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*) Hyperperfect numbers with more than two different prime factors 

by 

H.J.J. te Riele 

ABSTRACT 

Very recently, MINOLI [2] has defined n-hyperperfect numbers as positive 

integers m satisfying the equation 

m = 1 + n[O" (m) - m - 1] 

for some n E JN. He wondered whether all hyperperfect numbers might have the 

form paq, where p and q are prime numbers, p < q and a E JN. 

In this report we answer this question in the negative by constructing 

eleven hyperperfect numbers with three and one with four different prime 

factors. 

KEY IDRDS & PHRASES: hyperperfect numbers 

*) A shorter version of this report will appear in the January 1981 issue 
of Mathematics of Computation [3]. 
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Very recently, MINOLI [2] has defined n-hyperperfect numbers as positive 

integers m such that for some n E JN 

(1) m = 1 + n[cr (m) - m - 1]. 

For n = 1, this yields the well-known perfect numbers. Minoli gives a table 

of all (38) n-hyperperfect numbers up to 1,500,000 with n 2 2. These numbers 
a all have the form p q, where p and q are prime numbers, p < q and a E JN. 

Minoli wonders whether all hyperperfect numbers might have this form. 

In this report we shall construct eleven hyperperfect numbers with three 

and one with four different prime factors, thus answering Minoli's question 

in the negative. Our technique is well-known, and was used, for instance, by 

EULER [1] to compute amicable number pairs. 

Let m = apq (a E ill, p and q different prime numbers, (a,pq) = 1) be an 

n-hyperperfect number. By (1) we have 

apq = 1 + n[cr(a) (p+1) (q+1) -apq- 1]. 

We assume a and n to be given, define a:= cr(a), and rewrite it as 

[a- n(a- a) ]pq na (p+q) = 1 + n (a - 1) • 

2-2 
Multiplying by a - n (a-a) and adding n a to both sides, we obtain 

(2) { [a - n (a-a) Jp - naH [a - n (a-a) Jq - na} 

= [a-n(a-a)][l+n(a-1)] + n2a.2 • 

If AB, 1 s A< B, is a factorization of the (known) right hand side, then we 

can write 

--na+A na+B 
(3) p = a-n(a-a) ' q = a-n(a-a) . 

There may not be integer solutions of (3), but if solutions do exist such 

that both p and q are primes with (a,pq) = 1, then m = apq is an n-hyper-

perfect number. 
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In order to be sure that p and q in (3) be integers, we shall require a 
and n to satisfy 

(4) a - n(a-a) = 1. 

(Note the resemblance of this equation with (1) !) . Then (2) and (3) reduce to 

(2 I) (p-na) (q-na) = 1 + n(a-1) 2-2 + n a =: AB, 1 SA< B, 

and 

(3' ) p = na + A, q = na + B. 

Equations (2'), (3') and (4) form our starting point for a number of special 

cases to be considered. 

Cl. 
CASE 1. a=r, r prime,a E lN 

For this choice of a it follows from (4) that n = (a-1)/(a-a) = r-1 is 

always an integer. From (2') and (3') we find that 

et+1 fP = r - 1 + A, q = ret+l - 1 + B, p and q primes, 
(5) LAB= r2et+2 _ ra+1 

Note that we have excluded A= 

prime. 

CASE 1.1. a = 1 

- r + 2, 1 < A < B. 

1 since this gives p 
a+1 = r which is not a 

If r - 2 (mod 3) , then r 2 - 1 = 0 (mod 3) and r 4 - r 2 - r + 2 = 0 (mod 3) so 

that, by (5), 3 divides at least one of A and B, hence also at least one of 

p and q. Now it is easy to see that both p and q are >3. It follows that at 

least one of them is composite. 

For all primes r < 300 which are= 1(mod 3) we have checked (5) for all 

possible factorizations AB. In this way we have found five hyperperfect num­

bers of the form rpq (viz., for r = 13, 223, 229, 277 and 283; see Table 1). 
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CASE 1 . 2 • a = 2 

If r 3 _ 6 3 
- 2 (mod 3), then r -1 = 1 (mod 3) and r -r -r+2 = 2 (mod 3). It follows 

from (5) that one of A and B is = 2 (mod 3), hence one of p and q is = 0 (mod 3). 

Excluding these r we have checked (5) for all primes r < 160, and we have 

found five hyperperfect numbers of the form r 2pq (viz., for r = 7, 13, 19, 

43 and 97; see Table 1). 

CASE 1.3. a= 3 

Excluding r = 2 (mod 3) and r = 2 (mod 5) (similarly as in the case 1 .1) we 

have checked (5) for all primes r < 100 and we have found one hyperperfect 
3 

number of the form r pq (viz., for r = 73; see Table 1). 

CASE 2. a= rs, rands primes, r ~ s 

From (4) it follows that for this choice of a 

(6) n = (rs-1)/(r+s+l) = r - 2 
(r +r+1)/(r+s+1). 

This is an integer provided that (r+s+1) divides (r2+r+1). Equations (2') 

and ( 3 ' ) become 

(7) 
{p = n(r+1) (s+l) +A, q = n(r+1) (s+1) +B, 

AB= 1-n+n(r+l) (s+1)[1+n(r+1) (s+1)], 

p and q primes, 

1 S A < B. 

2 
Suppose now that r = 2 (mod 3), then r +r+1 = 1 (mod 3). It is not difficult to 

prove that for this r all prime divisors, hence all divisors, of r 2+r+l are 

- 1 (mod 3) . It follows that (r2+r+1) / (r+s+l) = 1 (mod 3) and from (6), that 

n = 1(mod 3). From (7) we conclude that AB= 0(mod 3), hence one of p and q 

is= 0(mod 3). 

For all primes r = l(mod 3), r < 2000, we have determined the primes s, 

if existing, such that r+s+l qivides r 2+r+1, yielding an integer n, by (6). 

For these r, sand n we have checked (7), and we have found one hyperperfect 

number of the form rspq (viz., for r = 1327, s = 6793; see Table 1). 

REMARK 1 . One may construct many more hyperperfect numbers with more than two 

different prime factors by extending the ranges of r in the cases considered 
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above or by considering other cases. However, the numbers in (5) and (7) to 

be factorized grow fast with r, hence also the amount of computer time. An­

other possibility to find more hyperperfect numbers may emerge from dropping 

the condition (4) {taking into account that small values of a - n (a-a) in (3) 

may be favourable to find integer values of p and q) . 

REMARK 2. Minoli's table shows six n-hyperperfect numbers with odd n (n = 
3, 11 , 19, 31, 35 and 59) • These are all instances of the following rule: if 

both p = 6k-1 and q = 12k+1 are prime numbers for some k E JN, then p2q is a 

{4k-1)-hyperperfect number. Based on this rule, we conjecture that there are 

infinitely many hyperperfect numbers. 

m n 

1570153 = 13.269.449 12 

60110701 = 72383.3203 6 

13544168521 = 1322347.34147 12 

3675965445337 = 229.67187.238919 228 

8898807853477 = 283.112087.280537 282 

8992165119733 = 1926871.3625243 18 

72315968283289 = 277.78541.3323977 276 

217158581600773 = 43 284319.1392883 42 

348231627849277 = 223.49807.31352557 222 

7972299196816043329 = 97 2913571.927465611 96 

36320978727037068273 = 73 331293799.306914431 72 

1605108132959576124160002571981 = 1327.6793.10020547039.17769709449589 1110 

Table 1. Eleven hyperperfect numbers with three and one with four different 
prime factors. 
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