

AFDELING NUMERIEKE WISKUNDE NW 86/80 AUGUSTUS (DEPARTMENT OF NUMERICAL MATHEMATICS)

1980

H.J.J. TE RIELE

NUMERICAL SOLUTION OF TWO COUPLED NONLINEAR EQUATIONS RELATED TO THE LIMITS OF BUCHSTAB'S ITERATION SIEVE

amsterdam

stichting mathematisch centrum

AFDELING NUMERIEKE WISKUNDE NW 86/80 AUGUSTUS (DEPARTMENT OF NUMERICAL MATHEMATICS)

H.J.J. TE RIELE

NUMERICAL SOLUTION OF TWO COUPLED NONLINEAR EQUATIONS RELATED TO THE LIMITS OF BUCHSTAB'S ITERATION SIEVE

kruislaan 413 1098 SJ amsterdam

Printed at the Mathematical Centre, 413 Kruislaan, Amsterdam.

The Mathematical Centre, founded the 11-th of February 1946, is a nonprofit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).

1980 Mathematics subject classification: 65H10, 65D30, 65Q05

Numerical solution of two coupled nonlinear equations related to the limits of Buchstab's iteration sieve

by

H.J.J. te Riele

ABSTRACT

Details are presented of numerical computations concerning the solution of two coupled nonlinear equations which arise in connection with the socalled Buchstab iteration sieve in number theory [2]. The computations involve (among others) a function which is given as an infinite range integral over an integrand which has a weak singularity in one of the endpoints, and a function which is the solution of a differential-difference equation.

KEY WORDS & PHRASES: sieve methods, nonlinear equations, Newton's method, quadrature over an infinite range, differential-difference equation

1. INTRODUCTION

In this report we present the details of numerical computations concerning the solution of two coupled nonlinear equations in two real unknowns α and β , where $\alpha \geq \beta$. These equations arise in connection with the so-called Buchstab iteration sieve [2] in number theory. They read as follows:

CASE 1. $\beta \leq \alpha \leq \beta+1$

(1)
$$\begin{cases} \alpha \ \frac{p(\alpha)}{\sigma(\alpha)} + \kappa \int \frac{p(x+1)}{\sigma(x)} dx = 2, \\ \beta - 1 \\ \alpha \ \frac{q(\alpha)}{\sigma(\alpha)} - \kappa \int \beta - 1 \\ \beta - 1 \end{bmatrix} dx = 0;$$

CASE 2. $\alpha \geq \beta+1$

(2)
$$\begin{cases} \alpha \frac{p(\alpha)}{\sigma(\alpha)} + \kappa \int_{\alpha-2}^{\alpha} \frac{p(x+1)}{\sigma(x)} dx + \kappa (\alpha-1)^{1-\kappa} p(\alpha-1) \int_{\beta}^{\alpha-1} \frac{t^{\kappa-1}}{\sigma(t-1)} dt = 2, \\ \alpha \frac{q(\alpha)}{\sigma(\alpha)} - \kappa \int_{\alpha-2}^{\alpha} \frac{q(x+1)}{\sigma(x)} dx - \kappa (\alpha-1)^{1-\kappa} q(\alpha-1) \int_{\beta}^{\alpha-1} \frac{t^{\kappa-1}}{\sigma(t-1)} dt = 0. \end{cases}$$

Here, κ is some given number in the interval (1,2]. The functions p and q are given by:

(3)
$$p(s) = \int_{0}^{\infty} exp(-sz - \kappa \psi(z)) dz, \quad s > 0,$$

where

(4)

$$\psi(z) = \int_{0}^{z} \frac{1 - e^{-u}}{u} du;$$

$$q(s) = \frac{1}{\Gamma(1 - 2\kappa)} \int_{0}^{\infty} z^{-2\kappa} \exp(-sz + \kappa \psi(z)) dz, \qquad s > 0,$$

provided that $\kappa < \frac{1}{2}$; if $\kappa \ge \frac{1}{2}$ one should take the analytic continuation of q(s) with respect to κ . The function σ is the continuous solution of the following differential-difference equation:

(5)
$$\begin{cases} s^{-\kappa}\sigma(s) = A^{-1}, & \text{if } 0 < s \le 2, \\ \frac{d}{ds} (s^{-\kappa}\sigma(s)) = -\kappa s^{-\kappa-1}\sigma(s-2), & \text{if } s > 2, \end{cases}$$

where $A = 2^{\kappa} e^{\gamma \kappa} \Gamma(1+\kappa)$, γ the Euler constant. Note that p, q and σ depend on κ , and that (2) reduces to (1) for $\beta = \alpha - 1$.

