however, this value is 

not negative, and we can not apply LEMMA 3.8. Obviously, g(y,w) has two 

real zeros for all real values of w. 

REMARK 3.5: If the conditions of LEMMA 3.8 are satisfied, then the function 
2 2 

w + R(x,w)/{h(x)} has at least one hill, and the top of this hill is at 

most equal to 
~ 2 
WO . We note that the actual top can be smaller, due to the 

(possible not sharp) inequalities used in the proof of this lemma. 

LEMMA 3. 9: Let R(x,w) be a polynomial in x of degree 2m for w40 and of 

degree at most 2m for w=O and let the coefficients of R be real continuous 

functions of w. Assume 

(i) R(x,O) has m-1 double real zeros, c 2 , ••. ,cm; 

(ii) R(x,w) does not have zeros in c 1 , ••. ,cm, ifw:{:O; 

(iii) R(x,w) has two zeros in eac~ of the intervals I 1 , •.. ,Im if O<lwl~£; 

(iv) 3j, 1 ~ j ~ m, such that R(~,w0 ) has no zeros in Ij. 

Then there exists a wl' 0 < w1 ~ w01 such that R(x,w1) has at most 2m-2 zeros. 

PROOF: Let n.(w) denote the number of roots of R(x,w) in the interval I., 
J J 

1 ~ j ~ m, double roots counting double. Define the sets SH and SV by 

= { w > 0 I Vj, 0 <; ~ w, n. (w) ~ 2 } , 
J 



S = { w > 0 I 3 j, 3 w < w, n. (w) < n. (w) } • 
V J J 

We note that both sets are closed, as the roots can not move across the 

boundaries of the intervals ( R ( c . , w) =l=O if w > 0, Vj) and they can not 
J 

vanish (the degree is 2m for w > 0). Moreover, the first set is not empty, 

because £ e: SH, and is bounded because ; 0 ¢ SH. We define the real numbers 

wH = max { x I x e: SH} and wv = min { x I x e: SV} , if SV is not empty, and 

wv = 2wH if SV is empty. We may think of wH and wv as the top of the hill 

and the bottom of the valley of a function like Q(y) in figure 3.1. 

m 
From j~l nj (w) = 2m, 0 < w-:;, wH, we conclude that wH < wv; otherwise, there 

m 
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would be a w, w < wv-:;, w with . I: 1 n. (w) > 2m. Thus, the total number of roots 
H J= J 

m 
in the intervals, . I: 1 n. (w) is less than 2m for w < w < w . Moreover, none 

J= J H V 
of the points c. is a root of R(x,w), and the total number of real roots 

J 
must be even, so we arrive at the assertion of the lemma. D 

LEMMA 3.10: Let c 2 , ••• ,cm be positive constants, h(x) a real polynomial 

satisfying (3.9) and c 1 be negative. Then, for all e> 0, there exists a w1 , 
-~ O< w1 < (-c1) + £, such that the polynomial R(x,w1), as defined by (3.JJ) 

has at most 2m-2 real zeros. 

PROOF: we may assume without loss of generality that h(x) does not have 
m 

roots in common with .IT2 (x-c.) 2 . If there are common roots, we divide both 
J= J 

polynomials by the common factors, and apply the proof to the resulting 

polynomials. We verify that R satisfies the assumptions of LEMMA 3.9: 

(i) The real constants c2 , ••• , cm are double roots of R(x,O); 

(ii) R(cj,w)=!=O, j=2, ••• ,m, if w=!=O and R(c 1 ,w) < O, as c 1 is negative; 

(iii) For small values of w, R(x,w) has 2m-2 zeros in the neighbourhood of 

the points c., j=2, ••• ,m, one on each side of each point,and twozeros 
J 

(iv) 

in the neighbourhood of the points x=O and x=00 • Thus, R(x,w) has two 

zeros in-Ij, j=l,.~.,m, i·f O< lwl<e·. (In r 1 because c 1 < O< c 2 ) 

According to .LEMMA 3.8, R(x,w) has no zeros in I. for some j, if 

lwl > (-c1)-½. Thus, for all £>0, R(x,w) has no z;ros in Ij, if 

w = (-c1)-½ + e. 

Application of LEMMA 3.9 yields the statement of this lemma. D 
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By virtue of this lemma we arrive at the main result of this paper: 

THEOREM 3.11: The imaginary stability boundary of a linear k-step method of 
~ -~ order at least two, is at most (~c3 + 1/3) , where c3 is the modified error 

constant of the third order term, defined by (2.4). 

PROOF: Let f(z,q) be the polynomial in z of degree k, associated with the 

k-step method, according to (3.1). Assume that f(z,q) is stable, for qE I, 

lql <a.Then, according to LEMMA 3.6, all roots of g(y,w), defined by (3.5) 

and (3.6), are real if lwl < a. 

LEMMA 3.4 states that all roots of h 1 are non-negative, and according to 

REMARK 3.2, the positive roots are double. Denote these roots by c 2 , ••• ,cm' 

and consider the polynomial R(x,w) as defined by (3.11). we distinguish two 

cases: 

(i) k is even. Then, we choose h(x) = ✓h0 (x); the coefficient of the 

second term of h(x) is -bk 2 • Because .22 c. =-~a 3 , we have to take 
- J= J k-

~ c 1 = bk_ 2 - ~~-3 = - (~c3 + 1/3) in order to satisfy (3.9). 

(ii) k is odd. Then, we choose h(x) = ✓x h0 (x), and again c 1 = - (~c3+1/3)-~. 

In both cases, the conditions of LEMMA 3.10 are satisfied, if c 1 < 0; thus, 
-~ R(x,w1) has at most 2m-2 real zeros, for a w1 :;;; (-c1) +£ • 

However, R(y2 ,w) is equal to g(y,w) if k is even, and equal to y2g(y,w) 

if k is odd. Thus, if k is even, g(y,w1) has at most 2(2m-2)=2k-4 real 

zeros; likewise, if k is odd, g(y,w1) has at most 2(2m-2)-2=2k-4 real zeros. 

Hence, g(y,w1) has complex zeros; however, all roots of g(y,w) are real if 

I -~ -~ wl < a. Thus, for all£, S< (-c1) + £, and we conclude that :;;; (-c1) • D 

COROLLARY 3.3: The imaginary stability boundary of a_linear k-step method 

of order higher than twor is at most fi. 
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