2. NUMERICAL SOLUTION OF (1) AND (2)

We have written two FORTRAN-programs for the numerical solution of (1), resp. (2), given any fixed $\kappa \in (1,2]$. We intended to compute α and β with an accuracy of at least 7D. As a partial check, we had at our disposal a small unpublished table, constructed by Diamond and Jurkat, of 4D - approximations of the solutions of (1) and (2), for $\kappa = 1.0(0.1)2.0$.

Equation (1) was solved by the Newton-method. Defining

$$g_1(\alpha,\beta) := \alpha \frac{p(\alpha)}{\sigma(\alpha)} + \kappa \int_{\beta-1}^{\alpha} \frac{p(x+1)}{\sigma(x)} dx - 2,$$

and

$$g_2(\alpha,\beta) := \alpha \frac{q(\alpha)}{\sigma(\alpha)} - \kappa \int_{\beta-1}^{\alpha} \frac{q(x+1)}{\sigma(x)} dx,$$

and assuming an initial vector $(\alpha_0^{},\beta_0^{})^T$ to be given, the Newton-iteration process reads

$$\binom{\alpha_{n+1}}{\beta_{n+1}} = \binom{\alpha_n}{\beta_n} - J^{-1}(\alpha_n, \beta_n) \binom{g_1(\alpha_n, \beta_n)}{g_2(\alpha_n, \beta_n)} , \qquad n = 0, 1, \dots$$

where

$$J(\alpha,\beta) = \begin{pmatrix} \frac{\partial g_1}{\partial \alpha} & \frac{\partial g_1}{\partial \beta} \\ \frac{\partial g_2}{\partial \alpha} & \frac{\partial g_2}{\partial \beta} \end{pmatrix}$$

is the Jacobian matrix of the system (1). The iteration was terminated as soon as the maximal absolute Newton-correction of $(\alpha_n, \beta_n)^T$ was $<10^{-8}$. In this

process, we not only needed to compute p, q and σ , but also p', q' and σ'/σ , which occur in the Jacobian matrix. The corresponding computational details are given in Section 3.

Equation (2) is somewhat easier to solve than (1). By eliminating β , which in both equations of (2) only occurs as lower bound of the integral

$$\int_{\beta}^{\alpha-1} \frac{t^{\kappa-1}}{\sigma(t-1)} dt,$$

we obtain one equation with one unknown α :

$$\frac{\alpha}{\sigma(\alpha)} \{ p(\alpha)q(\alpha-1) + q(\alpha)p(\alpha-1) \} + \\ + \kappa \int_{\alpha-2}^{\alpha} \{ q(\alpha-1)p(x+1) - p(\alpha-1)q(x+1) \} \frac{dx}{\sigma(x)} = 2q(\alpha-1) .$$

This equation was solved by the Newton-method, yielding α . Next, β was obtained from the first equation of (2), again by the Newton method.

The integrals involved in (1) and (2) were evaluated using the CLENSHAW-CURTISS method [1] as implemented in the NAG-FORTRAN library [3, SUBROUTINE DO1AAF]. The function $\sigma(s)$ occurring in these integrals has a discontinuity in one of its (higher) derivatives at the points $s = 2,4,6,\ldots,2\ell,\ldots$. Therefore, if any of these points occurred in the integration interval, the integral was split up in pieces such that these points became *endpoints* of the subintervals of integration (for example $\int_1^5 = \int_1^2 + \int_2^4 + \int_4^5$). In this way these discontinuities did not affect the desired accuracy. For the parameter "relative accuracy" in the subroutine DO1AAF we took the value 10⁻⁸.

With the two programs for the solution of (1) and (2) we found (by numerical experiments) that there is one critical value $\kappa_0 \approx 1.8344311$) in the interval (1,2] with the properties that $\alpha = \beta + 1 \approx 4.8818986$) for $\kappa = \kappa_0$, that $\alpha < \beta + 1$ for $1 < \kappa < \kappa_0$ and that $\alpha > \beta + 1$ for $\kappa_0 < \kappa \le 2$. Keeping this in mind we used (1) or (2) to compute α and β for $\kappa = 1.01$ (0.01)2.00 (Table 1), and for a few more rational values of κ which may be useful for future applications (Table 2). Several checks indicate that the absolute errors in the α 's and β 's never exceed the value 5.10^{-8} .

4

KAPPA	ALPHA	BETA	KAPPA	ALPHA	BETA
$\begin{array}{c} 1.01\\ 1.02\\ 1.034\\ 1.06\\ 1.089\\ 0.11\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.22\\ 2.2$	2.1652207 2.2400528 2.3006341 2.3540469 2.40299996 2.4488648 2.4924487 2.5342706 2.5746869 2.65372642 2.6897637 2.7627702 2.7984447 2.8336539 2.6652642 2.7627702 2.7984447 2.8336539 2.907579 3.0042747 3.0375410 3.0705774 3.1034021 3.0375410 3.0705774 3.1034021 3.2648433 3.2966728 3.3283698 3.3283698 3.3599413 3.2648433 3.2966728 3.3283698 3.3599413 3.2648433 3.2966728 3.2648433 3.2966728 3.3283698 3.3599413 3.2648433 3.2966728 3.329607 3.6698346 3.7003184 3.7307199 3.6698346 3.7003184 3.7307199 3.7610407 3.8815439 3.8815439 3.9114805	2.0223726 2.0446520 2.0668912 2.0891064 2.1113059 2.1334948 2.1556765 2.1778535 2.2000278 2.222008 2.222008 2.22443736 2.2665474 2.2887231 2.3109014 2.3330831 2.3552688 2.3774592 2.3996548 2.4218562 2.4440641 2.4662788 2.4218562 2.4440641 2.4662788 2.4885009 2.5552172 2.5774742 2.5997412 2.6220187 2.6443073 2.6666073 2.6443073 2.6666073 2.6889193 2.7112439 2.7335815 2.7559327 2.7782980 2.8006779 2.8230729 2.8454835 2.8679104 2.8903540 2.9128150 2.9352938 2.9577910 2.9352938 2.9577910 2.9352938 3.0479747 3.0705706 3.0931862 3.1158210	$\begin{array}{c} 1.523\\ 1.5556789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789000000000000000000000000000000000000$	3.9413435 3.9711338 4.0008524 4.0305001 4.08524 4.0305001 4.10852910 4.1190389 4.11484253 4.226540633 4.2265406337 4.2265406337 4.2265406337 4.2265406337 4.32659929 4.22935261739 4.22935265939 4.439305312 4.439305392 4.439305392 4.4667133829 4.4667133829 4.5554662211 4.66698055112 4.66998055112 4.66998055112 4.66998055112 4.8869775566 5.02665212 4.8869775595 5.0266527955 5.0266527955 5.0266527955 5.0266527955 5.0266527955 5.0266527955 5.0266527955 5.0266527955 5.0266527955 5.0266527955 5.0266527955 5.0266527955 5.0266527955 5.0266527955 5.0266527955 5.22797725 5.2299787274 5.2299787274	$\begin{array}{c} 3.1384748\\ 3.1611472\\ 3.1838378\\ 3.2065462\\ 3.22920153\\ 3.229201532\\ 3.229201552\\ 3.22975517\\ 3.32075517\\ 3.3431572\\ 3.343157769\\ 3.343597169\\ 3.343597169\\ 3.34357032376\\ 3.38165415\\ 3.3658816717\\ 3.3658816717\\ 3.3659816717\\ 3.3659816717\\ 3.3659816717\\ 3.3659816717\\ 3.365981652029\\ 3.365916502\\ 3.365916502\\ 3.36516502\\ 3.36516502\\ 3.36516502\\ 3.36516502\\ 3.36516502\\ 3.36516502\\ 3.36516502\\ 3.36516502\\ 3.3755923256\\ 3.66410502\\ 3.6641052\\ 3.66410502\\ 3.66410502\\ 3.66410502\\ 3.66410502\\ 3.66410502\\ 3.664105$

Table 1. Solutions of (1) - (2) for $\kappa = 1.01(0.01)2.00$

KAPPA	ALPHA	BETA
1.0001	2.0157572	2.0002252
1.0002	2.0223222	2.0004502
1.001	2.0503075	2.0022478
4/3	3.4018518	2.7410304
5/3	4.4008971	3.4955983
11/6 8/7	4.8787736 2.7730138	2.3700010 3.8793594 2.3172387
9/7	3.2511596	2.6347537
10/7	3.6959687	2.9545759
9/8	2.7082466	2.2776350
11/8	3.5315852	2.8342762

Table 2. Solutions of (1) for some rational values of κ .

3. COMPUTATIONAL DETAILS

3.1. Computation of p(s) and p'(s)

We first tried to compute p(s), as given in (3), by standard Laguerre-Gauss quadrature, i.e., with weight function exp(-z) and integrand $\exp((1-s)z - \kappa\psi(z))$. The accuracy obtained was estimated by repeating the quadrature with several different sets of quadrature abscissas and weights, and comparing the results. It turned out that even with 48 abscissas we could not obtain sufficient accuracy. Therefore, we replaced the integral \int_0^∞ by \int_0^B , where B was chosen such that $|\int_B^\infty|$ was sufficiently small. This was achieved as follows. Since $\psi(z) = \gamma + \log z + E_1(z)$, where E_1 is the exponential integral $E_1(z) = \int_z^\infty \exp(-t)/t dt$, the neglected part \int_B^∞ can be approximated (provided that B is not too small) by

$$\int_{B}^{\infty} \exp(-sz - \kappa\gamma - \kappa \log z) dz,$$

which is smaller than $\exp(-\kappa\gamma)B^{-\kappa}\exp(-Bs)/s$. In our computations we only needed values of p(s) for s > 1. With this information we chose B such that $\exp(-Bs) < 10^{-15}$, thus guaranteeing that the neglected part of the integral in p(s) was sufficiently small. The remaining finite integral \int_{0}^{B} was computed

by a method of PATTERSON ([4,5]) as available in the NAG-FORTRAN library ([3, SUBROUTINE DO1ACF]); the relative accuracy actually used was 10^{-7} , but checks with smaller relative accuracies indicated that at least 9 correct digits were obtained. The function $\psi(z)$, occurring in p (and q) was evaluated for z > 1 by $\psi(z) = \gamma + \log z + E_1(z)$, with the exponential integral $E_1(z)$ taken from the NAG-FORTRAN library ([3, SUBROUTINE S13AAF]). For $0 < z \le 1$ we used the rapidly converging series expansion $\psi(z) = -\sum_{n=1}^{\infty} (-z)^n/(n!n)$.

The functions p, as given in (3), and p' given by

$$p'(s) = -\int_{0}^{\infty} z \exp(-sz - \kappa \psi(z)) dz$$

were computed to at least 9D accuracy with the provisions described above. This could be checked in the case $\kappa = s = 1$, for which we have

$$p(1) = \int_{0}^{\infty} \exp(-z - \gamma - \log z - E_{1}(z)) dz = e^{-\gamma} \int_{0}^{\infty} d\exp(-E_{1}(z)) = e^{-\gamma},$$

since $E_1(z) \rightarrow 0$ as $z \rightarrow \infty$ and $E_1(z) \sim -\log z$ as $z \rightarrow 0$. Table 3 shows a selection of values of p(s) and p'(s) for $\kappa = 1.0(0.1)2.0$.

3.2. Computation of q(s) and q'(s)

Since we wanted to solve (1) and (2) for $\kappa \in (1,2]$ we had to take the analytic continuation of q(s) (see (4)) with respect to κ . To this end, we write (4) as

(6)
$$q(s) = \frac{1}{\Gamma(1-2\kappa)} \int_{0}^{\infty} z^{-2\kappa} f(s,z) dz, \quad s > 0, \kappa < \frac{1}{2}$$

where

$$f(s,z) = \exp(-sz + \kappa \psi(z)).$$

This function f and its derivatives with respect to z are continuous on $[0,\infty)$ and tend to zero exponentially fast as $z \rightarrow \infty$. Therefore, integrating (6) n times by parts, we obtain

(7)
$$q(s) = \frac{(-1)^n}{\Gamma(n+1-2\kappa)} \int_0^\infty z^{n-2\kappa} \frac{\partial^n}{\partial z^n} f(s,z) dz, \qquad s > 0, \ \kappa < \frac{1}{2} (n+1).$$

It follows that, if n > 3, this formula can be used for all $\kappa \in (1,2]$. To obtain some extra smoothness for the integrand in (7) near z = 0, we took n = 5. This increased the complexity of the integrand and, consequently, the cost of computing q, but experiments have shown that this also increased the accuracy which can be obtained for q. The fifth derivative of f with respect to z was computed as follows. Defining $\phi(z) := \kappa \psi(z) = \kappa (1-e^{-Z})/z$, we obtain after some calculations

$$\frac{\partial^{v} f(s,z)}{\partial z^{v}} = f(s,z) \{ \phi^{iv} + 5\phi^{""}(\phi-s) + 10\phi^{"}(\phi-s)^{2} + 10\phi^{"}(\phi-s)^{3} + (\phi-s)^{5} + 10\phi^{"}\phi^{"} + 15(\phi^{"})^{2}(\phi-s) \},\$$

where $\phi^{i} = \phi^{i}(z)$. The derivatives of ϕ were computed for z > 1 by using the following recursion formula:

$$\phi^{i+1}(z) = \{(-1)^{i}e^{-z} - (i+1)\phi^{i}(z)\}/z, \quad i = 0, 1, 2, \dots;$$

for $0 < z \le 1$, ϕ and its derivatives were computed from their rapidly converging series expansions. Similarly as in Section 3.1 for p, we replaced the integral \int_0^{∞} in (7) by \int_0^{B} , where B was chosen such that the neglected part of the integral was sufficiently small. The remaining finite integral was computed with the SUBROUTINE DO1ACF from the NAG-FORTRAN library. The results could be checked in the following cases:

$$q(s) = \begin{cases} s-1, & \text{if } \kappa = 1, \\ s^2 - 3s + 3/2 & \text{if } \kappa = 3/2, \\ s^3 - 6s^2 + 9s + 8/3, & \text{if } \kappa = 2. \end{cases}$$

The function q'(s), given by

(8)
$$q'(s) = \frac{2\kappa - 1}{\Gamma(2 - 2\kappa)} \int_{0}^{\infty} z^{1 - 2\kappa} f(s, z) dz, \quad s > 0, \kappa < 1,$$

was computed in a manner completely analogous to the computation of q(s). In

Table 3 one finds a selection of values of q(s) and q'(s) for $\kappa = 1.0(0,1)2.0$.

3.3. Computation of $\sigma(s)$ and $\sigma'(s)/\sigma(s)$

In our computations we only needed values of $\sigma(s)$ for s in the interval (0, 5.5). From (5) it follows that

$$\sigma(s) = \begin{cases} A^{-1}s^{\kappa}, & \text{if } 0 < s \le 2, \\ \\ A^{-1}s^{\kappa}(1-\kappa \int_{2}^{s}(1-\frac{2}{u})^{\kappa}\frac{du}{u}), & \text{if } 2 < s \le 4. \end{cases}$$

The integral \int_2^s was computed to machine precision (about 14D) using a standard library quadrature routine, and no numerical problems occurred. In the range 4 < s \leq 6 we computed a table of $\sigma(s)$ for s = 4+j/40, j = 1,2,...,80, from the differential equation in (5), using a standard fourth order Runge-Kutta method (SUBROUTINE DO2AAF from [3]). Values of $\sigma(s)$ in intermediate points were computed with five point Lagrangian interpolation. We estimate the obtained accuracy to be at least 10D.

The function $\sigma'(s)/\sigma(s)$, values of which were needed for s in the interval (2, 5.5), was computed with the following formula, which easily follows from (5):

$$\sigma'(s)/\sigma(s) = \frac{\kappa}{s} \left(1 - \frac{\sigma(s-2)}{\sigma(s)}\right), \quad \text{if } s > 2.$$

In Table 3 we give a selection of values of $\sigma(s)$ and $\sigma'(s)/\sigma(s)$ for $\kappa = 1.0(1.1)2.0$.

S	P(S)	P'(S)	Q(S)	Q'(S)	SIG(S)	SIG'(S)/SIG(S)	S
$\begin{array}{c} 0.0\\ .05\\ 1.05\\ 2.05\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ $.5614594836 .4301784783 .3505359929 .2964940329 .2572175488 .2272986511 .2037094383 .1846127699 .1688253462 .1555488067 .1442240973 .1344476010	3505359929 1976626886 1286087744 0909194604 0679031461 0527465057 0422063366 0345664015 0288448195 0244450184 0209867296 0182178693	000000000000000000000000000000000000	$\begin{array}{c} 1.0000000000\\ 1.0000000000\\ 1.0000000000$	0.00000000 .140364870 .280729741 .421094612 .561459483 .685581646 .781440621 .853795924 .906030334 .941322929 .964363506 .978972838	0 9 8 7 6 .5000000000 5 .3181046508 8 .2135845284 2 .1447991758 6 .0950770736 1 .0603739635 6 .0379365008 7 .0232482844	0.0 1.5 2.5 3.5 4.5 5.5 6.5
KAPPA	= 1.1						
S	P(S)	P'(S)	Q(S)	Q'(S)	SIG(S)	SIG'(S)/SIG(S)	S
$\begin{array}{c} 0.0\\ .50\\ 1.05\\ 2.50\\ 3.05\\ 4.50\\ 5.05\\ 6.5\\ 6.5\\ \end{array}$.5356887523 .4145607516 .3399296764 .2887762415 .2513313154 .2226524593 .1999442741 .1814972357 .1662031925 .1533105252 .1422905595 .1327601521	3203537688 1841318604 1212357396 0864160324 0649351900 0506804895 0407072711 0334426342 0279798592 0237645663 0204414980 0177740738	2463297961 .2499138752 .8251443985 1.4544348577 2.1250543857 2.8293050024 3.5620299584 4.3195293376 5.0990149045 5.8983067741 6.7156513973 7.5496057681	.8830258587 1.0832464873 1.2100371320 1.3030715954 1.3769127976 1.4384036490 1.4912798477 1.5377978634 1.5794236055 1.6171630950 1.6517369020 1.6836791109	0.00000000 .110217591 .236256578 .369049222 .506427061 .633925081 .737285237 .818344804 .879123978 .921942313 .950978383 .970072676	$\begin{array}{c} 0\\ 0\\ 2\\ 5\\ 8\\ .5500000000\\ 1\\ .3634992565\\ 1\\ .2491715540\\ 1\\ .1725521835\\ 0\\ .1165838431\\ 9\\ .0763650951\\ 1\\ .0494359209\\ 0\\ .0312817535 \end{array}$	0.0 1.5 2.5 3.5 4.5 5.0 5 6.5

<u>Table 3</u>. Selected values of p, p', q, q', σ and σ'/σ .

S	P(S)	P'(S)	Q(S)	Q'(S)	SIG(S)	SIG'(S)/SIG(S)	S
0.0 1.0 1.5 2.5 3.5 4.5 5.0 5.0 6.5 KAPPA	.5119151123 .3999241381 .3298884626 .2814169556 .2456880274 .2181790522 .1963066428 .1784786533 .1636565392 .1511322306 .1404054997 .1311124561	2934831327 1718103461 1144239702 0822125886 0621434553 0487253067 0392816296 0323695436 0271510584 0231106366 0199161781 0173455279	4517757023 0303940054 .5756919677 1.3176558517 2.1693553997 3.1143651697 4.1413191870 5.2418298045 6.4094172711 7.6389019022 8.9260325876 10.2672464578	.6004752208 1.0500721473 1.3591824366 1.6003077496 1.8011513681 1.9751625141 2.1298911407 2.2700107208 2.3986245119 2.5179047509 2.6294356597 2.7344111160	0.00000000 .086021372 .197625217 .321478455 .454023525 .582521900 .691521555 .780175114 .849047903 .899463306 .934888022 .958989872	0 3 8 0 2 .6000000000 8 .4091181007 2 .2856867345 0 .2015796494 8 .1395767106 8 .0939645982 2 .0624758802 3 .0406825246	0.0 1.5 2.5 3.0 5.0 5.0 5.0 5 6.5
S	P(S)	P'(S)	Q(S)	Q'(S)	SIG(S)	SIG'(S)/SIG(S)	S
0.0 1.05 1.05 2.50 3.05 0.5 0.5 0.5 0.5 0.5 0.5 0.5	.4899376581 .3861870981 .3203719668 .2743935982 .2402739731 .2138695803 .1927905588 .1755528205 .1611823448 .1490116646 .1385672044 .1295031885	2695022594 1605703655 1081222875 0782849500 0595151782 0468736550 0379249701 0313442929 0263565325 0224819356 0194098569 0169315716	5827669604 3153253727 .2574940933 1.0743611952 2.1007556613 3.3140913372 4.6981965428 6.2407802645 7.9320980902 9.7641787712 11.7303425548 13.8248841802	.1599122332 .8680479613 1.4041152938 1.8522508388 2.2459607347 2.6020690700 2.9302966200 3.2368147738 3.5258149497 3.8002914665 4.0624690180 4.3140529765	0.00000000 .066753237 .164365749 .278438933 .404715948 .532129503 .644900464 .739870328 .816157687 .874017371 .916054307 .945583994	0 6 3 6 . 6500000000 2 . 4547683543 5 . 3228896880 6 . 2316470837 1 . 1638391295 9 . 1130041687 0 . 0769605017 2 . 0514213759	0.0 1.50 1.50 2.50 3.05 4.05 5.05 6.5

Table 3. Continued

S	P(S)	P'(S)	Q(S)	Q'(S)	SIG(S)	SIG'(S)/SIG(S)	S	
0.0 1.0 1.5 2.5 3.5 4.5 5.5 6.5 VALUE	. 4695792585 . 3732761826 . 3113432878 . 2676853236 . 2350763901 . 2097157529 . 1893903852 . 1727157621 . 1587777209 . 1469466756 . 1367740364 . 1279310807	2480488996 1502993200 1022848155 0746111698 0570386611 0451187902 0366331638 0303642313 0255945125 0218772441 0189216711 0165315791	6070361687 5695819419 1117855615 .7168371809 1.8868842503 3.3782701392 5.1760844063 7.2686374310 9.6464065804 12.3014120964 15.2268208768 18.4166810894	3993142535 .5171595176 1.2984618629 2.0065252269 2.6670906230 3.2935429883 3.8938507438 4.4732070906 5.0352223720 5.5825306117 6.1171266203 6.6405666126	0.00000000 .051520609 .135963704 .239856091 .358810367 .483370868 .598116155 .698027139 .780868175 .845814243 .894512315 .929769839	0 9 7 4 9 .7000000000 3 .5003117907 7 .3605840467 2 .2625519967 6 .1891743540 6 .1333155147 2 .0927778447 6 .0634447887	0.0 1.0 1.5 2.5 3.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	
KAPPA	= 1.5							
S	P(S)	P'(S)	Q(S)	Q'(S)	SIG(S)	SIG'(S)/SIG(S)	S	
0.0505050505050505050505050505050505050	.4506834075 .3611251238 .3027686651 .2612728645 .2300833885 .2057097976 .1861008092 .1699637151 .1564399232 .1449352127 .1350244307 .1263949169	2288112938 1408978232 0968703751 0711713057 0547031732 0434544782 0354023701 0294268803 0248633369 0212954125 0184508035 0161449562	5000000000000000000000000000000000000	$\begin{array}{c} -1.0000000000\\0000000000\\ 1.0000000000\\ 2.0000000000\\ 3.0000000000\\ 4.0000000000\\ 5.0000000000\\ 5.0000000000\\ 6.000000000\\ 7.000000000\\ 8.000000000\\ 9.000000000\\ 10.000000000\end{array}$	0.00000000 .039559559 .111891330 .205557500 .316476475 .436737717 .551790025 .655232365 .743632446 .815128397 .870365697 .911519679	0 4 9 5 3 .7500000000 9 .5456521966 2 .3986105894 8 .2941213064 4 .2154068047 0 .1547366364 7 .1098075234 9 .0766813287	0.5 1.5 2.5 3.5 4.5 5.0 5 6.5	1
			mable 2 m					,

Table 3. Continued

S	P(S)	P'(S)	Q(S)	Q'(S)	SIG(S)	SIG'(S)/SIG(S)	S
$\begin{array}{c} 0.0 \\ .50 \\ 1.05 \\ 1.20 \\ 3.05 \\ .50 \\ 5.05 \\ 4.50 \\ 5.05 \\ 6.5 \\ 6.5 \\ \end{array}$. 4331115280 . 3496740377 . 2946171720 . 2551383943 . 2252838826 . 2018444225 . 1829168212 . 1672931157 . 1541663431 . 1429753199 . 1333168908 . 1248935316	2115205584 1322780055 0918419545 0679472157 0524988615 0418749519 0342290141 0285299205 0241614439 0207353561 0179964806 0157711386	2527189028 8099226422 8591695294 3030197688 .9238961515 2.8707825637 5.5772126320 9.0763932036 13.3970152608 18.5643994474 24.6012529776 31.5281954415	-1.5263025888 6471901437 .4813660627 1.7645760966 3.1592926344 4.6413424756 6.1953879989 7.8108611189 9.4800427830 11.1970458846 12.9572289825 14.7568355451	0.0000000000 .0302267524 .0916303788 .175301445 .277771366 .392598681 .506461032 .612044390 .704922366 .782284436 .843779507 .890862784	1 2 .8000000000 1 .5907254546 7 .4368411411 8 .3262082310 5 .2423818682 0 .1771158018 3 .1279266810 0 .0910474730	0.0 1.50 1.2.50 3.50 5.05 5.05 5.05 5.05 5.05

KAPPA = 1.7

S	P(S)	P'(S)	Q(S)	Q'(S)	SIG(S)	SIG'(S)/SIG(S)	S
0.0					0.000000000		0.0
• 5					.0229878929		.5
1.0	.4167406598	1959442920	.1194641569	-1.8315414214	.0746878843		1.0
1.5	.3388687246	1243620511	7066537155	-1.3447628356	.1488008109)	1.5
2.0	.2868604434	0871662427	-1.1265684301	2559250124	.242661652	1.850000000	2.0
2.5	.2492654023	0649223784	8955803838	1.2377897284	.351210707	5.6354917694	2.5
3.0	.2206675269	0504166703	.1627928684	3.0421199791	.4625814376	.4751732970	3.0
3.5	.1981127809	0403748718	2.1890474056	5.1020877257	.568979036	1.3586890792	3.5
4.0	.1798336939	0331097659	5.3014146619	7.3815940712	.6652113830	.2699647665	4.0
4.5	.1647005871	0276711805	9.6029257965	9.8550133092	.7476423126	.2003137708	4.5
5.0	.1519544997	0234873649	15.1855211899	12.5031289002	.8149712193	3 .1470144257	5.0
5.5	.1410651314	0201960510	22.1326540263	15.3109359843	.8678825928	.1064526157	5.5
6.0	.1316499850	0175579700	30.5210468783	18.2663506055			6.0
6.5	.1234258072	0154095906	40.4219353768	21.3594016497			6.5

Table 3. Continued

S	P(S)	P'(S)	Q(S)	Q'(S)	SIG(S)	SIG'(S)/SIG(S)	S
$\begin{array}{c} 0.0 \\ .5 \\ 1.0 \\ 2.5 \\ 3.5 \\ 4.5 \\ 5.5 \\ 6.5 \\ 6.5 \\ \end{array}$. 4014614735 . 3286600539 . 2794724315 . 2436385818 . 2162246592 . 1945084404 . 1768469640 . 1621829274 . 1498020324 . 1392028663 . 1300223430 . 1219906714	1818811978 1170809360 0828132207 0620817309 0484482693 0389492906 0320415218 0268486261 0228397183 0196765301 0171345774 0150598029	.5692400134 4121458522 -1.2295403445 -1.4538653401 7483444103 1.1726943008 4.5620143202 9.6491328812 16.6460948569 25.7512194133 37.1516828292 51.0253833112	-1.7577806094 -1.9644495293 -1.1653261062 .3791029877 2.5376500863 5.2304556098 8.4031455504 12.0158891630 16.0379809864 20.4448482544 25.2162588835 30.3351796553	0.000000000 .017404598 .060606331 .125742549 .211043503 .312732323 .420516839 .526499595 .624959910 .711583106 .784200642 .842711977	0 3 6 5 . 9000000000 8 . 6799295954 2 . 5135259390 6 . 3914601746 9 . 2980389303 6 . 2242047508 6 . 1669549374 5 . 1228031538	0.0 .5 1.5 2.0 3.5 4.5 5.0 5 6.5

KAPPA = 1.9

S	P(S)	P'(S)	Q(S)	Q'(S)	SIG(S)	SIG'(S)/SIG(S)	S
0.5 1.50505050505 1.22334455.65 6.5	. 3871765610 . 3190034218 . 2724291877 . 2382437279 . 2119462477 . 1910253529 . 1739524145 . 1597370993 . 1477066941 . 1373868243 . 1284326532 . 1205870953	1691565518 1103733356 0787558008 0594115261 0465859882 0375936203 0310213864 0260603504 0222172033 0191758799 0167256450 0147212913	1.0130470241 .0736382652 -1.0953090840 -1.8767600119 -1.7333655008 1742505610 3.2602247835 9.0068209857 17.4845536129 29.0981087950 44.2402507690 63.2935957150	-1.1693449378 -2.3330463893 -2.1395863140 8080640307 1.5447993792 4.8446098176 9.0387135422 14.0872323568 19.9585149486 26.6265690506 34.0694930907 42.2684586517	0.000000000 .013121034 .048969431 .105803115 .182760381 .277237645 .380549511 .485010591 .584603462 .674495909 .751759348 .815527043	0 4 8 7 7 .9500000000 1 .7240309089 4 .5518354663 0 .4244350338 2 .3265041615 6 .2486764780 1 .1876394864 6 .1400056709	0.0 1.0 1.5 2.0 3.0 4.5 5.0 5.0 6.5

Table 3. Continued

S	P(S)	P'(S)	Q(S)	Q'(S)	SIG(S)	SIG'(S)/SIG(S)	S
$\begin{array}{c} 0.0 \\ .50 \\ 1.50 \\ 5.05 \\ 2.33 \\ 4.55 \\ 5.05$. 3737989601 . 3098582741 . 2657086680 . 2330676460 . 2078238432 . 1876578281 . 1711460591 . 1573602202 . 1456663447 . 1356153811 . 1268796593 . 1192140912 	1576183758 1041846786 0749695092 0568992041 0448227584 0363036035 0300466576 0253045649 0216185948 0186932366 0163305489 0143935956	1.3333333333 .7083333333 66666666667 -2.04166666667 -2.66666666667 -1.79166666667 1.3333333333 7.4583333333 17.333333333 31.7083333333 51.333333333 51.333333333 51.3333333333	.000000000 -2.250000000 -3.000000000 .000000000 3.750000000 9.000000000 15.750000000 24.00000000 33.750000000 45.00000000 57.750000000	0.000000000 .0098511485 .0394045940 .0886603364 .1576183758 .2447303327 .3428841203 .4448547430 .5445435200 .6367661948 .7179601487 .7865399407	<pre>3 1.000000000 7 .7677975398 .5900526512 .4575418473 .3552747668 .2736297284 .2089676029 .1579692985</pre>	0.0 1.5 1.5 2.5 3.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5

KAPPA = 2.0

14

Table 3. Continued

ACKNOWLEDGEMENTS

I want to acknowledge the expert advice by Jan van de Lune and Nico Temme concerning some crucial points in this research.

REFERENCES

- [1] CLENSHAW, C.W. & A.R. CURTIS, A method for numerical integration on an automatic computer, Numer. Math. 2 (1960), pp. 197-205.
- [2] IWANIEC, H., J. VAN DE LUNE & H.J.J. TE RIELE, The limits of Buchstab's iteration sieve, Proc. Kon. Ned. Akad. Wetensch. A83 (1980), pp. - .
- [3] NAG Library Manual, Numerical Algorithms Group, Oxford, 1974.
- [4] PATTERSON, T.N.L., The optimum addition of points to quadrature, Math. Comp. <u>22</u> (1968), pp. 847-856.
- [5] PATTERSON, T.N.L., On some Gauss and Lobatto based integration formulae, Math. Comp. 22 (1968), pp. 877-881.